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Unary-determined distributive `-magmas and
bunched implication algebras

Natanael Alpay, Peter Jipsen and Melissa Sugimoto

Chapman University, Orange, California, USA

Abstract. A distributive lattice-ordered magma (d`-magma) (A,∧,∨, ·)
is a distributive lattice with a binary operation · that preserves joins in
both arguments, and when · is associative then (A,∨, ·) is an idempotent
semiring. A d`-magma with a top > is unary-determined if x·y = (x·> ∧
y) ∨(x ∧ >·y). These algebras are term-equivalent to a subvariety of
distributive lattices with > and two join-preserving unary operations p, q.
We obtain simple conditions on p, q such that x·y = (px∧ y)∨ (x∧ qy) is
associative, commutative, idempotent and/or has an identity element.
This generalizes previous results on the structure of doubly idempotent
semirings and, in the case when the distributive lattice is a Heyting alge-
bra, it provides structural insight into unary-determined algebraic models
of bunched implication logic. We also provide Kripke semantics for the
algebras under consideration, which leads to more efficient algorithms
for constructing finite models.

Keywords: distributive lattice-ordered magmas, bunched implication algebras,
idempotent semirings, enumerating finite models

1 Introduction

Idempotent semirings (A,∨, ·) play an important role in several areas of com-
puter science, such as network optimization, formal languages, Kleene algebras
and program semantics. In this setting they are often assumed to have constants
0, 1 that are the additive and multiplicative identity respectively, with 0 also be-
ing an absorbing element. However semirings are usually only assumed to have
two binary operations +, · that are associative such that + is also commutative
and · distributes over + from the left and right [9]. They are (additively) idem-
potent if x + x = x, hence + is a (join) semilattice, and doubly idempotent if
x · x = x as well. If · is also commutative then it defines a meet semilattice.
The special case when these two semilattices coincide corresponds exactly to the
variety of distributive lattices, which have a well understood structure theory.

In [1] a complete structural description was given for finite commutative dou-
bly idempotent semirings where either the multiplicative semilattice is a chain,
or the additive semilattice is a Boolean algebra. Here we show that the second
description can be significantly generalized to the setting where the additive
semilattice is a distributive lattice, dropping the assumptions of finiteness, mul-
tiplicative commutativity and idempotence in favor of the algebraic condition
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x·y = (px∧y)∨ (x∧qy) for two unary join-preserving operations p, q. While this
property is quite restrictive in general, it does hold in all idempotent Boolean
magmas and expresses a binary operation in terms of two simpler unary opera-
tions. A full structural description of all (finite) idempotent semirings is unlikely,
but in the setting of unary-determined idempotent semirings progress is possible.

In Section 2 we provide the needed background and prove a term-equivalence
between a subvariety of top-bounded d`-magmas and a subvariety of top-boun-
ded distributive lattices with two unary operators. This is then specialized to
cases where · is associative, commutative, idempotent or has an identity element.
In the next section we show that when the distributive lattice is a Brouwerian
algebra or Heyting algebra, then · is residuated if and only if both p and q are
residuated. This establishes a connection with bunched implication algebras (BI-
algebras) that are the algebraic semantics of bunched implication logic[14], used
in the setting of separation logic for program verification, including reasoning
about pointers [16] and concurrent processes [13]. Section 4 contains Kripke se-
mantics for d`-magmas, called Birkhoff frames, and for the two unary operators
p, q. This establishes the connection to the previous results in [1] and leads to
the main result (Thm. 15) that preorder forest P -frames capture a larger class
of multiplicatively idempotent BI-algebras and doubly idempotent semirings.
Although the heap models of BI-algebras used in applications are not (multi-
plicatively) idempotent, they contain idempotent subalgebras and homomorphic
images, hence a characterization of unary-determined idempotent BI-algebras
does provide insight into the general case. In Section 5, as an application, we
count the number of such algebras up to isomorphism if their partial order is an
antichain and also if it is a chain.

2 A term-equivalence between distributive lattices with
operators

A distributive lattice-ordered magma, or d`-magma, is an algebra (A,∧,∨, ·) such
that (A,∧,∨) is a distributive lattice and · distributes over ∨, i. e., x(y ∨ z) =
xy ∨xz and (x∨ y)z = xz ∨ yz for all x, y, z ∈ A. If the distributive lattice has a
top element > or a bottom element ⊥ then it is called >-bounded or ⊥-bounded,
or simply bounded if both exist. A d`-magma A is normal and · is a normal
operation if A is ⊥-bounded and satisfies x·⊥ = ⊥ = ⊥·x. Similarly, a unary
operation f on A is an operator if it satisfies f(x∨y) = fx∨fy, and it is normal
if f⊥ = ⊥. For brevity and to reduce the number of nested parentheses, we
write function application as fx rather than f(x), with the convention that it
has priority over · hence, e.g., fxy = (f(x))·y (this convention ensures unique
readability). Note that since operators distribute over ∨ in each argument, they
are order-preserving in each argument. The operation f is said to be inflationary
if x ≤ fx for all x ∈ A.

A binary operation · is said to be idempotent if xx = x for all x ∈ A,
commutative if xy = yx and associative if (xy)z = x(yz). A semigroup is a set
with an associative operation, a band is a semigroup that is also idempotent, and
a semilattice is a commutative band. As usual, a semilattice is partially ordered
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by x v y ⇐⇒ xy = x, and in this case xy is the meet operation with respect
to v. We also use this terminology with the prefix d`, in which case the magma
operation satisfies the corresponding identities.

A d`-magma is called unary-determined if it is >-bounded and satisfies the
identity

x·y = (x·> ∧ y) ∨ (x ∧ >·y).

As examples, we mention that all doubly-idempotent semirings with a Boolean
join-semilattice are unary-determined (see Lemma 3). Complete and atomic ver-
sions of such semirings are studied in [1], and the results from that paper are gen-
eralized here to unary-determined d`-magmas with point-free algebraic proofs.
This is an improvement since the algebraic results apply to all members of the
variety, while the previous results applied only to complete and atomic algebras.

A d`pq-algebra is a >-bounded distributive lattice with two unary operators
p, q that satisfy

x ∧ p> ≤ qx, x ∧ q> ≤ px.

These two equational axioms are needed for our first result which shows that
unary-determined d`-magmas and d`pq-algebras are term-equivalent. This means
that although the two varieties are based on different sets of fundamental op-
erations (called the signature of each class), each fundamental operation of an
algebra in one variety is identical to a term-operation constructed from funda-
mental operations of an algebra in the other variety (and vice versa). From the
point of view of category theory, term-equivalent varieties are model categories
of the same Lawvere theory.

Although unary-determined d`-magmas and d`pq-algebras seem rather spe-
cial, they are simpler than general d`-magmas, yet include interesting idempotent
semirings (as reducts).

Theorem 1. (1) Let (A,∧,∨,>, p, q) be a d`pq-algebra and define x·y = (px ∧
y) ∨ (x ∧ qy). Then (A,∧,∨,>, ·) is a unary-determined d`-magma and p, q
are given by px = x·> and qx = >·x.

(2) Let (A,∧,∨,>, ·) be a unary-determined d`-magma and define px = x·>,
qx = >·x. Then (A,∧,∨,>, p, q) is a d`pq-algebra and · is definable from
p, q via x·y = (px ∧ y) ∨ (x ∧ qy).

Proof. (1) Assume p, q are unary operators on a >-bounded distributive lattice
(A,∧,∨,>), and xy = (px ∧ y) ∨ (x ∧ qy). Then

x(y ∨ z) = (px ∧ (y ∨ z)) ∨ (x ∧ q(y ∨ z))

= (px ∧ y) ∨ (px ∧ z) ∨ (x ∧ qy) ∨ (x ∧ qz)

= (px ∧ y) ∨ (x ∧ qy) ∨ (px ∧ z) ∨ (x ∧ qz)

= xy ∨ xz.

A similar calculation shows that (x ∨ y)z = xz ∨ yz, hence · is an operator.
Since p, q satisfy x ∧ q·> ≤ px, it follows that x·> = (px ∧ >) ∨ (x ∧ q·>) =

px ∨ (x ∧ q>) = px, and similarly >·x = qx is implied by x ∧ p> ≤ qx. Now the
identity xy = (x·> ∧ y) ∨ (x ∧ >·y) holds by definition.
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(2) Assume (A,∧,∨,>, ·) is a unary-determined d`-magma, and define px =
x·>, qx = >·y. Then p, q are unary operators and px = x·> = (x·> ∧ >) ∨ (x ∧
>>) = px∨ (x∧ q>), hence x∧ q> ≤ px. The inequation x∧ p> ≤ qx is proved
similarly. The operation · can be recovered from p, q since xy = (px∧y)∨(x∧qy)
follows from the identity we assumed. ut

The preceding theorem shows that unary-determined d`-magmas and d`pq-
algebras are “essentially the same”, and we can choose to work with the signature
that is preferred in a given situation. The unary operators of d`pq-algebras are
simpler to handle, while the binary operator · is familiar in the semiring setting.
Next we examine how standard properties of · are captured by identities in the
language of d`pq-algebras.

Lemma 2. Let (A,∧,∨,>, p, q) be a d`pq-algebra and define x·y = (px ∧ y) ∨
(x ∧ qy).

(1) The operator · is commutative if and only if p = q.
(2) If p = q then · is associative if and only if p((px ∧ y) ∨ (x ∧ py)) = (px ∧

py) ∨ (x ∧ ppy).
(3) The operator · is idempotent if and only if p and q are inflationary, if and

only if p> = > = q>.
(4) If · is idempotent then it is associative if and only if

p((px ∧ y) ∨ (x ∧ qy)) = (px ∧ py) ∨ (x ∧ qy) and

q((px ∧ y) ∨ (x ∧ qy)) = (px ∧ y) ∨ (qx ∧ qy).

(5) The operator · has an identity 1 if and only if p1=>=q1 and (px∨qx)∧1 ≤ x.
(6) If · has an identity then · is idempotent.

Proof. (1) Assuming xy = yx, we clearly have x·> = >·x, hence px = qx. The
converse makes use of commutativity of ∧ and ∨: xy = (px ∧ y) ∨ (x ∧ py) =
(py ∧ x) ∨ (y ∧ px) = yx.

(2) Assume p = q. If · is associative then (xy)> = x(y>), so by the previous
theorem, p(xy) = xpy, which translates to

p((px ∧ y) ∨ (x ∧ py)) = (px ∧ py) ∨ (x ∧ ppy) (∗).

Conversely, suppose (∗) holds, and note that p(xy) = p(yx) by (1), hence

p((px∧y)∨(x∧py)) = (px∧py)∨(ppx∧y) = (px∧py)∨(x∧ppy)∨(ppx∧y) (∗∗).

It suffices to prove (xy)z ≤ x(yz) since then z(yx) ≤ (zy)x follows by com-
mutativity. Now

(xy)z = [p((px ∧ y) ∨ (x ∧ py)) ∧ z] ∨ [((px ∧ y) ∨ (x ∧ py)) ∧ pz]

= [((px ∧ py) ∨ (x ∧ ppy)) ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz] using (∗)
= [px ∧ py ∧ z] ∨ [x ∧ ppy ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz]

≤ [px ∧ py ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ py ∧ pz] ∨ [x ∧ y ∧ ppz] ∨ [x∧ppy∧z]

= [px ∧ py ∧ z] ∨ [px ∧ y ∧ pz] ∨ [x ∧ ((py ∧ pz) ∨ (y ∧ ppz) ∨ (ppy ∧ z))]

= [px ∧ ((py ∧ z) ∨ (y ∧ pz))] ∨ [x ∧ p((py ∧ z) ∨ (y ∧ pz))] using (∗∗)
= x(yz).
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(3) If · is idempotent, then x = xx ≤ x·> = px and x ≤ >·x = qx. Con-
versely, if p, q are inflationary then xx = (px ∧ x) ∨ (x ∧ qy) = x ∨ x = x, hence
· is idempotent. For the second equivalence, if p> = > = q> then p, q are in-
flationary since they satisfy x ∧ p> ≤ qx, x ∧ q> ≤ px. The reverse implication
holds because x ≤ px, qx implies > ≤ p>, q>.

(4) Assume · is idempotent and associative. Then (>·x)> = >(x·>), hence
qpx = pqx. Furthermore, pqx = >·x·> = >xx> = (qx)(px) = (pqx ∧ px) ∨
(qx ∧ qpx). By (3) p, q are inflationary, so px ≤ pqx and qx ≤ qpx. Therefore
pqx = px∨ qx. Now we translate (xy)> = x(y>) to obtain p(xy) = x(py), hence

p((px ∧ y) ∨ (x ∧ qy)) = (px ∧ py) ∨ (x ∧ qpy) = (px ∧ py) ∨ (x ∧ (py ∨ qy))

= (px ∧ py) ∨ (x ∧ py) ∨ (x ∧ qy) = (px ∧ py) ∨ (x ∧ qy) since x ≤ px by (3).

The identity q((px ∧ y) ∨ (x ∧ qy)) = (px ∧ y) ∨ (qx ∧ qy) has a similar proof.
Conversely, assume the two identities hold. Then using distributivity

(xy)z = [p((px ∧ y) ∨ (x ∧ qy)) ∧ z] ∨ [((px ∧ y) ∨ (x ∧ qy)) ∧ qz]

= [px ∧ py ∧ z] ∨ [x ∧ qy ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ qy ∧ qz]

= [px ∧ py ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ qy ∧ qz] since x∧qy∧z ≤ x∧qy∧qz
= [px ∧ py ∧ z] ∨ [px ∧ y ∧ qz] ∨ [x ∧ py ∧ z] ∨ [x ∧ qy ∧ qz]

= [px ∧ ((py ∧ z) ∨ (y ∧ qz))] ∨ [x ∧ q((py ∧ z) ∨ (y ∧ qz))] = x(yz).

(5) Assume x has an identity 1. Then p1 = 1> = > = >1 = q1 and x =
x1 = (px ∧ 1) ∨ (x ∧ q1) = (px ∧ 1) ∨ x, so px ∧ 1 ≤ x and similarly qx ∧ 1 ≤ x.
Therefore (px ∨ qx) ∧ 1 = (px ∧ 1) ∨ (qx ∧ 1) ≤ x.

Conversely, suppose p1 = > = q1 and (px ∨ qx) ∧ 1 ≤ x. Then x1 = (px ∧
1) ∨ (x ∧ q1) = (px ∧ 1) ∨ x = x since px ∧ 1 ≤ x. Likewise 1x = x.

(6) This follows from (3) since x = x1 ≤ x·> = px and x = 1x ≤ qx. ut

Note that if A also has a bottom bound ⊥ then p, q are normal if and only if
· is normal, hence the term-equivalence preserves normality.

This term-equivalence is useful since distributive lattices with unary opera-
tors are considerably simpler than distributive lattices with binary operators. In
particular, (2) and (4) show that associativity can be replaced by one or two 2-
variable identities in this variety. This provides more efficient ways to construct
associative operators from a (pair of) unary operator(s) on a distributive lat-
tice. The variety of >-bounded distributive lattices is obtained as a subvariety
of d`pq-algebras that satisfy px = x = qx, or a subvariety of unary determined
d`-magmas that satisfy x · y = x ∧ y.

For small cardinalities, Table 1 shows the number of algebras that are unary-
determined (shown in the even numbered rows) for several subvarieties of normal
d`-magmas. As seen from rows 5-8, under the assumption of associativity, com-
mutativity and idempotence of ·, the property of being unary-determined is a
relatively mild restriction compared to the general case of normal d`-magmas.

A Boolean magma is a Boolean algebra with a binary operator. The next
lemma shows that if the operator is idempotent, then it is always unary-deter-
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Cardinality n = 2 3 4 5 6 7 8

1 normal d`-magmas 2 20 1116
2 normal d`pq-algebras 2 6 46 3435

3 normal comm. d`-semigroups 2 8 57 392 3212
4 normal assoc. d`p-algebras 2 4 13 35 109 315 998

5 normal comm. idem. d`-semigroups 1 2 8 25 97 366
6 normal assoc. idem. d`p-algebras 1 2 7 18 57 163 521

7 normal comm. idem. d`-monoids 1 2 6 15 44 115 326
8 normal assoc. idem. d`p1-algebras 1 2 5 10 24 47 108

9 distributive lattices 1 1 2 3 5 8 15

Table 1. The number of algebras of cardinality n up to isomorphism.

mined, hence the results in the current paper generalize the theorems about
idempotent Boolean nonassociative quantales in [1].

Lemma 3. Every idempotent Boolean magma (A,∧,∨,¬,⊥,>, ·) is unary-de-
termined, i.e., satisfies xy = (x·> ∧ y) ∨ (x ∧ >·y).

Proof. Idempotence is equivalent to x ∧ y ≤ xy ≤ x ∨ y since (x ∧ y)2 ≤ xy ≤
(x ∨ y)2 holds in all partially ordered algebras where · is an order-preserving
binary operation. The following calculation

x·> ∧ y = x(y ∨ ¬y) ∧ y = (xy ∧ y) ∨ (x(¬y)) ∧ y)

≤ xy ∨ ((x ∨ ¬y) ∧ y) = xy ∨ (x ∧ y) ∨ (¬y ∧ y) = xy

and a similar one for x ∧ >·y ≤ xy prove that xy ≥ (x·> ∧ y) ∨ (x ∧ >·y).
Using Boolean negation, the opposite inequation is equivalent to

xy ∧ ¬(x·> ∧ y) ≤ x ∧ >·y.

By De Morgan’s law it suffices to show (xy ∧ ¬(x·>)) ∨ (xy ∧ ¬y) ≤ x ∧ >·y.
Since xy ≤ x·>, the first meet disappears. Next, by idempotence, xy ∧ ¬y ≤
(x ∨ y) ∧ ¬y = (x ∧ ¬y) ∨ (y ∧ ¬y) ≤ x and finally xy ∧ ¬y ≤ xy ≤ >·y. ut

3 BI-algebras from Heyting algebras and residuated
unary operations

We now recall some basic definitions about residuated operations, adjoints and
residuated lattices. For an overview and additional details we refer to [6]. A
Brouwerian algebra (A,∧,∨,→,>) is a >-bounded lattice such that → is the
residual of ∧, i.e.,

x ∧ y ≤ z ⇐⇒ y ≤ x→ z.

Since → is the residual of ∧, we have that ∧ is join-preserving, so the lattice is
distributive [6, Lem. 4.1]. The >-bound is included as a constant since it always
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exists when a meet-operation has a residual: x ∧ y ≤ x always holds, hence
y ≤ (x → x) = >. A Heyting algebra is a bounded Brouwerian algebra with a
constant ⊥ denoting the bottom element.

A dual operator is an n-ary operation on a lattice that preserves meet in
each argument. A residual or upper adjoint of a unary operation p on a poset A
is a unary operation p∗ such that

px ≤ y ⇐⇒ x ≤ p∗y

for all x, y ∈ A. If A is a lattice, then the existence of a residual guarantees
that p is an operator and p∗ is a dual operator [6, Lem. 3.5]. Moreover, if A is
bounded, then p⊥ = ⊥ and p∗> = >.

A binary operation · on a poset is residuated if there exist a left residual \
and a right residual / such that

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

A residuated `-magma (A,∧,∨, ·, \, /) is a lattice with a residuated binary oper-
ation. In this case · is an operator and \, / are dual operators in the “numerator”
argument. In the “denominator” \, / map joins to meets, hence they are order
reversing. A residuated Brouwerian-magma is a residuated `-magma expanded
with →,> such that (A,∧,∨,→,>) is a Brouwerian algebra.

A residuated lattice is a residuated `-magma with · associative and a constant
1 that is an identity element, i.e., (A, ·, 1) is a monoid. A generalized bunched im-
plication algebra, or GBI-algebra, (A,∧,∨,→,>, ·, 1, \, /) is a >-bounded resid-
uated lattice with a residual → for the meet operation, i.e., (A,∧,∨,→,>) is a
Brouwerian algebra. A GBI-algebra is called a bunched implication algebra (BI-
algebra) if · is commutative and A also has a bottom element, denoted by the
constant ⊥, hence a BI-algebra has a Heyting algebra reduct. These algebras are
the algebraic semantics for bunched implication logic, which is the propositional
part of separation logic, a Hoare logic used for reasoning about memory refer-
ences in computer programs. In this setting the operation · is usually denoted
by ∗, the left residual \ is denoted −∗, and / can be omitted since x/y = y−∗x.

Note that the property of being a residual can be expressed by inequalities
(p∗ is a residual of p if and only if p(p∗x) ≤ x ≤ p∗(px) for all x, and p, p∗ are
order preserving), hence the classes of all Brouwerian algebras, Heyting alge-
bras, residuated `-magmas, residuated Brouwerian-magmas, residuated lattices,
(G)BI-algebras, and pairs of residuated unary maps on a lattice are varieties
(see e.g. [6, Thm 2.7, Lem. 3.2.]). Recall also that a >-bounded magma is unary-
determined if it satisfies the identity xy = (x·> ∧ y) ∨ (x ∧ >·y).

We are now ready to prove a result that upgrades the term-equivalence of
Theorem 1 to Brouwerian algebras with two pairs of residuated maps and unary-
determined residuated Brouwerian-magmas.

Theorem 4. (1) Let (A,∧,∨,→,>, p, p∗, q, q∗) be a Brouwerian algebra with
unary operators p, q and their residuals p∗, q∗ such that x∧p> ≤ qx, x∧q> ≤
px. If we define x·y = (px ∧ y) ∨ (x ∧ qy),

x\y = (px→ y) ∧ q∗(x→ y) and x/y = p∗(y → x) ∧ (qy → x)
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then (A,∧,∨,>, ·, \, /) is a unary-determined residuated Brouwerian-magma
and the unary operations are recovered by px = x·>, p∗x = x/>, qx = >·x
and q∗x = >\x.

(2) Let (A,∧,∨,→,>, ·, \, /) be a unary-determined residuated Brouwerian-mag-
ma and define px = x·>, p∗x = x/>, qx = >·x and q∗x = >\x. Then
(A,∧,∨,→, >, p, p∗, q, q∗) is a Brouwerian algebra with a unary operators
p, q and dual operators p∗, q∗ that satisfies x ∧ p> ≤ qx, x ∧ q> ≤ px.

Proof. (1) The following calculation shows that · is residuated.

x · y ≤ z ⇐⇒ (px ∧ y) ∨ (x ∧ qy) ≤ z ⇐⇒ px ∧ y ≤ z and x ∧ qy ≤ z

⇐⇒ y ≤ px→ z and y ≤ q∗(x→ z) ⇐⇒ y ≤ (px→ z) ∧ q∗(x→ z)

hence x\z = (px→ z)∧q∗(x→ z) and similarly z/y = p∗(y → z)∧(qy → z). By
Theorem 1 it follows that px = x·>, qx = >·x and xy = (x·>∧y)∨(x∧>·y). Since
x·> ≤ y ⇐⇒ x ≤ y/> we obtain p∗(x) = x/>, and similarly q∗(x) = >\x.

(2) Since · is residuated it follows that p∗ and q∗ are the unary residuals of
p, q respectively. The remaining parts hold by Theorem 1. ut

Recall that a closure operator p is an order-preserving unary function on
a poset such that x ≤ px = ppx. A d`p-algebra where p is a closure operator
is called a d`p-closure algebra. If · is idempotent and associative then x·> =
x(>>) = (x>)>, so px = x·> is a closure operator.

Lemma 5. Assume A is a d`p-closure algebra and let x·y = (px∧ y)∨ (x∧ py).
Then · is associative if and only if px ∧ py ≤ p((px ∧ y) ∨ (x ∨ py)).

Proof. By Lemma 2 · is associative if and only if the identity p((px ∧ y) ∨ (x ∨
py)) = (px∧py)∨(x∧py) holds. This is equivalent to px∧py ≤ p((px∧y)∨(x∨py))
since x∧ py ≤ px∧ py, p(px∧ y) ≤ ppx∧ py = px∧ py and similarly p(x∧ py) ≤
px ∧ py. ut

Hence the preceding theorems specialize to a term-equivalence for a subvariety
of unary-determined BI-algebras as follows:

Corollary 6. 1. Let (A,∧,∨,→,>,⊥, p, p∗, 1) be a Heyting algebra with a clo-
sure operator p, residual p∗ and constant 1 such that px ∧ py ≤ p((px ∧ y) ∨
(x ∧ py)), p1 = > and px ∧ 1 ≤ x. If we define x∗y = (px ∧ y) ∨ (x ∧ py)
and x−∗y = (px → y) ∧ p∗(x ∧ y) then (A,∧,∨,>,→, ∗,−∗, 1) is a unary-
determined BI-algebra and x∗> ∧ y∗> ≤ ((x∗> ∧ y) ∨ (x ∧ y∗>))∗> holds.

2. Let (A,∧,∨,→,>,⊥, ∗,−∗, 1) be a unary-determined BI-algebra, and define
px = x∗> and p∗x = >−∗x. Then (A,∧,∨,→, >,⊥, p, p∗, 1) is a Heyting
algebra with a closure operator p that has p∗ as residual and satisfies px∧py ≤
p((px ∧ y) ∨ (x ∧ py)), p1 = > and px ∧ 1 ≤ x.

By Lemma 2(6) unary-determined BI-algebras satisfy x∗x = x, which does not
hold in BI-algebras that model applications (e.g., heap storage). However, as
mentioned in the introduction, they are members of the variety of BI-algebras,
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and understanding their properties via this term-equivalence is useful for the
general theory. E.g., structural results about algebraic object (such as rings)
often start by investigating the idempotent algebras, followed by sets of idempo-
tent elements in more general algebras. Line 8 in Table 1 also shows that finite
unary-determined BI-algebras are not rare (normal join-preserving operators are
automatically residuated in the finite case, hence the algebras counted in Line 8
are indeed term-equivalent to unary-determined BI-algebras).

4 Relational semantics for d`-magmas

We now briefly recall relational semantics for bounded distributive lattices with
operators and then apply correspondence theory to derive first-order conditions
for the equational properties of the preceding sections.

An element in a lattice is completely join-irreducible if it is not the supremum
of all the elements strictly below it. The set of all completely join-irreducible ele-
ments of a lattice A is denoted by J(A), and it is partially ordered by restricting
the order of A to J(A). For example, if A is a Boolean lattice, then J(A) = At(A)
is the antichain of atoms, i.e., all elements immediately above the bottom ele-
ment. The set M(A) of completely meet-irreducible elements is defined dually.
A lattice is perfect if it is complete (i.e., all joins and meets exist) and every
element is a join of completely join-irreducibles and a meet of completely meet-
irreducibles. For a Boolean algebra, the notion of perfect is equivalent to being
complete (i.e., joins and meets of all subsets exist) and atomic (i.e., every non-
bottom element has an atom below it).

Recall that for a poset W = (W,≤), a downset is a subset X such that
y ≤ x ∈ X implies y ∈ X. As in modal logic, W is considered a set of “worlds” or
states. We let D(W) be the set of all downsets of W, and (D(W),∩,∪) the lattice
of downsets. The collection D(W) is a perfect distributive lattice with infinitary
meet and join given by (arbitrary) intersections and unions. The following result,
due to Birkhoff [2] for lattices of finite height, shows that up to isomorphism
all perfect distributive lattices arise in this way. The poset J(D(W)) contains
exactly the principal downsets ↓x = {y ∈W | y ≤ x}.

Theorem 7 ([3, 10.29]). For a lattice A the following are equivalent:

1. A is distributive and perfect.
2. A is isomorphic to the lattice of downsets of a partial order.

Note that the set of upsets of a poset is also a perfect distributive lattice,
and if it is ordered by reverse inclusion then this lattice is isomorphic to the
downset lattice described above. It is also well known that the maps J and D
are functors for a categorial duality between the category of posets with order-
preserving maps and the category of perfect distributive lattices with complete
lattice homomorphisms (i.e., maps that preserve arbitrary joins and meets).

A complete operator on a complete lattice is an operation that is either
completely join-preserving, completely meet-preserving, maps all arbitrary meets
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to joins or all arbitrary joins to meets in each argument. A lattice-ordered algebra
is called perfect if its lattice reduct is perfect and every fundamental operation on
it is a complete operator. The duality between the category of perfect distributive
lattices and posets extends to the category of perfect distributive lattices with
(a fixed signature of) complete operators. The corresponding poset category has
additional relations of arity n + 1 for each operator of arity n, and the relations
have to be upward or downward closed in each argument. For example, a binary
relation Q ⊆W 2 is upward closed in the second argument if xQy ≤ z =⇒ xQz.
Here xQy ≤ z is an abbreviation for xQy and y ≤ z.

Perfect distributive lattices with operators are algebraic models for many log-
ics, including relevance logic, intuitionistic logic, Hajek’s basic logic,  Lukasiewicz
logic and bunched implication logic [7,6]. In such an algebra A, a join-preserving
binary operation is determined by a ternary relation R on J(A) given by

xRyz ⇐⇒ x ≤ yz.

The notation xRyz is shorthand for (x, y, z) ∈ R. For b, c ∈ A the product bc is
recovered as

∨
{x ∈ J(A) | xRyz for some y ≤ b and z ≤ c}.

The relational structure (J(A),≤, R) is an example of a Birkhoff frame. In
general, a Birkhoff frame [5] is a triple W = (W,≤, R) where (W,≤) is a poset,
and R ⊆ W 3 satisfies the following three properties (downward closure in the
1st, and upward closure in the 2nd and 3rd argument):

(R1) u ≤ xRyz =⇒ uRyz
(R2) xRyz & y ≤ v =⇒ xRvz
(R3) xRyz & z ≤ w =⇒ xRyw.

A Birkhoff frame W defines the downset algebra D(W) = (D(W),
⋂
,
⋃
, ·) by

Y · Z = {x ∈W | xRyz for some y ∈ Y and z ∈ Z}.

The property (R1) ensures that Y · Z ∈ D(W).
In relevance logic [4] similar ternary frames are known as Routley-Meyer

frames. In that setting upsets are used to recover the distributive lattice-ordered
relevance algebra, and this choice implies that J(A) with the induced order
from A is dually isomorphic to (W,≤). Another difference is that Routley-Meyer
frames have a unary relation and axioms to ensure it is a left identity element
of the · operation.

The duality between perfect d`-magmas and Birkhoff frames is recalled below.
Here we assume that the binary operation on a complete d`-magma is a complete
operator, i.e., distributes over arbitrary joins in each argument. Such algebras
are also known as nonassociative quantales or prequantales.

Theorem 8 ([5]).

1. If A is a perfect d`-magma and R ⊆ J(A)3 is defined by xRyz ⇔ x ≤ yz
then J(A) = (J(A),≤, R) is a Birkhoff frame, and A ∼= D(J(A)).

2. If W is a Birkhoff frame then D(W) is a perfect d`-magma, and W ∼=
(J(D(W)),⊆, R↓), where (↓x, ↓y, ↓z) ∈ R↓ ⇔ xRyz.
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A ternary relation R is called commutative if xRyz =⇒ xRzy for all x, y, z.
The justification for this terminology is provided by the following result.

Lemma 9. For any Birkhoff frame W, D(W) is commutative if and only if R
is commutative.

Lemma 10. Let W be a Birkhoff frame. Then D(W) is idempotent if and only
if xRxx and (xRyz =⇒ x ≤ y or x ≤ z) for all x, y, z ∈W .

Proof. Assume D(W) is idempotent, and let x ∈ W . Then ↓x · ↓x = ↓x since
↓x ∈ D(W). From x ∈ ↓x we deduce x ∈ ↓x · ↓x, whence it follows that xRyz
for some y ∈ ↓x, z ∈ ↓x. Therefore xRyz for y ≤ x, z ≤ x, which implies xRxx
by (R2) and (R3).

Next assume xRyz holds. Then x ∈ ↓{y, z}·↓{y, z} = ↓{y, z} by idempotence.
Hence for some w ∈ {y, z} we have x ≤ w, and it follows that x ≤ y or x ≤ z.

For the converse, assume xRxx and (xRyz =⇒ x ≤ y or x ≤ z) for all
x, y, z ∈W and let X ∈ D(W). From xRxx we obtain X ⊆ X ·X.

For the reverse inclusion, let x ∈ X ·X. Then xRyz holds for some y, z ∈ X.
By assumption xRyz implies x ≤ y or x ≤ z. Since X is a downset, x ≤ y =⇒
x ∈ X and x ≤ z =⇒ x ∈ X. Hence X ·X = X. ut

The previous two results are examples of correspondence theory, since they
show that an equational property on a perfect d`-magma corresponds to a first-
order condition on its Birkhoff frame.

The relational semantics of a perfect d`pq-magma is given by a PQ-frame,
which is a partially-ordered relational structure (W,≤, P,Q) such that P,Q are
binary relations on W , u ≤ xPy ≤ v =⇒ uPv and u ≤ xQy ≤ v =⇒
uQv. Relations with this property are called weakening relations [11,5], and
this is what ensures that if we define p(Y ) = {x | ∃y(xPy & y ∈ Y )} for a
downset Y , then p is a complete normal join-preserving operator that produces a
downset, and P is uniquely determined by xPy ⇔ x ∈ p(↓y). Similarly, a normal
operator q is defined from Q, and uniquely determines Q. The residual p′ of p is
a completely meet-preserving operator, defined by p′(Y ) = {x | ∀y(yPx ⇒ y ∈
Y )}, and likewise for q′. If P = Q then we omit Q and refer to (W,≤, P ) simply
as a P -frame.

We now list some correspondence results for d`pq-magmas. We begin with
a theorem that restates the term-equivalence of Theorem 1 as a definitional
equivalence on frames. A direct proof of this result is straightforward, but it also
follows from Theorem 1 by correspondence theory.

Theorem 11. (1) Let (W,≤, P,Q) be a PQ-frame such that x ≤ y & xPz ⇒
xQy and x ≤ y & xQz ⇒ xPy. If we define xRyz ⇔ (xPy & x ≤ z) or (x ≤
y & xQz) then (W,≤, R) is a Birkhoff frame, and P,Q are obtained from R
via xPy ⇔ ∃z(xRyz) and xQy ⇔ ∃z(xRzy).

(2) Let (W,≤, R) be a Birkhoff frame that satisfies xRyz ⇔ (∃z(xRyz) & x ≤
z) or (x ≤ y & ∃z(xRzy)) and define xPy ⇔ ∃z(xRyz), xQy ⇔ ∃z(xRzy).
Then (W,≤, P,Q) is a PQ-frame in which x ≤ y & xPz ⇒ xQy and x ≤
y & xQz ⇒ xPy hold.
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Note that the universal formula x ≤ y & xPz =⇒ xQy corresponds to the
d`pq-magma axiom Y ∧ p> ≤ qY .

A significant advantage of PQ-frames over Birkhoff frames is that binary
relations have a graphical representation in the form of directed graphs (whereas
ternary relations are 3-ary hypergraphs that are more complicated to draw).
Equational properties from Lemma 2, Cor. 6 correspond to the following first-
order properties on PQ-frames.

Lemma 12. Assume A is a perfect d`pq-algebra and W = (W,≤, P,Q) is its
corresponding PQ-frame. The constant 1 ∈ A (when present) is assumed to
correspond to a downset E ⊆W . Then

(1) a ≤ pa holds in A if and only if P is reflexive,
(2) ppa ≤ pa holds in A if and only if P is transitive,
(3) pa = qa holds in A if and only if P = Q,
(4) p1 = > holds in A if and only if ∀x∃y(y ∈ E & xPy) holds in W,
(5) pa ∧ 1 ≤ a holds in A if and only if x ∈ E & xPy ⇒ x ≤ y holds in W,
(6) pa ∧ pb ≤ p((pa ∧ b) ∨ (a ∧ pb)) holds in A if and only if

wPx & wPy ⇒ ∃v(wPv & (vPx & v ≤ y or v ≤ x & vPy)) holds in W.

Proof. (1)-(3) These correspondences are well known from modal logic.
(4) For x ∈ J(A) and E = ↓1 we have x ≤ p1 if and only if there exists

y ∈ J(A) such that y ≤ 1 and x ≤ py, or equivalently, y ∈ E and xPy.
(5) In the forward direction, let a = ↓y. Then it follows that x ∈ p(↓y) ∩ E

implies x ∈ ↓y, and consequently x ∈ E & xPy =⇒ x ≤ y.
In the other direction, let Y be a downset of W and assume x ∈ pY ∩ E.

Then x ∈ E and xPy for some y ∈ Y . Hence x ≤ y, or equivalently x ∈ ↓y ⊆ Y .
Thus, pY ∩ E ⊆ Y , so the algebra A satisfies pa ∧ 1 ≤ a for all a ∈ A.

(6) In the forward direction, let a = ↓x and b = ↓y. Then it follows from the
inequation that w ∈ p↓x∩↓y =⇒ w ∈ p((p↓x∩↓y)∪ (↓x∩ p↓y)) for all w ∈W .
This in turn implies wPx & wPy =⇒ ∃v(wPv & v ∈ (p↓x ∩ ↓y) ∪ (↓x ∩ p↓y)),
which translates to the given first-order condition.

In the reverse direction, let X,Y be downsets of W and assume w ∈ pX∩pY .
Then wPx and wPy for some x ∈ X and y ∈ Y . It follows that there exists
a v ∈ W such that (wPv & (vPx & v ≤ y or v ≤ x & vPy)), hence v ∈
(pX ∩ Y ) ∪ (X ∩ pY ). Therefore w ∈ p(pX ∩ Y ) ∪ (X ∩ pY ). ut

Recall that a ternary relation R is commutative if xRyz ⇔ xRzy for all x, y.
From Theorem 11 we also obtain the following result.

Corollary 13. Let (W,≤, P,Q) be a PQ-frame and define R as in Thm. 11(1).
Then R is commutative if and only if xPy ⇔ xQy for all x, y ∈W .

This corollary shows that in the commutative setting a PQ-frame only needs
one of the two binary relations. Hence we define W = (W,≤, P ) to be a P-frame
if P is a weakening relation, i.e., u ≤ xPy ≤ v =⇒ uPv.
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We now turn to the problem of ensuring that the binary operation of a
d`-magma is associative. For Birkhoff frames the following characterization of
associativity is well known from relation algebras [10] (in the Boolean case) and
from the Routley-Meyer semantics for relevance logic [4] in general.

Lemma 14. Let W = (W,≤, R) be a Birkhoff frame. Then D(W) is an asso-
ciative `-magma if and only if ∀wxyz(∃u(uRxy &wRuz)⇔ ∃v(vRyz &wRxv)).
If R is commutative then the equivalence can be replaced by the implication
∀uwxyz(uRxy &wRuz ⇒ ∃v(vRyz &wRxv)).

This lemma is another correspondence result that follows from translating w ∈
(XY )Z ⇔ w ∈ X(Y Z) for X,Y, Z ∈ D(W). In the commutative case (XY )Z ⊆
X(Y Z) implies the reverse inclusion, hence only one of the implications is
needed. We now show that for a large class of P -frames the 5-variable universal-
existential formula for associativity can be replaced by simpler universal formulas
with only three variables.

A preorder forest P -frame is a P -frame such that P is a preorder (i.e. reflexive
and transitive) and satisfies the formula

(Pforest) xPy and xPz =⇒ x ≤ y or x ≤ z or yPz or zPy.

Note that since P is a weakening relation, reflexivity of P implies that ≤ ⊆ P
because xPx and x ≤ y implies xPy.

It is interesting to visualize the properties that define preorder forest P -
frames by implications between Hasse diagrams with ≤-edges (solid) and P -
edges (dotted) as in Figure 1. However, one needs to keep in mind that dotted
lines could be horizontal (if xPy and yPx) and that any line could be a loop if
two variables refer to the same element.

(Pforest)
x

y z
=⇒

x

y z
or

x

y z
or

x

y

z

or
x

y

z

Fig. 1. The (Pforest) axiom. The partial order ≤ and the preorder P are denoted by
solid lines and dotted lines respectively.

We are now ready to state the main result. We use the algebraic characteri-
zation of associativity in Lemma 2.

Theorem 15. Let W = (W,≤, P ) be a preorder forest P -frame and D(W) its
corresponding downset algebra. Then the operation x·y = (px ∧ y) ∨ (x ∧ py) is
associative in D(W).

Proof. Let W = (W,≤, P ) be a preorder forest P -frame and D(W) its d`p-
algebra of downsets with operator p. Since P is a preorder, D(W) is a d`p-
closure algebra. By Lemma 5, a d`p-closure algebra is associative if and only if
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2

1

22

3

23

8

3

2

4

4

1⊕22

5

22⊕1
5

2×3
12

Fig. 2. All 40 preorder forest P -frames (W,≤, P ) with up to 3 elements. Solid lines
show (W,≤), dotted lines show the additional edges of P , and the identity (if it exists)
is the set of black dots. The first row shows the lattice of downsets, and the Boolean
quantales from [1] appear in the first three columns.

p(x) ∧ p(y) ≤ p(p(x) ∧ y) ∨ (x ∧ p(y)). By Lemma 12 this is equivalent to the
frame property

(∗) xPy & xPz ⇒ ∃w(xPw & (wPy & w ≤ z or w ≤ y & wPz)).

We now show that this frame property holds in W. We know that P is
reflexive and (Pforest) holds.

Assume xPy and xPz. By (Pforest) there are four cases:

1. x ≤ y: take w = x. Then xPx, x ≤ y and xPz, hence (∗) holds.
2. x ≤ z: again take w = x. Then the other disjunct of (∗) holds.
3. yPz: take w = y. Then xPy, y ≤ y and yPz, hence (∗) holds.
4. zPy: take w = z. Then xPz, zPy and y ≤ y, hence again (∗) holds. ut
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The universal class of preorder forest P -frames is strictly contained in the
class of all P -frames in which x·y is associative. In fact the latter class is
not closed under substructures, hence not a universal class: W = {0, 1, 2, 3},
≤ = idW ∪ {(0, 1), (0, 2), (0, 3)}, P = ≤∪ {(1, 0), (1, 2), (1, 3)} is a P -frame with
associative · (use e.g. Lemma 5), but restricting ≤, P to the subset {1, 2, 3} gives
a P -frame where · fails to be associative, hence (Pforest) also fails.

A d`-semilattice is an associative commutative idempotent distributive `-
magma. The point of the previous result is that it allows the construction of per-
fect associative commutative idempotent d`-magmas and idempotent bunched
implication algebras from preorder forest P -frames. This is much simpler than
constructing the ternary relation R of the Birkhoff frame of such algebras. For
example the Hasse diagrams for all the preorder forest P -frames with up to 3
elements are shown in Figure 2, with the preorder P given by dotted lines and
ovals. The corresponding ternary relations can be calculated from P , but would
have been hard to include in each diagram.

We now examine when a preorder forest P -frame will have an identity ele-
ment. For any P -frame W we define E = {x ∈W | ∀y(xPy ⇒ x ≤ y)}.

Lemma 16. Let W be a P -frame. Then E is an identity element for · in the
downset algebra D(W) if and only if E is a downset and pE = W .

Proof. In the forward direction, E is certainly a downset and it follows from
Lemma 2(5) that pE = W since W is the top element in D(W).

Conversely, by the definition of E, if x ∈ E then xPy ⇒ x ≤ y holds for all
y ∈ W . Hence by Lemma 12(5) for all X ∈ D(W) we have pX ∩ E ⊆ X. Since
pE = W together with Lemma 2(5), it follows that E is an identity element in
the downset algebra. ut

5 Counting preorder forests and linear P -frames

In the case when the poset (W,≤) is an antichain, a preorder forest P is simply
a preorder P ⊆ W 2 such that xPy and xPz implies yPz or zPy. A preorder
tree is a connected component of a preorder forest. A rooted preorder forest is
defined to have an equivalence class of P -maximal elements in each component.
For finite preorder forests this is always the case. Let Fn denote the number of
preorder forests and Tn the number of preorder trees with n elements (up to
isomorphism). We also let F0 = 1.

A preorder forest has singleton roots if the P -maximal equivalence class of
each component is a singleton set. The number of preorder forests and trees with
singleton roots is denoted by F s

n and T s
n respectively.

Note that every preorder forest gives rise to a unique preorder tree with a
singleton root by adding one new element r such that for all x ∈ W we have
xPr. It follows that T s

n = Fn−1.
Every preorder tree with a non-singleton root equivalence class and n ele-

ments is obtained from a preorder tree with n− 1 elements by adding one more
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cardinality n = 1 2 3 4 5 6 7

preorder trees Tn = 1 2 5 13 37 108 337
cn = 1 5 16 57 186 668

preorder forests Fn = 1 3 8 24 71 224
preorder trees with singleton roots T s

n = 1 1 3 8 24 71 224
csn = 1 3 10 35 121 438

preorder forests with singleton roots F s
n = 1 2 5 14 41 127

Table 2. Number of preorder trees and forests (up to isomorphism)

element to the root equivalence class. Hence for n > 0 we have Tn = Fn−1+Tn−1.
The Euler transform of Tn is used to calculate the next value of Fn as follows:

cn =
∑
d|n

d · Tn Fn =
1

n

n∑
k=1

ck · Fn−k.

Since preorder forests with singleton roots are disjoint unions of preorder trees
with singleton roots, F s

n is calculated by an Euler transform from T s
n.

Corollary 17. The sequence F s
n is the Euler transform of T s

n.

While it is difficult to count preorder forest P -frames in general, it is simple to
count the linear ones. Let Ln be the number of linearly ordered preorder forest
P -frames with n elements. Note that (P3) is actually redundant for linearly
ordered frames.

Theorem 18. For linearly ordered forest P -frames Ln = 2n−1. In the algebraic
setting there are 2n−2 unary-determined commutative doubly idempotent linear
semirings with n elements, and n− 1 of them have an identity element.

Proof. Let W be a linearly ordered P -frame with elements W = {1 < 2 < · · · <
n} such that P is transitive and (P0) holds. Then each possible relation P on W
is determined by choosing a subset S of the edges {(2, 1), (3, 2), . . . , (n, n − 1)}
and defining P to be the transitive closure of S ∪ ≤. Since there are n− 1 such
edges to choose from, the number of p-frames is 2n−1.

Let A be a unary-determined commutative doubly idempotent linear semir-
ing with n elements. Then the P -frame W associated with A has n−1 elements,
is linearly ordered, and P is reflexive and transitive since · is idempotent and
associative. Hence there are 2n−2 such algebras.

By Lemma 16, the subset E = {x ∈ W | ∀y(xPy ⇒ x ≤ y)} will be an
identity of the downset algebra if and only if it is a downset of W and p(E) = W .
This will only be the case if there exists an element w ∈ W such that for all
y ∈ W we have y ≥ w if and only if wPy. Every choice of w ∈ W determines
one such P , hence there are n− 1 algebras with an identity element. ut

6 Conclusion

We showed that unary-determined d`-magmas have a simple algebraic structure
given by two unary operators and that their relational frames are definition-
ally equivalent to frames with two binary relations. The complex algebras of
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these frames are complete distributive lattices with completely distributive op-
erators, hence they have residuals and can be considered Kripke semantics for
unary-determined bunched implication algebras and bunched implication logic.
Associativity of the binary operator for idempotent unary-determined algebras
can be checked by an identity with 2 rather than 3 variables, and for the frames
by a 3-variable universal formula rather than a 6-variable universal-existential
formula. All idempotent Boolean magmas are unary-determined, hence these re-
sults significantly extend the structural characterization of idempotent atomic
Boolean quantales in [1] and relate them to bunched implication logic. As an
application we counted the number of preorder forest P -frames with n elements
for which the partial order is an antichain, as well as the number of linearly
ordered preorder P -frames.

Acknowledgements. The investigations in this paper made use of Prover9/
Mace4 [12]. In particular, parts of Lemma 2 and Theorem 11 were developed with
the help of Prover9 (short proofs were extracted from the output) and the results
in Table 1 were calculated with Mace4. The remaining results in Sections 2-4
were proved manually, and later also checked with Prover9.
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