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Abstract 

The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at 
room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnits et al., that the 
condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric 
function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function 
for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a “glue” 
for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a 
good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of 
the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with 
the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the 
reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of 
the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing 
(though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology 
and industry. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of ICEC 25-ICMC 2014. 
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1. Introduction 

Room-temperature superconductivity (RTS) is long considered a Holy Grail of contemporary science and 
technology because of enormous impact it may have on human life. It is therefore not surprising from how many 
different ways this problem is being attacked. To name a few: intercalated graphene layers, decorated nanotubes, 
oxides, pniktides, monolayers, interfaces, organic materials, metallic hydrogen, etc. Manifestos, articles, books and 
reports [Basov and Chubukov (2011), Mazin (2010), Mourachkine (2006), DoE Report (2006)] are being published, 
and special school and institute sessions are being held [IBM Almaden Institue, (2012)]. In principle, all these efforts 
are reasonable, and perhaps could be justified, even in case when the research is being done with cold atoms in 
quantum optics with a promise to contribute to still elusive mechanism of high-temperature superconductivity...  

Actually, the work on RTS has been theoretically ignited by Little (1964), whose ideas resonated with Ginzburg’s 
perception of superconductivity [Ginzburg (1964), Ginzburg et al. (1982)]. They both referred to the Bardeen, 
Cooper, Schrieffer (1957) model. According to the BCS model, which later was clarified by many others, the 
electrons are dynamically interacting with each other via crystalline field (phonons). Because of the involvement of 
this phonon field, the electron-electron interaction is attractive, thus reducing the energy of the ground state, and 
modifying the electronic system to become superfluid. Can this modification occur at room temperatures? The 
search for RTS was revolutionized by the discovery of high-temperature superconductivity by Bednorz and Mueller 
(1987). Almost immediately the field became populated by many researchers, with Sir Nevill Mott remarking that 
the number of theories suggested for its explanation had become close to the number of theorists involved. Sad to 
say, the theory is not yet constructed. However, the absence of theory is not a problem for searching for RTS, 
because the theory was never a direct instrument of discovery of novel materials. Historically, it was more fruitful 
for explaining various properties of novel materials and suggesting their applications, like the Josephson (1962) 
theory. Nevertheless, theory provided some advice in which direction to look for prospective materials. For example, 
Bednorz and Mueller (1986) were looking at materials with very strong electron-lattice interaction. Their belief was 
related to the BCS expression for critical temperature: 

 
    Tc ~ D exp (-1/ )      (1) 

 
(here D is the Debye frequency of phonons, and is the coupling constant of electrons with phonons),which 
indicates that Tc is bigger when  is bigger. How high can Eq. (1) take the Tc? Unfortunately, at proper consideration 
of Coulomb interaction [Bogolyubov et al. (1958)], as well as strong electron-phonon interaction [Eliashberg 
(1960)], this equation should be renormalized and converted into  
 

)]}62.01(/[)]1(04.1[exp{ *
DcT     (2) 

 
[McMillan, 1968], so that when  is big, Tc is limited. In this equation * stands for the screened Coulomb repulsion 

between paired electrons: )]/ln(1/[*
Dc , where  is the unscreened Coulomb repulsion; c is the 

plasma frequency. Since typically 1~ , and 1/ Dc , resulting in a * , almost independent on :

2.015.0~)/(ln 1*
Dc . These renormalizations essentially reduce the values of Tc, so that even if 

KD 1000~ , which is rare in solids, the Tc~10K. For the majority of solids KD 100~  is a better estimate, which 
moves the hopes for room temperature superconductivity away from the electron-phonon interaction. 

However, the BCS formalism is applicable not only to phonon-mediated electron-electron interaction, but 
virtually to any other Bose-field serving as a Cooper pair-glue [see, e.g., Carbotte, (1990)]. Thus one can expect 
high values of Tc  if the pre-factor in Eq. (1) is on the electronic scale of energy: KEFc

510~~ , yielding 
KTc 300 at moderate values of interaction constant . This idea [Little, (1964)] initiated an avalanche of 

responses. Leaving for a moment supportive ones aside, we will focus on the criticism by Cohen and Anderson 
(1972). It was noticed that raising the frequency of Bose-field cannot raise the Tc unrestrainedly. Indeed, subject to  
 



 Mamikon Gulian et al.  /  Physics Procedia   67  ( 2015 )  963 – 969 965

 
 
 
 
 
 
 
 
 
 

-dependence of *  the value of Tc, at given and , has a maximum at 0 . Approximating Tc in Eq. (2) 

by )]}1(/[)1(exp{ *
cT  we find )]2/1/2(exp[0 c and consequently obtain

)]4/1/4(exp[max
ccT . Physical reason of non-monotonic behaviour of )(cT  is the reduction of 

retardation effect at Cooper pairing: the screening of turns ineffective, and * . Using obtained analytical 
expression for Tc and representing it in the form  

 
]4/1)/ln[(/4)( max

cc T ,    (3) 
 
one can make quantitative predictions by substituting KTc 300max in Eq. (3), Fig. 1. Obviously, 300 K-
superconductivity requires .  Here is where the crucial point comes in: for  to exceed , the negative values 

of the inverse total dielectric function ),(1 qtot at zero frequencies and finite wave vectors q are required in view of 

the relation )]}0,(/[4{ 22 qqedq tot . Achievability of this requirement was disputed in the literature 

[Cohen, Anderson (1972), Kirzhnitz (1976), Dolgov, Kirzhnitz, Maksimov (1981)]. The current understanding is 
that because of the local field effects it really may occur in condensed matter, and not only in superconductors 
[Dolgov, Maksimov (1978)], but also in other structures, like Wigner crystals [Bagchi (1969)].  

In the rest of the article the sign of the dielectric function at different values of q and  is the major concern.   
 
2. “Frozen lattice” model 
 

The considerations above allow us to ignore the phonon dynamics for now: the mechanism of the Cooper pairing 
would then be fully electronic. Indeed, in Fig. 1b, the values of should not exceed ½ because of Stoner’s criterion 
of ferromagnetism. The frequency )2/1(0  is then too high for phonons though may be much lower than the 
Fermi-energy, and thus can exist in solids as a collective electronic mode. For the electron dynamics determined by 
this mode, one can safely drop the lattice degree of freedom, and consider it “frozen". In the rest of the article we 
will assume this assumption valid. 
 
3. Codes and calculation procedures 

 
We made use of the Density Functional Theory (DFT) code ABINIT [Gonze et. al (2005) and (2009)] and the 

add-on Time Dependent Density Functional Theory (TDDFT) code DP. ABINIT was used to compute the electronic 
density and band structure. The computed data were then fed into DP to calculate the dielectric function. 
 
4. Models and results 

 
Prior to considering materials where the purely electronic pairing could be expected, we tried materials (like Al) 

in which analytical considerations have revealed negative )0,(1 qtot , and also materials such as Si, where the 
computational scheme was already advanced by the originators of the code. 
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4.1. Silicon and germanium 
 

Additional interest in this case arose also because of an opinion [Dolgov, Kirzhnitz, Maksimov (1982)] that  
),(1 qtot  can be negative in Si and/or Ge. We first reproduced the ab-initio results by Reining et al. (2002), which 

match well with the experimental data by Aspnes, Studna (1983), Fig. 2a. This requires the so-called long-range 
contribution (LRC) regime in DP. This approximation goes beyond the local density approximation (LDA) by using 
an exchange correlation kernel 2/ qfxc ;  for Si, 2.0  gives a good agreement with the experimental results. 
Also, a scissor shift must be applied to correct the band structure, as the LDA never gives the correct band gap in 
semiconductors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With the parameters from this computation, )0,(1 qtot was computed with q in the direction (1,0,0), Fig 2b. It 

was found that )0,(1 qtot  does not possess a negative sign. Germanium provided a similar result. 
 
4.2. Aluminum  
 

First, to test the accuracy of the codes and parameters, we  reproduced the experimental data of Ehrenreich et. al, 
(1918) of  at q =0. The results are show in Fig. X. The red curve represents the result of ABINIT/DP 
computations of the dielectric function, which takes into account only intraband transitions; by adding interband 
transitions (Given by the simple Drude formula; black curve), the experimental curve of (Ehrenrich et. al., 1968) is 
reproduced. We then proceeded to compute the dielectric function as a function of q, (q,  = 0) using the 
parameters from this calculation. The results are shown in Fig. 3a. However, these results differ qualitatively from 
the graph computed by Dolgov & Maximov (1978). In particular, )0,(1 qtot does not become negative at any 
value of q. It can be concluded then that in Al, which is a classical superconductor, the negativity of the dielectric 
function is due also to phonon effects, and cannot be reproduced in “frozen lattice” approach, at least with 
ABINIT/DP.  

 
Given these findings, the next question is: using the ab-initio method, can we explore for systems in which non-
classical superconductivity arises from purely electronic mechanisms? Little's model provides one way, in theory. 
Thus, our next computations were of dielectric functions in carbon nanotubes (in rope configurations, and in single 
systems).  
 
4.3. Carbon nanotubes 
 

For a given CNT, the dielectric function may be computed with the nanotubes in an optimized array ("rope'' 
configuration) with close intertube distance, or with enough vacuum padding between the nanotubes to simulate an 
individual nanotube. The dielectric function of roped configurations was studied by Reining et al. (2008).  

 

Fig. 2. (a) real and imaginary parts of  tot(q=0, ) in Si ; (b) real part of tot
-1(q, ) in Si, q along the direction (1,0,0).  

a b 
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Fig. 3. (a) - the sum of the DP-computed intraband contribution to tot(q, ) plus the Drude formula gives agreement  with 

experiment;  (b) - )0,(1 qtot for Al. 

 

 
Fig. 4. )0,(1 qtot in a (3,3) CNT with various intertube distances. 

 

 
  

(a) (b) (c) 
Fig. 5. (a) - The relaxed Ti-decoration of a CNT; (b) - comparison of the dielectric function of decorated and 

undecorated  (5,0) CNT; (c) - the same for a (7,0) CNT.   
As for Al and Si, our computations of )0,(1 qtot in either systems did not yield negativity. Yet, carbon nanotube 
systems look promising: as Fig. 4 shows, for low intertube distance (i.e., ropes) and for small , the dielectric 
function does becomes negative. Moreover, although for isolated nanotubes, for which the intertube distance is high, 
no sign change occurs (Fig. 4, curve 24 A), such systems can host a variety of decorations that may change the 
dielectric function. In Fig. 5, we show the effect of titanium decoration on the dielectric function of (5,5) and (7,0) 
nanotubes in vacuum. These systems (Fig 5a) were first explored by first principle computations by Yang et al. 
(2002); we decorated and relaxed the system using the commercial code QuantumWise ATK prior to applying the 
ABINIT/DP  codes to obtain results in Figs. 5 b & c. Although a sign change is not observed, the dielectric function 
is decreased in certain frequency ranges.  
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5. Discussion and conclusion 

Classical superconductivity does not require 0)0,(1 qtot . However, it does require negativity of ),(1 qtot  
at some values of  and q, as one can notice in simplistic jellium model [De Gennes (1966)]: 

)]/(1)][/([),(];),(/[4),( 22222222
qqTFphelCoulomb kqqqqqeVVqV . (4) 

That changes the repulsive static Coulomb interaction 22 /4 qe  by a dynamic interaction with attraction: 
]),(/[4 22 qqe . This property is present in Fig. 4 when nanotubes are closer within the rope! One can expect 

superconductivity in these systems, and in similar cases which will be explored in the future. To examine the 
predictive power of the approach and the method itself, it is interesting to compute this function for 2-dimensional 
Cu-O layer(s) with oxygen vacancies, which may possess negativity of ),(1 qtot  in the adopted electronic model. 
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