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The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with
Schrödinger’s famous remark about it [Proc. Cambridge Philos. Soc. 31, 555 (1935)], prompts the examination of its
role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields
to new Bell-analysis experiments and report here values of the Bell parameter greater than B � 2.54. This is many
standard deviations outside the limit B � 2 established by the Clauser–Horne–Shimony–Holt Bell inequality [Phys.
Rev. Lett. 23, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit
B � 2.828…. These results cast a new light on the standard quantum-classical boundary description, and suggest a
reinterpretation of it. © 2015 Optical Society of America

OCIS codes: (030.0030) Coherence and statistical optics; (260.5430) Polarization.

http://dx.doi.org/10.1364/OPTICA.2.000611

1. INTRODUCTION

For many decades the term “entanglement” has been attached to
the world of quantum mechanics [1]. However, it is true that
nonquantum optical entanglement can exist (realized very early
by Spreeuw [2]) and its applications have concrete consequences.
These are based on entanglements between two, or more than
two, degrees of freedom (DOFs), which are easily available clas-
sically [2–6]. Multientanglements of the same kind are also being
explored quantum mechanically [7]. Applications in the classical
domain have included, for example, the resolution of a long-
standing issue concerning Mueller matrices [8], an alternative in-
terpretation of the degree of polarization (DOP) [9], introduction
of the Bell measure as a new index of coherence in optics [10], and
innovations in polarization metrology [11]. Here we present theo-
retical and experimental results extending these results by showing
that probabilistic classical optical fields can exhibit violations of
the Clauser–Horne–Shimony–Holt (CHSH) Bell inequality [12]
of quantum strength. This is evidence of a new kind that asks
for reconsideration of the common understanding that Bell
violation signals quantum physics. We emphasize that our discus-
sion focuses on the nonquantum entanglement of nondetermin-
istic classical optical fields and does not engage issues such as
nonlocality that are important for some applications in quantum
information.

The observations and applications of nonquantum wave
entanglement noted above [2–6,8–11] exploited nonseparable
correlations among two or more modes or DOFs of optical wave
fields. Nonseparable correlations among modes are an example of

entanglement, but are not enough for our present purpose. In
addition, we want to conform to three criteria that Shimony
has identified for Bell tests [13], facts of quantum nature that
must be satisfied when examining possible tests of the quan-
tum-classical border. Fortuitously, the ergodic stochastic optical
fields of the classical theory of partial coherence and partial
polarization (see Wolf [14]) satisfy these criteria fully (see
Supplement 1), and we have used such fields as our test bed.

2. BACKGROUND THEORY

We will deal here only with the simplest suitable example, the
theory of completely unpolarized classical light, and have ex-
plained elsewhere (see [15] and Supplement 1) the generalizations
needed to treat partially polarized fields, which lead to the same
conclusions. In all cases there are only two DOFs to deal with,
namely, the direction of polarization and the temporal amplitude
of the optical field. In both classical and quantum theories, these
are fundamentally independent attributes. An electric field, for a
beam traveling in z direction, is written as

E⃗�t� � x̂Ex�t� � ŷEy�t�: (1)

In the classical theory of unpolarized light [16], an optical field’s
two amplitudes Ex and Ey are statistically completely uncorre-
lated and are treated as vectors in a stochastic function space.
A scalar product of the vectors in this space corresponds physically
to observable correlation functions such as hExEyi. For unpolar-
ized light we have hExExi � hEyEyi and hExEyi � 0.

2334-2536/15/070611-05$15/0$15.00 © 2015 Optical Society of America
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Now it is possible to talk of entanglement of the classical field.
This is because entangled states are superpositions of products of
vectors from different vector spaces, whenever the superpositions
cannot be rearranged into a single product that separates the two
spaces [1]. Looking again at Eq. (1) we see that this is the case
because we have taken E⃗ to be unpolarized. That is, by the def-
inition of unpolarized light, there is no direction û of polarization
that captures the total intensity, so E⃗�t� cannot, for any direction
û, be written in the form E⃗�t� � ûF �t�, which would factorably
separate the polarization and amplitude DOFs [17].

Beyond its probabilistic indeterminacy, the E⃗ in Eq. (1) has
other quantum-like attributes—it has the same form as a quan-
tum state superposition and can be called a pure state in the same
sense. More precisely, it is a two-party state living in two vector
spaces at once, a polarization space for x̂ and ŷ, and an infinitely
continuous stochastic function space for Ex and Ey.

The Bell inequality most commonly used for correlation tests is
due to Clauser et al. [12]. It deals with correlations between two
different DOFs when each is two dimensional. The Schmidt theo-
remof analytic function theory [18] ensures two-dimensionality by
guaranteeing that among the infinitely many dimensions available
to the amplitudes in Eq. (1), only two dimensions are active. This is
a consequence arising just from the fact that the partner polariza-
tion vectors x̂ and ŷ live in a two-dimensional space.

For convenience, we introduce e⃗, the field normalized to the
intensity I � hExEx � EyEyi,

e⃗�t� ≡ E⃗�t�∕
ffiffiffi
I

p
� fx̂ex�t� � ŷey�t�g; (2)

where now he⃗ · e⃗i � hexex � eyeyi � 1.
For some simplification in writing, we will use Dirac notation

for the vectors without, of course, imparting any quantum char-
acter to the fields. The unit polarization vectors x̂ and ŷ will be
renamed as x̂ → ju1i and ŷ → ju2i and the unit amplitudes will
be rewritten as ex → jf 1i and ey → jf 2i. If desired, the Dirac
notation can be discarded at any point and the vector signs
and hats re-installed. For the case of unpolarized light, we have
hu1ju2i � 0 and hf 1jf 2i � 0. Unit projectors in the two spaces
take the form 1 � ju1ihu1j � ju2ihu2j and 1 � jf 1ihf 1j�
jf 2ihf 2j. In this notation, and in the original notation for
comparison, the field takes the form

E⃗∕
ffiffiffi
I

p
� x̂ex � ŷey � jei � �ju1ijf 1i � ju2ijf 2i�∕

ffiffiffi
2

p
: (3)

In this notation, the field actually looks like what it is, a two-party
superposition of products in independent vector spaces, i.e., an
entangled two-party state (actually a Bell state). Here the two
parties are the independent polarization and amplitude DOFs.

The notation for a CHSH correlation coefficient C�a; b�
implies that arbitrary rotations of the unit vectors juji and
jf ki�j; k � 1; 2� through angles a and b can be managed inde-
pendently in the two spaces. An arbitrary rotation through angle a
of the polarization vectors ju1i and ju2i takes the forms

jua1i � cos aju1i − sin aju2i and

jua2i � sin aju1i � cos aju2i: (4)

For function space rotations, we have jf b
1i and jf b

2i defined
similarly:

jf b
1i � cos bjf 1i − sin bjf 2i and

jf b
2i � sin bjf 1i � cos bjf 2i; (5)

where the rotation angles a and b are unrelated.
Next, the correlation between the polarization (u) and func-

tion (f ) DOFs is given by the standard average

C�a; b� � hejZu�a� ⊗ Zf �b�jei; (6)

where Z is shorthand for the difference projection:
Zu�a� ≡ jua1ihua1j − jua2ihua2j, analogous to a σz spin operation.
C�a; b� is thus a combination of four joint projections such as

P11�a; b� � hej�jua1ijf b
1ihf b

1jhua1j�jei � jhf b
1jhua1jeij2: (7)

This is all classical and all of the correlation projections Pjk�a; b�,
with j; k � 1; 2, have familiar roles in classical optical polarization
theory [16].

Gisin [19] observed that any quantum state entangled in the
same way as the classical pure state Eq. (2) will lead to a violation
of the CHSH inequality, which takes the form B ≤ 2, where

B � jC�a; b� − C�a 0; b� � C�a; b 0� � C�a 0; b 0�j: (8)

The same result will be found here, as one uses only DOF inde-
pendence and properties of positive functions and normed vectors
to arrive at it (see details in Supplement 1). We note again that the
issue of entanglement itself is pertinent to the discussion, but the
usefulness of entanglement as a resource for particular applica-
tions is not. Thus we have reached the main goal of our theoretical
background sketch. This was to demonstrate the existence of a
purely classical field theory that can exhibit a violation of the
CHSH Bell inequality.

3. EXPERIMENTAL TESTING

The remaining task is to show that experimental observation con-
firms this theoretical prediction, in effect shifting one’s interpre-
tation of tests of the quantum-classical border by showing that,
along with quantum fields, classical fields conforming to the
Shimony Bell-test criteria are capable of Bell violation. In order
to make such a demonstration, a classical field source must be
used. This means a source producing a field that is quantum
mechanical (since we believe all light fields are intrinsically quan-
tum), but a field whose quantum statistics are not distinguishable
from classical statistics. This is only necessary up to second order
in the field because the CHSH procedure engages no higher order
statistics. Such sources are easily available. Since the earliest test-
ing of laser light it has been known that a laser operated below
threshold has a statistical character not distinguishable from
classical thermal statistics. So in our experiments we have used
a broadband laser diode operated below threshold.

Our experiment repeatedly records the correlation function
C�a; b� defined in Eq. (6) for four different angles in order to
construct the value of the Bell parameter B. This is done through
measurements of the joint projections Pjk�a; b�. We will describe
explicitly only the recording of P11�a; b�, identified in Eq. (7), but
the others are done similarly in an obvious way. In the classical
context that we are examining, the optical field is macroscopic
and correlation detection is essentially calorimetric (i.e., using
a power meter, not requiring or employing individual photon
recognition).
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4. POLARIZATION TOMOGRAPHY

The first step is to tomographically determine the polarization
state of the test field. A polarization tomography setup is shown
in Fig. 1. Using a polarizing beam splitter (PBS) and half-wave
plates (HWP) and a quarter-wave plate (QWP) to project onto
circular and diagonal bases, the Stokes parameters (S1; S2; S3), rel-
ative to S0 � 1, are found to be (−0.0827; −0.0920; −0.0158),
providing a small nonzero DOP equal to 0.125. This departure
from 0 requires a slight modification of the theory presented
above (see Supplement 1) and reduces the maximum possible
value of B able to be achieved for our specific experimental field
to B � 2.817, below but close to B � 2

ffiffiffi
2

p � 2.828…, the
theoretical maximum for completely unpolarized light.

5. EXPERIMENTAL BELL TEST

The experimental test has two major components, as shown in
Fig. 1: a source of light to be measured and a Mach–Zehnder
(MZ) interferometer. The source utilizes a 780 nm laser diode,
operated in the multimode region below threshold, giving it a
short coherence length of the order of 1 mm. The beam is as-
sumed to be statistically ergodic, stable and stationary, as com-
monly delivered from such a multimode below-threshold
diode. It is incident on a 50:50 beam splitter and recombined
on a PBS after adequate delay so that the light to be studied

is an incoherent mix of horizontal and vertical polarizations before
being sent to the measurement area via a single-mode fiber. A
HWP in one arm controls the relative power, and thus, the DOP.
QWP and HWP help correct polarization changes introduced by
the fiber.

In Fig. 1 the partially polarized beam entering the MZ is sep-
arated by a 50:50 beam splitter into a primary test beam jEi and
an auxiliary beam jĒi. The two beams inherit the same statistical
properties from their mother beam, and thus, both can be ex-
pressed as in Eq. (3), with intensities I and Ī . The phase of the
auxiliary beam jĒi is shifted by an unimportant factor i at the
beam splitter.

To determine the joint projection P11�a; b� of the test beam
jEi, the first step is to project the field to obtain
jEa

1i ≡ jua1ihua1jEi. This can be realized by the polarizer labeled
a on the bottom arm of the MZ. The transmitted beam retains
both jf i components in function space:

jEa
1i �

ffiffiffiffiffi
I a1

p
jua1i�c11jf b

1i � c12jf b
2i�; (9)

where I a1 is the intensity and c11 and c12 are normalized amplitude
coefficients with jc11j2 � jc12j2 � 1. Here c11 relates to P11 in an
obvious way: P11�a; b� � I a1jc11j2∕I . One sees that the intensities
I and I a1 can be measured directly, but not the coefficient c11.

For P11�a; b� our aim is to produce a field that combines a
projection onto jf b

1i in function space with the jua1i projection
in polarization space. The challenge of overcoming the lack of
polarizers for the projection of a nondeterministic field in an ar-
bitrary direction in its independent infinite-dimensional function
space is managed by a “stripping” technique [Supplement 1] ap-
plied to the auxiliary Ē field in the left arm. We pass Ē through a
polarizer rotated from the initial ju1i − ju2i basis by a specially
chosen angle s so that the statistical component jf b

2i is stripped
off. The transmitted beam jĒ s

1i then has only the jf b
1i compo-

nent, as desired: jĒs
1i � i

ffiffiffiffiffi
Ī s1

p
jus1ijf b

1i. Here Ī s1 is the corre-
sponding intensity and the special stripping angle s is given by
tan s � �κ1∕κ2� tan b (see [15] and Supplement 1).

The function-space-oriented beam jĒs
1i is then sent through

another polarizer a to become jĒa
1i � jua1ihua1jĒa

1i �
i

ffiffiffiffiffi
Ī a1

p
jua1ijf b

1i, where Ī a1 is the corresponding intensity.
Finally, the beams jEa

1i and jĒa
1i are combined by a 50:50 beam

splitter, which yields the outcome beam jET
1 i � �jĒa

1i�
ijEa

1i�∕
ffiffiffi
2

p
. The total intensity IT1 of this outcome beam can

be easily expressed in terms of the needed coefficient c11.
Some simple arithmetic will immediately provide the joint

projection P11�a; b� in terms of various measurable intensities:

P11�a; b� � �2IT1 − Ī a1 − I
a
1�2∕4I Ī a1: (10)

Other Pjk�a; b� values can be obtained similarly by rotations of
polarizers a and s. To make our measurements, polarizers a were
simultaneously rotated using motorized mounts, whereas the
third polarizer s was fixed at different values in a sequence of runs.

6. RESULTS

For each angle, measurements were made at detector D1 for the
total intensity IT and for the separate intensities from each arm I a

and Ī a by closing the shutters S alternately. In this way, the mea-
surements of the polarization space and statistical amplitude space
are carried out separately. From these measurements, the needed
correlations C�a; b� were determined and Eq. (8) was used to
evaluate the CHSH parameter B.

Fig. 1. Experimental setup consists of a source of unpolarized light
and a measurement using a modified MZ interferometer. HWP and a
QWP control the polarization of the source. All beam splitters are 50:50
unless marked as a PBS. Intensities needed for obtaining the required
joint projections are measured at detector D1. Shutters S independently
block the arms of the interferometer in order to measure light through the
arms separately. A removable mirror (RM) directs the light to a polari-
zation tomography setup where the orthogonal components of the polari-
zation in the basis determined by the wave plate are measured at detectors
D2 and D3.
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Figure 2 shows C�a; b� obtained by measuring the joint pro-
jections Pjk�a; b� for a complete rotation of polarizer a, with dif-
ferent curves corresponding to b (and thus s) fixed at different
values. It is apparent from the near-identity of the curves that,
to good approximation, the correlations are a function of the dif-
ference in angles, i.e., C�a; b� � C�a − b�. The maximum value
for B can then be found straightforwardly from any one of the
curves in Fig. 2. Among them, the smallest and largest values
of B (obtained for curves 1 and 4) are 2.548� 0.004 and
2.679� 0.007, respectively.

To be careful, we note that in our experiments the field was
almost but not quite completely unpolarized; thus, not quite the
same field was sketched in the Background Theory section. Thus,
we could not expect to get the maximum quantum result B �
2

ffiffiffi
2

p � 2.828…. for the Bell parameter, although the values
achieved also present a strong violation. The background theory
is mildly more complicated for partially polarized rather than
unpolarized light, but when worked out for the DOP of our
light beams (see [15] and Supplement 1) it supports the values
we observed.

7. SUMMARY

In summary, we first sketched the purely classical theory of optical
beam fields (1) that satisfy the Bell-test criteria of Shimony
[13,15]. Their bipartite pure state form shows the entanglement
of their two independent DOFs [20]. The classical theory defines
them as dynamically probabilistic fields, meaning that individual
field measurements yield values that cannot be predicted except in
an average sense, which is another feature shared with quantum
systems but also associated for more than 50 years with the well-
understood and well-tested optical theory of partial coherence
[16]. Our theoretical sketch for the simplest case, unpolarized
light, indicated that such fields or states are predicted to possess
a range of correlation strengths equal to that of two-party quan-
tum systems, that is, outside the bound B ≤ 2 of the CHSH Bell
inequality and potentially as great as B � 2

ffiffiffi
2

p
. In our experi-

mental test, we used light whose statistical behavior (field
second-order statistics) is indistinguishable from classical, viz.,
the light from a broadband laser diode operating below threshold.

Our detections of whole-beam intensity are free of the heralding
requirements familiar in paired-photon CHSH experiments.
Repeated tests confirmed that such a field can strongly violate
the CHSH Bell inequality and can attain Bell-violating levels
of correlation similar to those found in tests of maximally
entangled quantum systems.

One naturally asks, how are these results possible? We know
that a field with classically random statistics is a local real field,
and we also know that Bell inequalities prevent local physics from
containing correlations as strong as what quantum states provide.
But the experimental results directly contradict this. The resolu-
tion of the apparent contradiction is not complicated, but does
mandate a shift in the conventional understanding of the role of
Bell inequalities, particularly as markers of a classical-quantum
border. Bell himself came close to addressing this point. He
pointed out [21] that even adding classical indeterminism would
still not be enough for any type of hidden variable system to over-
come the restriction imposed by his inequalities. This is correct as
far as it goes, but fails to engage the point that local fields can be
statistically classical and exhibit entanglement at the same time.
For the fields under study, the entanglement is a strong correla-
tion that is intrinsically present between the amplitude and polari-
zation DOFs, and it is embedded in the field from the start (as it
also is embedded ab initio in any quantum states that violate a Bell
inequality). The possibility of such pre-existing structural corre-
lation is bypassed in a CHSH derivation. Thus one sees that Bell
violation has less to do with quantum theory than previously
thought, but everything to do with entanglement.

Defense Advanced Research Projects Agency (DARPA)
(W31P4Q-12-1-0015); National Science Foundation (NSF)
(PHY-0855701, PHY-1203931).

The authors acknowledge helpful discussions with many col-
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Giacobino, G. Howland, A. N. Jordan, P. W. Milonni, R. J. C.
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See Supplement 1 for supporting content.
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