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Abstract
In this paper, we study a specific system of Clifford–Appell polynomials and, in
particular, their product. Moreover, we introduce a new family of quaternionic
reproducing kernel Hilbert spaces in the framework of Fueter regular functions.
The construction is based on a general idea which allows us to obtain various
function spaces by specifying a suitable sequence of real numbers. We focus on
the Fock and Hardy cases in this setting, and we study the action of the Fueter
mapping and its range.
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1 INTRODUCTION

A set of polynomials
{
𝑃𝑛

}
𝑛∈ℕ

satisfying an identity with respect to the real derivative that takes 𝑃𝑛 to 𝑛𝑃𝑛−1 is called
an Appell system [7]. In the classical case, where 𝑥 is interpreted as a real or complex variable, the standard monomials
𝑃𝑛(𝑥) = 𝑥

𝑛 form an Appell set, but also the famous Hermite, Bernoulli and Euler polynomials are examples of Appell
sets. The importance of such polynomials in various settings is well known, and we mention here, with no pretense of
completeness their relevance in probability theory and stochastic process since they can be connected to random variables,
see [8], they were used also to study optimal stopping problems related to Lévy process in [26].
Moving to the hypercomplex analysis setting, namely analysis for functions with values in a Clifford algebra, in partic-

ular quaternions, we have various function theories, associated with different differential operators. In this paper we will
treat the quaternionic case.
In the slice hyerholomorphic setting, Appell systems can be obtained by simply extending the variable in use to become

hypercomplex, and so we have that, for example, the standard monomials in the quaternionic variable are among them
with respect to the slice derivative.
But these sets of polynomials were studied also in the setting of quaternionic and Clifford analysis with respect to the

hypercomplex derivative, see [10, 11, 21, 22, 25]. It turns out that the Appell systems in this framework play a similar role as
the complexmonomials do to define elementary functions in terms of their power series like cosine, sine, exponential, etc.
This fact opens a variety of questions also in relation to various function spaces including Fock, Hardy, Bergman, Dirichlet
spaces, etc. Moreover, various questions arise about their associated operators such as creation, annihilation, shift and
backward shift operators. Some different operators related to Fock spaces in the Clifford setting were considered also in
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[18]. What makes Appell systems in quaternionic and Clifford analysis rather peculiar, is the fact that the function theory
has been developed using the so-called Fueter polynomials, see [9, 24], and these polynomials do not satisfy the Appell
property in general. However, a series expansion for hyperholomorphic functions is possible using both the approaches.
In order to define and study quaternionic reproducing kernel Hilbert spaces the approach that makes use of the Appell

systems looks very promising and allows to define the associated operators.Wewill show that using a special set of Clifford
Appell polynomials, denoted by

{
𝑄𝑛

}
, we can introduce various function spaces denoted by 𝑏 whose elements are

converging series of the form
∑
𝑄𝑛𝑎𝑛, where the quaternionic coefficients 𝑎𝑛 satisfy suitable conditions which depend

on a given sequence 𝑏 =
(
𝑏𝑛
)
of real (in fact rational) numbers. This approach is rather general, and it is used also in

the slice hyperholomorphic setting in which the series under consideration are of the form
∑
𝑞𝑛𝑎𝑛, where 𝑞 denotes the

quaternionic variable and give rise to spaces denoted by𝑐, 𝑐 = (
𝑐𝑛
)
.

In this paper we treat the case of the quaternionic Fock and the Hardy spaces which have been already studied in the
slice setting but are new in the Fueter regular framework combined with the Appell polynomials. For this reason, these
spaces are called Clifford–Appell Fock space and Clifford–Appell Hardy space, respectively.
One problem of the system

{
𝑄𝑛

}
is that if wemultiply two such polynomials we do no obtain an element in the system.

This is expected provided the non-commutative setting and in fact hyperholomorphic functions can be multiplied using
the so-called CK-product. With the polynomials𝑄𝑛 there is the additional problem of remaining within the Appell system
and in fact we show how this can be achieved. This technical result opens the possibility to prove several results and also
to introduce creation, annihilation and shift operators.
An advantage of our description is that we can prove that the function spaces 𝑏 and 𝑐 for suitable choices of

𝑏, 𝑐, can be related using the Fueter mapping theorem.
The structure of the paper is the following: in Section 2 we revise notations and preliminary results that we need in

the sequel. In Section 3 we introduce some quaternionic reproducing kernel Hilbert spaces (QRKHS) based on a specific
Appell system, and prove different properties on such kind of polynomials. We show also that, under suitable conditions,
any axially Fueter regular function can be expanded in terms of these Appell polynomials. In Section 4 we focus more on
the Fock space in this setting. In particular, we study different properties related to the notions of creation, annihilation
operators and Segal–Bargmann transforms. In Section 5 we treat the Hardy space case, and study different properties
related to the shift and backward shift operators. Finally, in Section 6 we show how the Fueter mapping acts by sending
spaces of slice hyperholomorphic functions into spaces of Fueter regular functions. Moreover, we show that in some
special cases the Fueter mapping acts as an isometric isomorphism up to a constant.

2 PRELIMINARY RESULTS

We recall some basic facts on quaternions and on the two sets of Cauchy–Fueter and slice hyperholomorphic functions.
The skew field of quaternions is defined to be

ℍ =
{
𝑞 = 𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘 ; 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ ℝ

}
where the imaginary units satisfy the multiplication rules

𝑖2 = 𝑗2 = 𝑘2 = −1 and 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗.

The conjugate and the modulus of 𝑞 ∈ ℍ are defined by

𝑞 = 𝑅𝑒(𝑞) − 𝑞 where 𝑅𝑒(𝑞) = 𝑥0, 𝑞 = 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘

and

|𝑞| =√
𝑞𝑞 =

√
𝑥20 + 𝑥

2
1 + 𝑥

2
2 + 𝑥

2
3,

respectively. Notice that the quaternionic conjugation satisfy the property 𝑝𝑞 = 𝑞 𝑝 for any 𝑝, 𝑞 ∈ ℍ. Moreover, the unit
sphere {

𝑞 = 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘; 𝑥
2
1 + 𝑥

2
2 + 𝑥

2
3 = 1

}
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coincides with the set of all imaginary units given by

𝕊 =
{
𝑞 ∈ ℍ; 𝑞2 = −1

}
.

Sometimes we denote 𝑒1 = 𝑖, 𝑒2 = 𝑗 and 𝑒3 = 𝑘.
We recall the classical notion of Fueter regular functions also called “hyperholomorphic functions”, for more details

one can see [15, 24]:

Definition 2.1. Let 𝑈 ⊂ ℍ be an open set and let 𝑓 ∶ 𝑈⟶ℍ be a real differentiable function. We say that 𝑓 is (left)
Fueter regular or regular for short if

𝜕𝑓(𝑞) ∶=

(
𝜕
𝜕𝑥0

+ 𝑖
𝜕
𝜕𝑥1

+ 𝑗
𝜕
𝜕𝑥2

+ 𝑘
𝜕
𝜕𝑥3

)
𝑓(𝑞) = 0, ∀𝑞 ∈ 𝑈.

The quaternionic right linear space of Fueter regular functions is denoted by(𝑈).
The right Fueter regular functions can be defined just by taking the imaginary units on the right of the derivatives of the

function 𝑓. The quaternionic monomials 𝑃𝑛(𝑞) = 𝑞𝑛 are not Fueter regular. However, there exist some other important
functions in this theory, the so-called Fueter variables, defined by

𝜁𝑙(𝑥) = 𝑥𝑙 − 𝑒𝑙𝑥0, 𝑙 = 1, 2, 3. (2.1)

These functions play the same role that complex monomials play in complex analysis. For example, a series expansion
for Fueter regular functions is obtained using these Fueter variables. A suitable product that allows to preserve the regu-
larity in this setting is the so-called C-K product, denoted ⊙. Given two Fueter regular functions 𝑓 and 𝑔, we take their
restriction to 𝑥0 = 0 and consider their pointwise multiplication. Then, we take the Cauchy–Kowalevskaya extension of
this pointwise product, which exists and is unique, to define 𝑓 ⊙ 𝑔, see [24].
A more recent theory of quaternionic regular functions was introduced and studied in several directions during the

last years, see for example [2, 16, 17, 23], namely the theory of slice hyperholomorphic functions that we recall briefly. In
the definition below, for a fixed 𝐼 ∈ 𝕊, ℂ𝐼 = ℝ + 𝐼ℝ denotes the complex plane whose variable is 𝑞 = 𝑥 + 𝐼𝑦, and we set
Ω𝐼 ∶= Ω ∩ ℂ𝐼 .

Definition 2.2. A real differentiable function 𝑓 ∶ Ω⟶ℍ, on a given domain Ω ⊂ ℍ, is said to be a (left) slice hyper-
holomorphic function if, for very 𝐼 ∈ 𝕊, the restriction 𝑓𝐼 to ℂ𝐼 , is holomorphic on Ω𝐼 , that is it has continuous partial
derivatives with respect to 𝑥 and 𝑦 and the function 𝜕𝐼𝑓 ∶ Ω𝐼 ⟶ ℍ defined by

𝜕𝐼𝑓(𝑥 + 𝐼𝑦) ∶=
1
2

(
𝜕
𝜕𝑥
+ 𝐼

𝜕
𝜕𝑦

)
𝑓𝐼(𝑥 + 𝑦𝐼)

vanishes identically on Ω𝐼 . The set of slice hyperholomorphic functions is denoted by (Ω).
The paper [4] studies the slice hyperholomorphic quaternionic Fock space 𝑆𝑙𝑖𝑐𝑒(ℍ), defined for a given 𝐼 ∈ 𝕊 to be

𝑆𝑙𝑖𝑐𝑒(ℍ) ∶=
{
𝑓 ∈ (ℍ); 1

𝜋∫ℂ𝐼
||𝑓𝐼(𝑝)||2𝑒−|𝑝|2 𝑑𝜆𝐼(𝑝) < ∞

}
,

where 𝑓𝐼 = 𝑓|ℂ𝐼 and 𝑑𝜆𝐼(𝑝) = 𝑑𝑥𝑑𝑦 for 𝑝 = 𝑥 + 𝑦𝐼. The definition of this space does not depend on the choice of 𝐼. It was
also proved that this quaternionic Fock space can be characterised in terms of the slice hyperholomorphic power series
as follows

𝑆𝑙𝑖𝑐𝑒(ℍ) =
{

∞∑
𝑘=0

𝑞𝑘𝑎𝑘; 𝑎𝑘 ∈ ℍ :
∞∑
𝑘=0

𝑘!||𝑎𝑘||2 < ∞
}
.
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Its associated Segal–Bargmann transform was studied in [20] by considering the slice hyperholomorphic kernel
obtained making use of the normalized Hermite functions

(
𝜂𝑛
)
𝑛≥0. The explicit expression of this kernel is given by

𝑆ℍ(𝑞, 𝑥) ∶=
∞∑
𝑘=0

𝑞𝑘√
𝑘!
𝜂𝑘(𝑥) = 𝑒

−
1

2
(𝑞2+𝑥2)+

√
2𝑞𝑥
, ∀(𝑞, 𝑥) ∈ ℍ × ℝ. (2.2)

Then, for any quaternionic valued function 𝜑 in 𝐿2(ℝ,ℍ) the slice hyperholomorphic Segal–Bargmann transform is
defined by

𝑆ℍ(𝜑)(𝑞) = ∫ℝ𝑆ℍ(𝑞, 𝑥)𝜑(𝑥) 𝑑𝑥. (2.3)

In the same spirit different famous spaces of slice hyperholomorphic functions such as Hardy, Besov, Bloch, Dirichlet and
Bergman spaces were studied in [1, 12, 13].

3 A NEW FAMILY OF QRKHS OF FUETER REGULAR FUNCTIONS: GENERAL
SETTING

Let us consider the quaternionic polynomials defined by

𝑄𝑘(𝑞) =
𝑘∑
𝑗=0

𝑇𝑘𝑗 𝑞
𝑘−𝑗𝑞

𝑗
, 𝑞 ∈ ℍ, 𝑘 ≥ 0, (3.1)

where

𝑇𝑘𝑗 ∶=
𝑘!

(3)𝑘

(2)𝑘−𝑗(1)𝑗

(𝑘 − 𝑗)!𝑗!
=
2(𝑘 − 𝑗 + 1)

(𝑘 + 1)(𝑘 + 2)
(3.2)

and (𝑎)𝑛 = 𝑎(𝑎 + 1)… (𝑎 + 𝑛 − 1) is the Pochhammer symbol.

Remark 3.1. Notice that the polynomials
(
𝑄𝑘

)
𝑘≥0 given by (3.1) are Fueter regular on ℍ. Moreover, they form an Appell

system with respect to the hypercomplex derivative 𝜕
2
, i.e., for all 𝑘 ≥ 1 we have the Appell property

𝜕
2
𝑄𝑘 = 𝑘𝑄𝑘−1. (3.3)

For more details on such properties of these polynomials one can consult for example [11] and [21].

For 𝑞 ∈ ℍ, let

Exp(𝑞) ∶=
∞∑
𝑘=0

𝑄𝑘(𝑞)

𝑘!
(3.4)

be the generalized Fueter regular exponential function considered in the paper [11]. Then, we introduce the following.

Definition 3.2. Let Ω be a domain in ℍ. Let 𝑐 =
(
𝑐𝑘
)
𝑘∈ℕ

and 𝑏 =
(
𝑏𝑘
)
𝑘∈ℕ

be two non decreasing sequences with

𝑐0 = 𝑏0 = 1 and such that
∑∞
𝑘=0 |𝑞|2𝑘𝑐𝑘 < ∞ and

∑∞
𝑘=0 |𝑞|2𝑘𝑏𝑘 < ∞. Then, associated to 𝑏 and 𝑐 we define:

1. The subspace of Fueter regular functions defined by

𝑏(Ω) =

{
∞∑
𝑘=0

𝑄𝑘𝛼𝑘; 𝛼𝑘 ∈ ℍ :
∞∑
𝑘=0

𝑏𝑘||𝛼𝑘||2 < ∞
}
.
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2. The subspace of slice hyperholomorphic functions defined by

𝑐(Ω) =
{

∞∑
𝑘=0

𝑞𝑘𝑓𝑘; 𝑓𝑘 ∈ ℍ :
∞∑
𝑘=0

𝑐𝑘||𝑓𝑘||2 < ∞
}
.

Given 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 and 𝑔 =

∑∞
𝑘=0 𝑄𝑘𝛽𝑘 in𝑏(Ω) we define the Hermitian inner product given by

⟨𝑓, 𝑔⟩𝑏 = ∞∑
𝑘=0

𝑏𝑘𝛼𝑘𝛽𝑘.

Remark 3.3. We note that, by specifying the sequence 𝑐,𝑐 include different spaces of slice hyperholomorphic functions
such as Fock, Hardy, Dirichlet and generalized Fock spaces. Such spaces are the quaternionic counterpart of the complex
version introduced in [3].

We are interested in two main problems in this setting:

Problem 3.4. Study the counterparts of the spaces introduced in Definition 3.2 by suitably chosing the sequence 𝑏 in order
to include in this framework of Cauchy–Fueter regularity: Fock, Bergman, Hardy, Dirichlet spaces, etc.

In this paper, we will treat the Fock and Hardy cases that correspond, respectively, to the sequences 𝑏𝑘 = 𝑘! and 𝑏𝑘 = 1,
for all 𝑘 ≥ 0.
Problem 3.5. Study the range of the Fuetermapping on𝑐 and seewhen it is possible to obtain spaces of regular functions
of the form 𝑏. More in general, we ask if using the Fueter mapping it is possible to get information on the sequence(
𝑏𝑘
)
in terms of the given datum

(
𝑐𝑘
)
?

Remark 3.6. We note that the answer to Problem 3.5 for Fock and Bergman cases were considered in [21]. See also [4, 13]
for the slice hyperholomorphic setting. The answer in these two cases is given by:

1. In the Fock case:

𝑐𝑘 = 𝑘! and 𝑏𝑘 =
𝑘!

(𝑘 + 1)(𝑘 + 2)
, ∀𝑘 ≥ 0.

2. In the Bergman case:

𝑐𝑘 =
1

𝑘 + 1
and 𝑏𝑘 =

1

(𝑘 + 1)2(𝑘 + 2)2(𝑘 + 3)
, ∀𝑘 ≥ 0.

We will show that, under suitable conditions, for some special choices of the sequence 𝑏 in Definition 3.2 we have the
estimate:

|𝑓(𝑞)| ≤ (
∞∑
𝑘=0

|𝑞|2𝑘
𝑏𝑘

) 1

2 ‖𝑓‖𝑏
, 𝑓 ∈ 𝑏(Ω), 𝑞 ∈ Ω. (3.5)

In these cases, we can also prove that 𝑏(Ω) are right quaternionic reproducing kernel Hilbert spaces with repro-
ducing kernel given by

𝐾𝑏(Ω)(𝑞, 𝑝) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑏𝑘
, ∀(𝑞, 𝑝) ∈ Ω × Ω. (3.6)

Furthermore, in such situations
{

𝑄𝑘√
𝑏𝑘

}
𝑘≥0

form an orthonormal basis of𝑏(Ω).
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Now, we will prove an interesting result on the Appell polynomials
(
𝑄𝑘

)
𝑘≥0 useful to compute their C-K product.

Proposition 3.7. Let 𝑘, 𝑠 ≥ 0. Then, for any 𝑞 = 𝑥0 + 𝑞 ∈ ℍ we have(
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) =

𝑐𝑘𝑐𝑠
𝑐𝑘+𝑠

𝑄𝑘+𝑠(𝑞),

where⊙ is the C-K product and 𝑐𝑙 ∶=
∑𝑙
𝑗=0(−1)

𝑗𝑇𝑙𝑗, for all 𝑙 ≥ 0.
Proof. Since 𝑄𝑘 and 𝑄𝑠 are Fueter regular functions on ℍ, their C-K product 𝑄𝑘 ⊙ 𝑄𝑠 is also Fueter regular. Then, we use
the formula of the C-K extension, see [24, Theorem 11.38], given by

𝐶𝐾[ℎ(𝑞 )](𝑞) = exp
(
−𝑥0𝜕𝑞

)
[ℎ(𝑞 )](𝑞).

We write the explicit series expression using the fact that 𝑄𝑙(𝑞 ) = 𝑐𝑙𝑞 𝑙 for all 𝑙 ≥ 0 and obtain
(
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) =

∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
𝑄𝑘(𝑞 )𝑄𝑠(𝑞 )

)

= 𝑐𝑘𝑐𝑠

∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
𝑞 𝑘+𝑠

)
.

In particular, we get (
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) = 𝑐𝑘𝑐𝑠𝐶𝐾

(
𝑞 𝑘+𝑠

)
(𝑞), 𝑞 ∈ ℍ, 𝑘, 𝑠 ≥ 0, (3.7)

with 𝑐𝑙 ∶=
∑𝑙
𝑗=0(−1)

𝑗𝑇𝑙𝑗, for all 𝑙 ≥ 0. On the other hand, we observe that 𝑄𝑘+𝑠 is also Fueter regular on ℍ. Moreover, it
is restriction to 𝑥0 = 0 gives

𝑄𝑘+𝑠(𝑞 ) = 𝑐𝑘+𝑠𝑞
𝑘+𝑠.

Therefore, by uniqueness of the C-K extension we get

𝑄𝑘+𝑠(𝑞) = 𝑐𝑘+𝑠𝐶𝐾
(
𝑞 𝑘+𝑠

)
(𝑞), ∀𝑞 ∈ ℍ. (3.8)

Hence, we combine (3.7) and (3.8) to conclude that

(
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) =

𝑐𝑘𝑐𝑠
𝑐𝑘+𝑠

𝑄𝑘+𝑠(𝑞), ∀𝑞 ∈ ℍ, ∀𝑘, 𝑠 ≥ 0. □

Remark 3.8. If we consider the Fueter regular polynomials given by 𝑃𝑘 =
𝑄𝑘

𝑐𝑘
, for all 𝑘 ≥ 0. Then, the classical multipli-

cation rule holds, in the sense that we have

𝑃𝑘 ⊙ 𝑃𝑠 = 𝑃𝑘+𝑠, ∀𝑘, 𝑠 ≥ 0. (3.9)

Corollary 3.9. Let 𝑘, 𝑠 ≥ 0. Then, for any 𝑞 = 𝑥0 + 𝑞 ∈ ℍ we have
(
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) = 𝑐𝑘𝑐𝑠𝜆

𝑘+𝑠
0 𝑟𝑘+𝑠

(
𝐶1
𝑘+𝑠

(𝑥0
𝑟

)
+

2
𝑘 + 𝑠 + 2

𝐶2
𝑘+𝑠−1

(𝑥0
𝑟

)𝑞
𝑟

)
,

where 𝐶𝜈𝑡 are the Gegenbauer polynomials, 𝜆0 is a constant and 𝑟
2 = |𝑞|2.
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Proof. Proposition 3.7 gives (
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞 )|𝑥0=0 = 𝑐𝑘𝑐𝑠𝑞 𝑘+𝑠, 𝑘, 𝑠 ≥ 0,

thus, by the regularity of the C-K product 𝑄𝑘 ⊙ 𝑄𝑠 and uniqueness of the C-K extension we have that(
𝑄𝑘 ⊙ 𝑄𝑠

)
(𝑞) = 𝑐𝑘𝑐𝑠𝐶𝐾

[
𝑞 𝑘+𝑠

]
, 𝑞 ∈ ℍ, 𝑘, 𝑠 ≥ 0.

Hence, the result follows as a direct application of Theorem 2.2.1 in [19] that gives the expression of the C-K extension for
the vector part powers in terms of Gegenbauer polynomials. □

Remark 3.10. We note that theAppell polynomials given by (3.1) define a family of Fueter regular functions of axial type (or
axially Fueter regular functions), in the sense that if we write 𝑞 = 𝑥0 + 𝜔|𝑞 | ∈ Ωwith 𝜔 ∈ 𝕊 there exist two quaternionic
valued functions 𝐴 = 𝐴

(
𝑥0, |𝑞 |) and 𝐵 = 𝐵(𝑥0, |𝑞 |) independent of 𝜔 such that we have

𝑄𝑘(𝑞) = 𝐴
(
𝑥0, |𝑞 |) + 𝜔𝐵(𝑥0, |𝑞 |), ∀𝑘 ≥ 0. (3.10)

We end this section by proving a converse result of the previous remark. This allows to characterize axially Fueter
regular functions on quaternionic axially symmetric slice domains in terms of the Appell system

(
𝑄𝑘

)
𝑘≥0.

Theorem 3.11. Let Ω ⊆ ℍ be an axially symmetric slice domain containing the origin. Let 𝑔 be an axially Fueter regular
function onΩ. Then, there exist some quaternion coefficients (𝛼𝑘)𝑘≥0 such that we have the expansion

𝑔(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝛼𝑘, ∀𝑞 ∈ Ω. (3.11)

Proof. We note that 𝑔 is an axially Fueter regular function on Ω. Thus, by the inverse Fueter mapping theorem proved in
[14] there will exist 𝑓 ∈ (Ω) such that we have

𝑔 = 𝜏(𝑓), (3.12)

where 𝜏 = Δℝ4 is the Fueter mapping. Then, using the series expansion theorem for slice hyperholomorphic functions
there exist some quaternion coefficients

(
𝑎𝑘

)
𝑘≥0 so that we can write

𝑓(𝑞) =
∞∑
𝑘=0

𝑞𝑘𝑎𝑘, ∀𝑞 ∈ Ω. (3.13)

In particular, we apply the Fueter mapping 𝜏 on (3.13) and get

𝜏(𝑓)(𝑞) =
∞∑
𝑘=0

𝜏
(
𝑞𝑘

)
𝑎𝑘.

However, we know by [21] that

𝜏
(
𝑞𝑘

)
= −2(𝑘 − 1)𝑘𝑄𝑘−2, ∀𝑘 ≥ 2.

Therefore, we continue the calculations and obtain

𝜏(𝑓) =
∞∑
𝑘=0

𝑄𝑘𝛼𝑘, (3.14)
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where we have set 𝛼𝑘 = −2(𝑘 + 1)(𝑘 + 2)𝑎𝑘+2, for all 𝑘 ≥ 0. Hence, comparing (3.12) with (3.14) we conclude that

𝑔(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝛼𝑘, ∀𝑞 ∈ Ω.

This ends the proof. □

4 THE FOCK SPACE CASE

In this section, we consider the Clifford–Appell Fock space in the setting of quaternions which is defined by

(ℍ) ∶=
{

∞∑
𝑘=0

𝑄𝑘𝛼𝑘; 𝛼𝑘 ∈ ℍ ∶
∞∑
𝑘=0

𝑘!||𝛼𝑘||2 < ∞
}
.

This space corresponds to the space 𝑏 in Definition 3.2 associated with the sequence 𝑏 = 𝑘!, 𝑘 ≥ 0 on the domain
Ω = ℍ. Let 𝑓 =

∑∞
𝑘=0 𝑄𝑘𝛼𝑘 and 𝑔 =

∑∞
𝑘=0 𝑄𝑘𝛽𝑘 in (ℍ) we can equip (ℍ) with the scalar product

⟨𝑓, 𝑔⟩(ℍ) = ∞∑
𝑘=0

𝑘!𝛼𝑘𝛽𝑘.

Then, we can see that all the evaluation mappings on (ℍ) are continuous. Indeed, we prove the following estimate
Proposition 4.1. For any 𝑓 ∈ (ℍ) and 𝑞 ∈ ℍ, we have

|𝑓(𝑞)| ≤ 𝑒 |𝑞|22 ‖𝑓‖(ℍ). (4.1)

Proof. We write 𝑓(𝑞) =
∑∞
𝑘=0 𝑄𝑘(𝑞)𝛼𝑘. Thus, we have

|𝑓(𝑞)| ≤ ∞∑
𝑘=0

|𝑄𝑘(𝑞)|√
𝑘!

||𝛼𝑘||√𝑘!.
Then, by the Cauchy–Schwarz inequality we obtain

|𝑓(𝑞)| ≤ (
∞∑
𝑘=0

|𝑄𝑘(𝑞)|2
𝑘!

) 1

2
(
∞∑
𝑘=0

𝑘!||𝛼𝑘||2
) 1

2

.

However, we know that ||𝑄𝑘(𝑞)|| ≤ |𝑞|𝑘 for all 𝑞 ∈ ℍ (see the proof of Proposition 4.5 in [21]). Hence, we get
|𝑓(𝑞)| ≤ 𝑒 |𝑞|22 ‖𝑓‖(ℍ). □

As a consequence, we have the following result.

Theorem 4.2. The set (ℍ) is a right quaternionic Hilbert space of Cauchy–Fueter regular functions whose reproducing
kernel is given by

𝐾(ℍ)(𝑞, 𝑝) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑘!
, ∀(𝑞, 𝑝) ∈ ℍ × ℍ.

Moreover, if we set 𝜓𝑘(𝑞) =
𝑄𝑘(𝑞)√
𝑘!
, 𝑘 ≥ 0, then, the family {𝜓𝑘}𝑘≥0 form an orthonormal basis of (ℍ).
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Proof. For a fixed 𝑝 ∈ ℍ, we consider the function defined by

𝐾𝑝(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝛽𝑘(𝑝), ∀𝑞 ∈ ℍ, where 𝛽𝑘(𝑝) =
𝑄𝑘(𝑝)

𝑘!
.

We observe that

∞∑
𝑘=0

𝑘!||𝛽𝑘(𝑝)||2 = ∞∑
𝑘=0

||𝑄𝑘(𝑝)||2
𝑘!

≤ 𝑒|𝑞|2 < ∞.

So, the function 𝐾𝑝 belongs to (ℍ) for all 𝑝 ∈ ℍ. Now, let 𝑓 = ∑∞
𝑘=0 𝑄𝑘𝛼𝑘 be any function in (ℍ). Then

⟨
𝐾𝑝, 𝑓

⟩
(ℍ) =

∞∑
𝑘=0

𝑘!𝛽𝑘(𝑝)𝛼𝑘 =
∞∑
𝑘=0

𝑄𝑘(𝑝)𝛼𝑘 = 𝑓(𝑝), ∀𝑝 ∈ ℍ,

therefore, the reproducing kernel of the space (ℍ) is given by

𝐾(ℍ)(𝑞, 𝑝) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑘!
, ∀(𝑞, 𝑝) ∈ ℍ × ℍ.

It is clear by definition of the scalar product that⟨
𝜓𝑘, 𝜓𝑗

⟩
(ℍ) = 𝛿𝑘,𝑗, ∀𝑘, 𝑗 ∈ ℕ.

Furthermore, let 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in (ℍ) be such that

⟨𝜓𝑘, 𝑓⟩(ℍ) = 0, ∀𝑘 ∈ ℕ.
We have √

𝑘!𝛼𝑘 = ⟨𝜓𝑘, 𝑓⟩(ℍ) = 0, ∀𝑘 ∈ ℕ,
so, 𝑓 = 0 for any 𝑞 ∈ ℍ. In particular, this proves that

{
𝜓𝑘

}
𝑘≥0 form an orthonormal basis of (ℍ). □

Remark 4.3. We note that

i) 𝐾(ℍ)(𝑞 , 𝑝⃗) =
∑∞
𝑘=0(−1)

𝑘 𝑐
2
𝑘

𝑘!
𝑞 𝑘𝑝⃗𝑘, for all (𝑞, 𝑝) ∈ ℍ0 × ℍ0.

ii) 𝐾(ℍ)(𝑥, 𝑦) = 𝑒𝑥𝑦, for all (𝑥, 𝑦) ∈ ℝ × ℝ.

Now we turn our attention to the notion of creation operator associated with the Clifford–Appell Fock space (ℍ). For
this, we consider a sequence of real numbers 𝛾 =

(
𝛾𝑘
)
𝑘≥0 that allows to define a weighted shift operator by

𝑇𝛾
(
𝑄𝑘

)
∶= 𝛾𝑘𝑄𝑘+1, ∀𝑘 ≥ 0. (4.2)

We would like to preserve in this setting the main properties of adjoint and commutation rules satisfied by the standard
creation and annihilation operators on the Fock space. First, we deal with the following

Proposition 4.4. Let 𝛾 be a sequence with 𝛾0 = 1 and such that (4.2) is well defined. Then, we have[
𝜕
2
𝑇𝛾, 𝑇𝛾

𝜕
2

]
= (ℍ),
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if and only if

𝛾𝑘 =
1 + 𝑘𝛾𝑘−1
1 + 𝑘

, ∀𝑘 ≥ 1.

Proof. Let 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 be a function in (ℍ). Then, we have

𝑇𝛾(𝑓) =
∞∑
𝑘=0

𝛾𝑘𝑄𝑘+1𝛼𝑘 and
𝜕
2
(𝑓) =

∞∑
𝑘=1

𝑘𝑄𝑘−1𝛼𝑘.

Thus, we obtain

𝜕
2
𝑇𝛾(𝑓) =

∞∑
𝑘=0

(𝑘 + 1)𝛾𝑘𝑄𝑘𝛼𝑘 and 𝑇𝛾
𝜕
2
(𝑓) =

∞∑
𝑘=1

𝑘𝛾𝑘−1𝑄𝑘𝛼𝑘.

Therefore, it follows that [
𝜕
2
𝑇𝛾, 𝑇𝛾

𝜕
2

]
(𝑓) = 𝛾0𝑄0𝛼0 +

∞∑
𝑘=1

[
(𝑘 + 1)𝛾𝑘 − 𝑘𝛾𝑘−1

]
𝑄𝑘𝛼𝑘. (4.3)

We can see that if

𝛾𝑘 =
1 + 𝑘𝛾𝑘−1
1 + 𝑘

, ∀𝑘 ≥ 1,
we have then

(𝑘 + 1)𝛾𝑘 − 𝑘𝛾𝑘−1 = 1, ∀𝑘 ≥ 1.
Therefore, using the condition 𝛾0 = 1 and formula (4.3) we obtain[

𝜕
2
𝑇𝛾, 𝑇𝛾

𝜕
2

]
(𝑓) = 𝑄0𝛼0 +

∞∑
𝑘=1

𝑄𝑘𝛼𝑘 = 𝑓.

For the converse, if we assume that [
𝜕
2
𝑇𝛾, 𝑇𝛾

𝜕
2

]
(𝑓) = 𝑓,

we apply (4.3) and get

𝛾0𝑄0(𝑞)𝛼0 +
∞∑
𝑘=1

[
(𝑘 + 1)𝛾𝑘 − 𝑘𝛾𝑘−1

]
𝑄𝑘(𝑞)𝛼𝑘 =

∞∑
𝑘=0

𝑄𝑘(𝑞)𝛼𝑘, ∀𝑞 ∈ ℍ.

In particular, using the fact that 𝑄𝑘(𝑡) = 𝑡𝑘, for all 𝑡 ∈ ℝ and 𝛾0 = 1 we observe that

𝛼0 +
∞∑
𝑘=1

[
(𝑘 + 1)𝛾𝑘 − 𝑘𝛾𝑘−1

]
𝑡𝑘𝛼𝑘 =

∞∑
𝑘=0

𝑡𝑘𝛼𝑘, ∀𝑡 ∈ ℝ.

Therefore, comparing the coefficients of the same degree we obtain

(𝑘 + 1)𝛾𝑘 − 𝑘𝛾𝑘−1 = 1, ∀𝑘 ≥ 1.
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Hence, we have the condition

𝛾𝑘 =
1 + 𝑘𝛾𝑘−1
1 + 𝑘

, ∀𝑘 ≥ 1.
□

Furthermore, we can prove the following:

Proposition 4.5. Let 𝛾 be a sequence with 𝛾0 = 1 and such that (4.2) holds. If one of the following properties is satisfied

i)
[
𝜕

2
𝑇𝛾, 𝑇𝛾

𝜕

2

]
= (ℍ);

ii) 𝑇𝛾 is the adjoint of the hypercomplex derivative
𝜕

2
;

then, we have

𝛾𝑘 = 1, ∀𝑘 ≥ 0.
Proof. We observe that condition i) and Proposition 4.5 show that

𝛾𝑘 =
1 + 𝑘𝛾𝑘−1
1 + 𝑘

, ∀𝑘 ≥ 1.
Thus, since 𝛾0 = 1 a simple induction reasoning allows to prove that if i) holds then 𝛾𝑘 = 1, for all 𝑘 ≥ 1. On the other
hand, the condition ii) implies in particular that we have⟨

𝜕
2

(
𝑄𝑘

)
, 𝑄𝑗

⟩
(ℍ)

=
⟨
𝑄𝑘, 𝑇𝛾

(
𝑄𝑗

)⟩
(ℍ) , ∀𝑘, 𝑗 ≥ 1.

So, we conclude

𝑘(𝑘 − 1)!𝛿𝑘−1,𝑗 = 𝛾𝑗𝑘!𝛿𝑘,𝑗+1, ∀𝑘, 𝑗 ≥ 1,
where 𝛿𝑚,𝑛 is the Kronecker symbol. In particular, this leads to the same conclusion that 𝛾𝑗 = 1, 𝑗 ≥ 1. □

Remark 4.6. We note that thanks to Proposition 4.5 the only operator 𝑇𝛾 that can play the role of the creation operator
with respect to the Clifford–Appell system should act as follows

𝑇𝛾
(
𝑄𝑘

)
= 𝑄𝑘+1, ∀𝑘 ≥ 0. (4.4)

We now introduce the notion of creation operator associated with the quaternionic Hilbert space 𝑏 in terms of
the C-K product that allows to have the property (4.4). To this end, let 𝑘 ≥ 0, and we define first the family of operators
given by

𝑘(𝑓) ∶= 𝑐1+𝑘𝑐1𝑐𝑘
𝑄1 ⊙ 𝑓, ∀𝑓 ∈ 𝑏. (4.5)

where⊙ denote the C-K product and 𝑐𝑙 ∶=
∑𝑙
𝑗=0(−1)

𝑗𝑇𝑙𝑗, for all 𝑙 ≥ 0.
Then, for 𝑓 =

∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in 𝑏 we consider the operator  defined by applying 𝑘 on each component with the

corresponding degree as follows

(𝑓) ∶=
∞∑
𝑘=0

𝑘(𝑄𝑘)𝛼𝑘. (4.6)
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Therefore, we have the explicit expression given by

(𝑓) ∶= 1
𝑐1

∞∑
𝑘=0

𝑐1+𝑘
𝑐𝑘

[
𝑄1 ⊙ 𝑄𝑘

]
𝛼𝑘. (4.7)

We note that the operator  acts like the classical shift operator with respect to the Clifford–Appell system
(
𝑄𝑘

)
𝑘≥0. This

can be seen in the following

Proposition 4.7. For all 𝑘 ≥ 0, we have
(𝑄𝑘)(𝑞) = 𝑄𝑘+1(𝑞), ∀𝑞 ∈ ℍ.

Proof. Let 𝑘 ≥ 0. Then, for all 𝑞 ∈ ℍ we have
(𝑄𝑘)(𝑞) = 𝑘(𝑄𝑘)(𝑞)

=
𝑐1+𝑘
𝑐1𝑐𝑘

(
𝑄1 ⊙ 𝑄𝑘

)
(𝑞).

Now, we apply Proposition 3.7 and get

𝑄1 ⊙ 𝑄𝑘 =
𝑐1𝑐𝑘
𝑐1+𝑘

𝑄𝑘+1.

Hence, we obtain

(𝑄𝑘) = 𝑄𝑘+1. □

As a consequence of Proposition 4.7 we note that the creation operator on (ℍ) given by (4.6) acts as follows


(
∞∑
𝑘=0

𝑄𝑘𝛼𝑘

)
=

∞∑
𝑘=0

𝑄𝑘+1𝛼𝑘.

The annihilation operator corresponds to the hypercomplex derivative

𝜕
2
∶=
1
2

(
𝜕
𝜕𝑥0

− 𝑖
𝜕
𝜕𝑥1

− 𝑗
𝜕
𝜕𝑥2

− 𝑘
𝜕
𝜕𝑥3

)
.

It is known by the Appell property that

𝜕
2

(
𝑄𝑘

)
= 𝑘𝑄𝑘−1, ∀𝑘 ≥ 1.

The domains of  and 𝜕
2
in (ℍ) are denoted respectively by

𝐷() ∶= {𝑓 ∈ (ℍ);(𝑓) ∈ (ℍ)}
and

𝐷

(
𝜕
2

)
∶=

{
𝑓 ∈ (ℍ); 𝜕

2

(
𝑓
)
∈ (ℍ)

}
.
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We note that the creation operator  and the hypercomplex derivative 𝜕
2
are quaternionic right linear operators densely

defined on (ℍ) since
{
𝑄𝑘√
𝑘!

}
𝑘≥0

is an orthonormal basis of the quaternionic Fock Hilbert space. In the sequel, we shall

prove some different properties of these operators:

Proposition 4.8.  and 𝜕
2
are two closed quaternionic operators on (ℍ).

Proof. We consider the graph of  defined by

() ∶= {(𝑓,𝑓); 𝑓 ∈ 𝐷()}.
Let us show that () is closed. Indeed, let 𝜙𝑛 be a sequence in𝐷() such that 𝜙𝑛 and𝜙𝑛 converge to 𝜙 and𝜓 respectively
on (ℍ). Then, thanks to Proposition 4.1 we have

|𝜙𝑛(𝑞) − 𝜙(𝑞)| ≤ 𝑒 |𝑞|22 ‖𝜙𝑛 − 𝜙‖(ℍ)
and

|𝜙𝑛(𝑞) − 𝜓(𝑞)| ≤ 𝑒 |𝑞|22 ‖𝜙𝑛 − 𝜓‖(ℍ).
Therefore, it follows that 𝜙𝑛 and 𝜙𝑛 converge pointwise to 𝜙 and 𝜓, respectively. This leads to 𝜓 = 𝜙 which ends the
proof. The same technique could be adapted to prove the closedness of the hypercomplex derivative on (ℍ). □

Furthermore, we prove also the following

Proposition 4.9. Let 𝑓 ∈ (ℍ). Then, (𝑓) belongs to (ℍ) if and only if 𝜕
2
𝑓 belongs to (ℍ). In particular, this means

that we have

𝐷() = 𝐷
(
𝜕
2

)
.

Proof. We write 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in (ℍ). Then, we have

(𝑓) =
∞∑
ℎ=1

𝑄ℎ𝛼ℎ−1.

In particular, we have

||(𝑓)||2(ℍ) = ∞∑
ℎ=1

ℎ!||𝛼ℎ−1||2. (4.8)

On the other hand, using the Appell property with respect to the hypercomplex derivative we have

𝜕
2
(𝑓) =

∞∑
ℎ=0

𝑄ℎ𝛽ℎ, 𝛽ℎ = (ℎ + 1)𝛼ℎ+1, ∀ℎ ≥ 0.

Some calculations lead to

|||||
|||||𝜕2 (𝑓)

|||||
|||||
2

(ℍ)
=

∞∑
ℎ=1

ℎ(ℎ!)||𝛼ℎ||2. (4.9)
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We note that by (4.8) we have

||𝑓||2(ℍ) = ∞∑
ℎ=0

(ℎ + 1)!||𝛼ℎ||2
=

∞∑
ℎ=0

(ℎ + 1)ℎ!||𝛼ℎ||2
=

∞∑
ℎ=0

ℎ(ℎ)!||𝛼ℎ||2 + ∞∑
ℎ=0

ℎ!||𝛼ℎ||2.
Therefore, we use (4.9) in order to get

||𝑓||2(ℍ) = ‖‖‖‖‖𝜕2𝑓
‖‖‖‖‖
2

(ℍ)
+ ||𝑓||2(ℍ). (4.10)

Hence, formula (4.10) shows that ||𝑓||(ℍ) < ∞ if and only if
|||||||| 𝜕2𝑓||||||||(ℍ) < ∞ which ends the proof. □

Now, we prove the adjoint property.

Proposition 4.10. Let 𝑓 ∈ 𝐷
(
𝜕

2

)
and 𝑔 ∈ 𝐷(). Then, we have

⟨
𝜕
2
𝑓, 𝑔

⟩
(ℍ)

= ⟨𝑓,(𝑔)⟩(ℍ) .
Proof. Let 𝑓 =

∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in 𝐷

(
𝜕

2

)
and 𝑔 =

∑∞
𝑘=0 𝑄𝑘𝛽𝑘 in 𝐷(). Thus, we have

𝜕
2
𝑓 =

∞∑
𝑘=0

𝜕
2

(
𝑄𝑘

)
𝛼𝑘

=
∞∑
𝑘=1

𝑘𝑄𝑘−1𝛼𝑘

=
∞∑
ℎ=0

(ℎ + 1)𝑄ℎ𝛼ℎ+1.

On the other hand, making use of Proposition 4.7 we have

(𝑔) =
∞∑
𝑘=0

(𝑄𝑘)𝛽𝑘
=

∞∑
𝑘=0

𝑄𝑘+1𝛽𝑘

=
∞∑
𝑘=1

𝑄𝑘𝛽𝑘−1.
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Therefore, we obtain ⟨
𝜕
2
𝑓, 𝑔

⟩
(ℍ)

=
∞∑
𝑘=0

(𝑘 + 1)!𝛼𝑘+1𝛽𝑘 = ⟨𝑓,(𝑔)⟩(ℍ) .
This ends the proof. □

Proposition 4.11. Let 𝑓 ∈ 
(
𝜕

2

)
∩(). Then, we have

[
𝜕
2
 , 𝜕

2

]
(𝑓) = 𝑓.

Proof. Let 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 be in

(
𝜕

2

)
∩(). Thus, computations using Proposition 4.7 and the Appell property give

𝜕
2
(𝑓) =

∞∑
𝑘=0

(𝑘 + 1)𝑄𝑘𝛼𝑘 and  𝜕
2
(𝑓) =

∞∑
𝑘=0

𝑘𝑄𝑘𝛼𝑘.

In particular, it shows that

𝜕
2
(𝑓) −  𝜕

2
(𝑓) = 𝑓.

This ends the proof. □

Remark 4.12. Note that the creation and annihilation operators denoted respectievly by  and 𝜕
2
are adjoint of each other

and satisfy the classical commutation rules on the Fock space of Fueter regular functions(ℍ) like in the classical complex
case. Moreover, observe that we have also  𝜕

2

(
𝑄𝑘

)
= 𝑘𝑄𝑘, for any 𝑘 ≥ 1. This property is related to the notion of number

operators that appears in quantum mechanics.

Let
(
𝜂𝑛
)
𝑛∈ℕ

denote the normalized Hermite functions. In order to study the Segal–Bargmann transform notion in this
framework we introduce the Fueter regular kernel function given by

𝐹ℍ(𝑞, 𝑥) ∶=
∞∑
𝑘=0

𝑄𝑘(𝑞)√
𝑘!
𝜂𝑘(𝑥), ∀(𝑞, 𝑥) ∈ ℍ × ℝ. (4.11)

Then, for any quaternionic valued function 𝜑 in 𝐿2(ℝ,ℍ) and 𝑞 ∈ ℍ we define

𝐹ℍ(𝜑)(𝑞) = ∫ℝ𝐹ℍ(𝑞, 𝑥)𝜑(𝑥) 𝑑𝑥. (4.12)

We shall prove the following result:

Theorem 4.13. The integral transform 𝐹ℍ defines an isometric isomorphism mapping the standard Hilbert space 𝐿2(ℝ,ℍ)
onto the Clifford–Appell Fock space (ℍ).
Proof. Let 𝜑 ∈ 𝐿2(ℝ,ℍ). We write 𝜑 =

∑∞
𝑗=0 𝜂𝑗(𝑥)𝛽𝑗 such that ‖𝜑‖2𝐿2(ℝ,ℍ) = ∑∞

𝑗=0
||𝛽𝑗||2 < ∞. Then, note that we have

𝐹ℍ(𝜑)(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)√
𝑘! ∫ℝ 𝜂𝑘(𝑥)𝜑(𝑥) 𝑑𝑥.
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So, by setting 𝛼𝑘 =
1√
𝑘!
∫
ℝ
𝜂𝑘(𝑥)𝜑(𝑥) 𝑑𝑥 for all 𝑘 ≥ 0, we get

‖‖‖𝐹ℍ(𝜑)‖‖‖2(ℍ) =
∞∑
𝑘=0

𝑘!||𝛼𝑘||2

=
∞∑
𝑘=0

|||||∫ℝ 𝜂𝑘(𝑥)𝜑(𝑥) 𝑑𝑥
|||||
2

.

However, by definition of 𝜑 and using the orthogonality of Hermite functions we obtain

∫ℝ 𝜂𝑘(𝑥)𝜑(𝑥) 𝑑𝑥 =
∞∑
𝑗=0

𝛽𝑗∫ℝ 𝜂𝑘(𝑥)𝜂𝑗(𝑥) 𝑑𝑥 = 𝛽𝑘, ∀𝑘 ≥ 0.

Hence, we conclude that

‖‖‖𝐹ℍ(𝜑)‖‖‖2(ℍ) =
∞∑
𝑗=0

||𝛽𝑗||2 = ‖𝜑‖2
𝐿2(ℝ,ℍ)

.

Moreover, observe that

𝐹ℍ
(
𝜂𝑘
)
=
𝑄𝑘√
𝑘!
, ∀𝑘 ≥ 0.

In particular, this allows to prove that𝐹ℍ is an isometric isomorphismmapping the standard Hilbert space 𝐿2(ℝ,ℍ) onto
the Fock space (ℍ) on the quaternions. □

Now, we consider the following:

Problem 4.14. Is it possible to map 𝑆𝑙𝑖𝑐𝑒(ℍ) onto (ℍ) without using the Fueter mapping, see [21], and keeping the
isometry property?

To answer the question, we will compute 𝐹ℍ composed with the slice hyperholomorphic Segal–Bargmann transform.
In order to answer this problem, we need the slice hyperholomorphic Segal–Bargmann transform given by (2.3).
Notice that thanks to these integral transforms 𝑆ℍ and 𝐹ℍ it is possible to relate the two notions of Fock spaces on the

quaternions, namely the slice hyperholomorphic 𝑆𝑙𝑖𝑐𝑒(ℍ) and the Cauchy–Fueter regular one (ℍ). Indeed, for a fixed
𝑖 ∈ 𝕊, 𝑓 ∈ 𝑆𝑙𝑖𝑐𝑒(ℍ) and 𝑞 ∈ ℍ we define the integral transform given by

Υ(𝑓)(𝑞) ∶= ∫ℂ𝑖 (𝑞, 𝑧)𝑓𝑖(𝑧) 𝑑𝜇𝑖(𝑧),

where 𝑑𝜇𝑖(𝑧) ∶=
1

𝜋
𝑒−|𝑧|2𝑑𝐴𝑖(𝑧) and the kernel function is obtained by taking the series

(𝑞, 𝑧) =
∞∑
𝑘=0

𝑄𝑘(𝑞)

𝑘!
𝑧
𝑘
, ∀(𝑞, 𝑧) ∈ ℍ × ℂ𝑖.

Then, we prove:

Theorem 4.15. The quaternionic integral transform Υ does not depend on the choice of the imaginary unit 𝑖 ∈ 𝕊. Further-
more, it defines an isometric isomorphism mapping the slice hyperholomrphic Fock space 𝑆𝑙𝑖𝑐𝑒(ℍ) onto the Clifford–Appell
Fock space (ℍ).
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Proof. Let 𝑓 ∈ 𝑆𝑙𝑖𝑐𝑒(ℍ), by Proposition 3.11 in [4] we have

𝑓(𝑞) =
∞∑
𝑘=0

𝑞𝑘𝑎𝑘 and
∞∑
𝑘=0

||𝑎𝑘||2𝑘! < ∞.
In particular, by definition of Υ we have

Υ(𝑓)(𝑞) = ∫ℂ𝑖
(
∞∑
𝑘=0

𝑄𝑘(𝑞)

𝑘!
𝑧
𝑘

)(
∞∑
𝑗=0

𝑧𝑗𝑎𝑗

)
𝑑𝜇𝑖(𝑧)

=
∞∑
𝑘,𝑗=0

𝑄𝑘(𝑞)

𝑘!

(
∫ℂ𝑖 𝑧

𝑘
𝑧𝑗 𝑑𝜇𝑖(𝑧)

)
𝑎𝑗.

However, it is known that

∫ℂ𝑖 𝑧
𝑘
𝑧𝑗 𝑑𝜇𝑖(𝑧) = 𝑘!𝛿𝑘,𝑗.

Therefore, we get

Υ(𝑓)(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑎𝑘.

Hence, since the coefficients
(
𝑎𝑘

)
𝑘≥0 do not depend on the choice of the imaginary unit 𝑖 we conclude that Υ(𝑓) is well

defined and does not depend on the choice of the imaginary unit. Now, we observe that the operator Υ can be obtained
thanks to the commutative diagram such that we have

Υ = 𝐹ℍ◦
(𝑆ℍ)−1.

Indeed, to prove this fact. Let 𝑓 ∈ 𝑆𝑙𝑖𝑐𝑒(ℍ) and set

𝜙(𝑥) =
(𝑆ℍ)−1(𝑓)(𝑥) = ∫ℂ𝑖 

𝑆
ℍ(𝑧, 𝑥)𝑓𝑖(𝑧) 𝑑𝜇𝑖(𝑧).

Thus, for any 𝑞 ∈ ℍ we have:

𝐹ℍ(𝜙)(𝑞) = ∫ℂ𝑖 
𝐹
ℍ(𝑞, 𝑥)𝜙(𝑥) 𝑑𝑥

= ∫ℂ𝑖 
𝐹
ℍ(𝑞, 𝑥)

(
∫ℂ𝑖 

𝑆
ℍ(𝑧, 𝑥)𝑓𝑖(𝑧) 𝑑𝜇𝑖(𝑧)

)
𝑑𝑥

= ∫ℂ𝑖
(
∫ℝ𝐹ℍ(𝑞, 𝑥)𝑆ℍ(𝑧, 𝑥) 𝑑𝑥

)
𝑓𝑖(𝑧) 𝑑𝜇𝑖(𝑧).

Then, we set

𝐻(𝑞, 𝑧) = ∫ℝ𝐹ℍ(𝑞, 𝑥)𝑆ℍ(𝑧, 𝑥) 𝑑𝑥, ∀(𝑞, 𝑧) ∈ ℍ × ℂ𝑖.
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So, for all (𝑞, 𝑧) ∈ ℍ × ℂ𝑖 we have

𝐻(𝑞, 𝑧) = ∫ℂ𝑖
(
∞∑
𝑘=0

𝑄𝑘(𝑞)√
𝑘!
𝜂𝑘(𝑥)

)(
∞∑
𝑗=0

𝑧𝑗√
𝑗!
𝜂𝑗(𝑥)

)
𝑑𝑥

=
∞∑
𝑘,𝑗=0

𝑄𝑘(𝑞)√
𝑘!

(
∫ℝ 𝜂𝑘(𝑥)𝜂𝑗(𝑥) 𝑑𝑥

)
𝑧𝑗√
𝑗!

Then, using the fact that Hermite functions form an orthonormal basis of 𝐿2(ℝ,ℍ) we get

𝐻(𝑞, 𝑧) =
∞∑
𝑘=0

𝑄𝑘(𝑞)

𝑘!
𝑧
𝑘
= (𝑞, 𝑧), ∀(𝑞, 𝑧) ∈ ℍ × ℂ𝑖.

At this stage, we replace𝐻(𝑞, 𝑧) by its expression and conclude that we have

Υ = 𝐹ℍ◦
(𝑆ℍ)−1.

Therefore, since both of 𝐹ℍ and 𝑆ℍ are isometric isomorphisms mapping 𝐿2(ℝ,ℍ) respectievly onto (ℍ) and 𝑆𝑙𝑖𝑐𝑒(ℍ).
This ends the proof. □

This quaternionic operator satisfies also the following properties :

Proposition 4.16. For all 𝑛 ≥ 0, we set 𝑓𝑛(𝑞) = 𝑞𝑛√
𝑛!
and 𝜙𝑛(𝑞) =

𝑄𝑛(𝑞)√
𝑛!
, 𝑞 ∈ ℍ. Then, we have

i) Υ(𝑓𝑛) = 𝜙𝑛, for all 𝑛 ≥ 0.
ii) ∫

ℂ𝑖
(𝑞, 𝑧)(𝑝, 𝑧) 𝑑𝜇𝑖(𝑧) = 𝐾(ℍ)(𝑞, 𝑝), for all (𝑞, 𝑝) ∈ ℍ × ℍ.

Proof. The first statement is a direct consequence of the fact that

Υ = 𝐹ℍ◦
(𝑆ℍ)−1.

This is combined with the two following relations

(𝑆ℍ)−1(𝜂𝑛) = 𝑓𝑛 and 𝐹ℍ
(
𝑓𝑛

)
= 𝜙𝑛, ∀𝑛 ≥ 0.

Now, let (𝑞, 𝑝) ∈ ℍ × ℍ. Then, we have

∫ℂ𝑖 (𝑞, 𝑧)(𝑝, 𝑧) 𝑑𝜇𝑖(𝑧) =
∞∑
𝑘,𝑗=0

𝑄𝑘(𝑞)

𝑘!

(
∫ℂ𝑖 𝑧

𝑘
𝑧𝑗 𝑑𝜇𝑖(𝑧)

)
𝑄𝑗(𝑝)

𝑗!

=
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑘!
,

= 𝐾(ℍ)(𝑞, 𝑝). □

Corollary 4.17. Let 𝑖 ∈ 𝕊. Then, for all 𝑥, 𝑦 ∈ ℝ and 𝑛 ≥ 0, we have the following identities
i) ∫

ℂ𝑖
𝑒𝑥𝑧𝑧𝑛 𝑑𝜇𝑖(𝑧) = 𝑥

𝑛.
ii) ∫

ℂ𝑖
𝑒𝑥𝑧+𝑦𝑧 𝑑𝜇𝑖(𝑧) = 𝑒

𝑥𝑦 .
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Proof. Observe that we have

(𝑡, 𝑧) = 𝑒𝑡𝑧, ∀(𝑡, 𝑧) ∈ ℝ × ℂ𝑖. (4.13)

The first identity follows from i) of Proposition 4.16 combined with (4.13).
The second statement is also a consequence of (4.13) combined with ii) of Proposition 4.16 and the fact that

𝐾(ℍ)(𝑥, 𝑦) = 𝑒𝑥𝑦, ∀(𝑥, 𝑦) ∈ ℝ × ℝ. □

5 THE HARDY SPACE CASE

In this section, we study on the quaternionic unit ball Ω = 𝔹 the spaces associated to some sequence 𝑏 as considered in
Definition 3.2. First, we give some general proofs related to these spaces𝑏(𝔹). Then, we will give more specific results
on the Clifford–Appell Hardy space in this framework that corresponds to the sequence 𝑏𝑘 = 1, for all 𝑘 ≥ 0. In all this
part, we take Ω = 𝔹 and 𝑏 =

(
𝑏𝑘
)
𝑘≥0 a non decreasing sequence with 𝑏0 = 1. Then, we have:

Proposition 5.1. The following estimate

|𝑓(𝑞)| ≤ (
∞∑
𝑘=0

|𝑞|2𝑘
𝑏𝑘

) 1

2 ‖𝑓‖𝑏
, 𝑓 ∈ 𝑏(𝔹), 𝑞 ∈ 𝔹,

holds.

Proof. Let us consider 𝑓(𝑞) =
∑∞
𝑘=0 𝑄𝑘(𝑞)𝛼𝑘 in𝑏(𝔹). Thus, we have

|𝑓(𝑞)| ≤ ∞∑
𝑘=0

||𝑄𝑘(𝑞)||√
𝑏𝑘

||𝛼𝑘||√𝑏𝑘.
Then, by the Cauchy–Schwarz inequality we have

|𝑓(𝑞)| ≤ (
∞∑
𝑘=0

||𝑄𝑘(𝑞)||2
𝑏𝑘

) 1

2
(
∞∑
𝑘=0

𝑏𝑘||𝛼𝑘||2
) 1

2

.

However, we know that ||𝑄𝑘(𝑞)|| ≤ |𝑞|𝑘. Hence, we get
|𝑓(𝑞)| ≤ (

∞∑
𝑘=0

|𝑞|2𝑘
𝑏𝑘

) 1

2 ‖𝑓‖𝑏
.

□

As a consequence, we get the following result.

Theorem5.2. The sets𝑏(𝔹)are right quaternionic reproducing kernelHilbert spaces. Their reproducing kernel functions
are given by

𝐾𝑏(𝔹)(𝑞, 𝑝) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑏𝑘
, ∀(𝑞, 𝑝) ∈ 𝔹 × 𝔹. (5.1)

Furthermore, the family {
𝜓𝑏
𝑘
∶=

𝑄𝑘√
𝑏𝑘
, 𝑘 ≥ 0

}

forms an orthonormal basis of𝑏(𝔹).
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Proof. For a fixed 𝑝 ∈ 𝔹, we consider the function defined by

𝐾𝑝(𝑞) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝛽𝑘(𝑝), ∀𝑞 ∈ 𝔹, where 𝛽𝑘(𝑝) =
𝑄𝑘(𝑝)

𝑏𝑘
.

Thanks to the d’Alembert ratio test for power series, we have

∞∑
𝑘=0

𝑏𝑘||𝛽𝑘(𝑝)||2 = ∞∑
𝑘=0

||𝑄𝑘(𝑝)||2
𝑏𝑘

≤
∞∑
𝑘=0

|𝑞|2𝑘
𝑏𝑘

< ∞.

So, the function 𝐾𝑝 belongs to𝑏(𝔹) for any 𝑝 ∈ 𝔹. Now, let 𝑓 = ∑∞
𝑘=0 𝑄𝑘𝛼𝑘 ∈ 𝑏(𝔹). Then, we have

⟨
𝐾𝑝, 𝑓

⟩
(𝔹) =

∞∑
𝑘=0

𝑏𝑘𝛽𝑘(𝑝)𝛼𝑘 =
∞∑
𝑘=0

𝑄𝑘(𝑝)𝛼𝑘 = 𝑓(𝑝), ∀𝑝 ∈ 𝔹.

Therefore, the reproducing kernel of the space𝑏(𝔹) is given by

𝐾𝑏(𝔹)(𝑞, 𝑝) =
∞∑
𝑘=0

𝑄𝑘(𝑞)𝑄𝑘(𝑝)

𝑏𝑘
, ∀(𝑞, 𝑝) ∈ 𝔹 × 𝔹.

It is clear by definition of the scalar product that

⟨
𝜓𝑏
𝑘
, 𝜓𝑏𝑗

⟩
𝑏(𝔹)

= 𝛿𝑘,𝑗, ∀𝑘, 𝑗 ∈ ℕ.

Furthermore, let 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in𝑏(𝔹) be such that

⟨
𝜓𝑏
𝑘
, 𝑓

⟩
𝑏(𝔹) = 0, ∀𝑘 ∈ ℕ.

Thus, we have

√
𝑏𝑘𝛼𝑘 =

⟨
𝜓𝑏
𝑘
, 𝑓

⟩
𝑏(𝔹) = 0, ∀𝑘 ∈ ℕ.

So, 𝑓 = 0 for any 𝑞 ∈ 𝔹. In particular, this proves that
{
𝜓𝑏
𝑘

}
𝑘≥0 form an orthonormal basis of𝑏(𝔹). □

Remark 5.3. The Clifford–Appell Hardy space corresponds to the sequence 𝑏 with all the terms equal to 1, and will be
denoted simply(𝔹). In this case, the previous results of this section read as follows.
i) |𝑓(𝑞)| ≤ ‖𝑓‖(𝔹)

(1−|𝑞|2) 12 , for all 𝑓 ∈ (𝔹), for all 𝑞 ∈ 𝔹.
ii) 𝐾(𝔹)(𝑞, 𝑝) =

∑∞
𝑘=0 𝑄𝑘(𝑞)𝑄𝑘(𝑝), for all (𝑞, 𝑝) ∈ 𝔹 × 𝔹.

iii) 𝐾(𝔹)
(
𝑞 , 𝑝⃗

)
=
∑∞
𝑘=0(−1)

𝑘𝑐2
𝑘
𝑞 𝑘𝑝⃗𝑘, for all (𝑞, 𝑝) ∈ 𝔹0 × 𝔹0.

iv) 𝐾(𝔹)(𝑥, 𝑦) = 1

1−𝑥𝑦
, for all (𝑥, 𝑦) ∈ ] − 1, 1[2.

In the previous section we studied the notions of creation and annihilation operators associated to the Fock space in
this framework. We do the same in this section for the Hardy case by studying the counterparts of the shift and backward
shift operators. We keep the same definition and notation of the shift operator introduced in the expressions (4.6), (4.7)
and Proposition 4.7. Then, we first prove the following
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Proposition 5.4. The shift operator  is a right quaternionic isometric operator from the Clifford–Appell Hardy space(𝔹)
into itself.

Proof. Let 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 belongs to(𝔹). We apply Proposition 4.7 and get

(𝑓)(𝑞) =
∞∑
𝑘=1

𝑄𝑘(𝑞)𝛼𝑘−1, ∀𝑞 ∈ 𝔹.

Hence, we have

||(𝑓)||2(𝔹) = ∞∑
𝑘=0

||𝛼𝑘||2
= ||𝑓||2(𝔹).

This shows that  defines an isometry on the Hardy space(𝔹). □

We will use the notation

𝑄−⊙1 (𝑞) ∶= 𝐶𝐾

[
(𝑞)−1

𝑐1

]
which is well defined when 𝑞 ≠ 0. Then, in order to calculate the adjoint operator of the shift on(𝔹) we first prove the
following result:

Proposition 5.5. For all 𝑘 ≥ 1 and 𝑞 ∈ 𝔹 ⧵ ℝ we have(
𝑄−⊙1 ⊙ 𝑄𝑘

)
(𝑞) =

𝑐𝑘
𝑐1𝑐𝑘−1

𝑄𝑘−1(𝑞),

where⊙ is the C-K product and 𝑐𝑙 ∶=
∑𝑙
𝑗=0(−1)

𝑗𝑇𝑙𝑗, for all 𝑙 ≥ 0.
Proof. First, we observe that

(
𝑄−⊙1 (𝑞)

)|𝑥0=0 = (
𝑄1(𝑞 )

)−1
=
(𝑞 )−1

𝑐1
and 𝑄𝑘−1(𝑞 ) = 𝑐𝑘−1𝑞

𝑘−1 for 𝑞 ≠ 0.

Then, we write the series expansion associated to the C-K product and use similar techniques as we used to prove Propo-
sition 3.7. Indeed, we note that

𝑄−⊙1 (𝑞) =
∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
(𝑞 )−1

𝑐1

)
.

Moreover, for any 𝑘 ≥ 1 we have
(
𝑄−⊙1 ⊙ 𝑄𝑘

)
(𝑞) =

∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
𝑄−11 (𝑞 )𝑄𝑘(𝑞 )

)

=
∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
𝑐𝑘
𝑐1
𝑞 𝑘−1

)

=
𝑐𝑘

𝑐1𝑐𝑘−1

∞∑
𝑗=0

(−1)𝑗𝑥
𝑗
0

𝑗!
𝜕
𝑗

𝑞

(
𝑐𝑘−1𝑞

𝑘−1
)

=
𝑐𝑘

𝑐1𝑐𝑘−1
𝑄𝑘−1(𝑞). □
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For all 𝑘 ≥ 1, we introduce a family of operators defined for any 𝑓 = ∑∞
𝑘=1 𝑄𝑘𝛼𝑘 in(𝔹) by

𝑘(𝑓) ∶=
𝑐1𝑐𝑘−1
𝑐𝑘

𝑄−⊙1 ⊙ 𝑓. (5.2)

Then, we consider the operator obtained by applying𝑘 on each component with the corresponding degree, i.e

(𝑓) ∶=
∞∑
𝑘=1

𝑘

(
𝑄𝑘

)
𝛼𝑘. (5.3)

Therefore, we have an explicit expression given by

(𝑓) ∶= 𝑐1
∞∑
𝑘=1

𝑐𝑘−1
𝑐𝑘

[
𝑄−⊙1 ⊙ 𝑄𝑘

]
𝛼𝑘. (5.4)

We note that using Proposition 5.5 we can see that this operator acts like the standard backward shift with respect to
the Appell system

(
𝑄𝑘

)
𝑘≥0, in the sense that we have

(𝑄𝑘) = 𝑄𝑘−1, ∀𝑘 ≥ 1. (5.5)

The next result allows to compute the adjoint of the shift operator on the Hardy space(𝔹).
Proposition 5.6. Let 𝑓, 𝑔 ∈ (𝔹). Then, it holds that

⟨(𝑓), 𝑔⟩(𝔹) = ⟨𝑓,(𝑔)⟩(𝔹) .
In other words, the adjoint of the shift on(𝔹) is given by

∗ =.
Proof. Let 𝑓 =

∑∞
𝑘=0 𝑄𝑘𝛼𝑘 and 𝑔 =

∑∞
𝑘=0 𝑄𝑘𝛽𝑘 in(𝔹). Thus, we have

(𝑓) =
∞∑
𝑘=1

𝑘

(
𝑄𝑘

)
𝛼𝑘

=
∞∑
𝑘=1

𝑄𝑘−1𝛼𝑘

=
∞∑
𝑘=0

𝑄𝑘𝛼𝑘+1.

We know also by Proposition 4.7 that

(𝑔) =
∞∑
𝑘=1

𝑄𝑘𝛽𝑘−1.

Therefore, we can see that

⟨(𝑓), 𝑔⟩(𝔹) = ∞∑
𝑘=0

𝛼𝑘+1𝛽𝑘 = ⟨𝑓,(𝑔)⟩(𝔹) .
This ends the proof. □
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In [6] the authors introduced a backward shift with respect to each Fueter variable using some integral operators.
Inspired from this approach, we present now an equivalent way to deal with the backward shift operator in our situation.
First, for all 𝜀 > 0 we consider on(𝔹) a family of operators𝜀 ∶ 𝑓⟼ 𝑅𝜀(𝑓) defined using the following expression

𝜀(𝑓)(𝑞) ∶= ∫
1

𝜀

1
𝑡
𝜕
2
[𝑓(𝑡𝑞)] 𝑑𝑡, 𝑞 ∈ 𝔹 ⧵ {0}, (5.6)

where 𝜕
2
denotes the hypercomplex derivativewith respect to the variable 𝑞. Then, we consider the backward shift operator

given by

(𝑓)(𝑞) ∶= lim
𝜀→0

𝜀(𝑓)(𝑞), 𝑞 ∈ 𝔹 ⧵ {0}, (5.7)

and

𝑓(0) = 𝜕
2
𝑓(0). (5.8)

We note that the backward shift operator acts by reducing the degree of the Appell system
(
𝑄𝑘

)
𝑘≥0 as follows.

Proposition 5.7. For all 𝑘 ≥ 1, it holds that
(
𝑄𝑘

)
= 𝑄𝑘−1.

Proof. Let 𝑘 ≥ 1 and 𝜀 > 0. First, we note that
𝑄𝑘(𝑞𝑡) = 𝑡

𝑘𝑄𝑘(𝑞), ∀𝜀 < 𝑡 < 1.

Then, by definition of𝜀 and Appell property of the system (
𝑄𝑘

)
𝑘≥0 we have

𝜀(𝑄𝑘)(𝑞) = ∫
1

𝜀

1
𝑡
𝜕
2
[𝑄𝑘(𝑡𝑞)] 𝑑𝑡

= ∫
1

𝜀

𝑡𝑘

𝑡
𝜕
2
[𝑄𝑘(𝑞)] 𝑑𝑡

= 𝑘𝑄𝑘−1(𝑞)∫
1

𝜀
𝑡𝑘−1 𝑑𝑡.

Therefore, we obtain

𝜀(𝑄𝑘)(𝑞) = 𝑄𝑘−1(𝑞)(1 − 𝜀𝑘), ∀𝜀 > 0.
Hence, by letting 𝜀 ⟶ 0 we conclude that

(
𝑄𝑘

)
= 𝑄𝑘−1, ∀𝑘 ≥ 1. □

Remark 5.8. We observe thanks to formula (5.5) and Proposition 5.7 that the two backward shift operators  and 
coincide on the Clifford–Appell Hardy space(𝔹).
We prove also another property related to the backward shift operator on the spaces𝑏(𝔹).
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Proposition 5.9. Let 𝑏 =
(
𝑏𝑘
)
𝑘∈ℕ

be a non decreasing sequencewith 𝑏0 = 1 and𝑓 ∈ 𝑏(𝔹). Then, the following inequal-
ity

||(𝑓)||2𝑏
≤ ||𝑓||2𝑏

− |𝑓(0)|2 (5.9)

holds.
The equality holds on the Clifford–Appell Hardy space(𝔹).

Proof. We write 𝑓 =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘 in 𝑏(𝔹). Thus, by Proposition 5.7 we can see that (𝑓) = ∑∞

𝑘=0 𝑄𝑘𝛼𝑘+1. Therefore,
using the fact that 𝑏 is non decreasing we get

||(𝑓)||2𝑏(Ω)
=

∞∑
𝑘=0

𝑏𝑘||𝛼𝑘+1||2
≤
∞∑
𝑘=0

𝑏𝑘+1||𝛼𝑘+1||2
= ||𝑓||2𝑏(Ω)

− ||𝑓(0)||2. □

Remark 5.10. We note that using Proposition 5.9 we can see that the QRKHS𝑏(𝔹) are invariant under the backward
shift  and they satisfy inequality 5.9. It would be intersting to investigate the relation with Schur functions and see if
the converse holds also in this framework. If it is the case, it will present a counterpart of the structure result proved in
Theorem 3.1.2 of [5].

6 THE FUETERMAPPING RANGE

In this section we give an answer to Problem 3.5. Indeed, we give a characterisation of the Fueter mapping range related
to the hypercomplex spaces introduced in Definition 3.2.

Theorem 6.1. Let Ω = 𝔹 and 𝑐 =
(
𝑐𝑘
)
𝑘∈ℕ

be a given non decreasing sequence with 𝑐0 = 1. Then, there exists a sequence
𝑏 =

(
𝑏𝑘
)
𝑘≥0 such that we have

𝜏(𝑐(Ω)) = 𝑏(Ω).

More precisely, we have

i) 𝑏𝑘 =
𝑐𝑘+2

(𝑘+1)2(𝑘+2)2
, for all 𝑘 ≥ 0.

ii) For all 𝑓 ∈ 𝑐(Ω), we have
||𝜏(𝑓)||𝑏(Ω) = 2

√||𝑓||2𝑐(Ω) − |𝑓(0)|2 − 𝑐1|𝑓′(0)|2.
Proof. Let 𝑔 ∈ 𝜏 (𝑐(Ω)), thus there exists 𝑓 ∈ 𝑐 such that 𝑔 = 𝜏(𝑓). Then, we write the series expansion

𝑓(𝑞) =
∞∑
𝑘=0

𝑞𝑘𝑎𝑘, ∀𝑞 ∈ Ω.

Thus, we have 𝑔 = 𝜏(𝑓) =
∑∞
𝑘=0 𝑄𝑘𝛼𝑘, with 𝛼𝑘 = −2(𝑘 + 1)(𝑘 + 2)𝑎𝑘+2, for all 𝑘 ≥ 0. Now, we set

𝑏𝑘 =
𝑐𝑘+2

(𝑘 + 1)2(𝑘 + 2)2
, ∀𝑘 ≥ 0.
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Hence, since 𝑎0 = 𝑓(0) and 𝑎1 = 𝑓′(0) we obtain

||𝜏(𝑓)||2𝑏(Ω)
=

∞∑
𝑘=0

𝑏𝑘||𝛼𝑘||2
= 4

∞∑
𝑘=2

𝑐𝑘||𝑎𝑘||2
= 4

(||𝑓||2𝑐(Ω) − |𝑓(0)|2 − 𝑐1|𝑓′(0)|2) < ∞.
This ends the proof. □

Corollary 6.2. If we set 0𝑐 ∶= {
𝑓 ∈ 𝑐, 𝑓(0) = 𝑓′(0) = 0}. Then, the Fueter mapping 𝜏 defines a right quaternionic

isometric operator (up to constant) from0𝑐 onto𝑏.

Proof. We only have to apply ii) in Theorem 6.1 and get

||𝜏(𝑓)||𝑏(Ω) = 2||𝑓||𝑐(Ω), ∀𝑓 ∈ 0𝑐 . □

Remark 6.3. The generic calculations provided in Theorem 6.1 confirm the results obtained in [21] for the Fock and
Bergman cases.

Remark 6.4. We note that in Theorem 6.1 even if the sequence 𝑏 is not necessarily a non decreasing sequence but the
corresponding spaces 𝑏 are QRKHS. For the Fock–Fueter space on ℍ we refer to the calculation details provided
in [21]. However, on the quaternionic unit ball 𝔹 this fact results thanks to the convergence of a certain power series
associated to the sequence 𝑏.

Proposition 6.5. Let 𝑐 and 𝑏 two sequences as in Theorem 6.1. Then, the power series given by

∞∑
𝑘=0

|𝑞|2𝑘
𝑏𝑘

=
∞∑
𝑘=

(𝑘 + 1)2(𝑘 + 2)2

𝑐𝑘+2
|𝑞|2𝑘 (6.1)

is convergent on the quaternionic unit ball 𝔹.

Proof. Let 𝑞 ∈ 𝔹 and set

𝑠𝑘 =
(𝑘 + 1)2(𝑘 + 2)2

𝑐𝑘+2
|𝑞|2𝑘, ∀𝑘 ≥ 0.

We have

𝑠𝑘+1
𝑠𝑘
= |𝑞|2 (𝑘 + 3)2𝑐𝑘+2

(𝑘 + 1)2𝑐𝑘+3
, ∀𝑘 ≥ 0.

Then, using the fact that the sequence
(
𝑐𝑘
)
𝑘≥0 is non decreasing we can see that

lim
𝑘→∞

𝑠𝑘+1
𝑠𝑘

≤ |𝑞|2 < 1.
Hence, by the d’Alembert ratio test the thesis follows. □
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TABLE 1 Some spaces𝑏 obtained in Theorem 6.1

𝒄 𝒄𝒌 𝒃𝒌 ||𝝉(𝒇)||𝒃

Hardy 1 1

(𝑘 + 1)2(𝑘 + 2)2
2
√||𝑓||2𝑐 − |𝑓(0)|2 − |𝑓′(0)|2

Fock 𝑘!
𝑘!

(𝑘 + 1)(𝑘 + 2)
2
√||𝑓||2𝑐 − |𝑓(0)|2 − |𝑓′(0)|2

Dirichlet 𝑘
1

(𝑘 + 1)2(𝑘 + 2)
2
√||𝑓||2𝑐 − |𝑓(0)|2 − |𝑓′(0)|2

Bergman 1
𝑘 + 1

1

(𝑘 + 3)(𝑘 + 1)2(𝑘 + 2)2
2
√||𝑓||2𝑐 − |𝑓(0)|2 − 1

2
|𝑓′(0)|2

Remark 6.6. As a consequence of the previous proposition it is not difficult to see that on𝔹 the hypercomplex space𝑏

obtained in Theorem 6.1 is a QRKHS with a reproducing kernel given by

𝐾𝑏
(𝑞, 𝑝) =

∞∑
𝑘=0

(𝑘 + 1)2(𝑘 + 2)2

𝑐𝑘+2
𝑄𝑘(𝑞)𝑄𝑘(𝑝), ∀(𝑞, 𝑝) ∈ 𝔹 × 𝔹. (6.2)

In the previous table (Table 1) we list some spaces of slice hyperholomorphic functions and their Fuetermapping ranges
denoted respectively by𝑐 and𝑏, the associated sequences 𝑐 and 𝑏 and the Fueter mapping norms.
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