
Chapman University Digital Chapman University Digital 

Commons Commons 

Mathematics, Physics, and Computer Science 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

12-13-2019 

Schrödinger Evolution of Superoscillations with δ - and δ′ Schrödinger Evolution of Superoscillations with  - and ′ 

-Potentials -Potentials 

Yakir Aharonov 
Chapman University, aharonov@chapman.edu 

Jussi Behrndt 
Technische Universität Graz 

Fabrizio Colombo 
Politecnico di Milano 

Peter Schlosser 
Technische Universität Graz 

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles 

 Part of the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Aharonov, Y., Behrndt, J., Colombo, F. et al. Schrödinger evolution of superoscillations with δ- and δ′-
potentials. Quantum Stud.: Math. Found. 77, 293–305 (2020). https://doi.org/10.1007/
s40509-019-00215-4 

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and 
Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and 
Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital 
Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s40509-019-00215-4
https://doi.org/10.1007/s40509-019-00215-4
mailto:laughtin@chapman.edu


Schrödinger Evolution of Superoscillations with δ - and δ′ -Potentials Schrödinger Evolution of Superoscillations with  - and ′ -Potentials 

Comments Comments 
This article was originally published in Quantum Studies: Mathematics and Foundations, volume 7, in 
2020. https://doi.org/10.1007/s40509-019-00215-4 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 

Copyright 
The authors 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/scs_articles/
704 

https://doi.org/10.1007/s40509-019-00215-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://digitalcommons.chapman.edu/scs_articles/704
https://digitalcommons.chapman.edu/scs_articles/704


INSTITUTE FOR     
QUANTUM STUDIES

CHAPMAN
UNIVERSITY

Quantum Stud.: Math. Found. (2020) 7:293–305
https://doi.org/10.1007/s40509-019-00215-4

REGULAR PAPER

Schrödinger evolution of superoscillations with δ- and
δ′-potentials

Yakir Aharonov · Jussi Behrndt ·
Fabrizio Colombo · Peter Schlosser

Received: 12 November 2019 / Accepted: 16 November 2019 / Published online: 13 December 2019
© The Author(s) 2019

Abstract In this paper, we study the time persistence of superoscillations as the initial data of the time-dependent
Schrödinger equation with δ- and δ′-potentials. It is shown that the sequence of solutions converges uniformly on
compact sets, whenever the initial data converge in the topology of the entire function space A1(C). Convolution
operators acting in this space are our main tool. In particular, a general result about the existence of such operators
is proven. Moreover, we provide an explicit formula as well as the large time asymptotics for the time evolution of
a plane wave under δ- and δ′-potentials.

Keywords Superoscillating functions · Convolution operators · Schrödinger equation · Singular potential · Entire
functions with growth conditions

Mathematics Subject Classification 32A15 · 32A10 · 47B38

1 Introduction

Superoscillating functions have an oscillatory behaviour which is locally faster than their fastest Fourier component.
This paradoxical property was discovered by the first author and his collaborators in their work about weakmeasure-
ments [1] and afterwards investigated from a mathematical and quantitative point of view by Berry [18]. In antenna
theory, this phenomenon was discovered by Toraldo di Francia [47] as pointed out also in [19]. Several authors have
contributed to this field and without claiming completeness we mention [10,12,22,23] and also [34–37,39,45,46].
More recently, a special emphasis was given to the mathematical aspect of superoscillations, see, e.g., [2–8,27].
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294 Y. Aharonov et al.

The special topic which we want to investigate in this paper is the Schrödinger time evolution of superoscillating
functions F , that is, we consider

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2
+ V (x)

)
�(t, x), t > 0, x ∈ R,

�(0, x) = F(x), x ∈ R,

(1)

where V is the potential and F is the initial datum, which is assumed to be superoscillating. Already a number of
different potentials were investigated, see the survey papers [9,11,14,21] and references therein. Our aim is to add
the one-dimensional δ-potential and δ′-potential to this list. We mention that the δ-potential was already treated in
[15]; however, a (technical) condition on the strength of the δ-interaction was imposed there, which we are able to
avoid in the present paper. A detailed discussion of Schrödinger operators with δ and δ′-point interactions can be
found in the standard monograph [13]. For further reading on Schrödinger operators with singular potentials, we
refer the reader to, e.g., [16,17,24–26,29–33,38,40–44] and the references therein.

We briefly illustrate the concept of superoscillations. Consider for some fixed k ∈ R with |k| > 1 the sequence
of functions

Fn(z, k) =
n∑
j=0

C j (n, k)ei(1−
2 j
n )z, z ∈ C, (2)

with coefficients

C j (n, k) =
(
n
j

)(
1 + k

2

)n− j (1 − k

2

) j

.

The notion superoscillatory now comes from the fact that, although all the Fourier coefficients k j (n) = 1− 2 j
n are

contained in the bounded interval [−1, 1], the whole sequence converges to
lim
n→∞ Fn(z, k) = eikz, (3)

a plane wave with wave vector |k| > 1; cf. [28, Theorem 2.1] for more details. Besides the convergence (3), the
important feature of the functions Fn is that also for finite n, they oscillate with frequencies close to k in certain
intervals; the lengths of these intervals grow when n increases. Nevertheless, outside this interval, one obtains an
exponential growth of the amplitude, which conversely means that the amplitude inside the superoscillatory region
is exponentially small. Different types of functions, in the form of a square-integrable sinc function, which are
band-limited and, in some intervals, oscillate faster than its highest Fourier component, can be found in [20].

Inspired by (2), we define the notion of superoscillations as follows:

Definition 1.1 A sequence of functions of the form

Fn(z) =
n∑
j=0

C j (n)eik j (n)z, z ∈ C, (4)

with coefficients C j (n) ∈ C and k j (n) ∈ R, is said to be superoscillating, if there exists some k ∈ R, such that

(i) supn∈N0, j∈{0,...,n} |k j (n)| < k, and
(ii) for some B ≥ 0, one has limn→∞

∥∥(Fn − eik ·)e−B| · |∥∥∞ = 0.

Note that (ii) is exactly the convergence in the space A1(C) introduced in Definition 2.1 below. Due to the above
description of the exponential growth of the amplitude outside the superoscillatory region, it is reasonable to use
the exponential weight e−B| · | as a damping factor in the uniform convergence.

The purpose of this paper is now to consider a superoscillating sequence (Fn)n as the initial datum of the time-
dependent Schrödinger equation (1) with either a δ-potential or a δ′-potential and investigate the corresponding
sequence of solutions (�n)n . The main result of this paper is the following:
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Schrödinger evolution of superoscillations with δ- and δ′-potentials 295

Theorem 1.2 Let (Fn)n be a superoscillatory sequence with limit function

Fn
A1−→ eik ·, (5)

for some k ∈ R. Then, the solutions � and �n of (1) with either V = 2αδ or V = 2
β
δ′ for α, β ∈ R\{0}, and initial

data eik · and Fn, respectively, satisfy

lim
n→∞ �n(t, x) = �(t, x)

uniformly on every compact subset of (0,∞) × R.

Note that the mathematical rigorous implementation of a singular δ-potential or a δ′-potential in the Schrödinger
equation (1) is via jump conditions at the location x = 0 of the interaction; cf. (14) and (15).

The proof of Theorem 1.2 is postponed to the end of Sect. 4. Before, in Sect. 2, we introduce the space A1(C)

which is used in the convergence (5). We also construct continuous operators acting in this space, which will play
a crucial role in the proof of Theorem 1.2. Moreover, in Sect. 3, we explicitly calculate the solution with a plane
wave F(x) = eikx as initial condition.

2 Convolution operators in A1(C)

In this section, we recall the definition of the space A1(C) of entire functions with exponential growth, already
mentioned below Definition 1.1. For the analysis of superoscillations, this space (or slight modifications of it) is a
convenient choice; cf. [7,11,14]. Note also that A1(C) is one particular space in the theory of analytically uniform
spaces, see, e.g., [7, Chapter 4].

Definition 2.1 Let H(C) be the space of entire functions and define

A1(C) :=
{
F ∈ H(C)

∣∣∣∣∃A, B ≥ 0 such that |F(z)| ≤ AeB|z| for all z ∈ C

}
.

A sequence (Fn)n ∈ A1(C) is said to be A1-convergent to F ∈ A1(C) if

lim
n→∞

∥∥(Fn − F)e−B| · |∥∥∞ = 0 for some B ≥ 0. (6)

This type of convergence will be denoted by Fn
A1−→ F .

The following lemma shows that also the derivatives of functions in A1(C) are exponentially bounded.

Lemma 2.2 Let F ∈ A1(C) admit the estimate

|F(z)| ≤ AeB|z|, z ∈ C, (7)

for some A, B ≥ 0. Then, the derivatives F (n), n ∈ N, of F admit the estimate

|F (n)(z)| ≤ A(eB)neB|z|, z ∈ C, (8)

and, in particular, F (n) ∈ A1(C) for all n ∈ N.

Proof If B = 0 the statement holds, since in that case, the entire function F is bounded and hence constant, so that
all its derivatives vanish identically. In the following, let B 	= 0. By Cauchy’s integral formula, we have

F (n)(z) = n!
2π i

∫
|ξ−z|=r

F(ξ)

(ξ − z)n+1 dξ = n!
2πrn

∫ 2π

0

F(z + reiϕ)

einϕ
dϕ, z ∈ C,
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296 Y. Aharonov et al.

for the nth derivative, where r > 0 is not yet specified. The exponential boundedness (7) of the integrand gives the
estimate∣∣∣F (n)(z)

∣∣∣ ≤ An!
2πrn

∫ 2π

0
eB|z+reiϕ |dϕ ≤ An!

rn
eB(|z|+r), z ∈ C.

It is easy to see that the right-hand side can be minimized choosing r = n
B , which gives∣∣∣F (n)(z)

∣∣∣ ≤ ABnn!
nn

eB|z|+n, z ∈ C.

Using n!
nn ≤ 1, this gives the estimate (8). 
�

After this preparatory lemma, we consider an operator that can be used to reconstruct a given function from
plane waves. Such operators will play the crucial role of time evolution operators in Sect. 4, acting on the initial
datum of the Schrödinger equation and pointwise giving its solution.

Proposition 2.3 Let � : R → C be a function, which can be written as the absolute convergent power series

�(k) =
∞∑

m=0

cmk
m, k ∈ R, (9)

with coefficients (cm)m ∈ C. Then, the operator U : A1(C) → A1(C), defined by

U F(ξ) :=
∞∑

m=0

(−i)mcm
dm

dξm
F(ξ), F ∈ A1(C), ξ ∈ C, (10)

is continuous in A1(C) and satisfies

�(k) = Ueikξ
∣∣
ξ=0, k ∈ R. (11)

Moreover, for F ∈ A1(C), such that |F(ξ)| ≤ AeB|ξ | and SB := ∑∞
m=0 |cm |Bm, the estimate

|UF(ξ)| ≤ ASeBe
eB|ξ |, ξ ∈ C, (12)

is valid.

Proof To see that for F ∈ A1(C), the image UF is again an element in A1(C), we have to show that UF is entire
and exponentially bounded. Since F ∈ A1(C) is entire, we can use the power series representation

F(ξ) =
∞∑
n=0

F (n)(0)

n! ξn, ξ ∈ C,

to write (10) as the power series

UF(ξ) =
∞∑

m=0

(−i)mcm

∞∑
n=m

F (n)(0)

(n − m)! ξn−m =
∞∑
n=0

∞∑
m=0

(−i)mcm
F (n+m)(0)

n! ξn, ξ ∈ C.

In the last step, we interchanged the order of summation, which is allowed, since (8) ensures the estimate
∞∑

m=0

|cm | |F
(n+m)(0)|
n! ≤

∞∑
m=0

|cm | A(eB)n+m

n! = ASeB
(eB)n

n! , (13)

and, hence, the absolute convergence of the double sum. This shows that UF can be represented as an everywhere
convergent power series and, hence, is entire. Moreover, the estimate (13) gives the exponential boundedness

|UF(ξ)| ≤ ASeB

∞∑
n=0

(eB)n

n! |ξ |n = ASeBe
eB|ξ |, ξ ∈ C,

so that UF ∈ A1(C) and the estimate (12) is satisfied. Finally, (11) follows from

Ueikξ
∣∣
ξ=0 =

∞∑
m=0

(−i)mcm
dm

dξm
eikξ

∣∣∣
ξ=0

=
∞∑

m=0

(−i)mcm(ik)m = �(k).


�
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3 Plane wave under a δ- or δ′-potential

In quantummechanics, a particle orwave interactingwith a δ-potential or δ′-potential is described by the Schrödinger
equation (1), formally putting V = 2αδ or V = 2

β
δ′, where α, β ∈ R\{0}model the strength of the respective peaks.

The rigorous mathematical description of such singular potentials is via jump conditions at the location x = 0 of
the potential. More precisely, for the δ-potential, we have to consider the system

i
∂

∂t
�δ(t, x) = − ∂2

∂x2
�δ(t, x), t > 0, x ∈ R\{0}, (14a)

�δ(t, 0
+) = �δ(t, 0

−), t > 0, (14b)
∂

∂x
�δ(t, 0

+) − ∂

∂x
�δ(t, 0

−) = 2α �δ(t, 0), t > 0, (14c)

�δ(0
+, x) = F(x), x ∈ R\{0}, (14d)

and for the δ′-potential, we have to consider the system

i
∂

∂t
�δ′(t, x) = − ∂2

∂x2
�δ′(t, x), t > 0, x ∈ R\{0}, (15a)

∂

∂x
�δ′(t, 0+) = ∂

∂x
�δ′(t, 0−), t > 0, (15b)

�δ′(t, 0+) − �δ′(t, 0−) = 2

β

∂

∂x
�δ′(t, 0), t > 0, (15c)

�δ′(0+, x) = F(x), x ∈ R\{0}, (15d)

where F is an appropriate initial condition. In the case that F is a plane wave, we find an explicit representation
of the solutions �δ and �δ′ in Theorem 3.2 below. To write down these solutions efficiently, we will use a certain
modified error function 
 and its properties. For the convenience of the reader, we recall the following lemma from
[15].

Lemma 3.1 For the function


(z) := ez
2
(
1 − 2√

π

∫ z

0
e−ξ2dξ

)
, z ∈ C,

the following statements hold:

(i) 
(−z) = 2ez
2 − 
(z), z ∈ C;

(ii) 
′(z) = 2z
(z) − 2√
π
, z ∈ C;

(iii) for |z| → ∞ one has


(z) =
⎧⎨
⎩

1√
π z

+ O
(

1
|z|2

)
, if Re(z) ≥ 0,

2ez
2 + 1√

π z
+ O

(
1

|z|2
)
, if Re(z) ≤ 0; (16)

(iv) 
 admits the power series representation


(z) =
∞∑
n=0

(−1)n

�( n2 + 1)
zn, z ∈ C. (17)

The next theorem is the main result in this section.

Theorem 3.2 The Schrödinger equations (14) and (15) with initial datum F(x) = eikx , k ∈ R, admit the explicit
solutions

�δ(t, x; k) = �free(t, x; k) + ϕδ(t, x; k) + ϕδ(t,−x;−k), (18a)

�δ′(t, x; k) = �free(t, x; k) + ϕδ′(t, x; k) + ϕδ′(t,−x;−k), (18b)
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298 Y. Aharonov et al.

where �free(t, x; k) = eikx−ik2t is the solution of the unperturbed system and

ϕδ(t, x; k) = α

2(α + ik)
e− x2

4i t

(



( |x |
2
√
i t

+ α
√
i t

)
− 


( |x |
2
√
i t

− ik
√
i t

))
, (19a)

ϕδ′(t, x; k) = sgn(x)

2(β + ik)
e− x2

4i t

(
β


( |x |
2
√
i t

+ β
√
i t

)
+ ik


( |x |
2
√
i t

− ik
√
i t

))
. (19b)

Moreover, for t → ∞, the wave functions (18) satisfy

�δ(t, x; k) = e−ik2t
(
eikx − α

α − i |k|e
i |kx |

)
+ 1R−(α)

2α2

α2 + k2
eα|x |+iα2t + O

(
1

t

)
, (20a)

�δ′(t, x; k) = e−ik2t
(
eikx + ik sgn(x)

β − i |k| e
i |kx |

)
− 1R−(β)

2iβk sgn(x)

β2 + k2
eβ|x |+iβ2t + O

(
1

t

)
, (20b)

where 1R− denotes the characteristic function of the negative half line.

Remark 3.3 Note that the second terms on the right-hand sides in the asymptotics (20) only appear for the attractive
cases α, β < 0. These terms are connected to the negative bound states which are only present in the attractive
cases. More precisely, these terms can be seen as the time evolution of the eigenfunctions eα|x | and sgn(x)eβ|x |
corresponding to the eigenvalues −α2 and −β2, respectively.

Proof of Theorem 3.2 Since the strategy of the proof is the same for�δ and�δ′ , and since the δ-potential is already
treated in [15], we restrict our considerations to the δ′-case. The verification of (15) and (20b) is splitted into four
steps.

Step 1:We check that (18b) satisfies the differential equation (15a). Since this is obvious for the free part �free,
it suffices to check this for (19b). In fact, it suffices to verify that

φ(t, x;ω) := e− x2
4i t 


( |x |
2
√
i t

+ ω
√
i t

)
, t > 0, x ∈ R\{0}, (21)

is a solution of (15a) for every ω ∈ C. With the help of Lemma 3.1 (ii), we first compute

∂

∂t
φ(t, x;ω) = ie− x2

4i t

(
ω2


( |x |
2
√
i t

+ ω
√
i t

)
+ 1

i t
√

π

( |x |
2
√
i t

− ω
√
i t

))
,

∂

∂x
φ(t, x;ω) = sgn(x)e− x2

4i t

(
ω


( |x |
2
√
i t

+ ω
√
i t

)
− 1√

iπ t

)
, (22)

∂2

∂x2
φ(t, x;ω) = e− x2

4i t

(
ω2


( |x |
2
√
i t

+ ω
√
i t

)
+ 1

i t
√

π

( |x |
2
√
i t

− ω
√
i t

))
.

Using this with ω = β and ω = −ik immediately shows that ϕδ′ and hence �δ′ solve (15a).
Step 2:We verify that the jump conditions (15b) and (15c) are satisfied. For this, we calculate the limits x → 0±

of (21) and (22) and insert them into (19b), to get

ϕδ′(t, 0±; k) = ±
β


(
β
√
i t

)
+ ik


(
−ik

√
i t

)
2(β + ik)

,

∂

∂x
ϕδ′(t, 0±; k) =

β2

(
β
√
i t

)
+ k2


(
−ik

√
i t

)
2(β + ik)

− 1

2
√
iπ t

.
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Plugging this into (18b) gives

�δ′(t, x; k) = e−ik2t ∓ ikβ

β2 + k2



(
β
√
i t

)
± ik

2

⎛
⎝


(
−ik

√
i t

)
β + ik

+



(
ik

√
i t

)
β − ik

⎞
⎠,

∂

∂x
�δ′(t, x; k) = ike−ik2t − ikβ2

β2 + k2



(
β
√
i t

)
+ k2

2

⎛
⎝


(
−ik

√
i t

)
β + ik

−



(
ik

√
i t

)
β − ik

⎞
⎠.

Finally, using property (i) in Lemma 3.1 of 
(−z) leads to

�δ′(t, 0±; k) = e−ik2t
(
1 ± ik

β + ik

)
∓ ikβ

β2 + k2



(
β
√
i t

)
∓ k2

β2 + k2



(
ik

√
i t

)
,

∂

∂x
�δ′(t, 0±; k) = β

(
ik

β + ik
e−ik2t − ikβ

β2 + k2



(
β
√
i t

)
− k2

β2 + k2



(
ik

√
i t

))
,

from which it is clear that (15b) and (15c) are both satisfied.
Step3:Wecheck the initial condition (15d). In fact, due to the asymptotic behaviour (16),wehaveϕδ′ (t, x; k) → 0

for t → 0+, and hence

�δ′(0+, x; k) = �free(0
+, x; k) = eikx .

Step 4: In this step, we show the large time asymptotics (20b) of the solution. Note first that for large t , we have

Re

( |x |
2
√
i t

+ β
√
i t

)
≥ 0, if β > 0,

Re

( |x |
2
√
i t

+ β
√
i t

)
≤ 0, if β < 0.

Hence, from (16), we get for every fixed x ∈ R\{0} the asymptotic behaviour




( |x |
2
√
i t

+ β
√
i t

)
= 1R−(β)2e

( |x |
2
√
i t

+β
√
i t

)2
+ 1

√
π

( |x |
2
√
i t

+ β
√
i t

) + O

⎛
⎜⎝ 1∣∣∣ |x |

2
√
i t

+ β
√
i t

∣∣∣2
⎞
⎟⎠

= 1R−(β)2e

( |x |
2
√
i t

+β
√
i t

)2
+ 2

√
i t√

π (|x | + 2βi t)
+ O

(
1

t

)
.

Similarly, we get the asymptotics




( |x |
2
√
i t

− ik
√
i t

)
= 1R−(k)2e

( |x |
2
√
i t

−ik
√
i t

)2
+ 2

√
i t√

π (|x | + 2kt)
+ O

(
1

t

)

for the second term in (19b). Substituting this into (19b) gives

ϕδ′(t, x; k) = sgn(x)

(
1R−(β)β

β + ik
eβ|x |+iβ2t + 1R−(k)ik

β + ik
e−ik|x |−ik2t + |x |√i t√

π(|x | + 2βi t)(|x | + 2kt)

)
+ O

(
1

t

)
.
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Since the third summand in this expression is of order t−3/2 and hence, in particular, O( 1t ), the expansion reduces
to

ϕδ′(t, x; k) = sgn(x)

(
1R−(β)β

β + ik
eβ|x |+iβ2t + 1R−(k)ik

β + ik
e−ik|x |−ik2t

)
+ O

(
1

t

)
.

Using this in (18b), immediately gives the asymptotics (20b) of �δ′ . 
�

4 Proof of Theorem 1.2

For the proof of Theorem 1.2, some preparatory statements are needed. The following lemma provides a simple
algebraic reformulation of the power series of the difference quotient of an entire function.

Lemma 4.1 Let F ∈ H(C) be an entire function, that is, F admits the power series representation

F(z) =
∞∑
n=0

fnz
n, z ∈ C, (23)

with the coefficients fn = F (n)(0)
n! . Then, for every a ∈ C\{0}, the difference quotient admits the series representation

F(z + a) − F(z)

a
=

∞∑
m=0

∞∑
n=0

fn+m+1

(
n + m + 1
m + 1

)
znam, z ∈ C.

Proof Inserting the power series (23) into the difference quotient gives

F(z + a) − F(z)

a
=

∞∑
n=1

fn
(z + a)n − zn

a
. (24)

We can now use the binomic formula

(z + a)n = zn +
n∑

m=1

(
n
m

)
zn−mam

to rewrite the series (24) as

F(z + a) − F(z)

a
=

∞∑
n=1

fn
a

n∑
m=1

(
n
m

)
zn−mam

=
∞∑

m=1

∞∑
n=m

fn
a

(
n
m

)
zn−mam

=
∞∑

m=0

∞∑
n=0

fn+m+1

(
n + m + 1
m + 1

)
znam .


�
The following Lemma 4.2 for the δ-potential and its counterpart Lemma 4.3 for the δ′-potential are further useful

ingredients in the proof of Theorem 1.2. Here, Lemma 4.1 is used to construct time evolution operators, which
take the initial value of the Schrödinger equation and pointwise give the solutions (18). In the case of a δ-potential,
a similar operator was already provided in [15]; however, there the (technical) restriction |k| < |α| (wave vector
smaller than the potential strength) appeared, which is avoided here.
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Lemma 4.2 For fixed x ∈ R\{0} and t > 0, there exists a continuous linear operator Uδ(t, x) : A1(C) → A1(C),
such that (18a) can be represented as

�δ(t, x; k) = Uδ(t, x)e
ikξ

∣∣
ξ=0. (25)

Furthermore, for every B ≥ 0, there exists S̃B,δ(t, x), continuous in t and x, such that the estimate

|Uδ(t, x)F(ξ)| ≤ AS̃eB,δ(t, x)e
eB|ξ | (26)

holds for every F ∈ A1(C) satisfying |F(ξ)| ≤ AeB|ξ |.

Proof Since �δ decomposes into (18a), it is sufficient to ensure (25) and (26) for its components �free and ϕδ .
Starting with �free, we can write it as the power series

�free(t, x; k) =
∞∑

m=0

1

m! (ikx − ik2t)m

=
∞∑

m=0

1

m!
m∑
j=0

(
m
j

)
(ikx)m− j (−ik2t) j

=
∞∑

m=0

1

m!
2m∑
j=m

(
m

j − m

)
(i x)2m− j (−i t) j−mk j

=
∞∑
j=0

j∑
m=� j

2 �

(i x)2m− j (−i t) j−m

m!
(

m
j − m

)
k j ,

(27)

which coincides with (9). Hence, by Proposition 2.3, there exists a continuous operator Ufree(t, x) : A1(C) →
A1(C), such that

�free(t, x; k) = Ufree(t, x)e
ikξ

∣∣
ξ=0. (28)

Arguing in the same way as in (27) the respective constant SB,free(t, x) in the bound (12) can be estimated by

SB,free(t, x) ≤
∞∑
j=0

j∑
m=� j

2 �

|x |2m− j t j−m

m!
(

m
j − m

)
B j =

∞∑
m=0

(B|x | + B2t)m

m! = eB|x |+B2t =: S̃B,free(t, x). (29)

Next, we rearrange the terms of the function ϕδ in (19a) in the form

ϕδ(t, x; k) = α
√
i t

2
e− x2

4i t



( |x |
2
√
i t

+ α
√
i t

)
− 


( |x |
2
√
i t

− ik
√
i t

)

(α + ik)
√
i t

. (30)

It follows that this is a difference quotient of the form (23) with z = |x |
2
√
i t

− ik
√
i t and a = (α + ik)

√
i t . Hence,

we obtain the series expansion

ϕδ(t, x; k) = αe− x2
4i t

2

∞∑
m=0

∞∑
n=0

(−√
i t)n+m+1

�( n+m+3
2 )

(
n + m + 1
m + 1

)( |x |
2i t

− ik

)n

(α + ik)m ,

where we used the coefficients in the power series representation (17) of 
. In a similar way as in (27) and (29)
for the free part, we can use the binomic formula to further expand this series into the form (9). Hence, we get an
operator Uδ,+(t, x) : A1(C) → A1(C) satisfying

ϕδ(t, x; k) = Uδ,+(t, x)eikξ
∣∣
ξ=0,
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with a constant SB,δ,+(t, x) in the corresponding bound (12). This constant can be estimated by

SB,δ,+(t, x) ≤ |α|
2

∞∑
m=0

∞∑
n=0

(
√
t)n+m+1

�( n+m+3
2 )

(
n + m + 1
m + 1

) ( |x |
2t

+ B

)n

(|α| + B)m

= |α|
2



(
− |x |

2
√
t
− (2B + |α|)√t

)
− 


(
− |x |

2
√
t
− B

√
t
)

(|α| + B)
√
t

=: S̃B,δ,+(t, x).

The same reasoning forϕδ(t,−x;−k) leads to an operatorUδ,−(t, x) : A1(C) → A1(C) and a constant S̃B,δ,−(t, x).
Finally, we add all three terms together to get

Uδ(t, x) := Ufree(t, x) +Uδ,+(t, x) +Uδ,−(t, x),

S̃B,δ(t, x) := S̃B,free(t, x) + S̃B,δ,+(t, x) + S̃B,δ,−(t, x),

which satisfy (25) and (26). 
�
Although the proof is slightly different, an analogous statement as in Lemma 4.2 holds for the δ′-potential.

Lemma 4.3 For fixed x ∈ R\{0} and t > 0, there exists a continuous linear operator Uδ′(t, x) : A1(C) → A1(C),
such that (18b) can be represented as

�δ′(t, x; k) = Uδ′(t, x)eikξ
∣∣
ξ=0. (31)

Furthermore, for every B ≥ 0, there exists S̃B,δ′(t, x), continuous in t and x, such that the estimate

|Uδ′(t, x)F(ξ)| ≤ AS̃eB,δ′(t, x)eeB|ξ | (32)

holds for every F ∈ A1(C) satisfying |F(ξ)| ≤ AeB|ξ |.

Proof Since�δ′ decomposes into (18b), it is sufficient to ensure (31) and (32) for its components�free and ϕδ′ . Since
�free is already treated in (28) and (29), we only consider ϕδ′ . For this, we first split (19b) into ϕδ′ = ϕ

(0)
δ′ + ϕ

(1)
δ′ ,

where

ϕ
(0)
δ′ (t, x; k) := sgn(x)β

√
i t

2
e− x2

4i t



( |x |
2
√
i t

+ β
√
i t

)
− 


( |x |
2
√
i t

− ik
√
i t

)

(β + ik)
√
i t

, (33a)

ϕ
(1)
δ′ (t, x; k) := sgn(x)

2
e− x2

4i t 


( |x |
2
√
i t

− ik
√
i t

)
. (33b)

By comparing (33a) with (30), we see that, besides the presence of the prefactor sgn(x), both coincide if α is
replaced by β. Hence, the same computations as in then proof of Lemma 4.2 lead to operators U (0)

δ′,±(t, x) and

corresponding constants S̃(0)
B,δ′,±(t, x) for ϕ

(0)
δ′ (t,±x;±k).

For the treatment of (33b), we first use (17) to rewrite ϕ
(1)
δ′ (t, x; k) as the series

ϕ
(1)
δ′ (t, x; k) = sgn(x)e− x2

4i t

2

∞∑
n=0

(−1)n

�( n2 + 1)

( |x |
2
√
i t

− ik
√
i t

)n

.

Proposition 2.3 then gives a continuous operator: U (1)
δ′,+(t, x) : A1(C) → A1(C), such that

ϕ
(1)
δ′ (t, x; k) = U (1)

δ′,+(t, x)eikξ
∣∣
ξ=0,
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as well as a corresponding constant S(1)
B,δ′,+(t, x) in the bound (12). The constant can be estimated by

S(1)
B,δ′,+(t, x) ≤ 1

2

∞∑
n=0

1

�( n2 + 1)

( |x |
2
√
t

+ B
√
t

)n

= 1

2



(
− |x |
2
√
t

− B
√
t

)
=: S̃(1)

B,δ′,+(t, x).

In the same way, we get: U (1)
δ′,−(t, x) : A1(C) → A1(C) and S̃(1)

B,δ′,− for ϕδ′(t,−x;−k). Now, we sum up all terms
to end up with

Uδ′(t, x) := Ufree(t, x) +U (0)
δ′,+(t, x) +U (0)

δ′,−(t, x) +U (1)
δ′,+(t, x) +U (1)

δ′,−(t, x),

S̃B,δ′(t, x) := S̃B,free(t, x) + S̃(0)
B,δ′,+(t, x) + S̃(0)

B,δ′,−(t, x) + S̃(1)
B,δ′,+(t, x) + S̃(1)

B,δ′,−(t, x),

and it follows that (31) and (32) are satisfied. 
�

Now, we are ready to prove Theorem 1.2. Since the argument is the same for the δ-potential and the δ′-potential,
we will only consider the δ′-case. From Lemma 4.3, we know that the solution �δ′ of the Schrödinger equation
(15) with the initial datum F(x) = eikx can be represented in the form (31). Since the operator Uδ′(t, x) and the
Schrödinger equation are both linear, we also get

�n(t, x) = Uδ′(t, x)Fn(ξ)
∣∣
ξ=0

for every solution �n of (15) with the initial datum Fn of the form (4).
Let, now, (Fn)n be the superoscillating sequence from (5). Then, from the definition of the A1-convergence (6),

we get the estimate∣∣∣Fn(ξ) − eikξ
∣∣∣ ≤ Ane

B|ξ |, ξ ∈ C,

where B ≥ 0 is as in (6) and An = supξ∈C |(Fn(ξ) − eikξ )e−B|ξ || → 0 for n → ∞. Consequently, from the
estimate (32), we get for any compact K ⊆ (0,∞) × R the uniform convergence

sup
(t,x)∈K

∣∣�n(t, x) − �(t, x)
∣∣ = sup

(t,x)∈K

∣∣∣∣Uδ′(t, x)
(
Fn(ξ) − eikξ

) ∣∣
ξ=0

∣∣∣∣
≤ sup

(t,x)∈K
An S̃eB,δ′(t, x)eeB|ξ |∣∣

ξ=0

= An sup
(t,x)∈K

S̃eB,δ′(t, x)
n→∞−→ 0;

note that sup(t,x)∈K S̃eB,δ′(t, x) is finite, which follows from the continuity of S̃eB,δ′ ; cf. Lemma 4.3. This completes
the proof of Theorem 1.2.
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