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QVD Sensors as Focal Plane Instruments for X-ray Timing
Applications

Kent S. Wood*, Armen M. Gulian#, and Paul S. Ray*

*Naval Research Laboratory, Washington, DC 20375
#Physics Art Frontiers/Naval Research Laboratory, Washington DC 20375

Abstract.  “QVD” detectors are based on thermoelectric heat-to-voltage (Q�V) conversion and digital (V�D) readout. For
spectroscopic applications, the theoretical performance limits are competitive with superconducting tunnel junction (STJ)
detectors and transition edge sensor (TES) devices. We discuss theoretical and demonstrated timing performance of QVD
detectors with different design architectures.  Detectors with lanthanum-cerium hexaboride sensors can be very fast, up to 100
MHz/pixel counting rates.  They can serve as focal plane detectors for X-ray timing, in situations where very large apertures are
used to gather X-ray photons at high event rates.  Practical implementation of thermoelectric (QVD) detectors requires cryogenic
thermoelectric sensors with high figures of merit. There can be different solutions: thin films, bulk materials and "whiskers."
We are exploring all three design options and summarize progress in each area.

1. INTRODUCTION

The QVD detectors have an advantage of very high
photon counting rates much higher than demonstrated
by its major competitors, STJ and TES detectors (Fig.
1, left). At the same time there is no compromising in
(theoretical) energy resolution or spectral resolving
power (Fig. 1, right).

The QVD detector is based upon unavoidable
thermoelectric effects as shown in Figs. 2 and 3. It is
simple in design, and allows straightforward signal to
noise modeling  (see Section 2). It requires materials
with high Seebeck coefficient (S=δV/δT), which are
known. We initially used Au(Fe) devices to validate
the model. Higher S leads to devices with better
performance.

FIGURE 1.  Comparison of detectors.

FIGURE 2. “Classical”  design of QVD-detector,
based on thermoelectric thin film sensor.



La(Ce)B6 has a high Seebeck coefficient in bulk;
its film properties are being investigated. The
operating temperature is ~400mK, comparatively high
relative to TES devices. It is promising for very high
speed (MHz counting rates vs. kHz in TES)
applications.

2. QVD EXPECTED BEHAVIOR FROM
FIRST PRINCIPLES

2.1. Signal To Noise Derivation

For the Johnson noise of the detector in Figure 2
we have:

VJ.n. = (4kBTRδν)1/2 , (1)

where R is the resistance of the sensor strip, and
correspondingly,

{ <(δEJ.n.)
2>} 1/2= =(2L0/S)[(kBT)(CabsT)]1/2, (2)

where L0 is the Lorentz ratio: L0=(π2/3)(kB/e)2 ∼

∼ 25 nW Ω/K2, and Cabs is the absorber heat capacity.
Equation (2) assumes that at sufficiently low
temperatures the Wiedemann-Franz type behavior L =
K/σT is valid: the Lorenz Number, L ~ L0. We
confirmed experimentally that it is the case for La(Ce)
hexaborides. Another noise mechanism is the inter-
pixel noise, for which

{ <(δEi.p.)
2>} 1/2  =  2 [(kBT)(CabsT)]1/2

. (3)

Yet another noise source is driven by substrate-pixel
heat conductance G with noise equivalent power:
 
NEP = 4kBT2G. (4)

Since the Kapitza time (this time is related to thermal
resistance at the boundary metal-dielectric) is large:

τK = r0Cabs/T
3Aabs >>τsignal,   (5)

where r0 ~ 20 K4cm2/W is “universal”  for metal-
dielectric interfaces, and τsignal = Cabs R/(L0T), the first
two noise terms are dominant.  Comparing this noise
with the Seebeck voltage, i.e., the signal of our
detector:

V(t) = �S(T)gradT(t)dl  = �SdT = S δT(t), (6)

we obtain its energy resolution in the form:

∆EFWHM =2.35 { 2kBT2Cabs[1+L0/S
2]} 1/2 . (7)

We can use these expressions to evaluate the key
parameters of the QVD detectors.

2.2. Key Operational Parameters

2.2.1. Signal Duration (Timing)

Choosing Cabs ~ 10-15J/K, one can get τsignal ~ Cabs

R/(L0T) ~ 10-8 sec [at T~0.5K, R~0.1Ω ]. Thus the
time resolution can be as fast as 10-8 sec. It can be
faster for softer photons since Cabs can be chosen
smaller.

2.2.2. Counting Rate

Counting rate is determined by the longest
(“Kapitza” ) time τK = r0Cabs/T

3Aabs ~ 10-7 sec at Aabs

(absorber-substrate interface) ~ 200 µm2 at lateral
pixel dimensions ~ 15 µm. This is essentially the dead
time associated with the fifth stage in Fig. 3, during

FIGURE  3. Operational cycle of QVD detector



which the system recovers. Thus one can expect ~ 106-
107 cts/sec/pixel for thin film sensor QVD devices.

2.2.3. Quantum Efficiency

For QVD detectors the quantum efficiency equals
absorption efficiency and depends on the absorber
material and thickness; for a bismuth absorber:
CV(Bi)~4x10-6J/cm3-K at Top~0.5K, and at thickness
d=1.5µm Cabs ~ CV(Bi) x V (~300µm3) ~ 10-15 J/K and
one can get efficiency about 50% at 6 keV events
(higher at smaller energies, see Figure 4).

2.2.4. Energy Resolution

Energy resolution [in eV] is given by Eq. 7. At
Cabs~10-15J/K and T~0.5K, we get ∆EFWHM ~ 2eV. This
value of Cabs is appropriate for 6 keV photons. For UV
photons Cabs could be chosen smaller by orders of
magnitude and yield higher resolution values (0.1 eV
and better).

3. DEVICES AND DEMONSTRATIONS

During the last few years several generations of
prototype detectors were fabricated. The following
schemes (Figs.5,6 ) were mainly used for their testing.

A laser source generated enveloped pulse trains
with the sub-ns duration of pulses and 20 ns length of
the envelope at FWHM.

3.1. First Devices With Au-Fe Sensors

The output of the first detectors which reached
500eV resolution at ~6 keV energy input is shown in
Fig. 7, and the device – in Fig. 8.

These devices had S~0.3µV/K and R~1-10Ω. The
overall agreement with the theory is very good.

3.2. Detection Experiments With
Hexaboride Crystals

The figure of merit ZT = S2/L of hexaboride
crystals can be >0.1 at cryogenic temperatures (T<4K).
This means that the energy resolution will be much
higher than with Au-Fe devices. We have not yet been
able to manufacture thin film hexaboride crystals,
though the work is in progress in that direction.
Meanwhile, we were able to make some experiments
with single-crystalline QVD sensor designs. Two
prototype embodiments were analyzed: one with flat
crystal sensor and one with whisker-type sensor
geometry.

Laser pulse

Signal pulse

FIGURE 7. Output of Au-Fe sensor devices.

FIGURE 8. Au-Fe sensor devices.

FIGURE 4.  Absorption efficiency in Bi film

FIGURE 5. QVD testing scheme.

FIGURE 6. Prototype detector testing electronics.



3.2.1. Flat Crystal Design

The devices in this design (see Figs. 9 - 11) can
operate even faster than thin-film devices (no Kapitza
resistance), though the modeling of S/N for deriving
the energy resolution is not yet done: the suppression
of substrate noise may become an issue.

As this figure demonstrates, the counting rate can
be close to 108 cts/sec!

3.2.2. Whisker Sensor Design

Growth of LaB6 crystals is possible in a whisker
form, and it is possible to do that in a form of regular
arrays. Keeping that in mind, we prototyped a
“whisker”  option of the QVD shown in Fig. 12.

Figure 13 demonstrates the output of this prototype
detector, which proves the viability of whisker design.

4. CONCLUSIONS

We have demonstrated the high thermoelectric
figures of merit of hexaboraide crystals, demonstrated
that they are suitable for reaching the ultimate
performance of QVD detectors. These detectors can
have very high timing resolution (down to few
nanoseconds) and high counting rates 107-108 cts/sec
per pixel. Each pixel event can in principle be tagged
with energy resolution as high as ∆EFWHM ~1-10 eV at
6 keV.
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FIGURE 10. Operational cycle of flat sensor QVD.

FIGURE 9. Exploded view of the flat sensor QVD.

FIGURE 11. Time resolution of flat sensor QVD.

FIGURE 12.  (left) Single-crystalline splinter glued
in kapton serves as a whisker-like sensor;  (center)
array of Bi-absorbers (φ=25 µm; thickness 1.4 µm);
deposited on plastic substrate thinned with a half-
drilled hole (shown upside-down); (right) top-view
of the detector: assembly aligns absorber, whisker.

FIGURE 13. Output of the whisker-sensor QVD.
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