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Transient Effects in Atmosphere and
Ionosphere Preceding the 2015 M7.8
and M7.3 Gorkha–Nepal Earthquakes
Dimitar Ouzounov1*, Sergey Pulinets2, Dmitry Davidenko2, Alexandr Rozhnoi3†,
Maria Solovieva3, Viktor Fedun4, B. N. Dwivedi5,6, Anatoly Rybin7, Menas Kafatos1 and
Patrick Taylor8

1Center of Excellence for Earth Systems Science and Observations, Chapman University, Orange, CA, United States, 2Space
Research Institute, RAS, Moscow, Russia, 3The Schmidt Institute of Physics of the Earth, RAS, Moscow, Russia, 4Plasma
Dynamics Group, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield,
United Kingdom, 5Department of Physics, Indian Institute of Technology (BHU), Varanasi, India, 6Rajiv Gandhi Institute of
Petroleum Technology, Jais Amethi, India, 7Research Station RAS, Bishkek, Kyrgyzstan, 8NASA GSFC, Greenbelt, MD,
United States

We analyze retrospectively/prospectively the transient variations of six different physical
parameters in the atmosphere/ionosphere during the M7.8 and M7.3 earthquakes in
Nepal, namely: 1) outgoing longwave radiation (OLR) at the top of the atmosphere (TOA); 2)
GPS/TEC; 3) the very-low-frequency (VLF/LF) signals at the receiving stations in Bishkek
(Kyrgyzstan) and Varanasi (India); 4) Radon observations; 5) Atmospheric chemical
potential from assimilation models; and; 6) Air Temperature from NOAA ground
stations. We found that in mid-March 2015, there was a rapid increase in the radiation
from the atmosphere observed by satellites. This anomaly was located close to the future
M7.8 epicenter and reached a maximum on April 21–22. The GPS/TEC data analysis
indicated an increase and variation in electron density, reaching a maximum value during
April 22–24. A strong negative TEC anomaly in the crest of EIA (Equatorial Ionospheric
Anomaly) occurred on April 21, and a strong positive anomaly was recorded on April 24,
2015. The behavior of VLF-LF waves along NWC-Bishkek and JJY-Varanasi paths has
shown abnormal behavior during April 21–23, several days before the first, stronger
earthquake. Our continuous satellite OLR analysis revealed this new strong anomaly on
May 3, which was why we anticipated another major event in the area. On May 12, 2015,
an M7.3 earthquake occurred. Our results show coherence between the appearance of
these pre-earthquake transient’s effects in the atmosphere and ionosphere (with a short
time-lag, from hours up to a few days) and the occurrence of the 2015 M7.8 and M7.3
events. The spatial characteristics of the pre-earthquake anomalies were associated with a
large area but inside the preparation region estimated by Dobrovolsky-Bowman. The pre-
earthquake nature of the signals in the atmosphere and ionosphere was revealed by
simultaneous analysis of satellite, GPS/TEC, and VLF/LF and suggest that they follow a
general temporal-spatial evolution pattern that has been seen in other large earthquakes
worldwide.

Keywords: Nepal Earthquake, Natural hazards, precursors, thermal anomaly, ionospheric effects, GPS/TEC, VLF,
LAIC
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INTRODUCTION

The observational evidence of data from the last 3 decades from
different parts of the world provides a significant pattern of
transient anomalies preceding earthquakes (Tronin et al., 2002;
Liu et al., 2004; Ouzounov et al., 2007; Nĕmec et al., 2008;
Parrot, 2009; Kon et al., 2010; Hayakawa et al., 2013; Tramutoli
et al., 2013). Although there exists a great deal of experimental
evidence on the presence of seismo-electromagnetic
disturbances in the wide frequency range from Ultra Low to
High Frequency and methods of observations stretch out from
ground to satellite (Pulinets and Boyarchuk, 2004; Hayakawa
2015; Ouzounov et al., 2018a), the majority of the studies
presented were obtained at one location, one wave path or
only at the time of the events. It is rare to see “aseismic path”
measurements, i.e., data from the receivers (or outfit) located far
away from the earthquake epicenters. Long-term statistical
analysis, or confutation analysis for other possible causes
needs to be explored, which can produce the same signal
anomalies. Sometimes there are demonstrations only on a
single parameter and therefore many researchers have
rational skepticism about pre-earthquake anomalies. We
focus on the consistent multi-parameter data collection that
could help to reveal the connection between atmospheric and
ionospheric variations (or anomalies) associated with major
earthquakes.

The 2015 earthquake sequence in Nepal has been studied
with different methods for pre-earthquake anomalies. Several
authors show precursory phenomena by using different satellite
and ground observations: a/Satellite thermal anomalies
(Ouzounov et al., 2015; Prakash et al., 2015; Shan et al.,
2016); b/Microwave Brightness Temperature Anomalies (Qi
et al., 2020); c/Radon anomalies (Deb et al., 2016);
d/Ionospheric anomalies (Ouzounov et al., 2015; Maurya
et al., 2016; Oikonomou et al., 2016; Li et al., 2016; De Santis
et al., 2017); e/Gravity anomalies (Chen et al., 2015). We used a
multi-parameter approach to search for pre-earthquake signals
associated with the series of strong earthquakes in Nepal during
April-May 2015. A network of different observations provides
an opportunity to analyze signals over the same area with
different methods. Our study analyzed ground and satellite
data to record the atmospheric and ionospheric responses to
the M7.8 and M7.3 earthquakes in Nepal in 2015. Immediately
after the M7.8 on April 25, 2015, we could analyze and find
anomalies in the atmosphere prospectively and acknowledge in
advance the potential for the occurrence of M7.3 of May 12,
2015 (Ouzounov et al., 2015). We examined six different
physical parameters characterizing the state of the
atmosphere/ionosphere during the periods before and after
the event: 1. Outgoing Longwave Radiation, OLR (infra-red
10–13 µm) measured at the top of the atmosphere; 2. GPS/TEC
(Total Electron Content) ionospheric variability; 3. Very Low
Frequency (VLF) over horizon propagation; 4. Radon
observations; 5. Atmospheric chemical potential from
assimilation models and 6. Air Temperature from NOAA
ground stations. These results testify to the efficiency of
combining different methods (Thermal, GPS/TEC, VLF/LF)

for the revealing precursory activity associated with strong
earthquakes, especially with multi-stationed observations.

EARTHQUAKES

The Nepal earthquake on April 25 was the strongest since 1934.
TheMw � 7.8 (depth 15 km) earthquake with epicenter 28.230°N,
84.731°E occurred in the same area at 06:11 UT, 80 km from
Kathmandu. A series of strong aftershocks began immediately
after the mainshock, with one aftershock reaching Mw � 6.6
(depth � 10 km) within half an hour of the initial earthquake. A
major aftershock of Mw � 6.9 occurred on April 26, 2015, in the
same region at 07:08 UT. The weaker aftershocks were observed
until the morning of April 28. According to the USGS, the
earthquake was caused by a sudden thrust, or release of built-
up stress, along the primary fault line where the Indian Plate is
slowly diving underneath the Eurasian Plate, carrying much of
Europe and Asia. The earthquake’s effects were amplified in
Kathmandu as it sits in the Kathmandu Basin, which contains
about 600 m of sedimentary rocks, representing the infilling of an
ancient lake.

Kathmandu, situated on a block of the crust of approximately
120 km wide and 60 km long, reportedly shifted 3 m to the south
in a matter of just 30 s. This earthquake caused avalanches on
Mount Everest. At least 19 people died, with 120 others injured or
missing (Harris, 2015). In total there have been more than 8,669
victims and 17866 injured. Tens of hundred houses were
destroyed, including several pagodas on Kathmandu Durbar
Square (a UNESCO World Heritage Site) and the 60-m tower

FIGURE 1 | Reference map of Nepal region, with the location of
earthquakes >M4 for Jan–May 2015. The location of M7.8 of April 25 and
M7.3 of May 12, 2015 are with purple stars. With black triangles are showing
the location of the air Temperature station (katmandu) and GPS stations
(Lhasa), radon site (Kolkata, India).
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Dharahara. More than half a million structures were damaged.
The second Nepalese earthquake occurred onMay 12, 2015, at 07:
05 UT with Mw � 7.3 (depth 18 km). This earthquake occurred
on the same fault as the April 25, but further east than the original
earthquake. Minutes later, another 6.3 magnitude earthquake hit
Nepal, with its epicenter east of Kathmandu. The tremor caused
new landslides and avalanches on Mount Everest and was felt at
many places in northern India. It destroyed some of the buildings
which survived the first earthquake. (Figure 1).

RESULTS

Air Temperature Observations
Multiyear day-by-day counts of nighttime temperatures were
used to compute the daily temperature variations near the
vicinity of the earthquake epicenter. Data near the ground
surface were obtained from Tribhuvan International Airport,
Nepal, through NOAA Surface Data Hourly Global Database.
We analyzed surface air temperature and nighttime data for

2011–2015 close to the terminator time 0,500–0,600 LT to
define the normal and abnormal state of the air temperature.
The pre-terminator times have been found as one of the most
sensitive indicators for buildup of thermal anomalies, because of
the limited solar radiation impact during these hours (Ouzounov
et al., 2006). The time series for January 1 to May 31, 2015, is
shown in Figure 2C. We computed the residual values to
distinguish between the current value and the multi-year year
mean of the air temperature variability. The maximum offsets
from the mean value reached near +5°C on April 20 and +4°C on
May 5 (Figure 2C) with a confidence level of more than +2 sigma
for all the observations from 2011 to 2015. This transient rapid
increase in the surface air temperature is a little more significant
than the remote satellite observations shown in Figure 2A, which
agrees with the thermodynamic processes explained by the LAIC
concept. (Pulinets and Ouzounov, 2011). To understand the day-
by-day variability of the daytime and nighttime temperature
during the earthquake events, we analyzed the hourly
temperature near the epicenter in a new way. We used 3-h
global surface air temperature data from the GEOS-5

FIGURE 2 | Time series of atmospheric variability observed within a 200 km radius of the Nepal earthquake (top to bottom): (A) Nighttime anomalous OLR over
epicentral region from January 1–May 30, 2015 observed from NOAA AVHRR (red). Same location, same period a year before - Jan-Ma y 20 14 (black); (B) ACP time
series over the epicentral areas. With pink color 2015 ACP 6 hourly data. With black the residual of 2015-20 14 6 hourly ACP data; (C) Air temperature anomaly from
station Tribhuvan International Airport (blue) at 0600LT; (D) Seismicity (M>4.0), Jan–May 2015 within 200km radius of the M 7.8 epicenter (USGS).
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assimilation (Figure 2B). The presence of ions in the atmosphere
creates a possibility for water vapor molecules to join with these
ions through the hydration process, which is different from
condensation. The evaporation/condensation process, the
phase transition of the first order, always occurs during the
potential chemical equality. However, newly formed ions have
different chemical potentials; what is to introduce should
consider in the one-component approximation we introduce
the correction to the chemical potential. The increase of the
water molecules chemical potential indicates the strength of the
nucleation process and can be used as an indicator of an
imminent earthquake according to Boyarchuk et al., 2010 and
demonstrated already withinmultiparameter analysis (Ouzounov
et al., 2018a; Pulinets et al., 2020).

Radon Observation
Long-term array observations of radon anomalies have been used
for pre-earthquake studies (Fu et al., 2011, 2015, Zoran et al.,
2012; Giuliani et al., 2013, Karastathis et al., 2019). Anomalous
radon variations occurred a few days to a few months before the
earthquake and are likely to be associated with earthquake
development’s dilatancy and micro fracturing stages. Radon
plays a crucial role in developing the lithosphere-atmosphere-
ionosphere coupling (LAIC) concept (Scholz et al., 1973; Pulinets
and Ouzounov, 2011; Pulinets et al., 2018) associated with the
pre-earthquake process. During the 2015 earthquake sequences
in Nepal, simultaneous measurements of soil radon-222 were
recorded at the main campus of Jadavpur University, Kolkata,
India. Deb et al. (2016) studied the precursory seismogenic radon.
To observe coherent responses, the soil Rn222 concentration
profiles were measured simultaneously at two nearby (̃200 m
apart) locations (Figure 3A), A and B, having uniformly clayey
soil, within the Jadavpur University premises (22.5667◦N,
88.3667◦E). The soil moisture content at location A was lower
than location B. It was expected that simultaneous recording of
radon time series at these two locations would add confidence in
identifying pre-seismic responses (Figure 3b). The 4-months
time of their observations fortunately overlapped with the
Nepal seismo-active period in 2015 (Figure 3). Their sensor, a
solid-state nuclear track detector method, was used to detect the
alpha-radiation in the radioactive radon gas. Two simultaneous
4-months of observations have been analyzed. During the
observation period, four statistically significant anomalies
(above the ±2σ level) were obtained on April 20, April 29,
May 19, and May 29, 2015, simultaneously at both locations A
and B. April 20 anomaly preceded the April 25 M7.8, and the
April 29 was identified as precursors to the May 12. The May 29
radon anomaly is likely to be identified as a pre-seismic event to
the M5.6 earthquake at Kokrajhar, Assam, on June 28, 2015 (Day
et al. l, 2016). Despite that radon fluctuation onMay 19 registered
at locations A and B with >2σ significance, no earthquake
occurred within a 1,000 km radius from Kolkata. Probably this
anomaly is not associated with seismic origin but with
geodynamics transition associated with the new Moon event
on May 18, 2015, 1 day before the Radon anomaly occurrence.
The connection between Lunar phases, geodynamics, and
seismicity has been statistically established (Kolvankar et al.,

2010). The overall interpolation of radon anomalies related to
the Nepal 2015 earthquakes demonstrates that the reliable
detection of radon anomaly due to seismicity requires
simultaneous measurement of soil radon concentration by a
broad network of radon/gamma sensors (Fu et al., 2011, 2015;
Karastathis et al., 2019).

Atmospheric Chemical Potential
All thermodynamic models of the atmosphere, considering the
phase transitions of water and latent heat fluxes, operate with
latent heat (per mole or molecule) as a constant at a given
temperature. It is equal to 0.422 eV per one water molecule.
However, if one carefully deals with accurate data, one can often
find that violations of the gas equation are observed (inexplicable
additional variations in temperature, humidity, and pressure).
We approached this phenomenon from a different approach
different when studying the processes of ionization of the
surface manner layer of the atmosphere by radon, the release
of which from the Earth’s crust sharply increases at the final stage
of preparation for a strong earthquake. The detailed calculations
could be found in Pulinets et al., (2015). Here we discuss the final
findings. As it turned out, atmospheric ions formed during the
ionization of atmospheric gases by energetic alpha particles
emitted by radon during decay become instantly hydrated.
Hydration is not equivalent to condensation because the
process takes place at any relative humidity level and does not
require saturated steam. However, all the same, a phase transition
of water molecules from a free to a bound state takes place, and,
just as during condensation, latent heat is released. It turned out
that the released amount of latent heat is more significant at a
high rate of ion production and high concentration of ions than
for ordinary condensation. How much larger? For earthquakes,
the value ranges from 0.01 to 0.1 eV, i.e., in extreme cases, it can
reach about 25% of the latent heat constant. (it’s the difference
between the released latent heat during hydration and normal
condensation). This difference we call the correction of the
chemical potential of the water vapor in the atmosphere. We
call it the atmospheric chemical potential (ACP) because, in the
act of evaporation/condensation, the energy of the water molecule
is equal to its chemical potential. To understand the day-by-day
variability of ACP during the earthquake events, we analyzed 3 h
global ACP data computed from the GEOS-5 assimilation
(Figure 2B).

Earth Radiation Observation
One of the main parameters we used to characterize the Earth’s
radiation environment is outgoing long-wave-earth radiation
(OLR). OLR has been associated with the top of the
atmosphere (TOA) integrating the emissions from the
ground, lower atmosphere, and clouds (Ohring G. and
Gruber, 1982), and primarily was used to study the Earth’s
radiative budget and climate (Gruber and Krueger, 1984;
Mehta and Susskind, 1999).

Daily OLR data were used to study the OLR variability in the
zone of earthquake activity (Liu, 2000; Ouzounov et al., 2007,
2018b; Xiong et al., 2010). An augmentation in radiation and a
transient change in OLR was proposed to be related to
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thermodynamic processes in the atmosphere over seismically
active regions. We can determine the atmospheric anomaly in
Euler’s reference frame as a first approximation by subtracting the
mean. The average can be defined at the same day each year, local
time, and location over 11 years (i.e., more than one solar cycle).
The advantage of this approach is its efficiency in the presence of
long-term satellite observations. The OLR anomalous variations
were defined as an E_index (Ouzounov et al., 2007) as the
statically defined maximum change in the rate of OLR for a
specific spatial location and predefined times. They have
constructed analogously to the anomalous thermal field
proposed by (Tramutoli et al., 2005, 2013).

The E_index was defined as statically estimated variability in
OLR values for specific locations and periods:

E Indexi,j(t) � (Sp(xi,j , yi,j , t) − Sp(xi,j , yi,j , t))/σi,j (1)

Where: t � 1, K days, (Sp(xi,j , yi,j , t)) is the current OLR and
Sp(xi,j , yi,j , t) is the computed mean of the OLR field, defined for
multiple years of observations over the same location and same
local time, σi,j is the standard deviation of S*, and K is the total
number of analyzed days. We use the Thermal radiation anomaly
(TRA) index, a modified version of E_Index (Eq. (1)),

TRAAnomalyi,j(t) � (ApE Indexi,j(t))/B (2)

A and B are regional coefficients, A—a mask, mainly
defined by the regional seismo-tectonic patterns and TRA
appearance frequency (A � 0.1–0.9). B normalizes each of
NOAA 15 and 18-time series of OLR data to the same time
coverage over 11 years averaging period (B � 1–3.5). The TRA
indexes have been processed with additional preprocessing to
avoid aliasing short wavelengths and spatial filtering based on
a “minimum curvature” algorithm (Ouzounov et al., 2018a).
We used OLR data from NOAA’s Advanced Very High-
Resolution Radiometer (AVHRR) for satellite thermal analysis
over Nepal. The results of the 2015 Nepal earthquake showed that
there was a rapid increase in transient infrared radiation in

satellite data in mid-March 2015. An anomaly is observed
near the epicenter; it peaked around April 4–7, about
2–3 weeks before the M7.8 earthquake (Figure 4, Figure 6).
Further analysis revealed another temporary OLR anomaly on
May 2–3. The second M7.3 event occurred on May 12, 2015.
(Ouzounov et al., 2015). Our results show that long-wave
radiation signals associated with earthquake processes were
observed near the epicentral regions several days before the
corresponding earthquakes. TRA hotspots appeared quickly,
remained in the same regions for several hours, and then
quickly dissipated. During March-May 2015, about TRA 15
anomalies were detected around the Nepali M7.3 epicentral
areas (Figures 5,6). With red dots showing the anomaly
locations, the date is given in the text, and a circle shows the
confidence area. The centers TRA are computed based on
Eqs. (1), (2). The energetic threshold for determining the
anomalous patterns was >2.5 sigma STD. TRAs on April 5,
23, and 29 are within the maximum level for the entire period
inside the entire region. The possible reason for several TRA’s is
the activating of gas releases over Nepal and Central Asia. The
triggered ionization inside the ABL generates zones of “thermal-
bursts.” The cross-section of several TRA areas probably indicates
the spatial clustering of the degassing along joined tectonic
lineaments. The appearance of TRA anomalies almost
disappears after the May 12 Earthquakes. The spatial
distribution indicates a large appearance area, but the distance
from the epicenter is allowed inside the Dobrovolsky
(Dobrovolsky et al., 1979) and Bowman et al., 1998 area (R �
100.43M/R � 100.44M), which is about 2,250 km according to
Dobrovolsky. This rapid enhancement of radiation could be
explained by an anomalous flux of the latent heat over the
area of increased tectonic activity. (Pulinets and Ouzounov,
2011, 2018; De Santis et al., 2017). Analogous observations
were observed within a few days before the most recent major
earthquakes in Japan (M9, 2011), China (M7.9, 2008), Italy
(M6.3, 2009), Samoa (M7, 2009), Haiti (M7, 2010), and Chile
(M8.8, 2010) (Ouzounov et al., 2011b, c; Pulinets and Davidenko,
2014).

FIGURE 3 | Radon observation in Kolkata, India (A)Map indicating the monitoring sites in Kolkata and the MS+ earthquakes within 1000 km region. (B)Combined
graph for radon-222 anomalies at location (A) and the corresponding earthquakes during the observation period from March 1 to June 30, 2015. EQ l -M7.8 of
04.25.2015; EQ2- M6.9 of 04.26.2015 and EQ3- M7.3 of OS.12.2015. (Deb at all, 2016).
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FIGURE 4 | Time series of night time TRA observed from NOANAVHRR, April 4–May 13, 2015. Tectonic plate boundaries are indicated with red lines and major
faults by brown ones and earthquake location by red circles. Red circles show the spatial location of TRA within vicinity of M7.8 and M7.3.

FIGURE 5 | Spatial distribution of Thermal Radiation Anomalies (TRA) March-May 2015 and Dobrvolsky estimated area for the earthquake preparation zone (red
dash circle). With red shadowed circles 04.03 and 04.23 anomalies. With a blue shadowed circle 05.03.2015 anomaly. With red dots -the centers of TRA anomalies, with
dash red circles, the confidence area of TRA. With black stars the epicenters of M7.8 04.25.2015 and M7.3 of05.12.20 15.
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Pre-seismic Ionospheric Effects
For our analysis of ionospheric data, we used two sources of
information: global maps of the total electron content in IONEX
format provided by JPL and a time series of calculated vertical
TEC of two GPS receivers in the region (lhaz and lck3). We also
controlled the solar-geophysical conditions to purify the data
from the possible solar-geomagnetic activity effects. Considering
that we deal with the equatorial ionosphere, the primary source of
geomagnetic activity was the equatorial geomagnetic index Dst
provided by KyotoWorld Data Center for Geomagnetism (http://
wdc.kugi.kyoto- u.ac.jp/dstdir/index.html).

The epicenter of the M7.8 earthquake was at the outer slope of
the northern crest of the Equatorial Ionization Anomaly (EIA).
To detect the ionospheric precursors, it is necessary to carefully
analyze the geophysical conditions around the time of the Nepal
earthquakes. For this purpose, the Solar-geophysical conditions
during April- May 2015 is shown in Figure 7, where the Solar
radio flux F10.7 were analyzed. To put all parameters together
(which are expressed in different values), all parameters were
normalized. Where F10.7—it is Solar electromagnetic radiation
on the Wavelength 10.7 cm: GEC—it is the Global ionospheric
content which is the sum of all values in the IONEX table; REC
(R5) - the Regional Ionospheric Content—is the sum of all values
from the IONEX index within the 500 km radius circle; and REC
(R10)—t is the Regional Ionospheric Content - is the sum of all
values from the IONEX index within the 1,000 km radius circle.

In Figure 7B we plotted the Dst (equatorial geomagnetic)
index for the same period. One can see that we are dealing with

a moderately disturbed period. From the Dst we can conclude
that we have three moderate (with Dst˜−80 nT) geomagnetic
storms: before the first earthquake and one started during the
second earthquake. The other disturbances we can classify as
small, not exceeding −30 nT (continuous line, bottom panel of
Figure 8). The period is also characterized by the essential
variations of F10.7 (min 100, max 155). Normalized F10.7 is
shown as the green line in the upper panel of Figure 7. The
F10.7 variations should be eliminated in the dTEC variations
(defined in Eq.(3)) because they contribute to the running
mean calculations. The first attempt to reveal the pre-
earthquake variations having disturbed conditions is
considering the difference between the Global TEC and
Regional TEC (blue and red lines in Figure 7). As we see
from the upper panel of Figure 7, the Global TEC follows the
F10.7 with a delay of nearly 2 days (Afraimovich et al., 2008;
Marchitelli, V et al., 2020). We exclude the difference in the
vicinity of day 101 (April 10), which is a magnetic storm day.
The most suspicious days are 111 (April 21) and 114 (April
24), when we may expect negative and positive anomalies. The
differential GIM maps were computed for these days to check
this supposition, which is presented in Figure 8. We see the
strong negative (in crests) anomalies on April 21 and a
powerful positive anomaly on April 24. The strength of the
equatorial anomaly should change. Considering that the
epicenter is inside the northern crest of EIA, we will
express the strength of the TEC anomaly at the Northern
crest to the TEC in the trough of EIA (Figure 9). We also

FIGURE 6 | TRA time series for March 2015- June 2015 over th’l: e’j\’Jr Gorkha epicentral area. On April 5, 2015 and April 23, were revealed transient anomalies (by
retrospective analysis of satellite radiation) 21 and 3 days in advance to the M7.8 mainshock of April 25, 2015, earthquake. On May 3, 2015, the ongoing prospective
analysis of satellite radiation revealed transient anomaly (9 days in advance, with yellow), associated with the M7.3 of May 12, 20 15, earthquake.

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7573587

Ouzounov et al. Transient Effects in Atmosphere and Ionosphere

http://wdc.kugi.kyoto-/
http://wdc.kugi.kyoto-/
http://u.ac.jp/dstdir/index.html
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


calculate S - the strength of EIA on undisturbed days as a
relation between the TEC value in the crest of anomaly and in
trough between crests. On day 111 (April 21), the EIA
completely disappears which gives its strength less than 1: S
� 0.98. S- It is the strength of equatorial anomaly (relation
between the TEC value in crest of anomaly and in trough
between crests). On day 114 (April 24), the anomaly strength is
1.69, and on disturbed days before the earthquake—day 98
(April 07) and after the earthquake - days 117 (April 27) and
120 (April 30), the strength varied from 1.22 to 1.39.

From the historical data of the ionosphere, monitoring has
elaborated a conception of the precursor mask, which generalizes
the pattern of ionosphere parameter variations (foF2 or GPS
TEC) a few days before the earthquakes (Pulinets et al., 2007,
2018).

ΔTEC � 100 · (TEC − TECm)/TECm (3)

Where TEC—is the Total Electron Content in TECU, where
TECU � 1016 el/m2, TECm 15-days running average value of
TEC. The precursor mask was developed based on the analysis
of strong (M ≥ 6) earthquakes in Greece and Italy (Pulinets and
Ouzounov, 2018; Davidenko and Pulinets, 2019). We used this
approach to analyze the dTEC variations for the lhaz GPS
receiver around the two Nepal earthquakes presented in
Figure 10. The horizontal axis is the Day of Year 2015 of
the mainshock designated by zero. Vertical axis—is the local
time (LT), and VTEC deviation is color-coded in percentages
relative to the 15-days mean. We can see that the positive
anomaly appears near 8 PM and exists continuously up to 4
AM the next day. In the present figure, the anomalies appear
3 days before the mainshock. However, further analysis for
other earthquakes revealed that such anomalies might appear
up to 5 before the mainshock. We can see similar night-time
positive deviations before both strong earthquakes lasting

FIGURE 7 | Solar-geophysical conditions during April−May 2015. Al Normalized values of: FI0.7—Solar electromagnetic radiation on the Wavelength 10.7 cm;
GEC—Global ionospheric content, sum of all values in the IONEX table; REC (R5)—the Regional Ionospheric Content—within the 500 km radius circle; REC (RIO)—it is
the Regional Ionospheric Content—Within the 1000 km radius circle; 8/ Dst equatorial geomagnetic index; Cl Planetary K-index (Kp* l 0, OMNI WEB Plus).
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FIGURE 8 |GIMGPSffEC spatial analysis. (A)Differential TECmap of April 21, 2015, (−4 days) 09UT and (B) April 24, 2015, 08UT (−1 day) (C)Differential TECmap
of May 5, 2015, (−7 days) !OUT and (D) May 5, 2015, 12UT (−7 day).

FIGURE 9 | dTEC variations (defined in Eq. 3) for the lhaz GPS/GLONASS receiver (Figure 1) for April 6–May 15, 2015.
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more than 1 day and repeating every day at the same local time.
The only difference with the pattern presented in Figure 10 is
that the favorable variations start at 6 PM and finish at 6 AM. It
can relate to the different terminator times for Greece and
Nepal (Zolotov, 2015).

Very Low Frequency/Low Frequency (VLF/
LF) Probing
One of the possible experimental techniques that can monitor the
ionization’s perturbations within the lower ionosphere uses Very
Low Frequency/Low Frequency (VLF/LF) probing. Waves in the
VLF frequency range are trapped between the lower ionosphere
and the Earth and are reflected by the D region at an altitude of
6̃5 km during the daytime and 8̃5 km during nighttime. The
received signals contain information about the reflection
height’s region and its variability (Barr et al., 2000). The
propagation of sub ionospheric VLF/LF (15–50 kHz) signals
from navigation or time service transmitters over distances of
thousands of kilometers (with low attenuation 2̃–3 dB per Mm)
enables remote sensing over large regions of the upper
atmosphere in which ionospheric modifications lead to
changes in the received amplitude and phase of the signals.
The regular monitoring of many years at the Far East
network, which operates in a highly seismic zones such as
Japan and Kurile Islands, has established a statistical
correlation between anomalies of the VLF/LF signal
parameters in the nighttime and earthquakes with N ≥ 5.5.
When observed, the possible time intervals of seismic-related
phase and amplitude anomalies are about 1 week before an
earthquake and 1 week after the event (Rozhnoi et al.,
2004,2009,2015; Maekawa et al., 2006; Hayakawa et al., 2010,
Biagi et al., 2011; Hayakawa 2015). Anomalies for such

earthquakes were found in 20–25% of all cases. However, for
strong earthquakes (M > 6.8), anomalies VLF/LF were observed
in 60–70% of the earthquakes (Rozhnoi et al., 2013).

The VLF/LF receiving stations deployed both in Europe
(Eastern Europe, Sheffield, Graz), the Far East (Kamchatka,
Sakhalin, Kuril Islands), North America (Orange, CA) and
Asia (Bishkek, Varanasi) are equipped with the UltraMSK
receivers (http://ultramsk.com/). All the stations
simultaneously receive the amplitude and phase of MSK
(Minimum Shift Keying) modulated signals with fixed
frequencies in a narrow band 50–100 Hz around the central
frequency and adequate phase stability. The receivers can
record signals with time resolutions ranging from 50 msec to
60 s. For our purpose, we use a sampling frequency of 20 s. The
VLF/LF observation network is shown in Figure 11A, and the
epicenters of earthquakes with M > 5 for the last 3 years. The
analysis reported in this paper about earthquakes in Nepal in
April-May 2015 is based on these data recorded by the VLF/LF
stations in Bishkek (KGZ) and Varanasi (VAR).

Figure 11B, shows the relative positions of our observing
stations and transmitters VTX (17.0 kHz) in India, NWC
(19.8 kHz) in Australia, and JJY (40 kHz) in Japan, together
with the positions of the epicenters of earthquakes in April-
May 2015 in the region under analysis. The areas of earthquake
preparation where precursors can be found (Dobrovolsky et al.,
1979) are shown by the pink circle for the first strong earthquake
on April 25 and the yellow circle for the second earthquake on
May 12, 2015. The station in Varanasi (VAR) began a regular
reception in April; therefore, analysis for both stations were made
from the beginning of April. Two wave paths—NWC-KGZ and
JJY-VAR pass directly above the epicenter of the Nepal
earthquake. The signal from the JJI transmitter received at the
Varanasi (VAR) station also passes above the epicenter, but it was

FIGURE 10 | GIM GPSffEC spatial analysis. (A) Differential TEC map of April 21, 2015, (−4 days) 09UT and (B) April 24, 2015, 08UT (−1 day) (C) Differential TEC
map of May 5, 2015, (−7 days) ! OUT and (D) May 5, 2015, 12UT (−7 day).
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not used for the analysis because it is very noisy. Two sub-
ionospheric paths (VTX-KGZ and VTX-VAR) are outside the
epicenter but inside the earthquake preparation area. We used a
residual signal of amplitude calculated as the difference between
the actual signal and the monthly averaged signal for our analysis.

The last was calculated using the data from undisturbed days.
Since VLF/LF signals are very stable during daytime and are
unaffected by any force except X-rays emitted during solar flares,
the analysis was made only for nighttime. The results of these
analyses are shown in Figure 12A. For validation of the results,

we analyzed the signals from the same NWC and JJY transmitters
propagating far away from the seismic zone, the significant
negative nighttime amplitude anomalies for the four paths
crossing the area where the possible precursors of the
earthquake can be found 4–5 days before the first earthquake
while the signals in the “aseismic” paths vary insignificantly
(Figure 12B). Then after several days, when the signals were
quiet, the second series of anomalies can be seen. These anomalies
continue after the earthquake during the period of aftershock
activity.

FIGURE 11 | The VLF/LF network. Green circles show the positions of receiving stations. Red triangles show transmitters. The lines are propagations paths from
the transmitters to receivers. Brown circles show the epicenters of earthquakes with M > 5.5 for the period 2013-2015. Bl A map of the wave paths under analysis
together with the epicenters of earthquakes with M > 7 (solid brown circles) occurred in April-May 2015. KGZ stands for the station in Bishkek (Kirgizstan), VAR means
the station in Varanasi (India), YSH is the station in Yuzhno-Sakhalinsk (Sakhalin Island). The areas of earthquake preparation where precursors can be found are
shown by the yellow circle for the first larger earthquake on April 25 and the pink circle for the second earthquake onMay 12, 2015. The ellipses are projections of the third
Fresnel sensitivity zone on the Earth’s surface.

FIGURE 12 | (A–D) The results of the VLF/LF analysis. The average residual amplitudes of the VLF/LF signals in the nighttime are shown (top to down) for vrx
(17.0 kHz)transmitter recorded in Bishkek (red) and Varanasi (blue), NWC (19.8 kHz) transmitter recorded in Bishkek, JN (40 kHz) transmitter recorded in Varanasi. The
bottom panel shows JJY (yellow) and NWC (black) transmitter signals recorded in Yuzhno-Sakhalinsk stations (control “aseismic” paths). The upper panel shows the
occurrence time of the earthquakes. The color-filled zones indicate values exceeding the −2a (a is the standard deviation) lEvel, indicated by the horizontal dotted
lines. Fl the controlled pa1hs NWS Sakhalin and JJY Sakhalin.
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DISCUSSION

A joint analysis of atmospheric and ionospheric parameters during
the M7.8 earthquake in Nepal has demonstrated correlated
variations of atmospheric anomalies implying their connection
with the earthquake preparation processes. One of the possible
explanations for this relationship is the Lithosphere- Atmosphere-
Ionosphere Coupling mechanism (Pulinets and Boyarchuk, 2004;
Pulinets andOuzounov, 2011, Pulinets et al., 2018), which provides
the physical links between the different geochemical, atmospheric
and ionospheric variations and tectonic activity. This
phenomenon’s primary process is the air ionization produced
by increased radon emissions near active tectonic faults from
the Earth’s crust. Through the air ionization, triggered by radon
level increases, latent surface heat (SLHF) (Cervone et al., 2010)
was rapidly developed OLR anomaly was formed at the top of the
Atmosphere (TOA) (Ouzounov et al., 2007; 2018b; Xiong et al.,
2010). The distinct difference in the thermal atmospheric field over
the earthquake preparation area automatically creates vertical air
convection, which leads to a pressure anomaly. This pressure
anomaly is probably responsible for the stationary behavior of
the front end of the jet stream over the vicinity of the future
epicentral area (Ouzounov et al., 2011; Wu and Tikhonov, 2014).
At this point, we see the transition from atmospheric to
electromagnetic effects. It is well established that the ion cluster
size is essential for the Atmospheric Boundary Layer (ABL) of the
Earth’s atmosphere electric conductivity because of the different
mobility of ions of different sizes (Hõrrak, 2001). The small and
medium-size ions increase the ABL electric conductivity while the
large ones if their concentration is high enough, will essentially
decrease it. Considering the Global Electric Circuit conception
(Pulinets and Davidenko, 2014), we can expect the increase of the
vertical electric field gradient in the ABL conductivity drop, which
will lead to the change of the ionosphere potential concerning the
ground over the earthquake preparation area. As a high conductive
media, the ionosphere will maintain its equipotentiality by
modifying plasma concentration and temperature within the
potential changes area. Due to high conductivity along the
geomagnetic field lines, these irregularities will form the
modified inner magnetosphere ducts. These ducts will trap the
VLF emission inside the modified magnetospheric tube, creating
an increased level of VLF noises within the modified tube.

Similarly, as for the Wenchuan earthquake, we observe the
changes of the EIA strength and the latitudinal movements of the
crests of EIA. During the adverse effect, the crest moved
equatorward, and during the positive effect—poleward
(Figure 9). We can conclude from this picture that this
movement is at least 2.5°. As for many cases of other strong
earthquakes analyzed, we observe the effect in the magnetically
conjugated area of the southern hemisphere.

The maps and profiles of the equatorial anomaly were made
using the Global Maps GIM TEC in the form of IONEX index. It is
a product of IGS, which interpolates the data of all GPS receivers
and inserts the model where we do not have receivers. The dTEC
mask (Figure 10) was built using the data of Lhasa GPS receiver
lhaz. Concerning the epicenter, the location of Lhaz is shown in
Figure 1. The profiles of the equatorial anomaly were taken at the

longitude of the epicenter. So, the IONEX and lhaz should not
coincide exactly. There could be differences because of two factors:
IONEX—interpolation map, and Lhaz are eastward from the
epicenter, and ionospheric variations over there could be
slightly different.

Regarding the external impact on the VLF/LF observations,
the geomagnetic activities were during the middle of April 2020
(Figure 7; Table 1). A magnetic storm occurred on April, 17 to
the 18th (UT) with Dst˜-79 nT. It was preceded by a proton burst
and the relativistic electron fluxes recorded during the recovering
stage of the storm. The storm itself does not influence signals
propagation because the sudden commencement and main phase
of the storm occurred when the analysis zone was sunlit. Another
factor that can influence the behavior of the VLF/LF signals is
atmospheric pressure fluctuations (Rozhnoi et al., 2014).
According to data from the ground meteorological stations in
Bishkek, Varanasi, no sharp changes in atmospheric pressure
were recorded during the period when anomalies in the signals
were detected. Unlike the first earthquake, the JJY signal was
undisturbed before the second earthquake. It can relate to the
signal’s frequency (its frequency is twice higher than the
frequencies of other signals) or the direction of propagation.
This signature is lost due to the signal in the ionosphere
irregularities during propagation. Therefore in Figure 12B,
only the −2σ (σ is the standard deviation) level is shown for
all the paths. The decrease of the NWC signal in the middle of
May in the “aseismic” path NWC-YSHmost probably was caused
by two very strong Typhoons-Noul (1,506) and Dolphin (1,507),
which followed one after another and crossed the path at that
time. So, considering the possible influence of other factors which
can produce perturbations in VLF/LF signals and rejecting them,
also using “aseismic” paths, we may conclude that impending
earthquakes caused observed anomalies. The preparation/
activation zone estimate for both the M7.8 Nepal earthquake
on April 24, and the M7.3 on May 12, 2015 follow the
Dobrovolsky/Bowman estimates (R � 100.43M/R � 100.44M), are
areas with a radius of 2,259/2,703 km and 1,377/1,629 km
accordingly. The soil Rn222 concentration profiles measured
simultaneously at two nearby sites at Jadavpur University,
Kolkata, India, was at 625 km distance from the epicenter of
the April 24 M7.7 Nepal earthquake (Figure 3A). During March-
May 2015, about 15 TRA anomalies were detected around the
Nepali M7.3 epicentral areas (Figure 5) were inside the 2,259 km
zone. With the VLF/LF analysis, the area of earthquake
preparation where precursors can be found is shown in
Figure 11B by the pink circle for the first earthquake of M7.8
on April 25 and the yellow circle for the M7.3 n May 12, 2015.
Although the radon variations, TRA and VLF, were observed far
from epicentral areas, the anomalies are inside the Dobrovolsky-
Bowman earthquake preparation area estimate. The pre-seismic
ionospheric effects for the 2015 Nepal earthquakes are typical for
low latitude earthquakes involving the equatorial ionospheric
anomaly (EIA). The positive and negative effects are reflected in
the conjugated hemisphere due to the charged particles that are
influenced by the geomagnetic field lines. These effects should not
be considered for Dobrovolsky’s estimation. In addition, the
equatorial effects are stretched along the longitude and exceed
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the Dobrovolsky size. Only the latitudinal size over the
earthquake preparation area should be considered (Klimenko
et al., 2011, Kuo et al., 2014 Pulinets et al., 2014, 2021). The
complex study of the synergetic behaviors of earthquake
precursors helped to understand the direction of the process
development leading to the critical state of the geosystems
(Sornette and Sammis, 1995; Yasuoka et al., 2006,2009; De
Santis et al., 2010; Pulinets 2011). As part of this study, the
temporal behavior of earthquake precursors has been revealed as
a sequencing pattern (Pulinets and Ouzounov, 2018), and the
accelerated trend in the pre-earthquake anomalies has been
identified (De Santis et al., 2017; De Santis et al., 2020). Here
we demonstrate the temporal trend of the pre-earthquake and
their accelerating pattern as the earthquake approaches
(Figure 13A, Figure 13B). The cumulative number of all
revealed precursory anomalies shown on the temporal trend is
indicated in Figure 13B with black circles and lines associated
with M7.8 of April 25, 2015, and red circles and lines for M7.3 of
May 12, 2015, as well. The time origin (t � 0) is the mainshock
occurrence (blue line).With Red/Black, thick line curves show the
fit exponential -growth with Equation f � 2.0813 + 9.7166 pexp
(0.1596 px) for the black curve (April 5, 2015, earthquake) and

with Equation f � 2.5 + 292.8693 pexp (4.5811 px) for the red
curve (May 12 Earthquake) while Red/black is the straight line
(thin lines). This graph confirms strong acceleration as the
mainshocks approaching both earthquakes. We see different
patterns in the temporal (13a) and cumulative exponential
-growth graphs (13b, Black vs. Red) before the mainshock
(April 25, 2,915) and that before the major aftershock (May
12, 2015). The increased aftershock activities contributed to the
difference in preparation time (shorter for the major aftershock)
and into the much steeper pattern.

CONCLUSION

Our results show evidence that processes related to the Nepal
earthquakes started at least in mid-March and were seen by
satellite thermal observations (Figure 6; Table 1). On April 5, the
atmospheric temperature had increased, which continued onApril 23
with a thermal field build up on the top of the atmosphere (OLR) near
the epicentral area (Figure 4). The ionosphere immediately reacts to
these changes in the electric properties of the ground layer measured
byGPS/TECover the epicenter areas, which have been confirmed as a

TABLE 1 | Detection of joint anomalies for the M7.8 of 04.25.2015 Gorkha, Nepal and M7.3 of December 05, 2015 Kodari, Nepal.

# Earthquakes Anomalies and trends

Radon TRA Atm. Temp ACP VLF/LF GIM TEC EIA TEC

1 M7.8 of 04.25.2015
Gorkha, Nepal

April 20, 2015
strong (−5 days)

April 6, April 22, 2015
strong, (−19,
−4 days)

April 4, 20 strong,
(−21, 5 days)

March 11–12, April
4–5, April 20

April 22–23, 2015
strong (−2 days)

April 24,
2015

(−1 day)

April 24,
2015

(−1 day)

2 M7.3 of December 05,
2015 Kodari, Nepal

April 29, 2015
strong (−14 days)

May 3, 2015 strong
(−9 days)

May 2, 2015
strong (−10 days)

May 2–62,015
Moderate
(−6 days)

No anomaly May 11,
2015

(−1 day)

May 11,
2015

(−1 day)

FIGURE 13 | (A) Fime diagram of multiparameter precursors analysis plotted with data shown in Table 1. The list of analyzed parameters ( bottom-up): Rn (Radon
gas); Temp (Meteorological Atmospheric temperature); ACP (Atmospheric chemical potential); TRA (Thermal Radiation Anomaly); VLF (Vert low Frequency); GIM TEC
(Global Ionospheric Model, Total Electronic Contents); EIA TEC (Equatorial Ionospheric Anomaly, Total Electronic Contents); (B) Cumulative number of all revealed
precursory anomalies shown on Panel 13a (indicated here as black circles and lines associated withM7.8 of April 25, 2015, andwith red circles and lines for M7.3 of
May 12, 2015, as well.); Time origin t � O is the mainshock occurrence (blue line). With Red/Black, thick line curves show the exp-grow fit while Red/black is the straight
line (thin lines). This graph confirms strong acceleration as the mainshocks approach both earthquakes.
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spatially localized increase in the dTEC on April 21 and 24
(Fig. 8,9,10,12). A similar scenario occurred for the M7.3
earthquake of May 12, 2015, with some delays in building the
GPS/TEC, probably as a result of gas diffusion associated with the
ground fracturing that occurred in the region during the first M7.8
earthquake. Ionospheric effects detected over the earthquake
preparation zone, of the Nepal M7.8 earthquake, are very similar
to those detected before the strong earthquakes in China (Wenchuan
M7.9 earthquake on May 12, 2008, and Lushan M7.0 earthquake
April 20, 2013) (Pulinets and Ouzounov, 2018). Configurations
concerning the ionosphere morphology (position of the equatorial
anomaly), is identical to the earthquakes that occurred in the
Taiwanese region; because the Nepal earthquake’s epicenter
vertical projection is on the outer edge of the northern crest of
the equatorial anomaly. So, except for the analysis of effect per se, we
confirmed the results of previous studies on the ionospheric effects of
strong earthquakes (Pulinets and Ouzounov, 2018; Ouzounov et al.,
2018a).

Multi-parameter data recording atmospheric and ionospheric
conditions during the M7.8 and M7.3 earthquakes in Nepal; using
OLR monitoring on the top of the atmosphere, GIM-GPS/TEC
maps, vertical TEC of lhaz GPS/GLONASS receiver in the region.
The VLF/LF over NWC-KGZ and JJY-VAR paths for the first
strong earthquake, and atmospheric temperature from ground
measurements show the presence of anomalies in the
atmosphere and ionosphere occurring consistently over the
region near the 2015 Nepal earthquake epicenter. These results
show evolutionally patterns in the appearance of pre-earthquake
transient effects in the atmosphere and ionosphere, with a short
time-lag from hours up to a few days (Figure 13ab; Table 1), and
scalable with a magnitude estimate at their unusually far distance
from the epicenter. The spatial characteristics of pre-earthquake
anomalies were associated with the larger area but always inside the
preparation-activation region estimated by Dobrovolsky-Bowman.
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