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Lattice-ordered pregroups
are semidistributive

Nick Galatos, Peter Jipsen, Michael Kinyon and Adam Přenosil*

Abstract. We prove that the lattice reduct of every lattice-ordered
pregroup is semidistributive. This is a consequence of a certain weak
form of the distributive law which holds in lattice-ordered pregroups.

Mathematics Subject Classification. 06F05, 06B99.

Keywords. Pregroups, `-pregroups, residuated lattices.

1. Introduction

Lattice-ordered pregroups, or `-pregroups for short, were introduced by Lam-
bek [8], who called them lattice-ordered monoids with adjoints. Their par-
tially ordered counterparts were studied in more detail by Lambek [9, 10] and
Buszkowski [1, 2, 3] with linguistic motivations (type grammar) in mind. An
`-pregroup is an algebra 〈G,∧,∨, ·, 1, `, r〉 where 〈G,∧,∨〉 is a lattice, 〈G, ·, 1〉
is a monoid such that multiplication is order-preserving in both arguments,
and the unary maps x 7→ x` and x 7→ xr satisfy the inequalities

x`x ≤ 1 ≤ xx` and xxr ≤ 1 ≤ xrx.
Alternatively, they are involutive residuated lattices satisfying x · y ≈ x+ y,
where addition is the De Morgan dual of multiplication (see [6]). Imposing
the equation x` ≈ xr on `-pregroups yields the variety of `-groups.

The major open question concerning these algebras is whether their
lattice reducts are distributive, like the lattice reducts of `-groups. We leave
this question open, however, we describe some positive properties of lattice
reducts of `-pregroups. These follow from the fact that the distributive law
for `-pregroups holds at least up to certain idempotents.

The variety of `-pregroups exhibits an order duality as well as a left–right
duality: if 〈G,∧,∨, ·, 1, `, r〉 is an `-pregroup, then so are 〈G,∨,∧, ·, 1, r, `〉
and 〈G,∧,∨,�, 1, r, `〉, where x�y := y ·x. These symmetries imply that if a

The authors are grateful to the anonymous referee for their careful reading of the
manuscript and helpful comments.
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(quasi)equation holds in all `-pregroups, then so does its order dual, obtained
by switching ∨ and ∧ as well as ` and r, as well as its left–right dual, obtained
by switching ` and r and reversing the order of multiplication.

We recall that `-pregroups satisfy the following equations:

x(y ∧ z) ≈ xy ∧ xz, xx`x ≈ x, (x ∧ y)` ≈ x` ∨ y`, (x ∨ y)` ≈ x` ∧ y`,
(x ∧ y)z ≈ xz ∧ yz, xxrx ≈ x, (x ∧ y)r ≈ xr ∨ yr, (x ∨ y)r ≈ xr ∧ yr.

Moreover, they also satisfy the equations x`r ≈ x ≈ xr`.
Let us now recall the definition of semidistributivity. A lattice is called

meet semidistributive if it satisfies the quasiequation

x ∧ y ≈ x ∧ z =⇒ x ∧ (y ∨ z) ≈ x ∧ y.

It is called join semidistributive if it satisfies the dual quasiequation, namely

x ∨ y ≈ x ∨ z =⇒ x ∨ (y ∧ z) ≈ x ∨ z.

It is called semidistributive if it is both meet and join semidistributive. We call
an `-pregroup modular or (semi)distributive if its lattice reduct is modular
or (semi)distributive.

2. Main results

We now prove an analogue of the distributive law for `-pregroups. The proof
given below is the `-pregroup analogue of the proof of distributivity for GBL-
algebras due to Galatos & Tsinakis [7, Lemma 2.9].

Proposition 2.1. The following inequalities hold in all `-pregroups:

x ∧ (y ∨ z) ≤ yy`(x ∧ y) ∨ zz`(x ∧ z),
x ∧ (y ∨ z) ≤ (x ∧ y)yry ∨ (x ∧ z)zrz.

Proof. We only prove the first inequality:

x ∧ (y ∨ z) ≤ (y ∨ z)(y ∨ z)`x ∧ (y ∨ z)

= (y ∨ z)((y` ∧ z`)x ∧ 1)

= y((y` ∧ z`)x ∧ 1) ∨ z((y` ∧ z`)x ∧ 1)

≤ y(y`x ∧ 1) ∨ z(z`x ∧ 1)

= (yy`x ∧ y) ∨ (zz`x ∧ z)

= (yy`x ∧ yy`y) ∨ (zz`x ∧ zz`z)

= yy`(x ∧ y) ∨ zz`(x ∧ z).

The second inequality follows by left–right duality. �

The only difference between these inequalities and the usual distributive
law is the presence of the idempotents yy` and zz`, or yry and zrz. For some
special instances of x, y, z we obtain the full distributive law.
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Corollary 2.2. Suppose that either ya = x = zb or ay = x = bz holds in an
`-pregroup for some a and b. Then x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Proof. In the former case we have yy`(x∧y) = (yy`ya∧yy`y) = ya∧y = x∧y
and likewise zz`(x∧z) = x∧z. The latter case follows by left–right duality. �

Another form of distributivity will in fact be more useful in our proofs.

Proposition 2.3. The following inequalities hold in all `-pregroups:

x ∧ (y ∨ z) ≤ yy`(x ∧ y) ∨ z,
x ∧ (y ∨ z) ≤ (x ∧ y)yry ∨ z.

Proof. In the former case it suffices to observe that zz`(x∧z) ≤ zz`x∧zz`z ≤
zz`x ∧ z ≤ z. The latter case follows by left–right duality. �

Corollary 2.4. Suppose that either ya = x or ay = x holds in an `-pregroup
for some a. Then x ∧ (y ∨ z) ≤ (x ∧ y) ∨ z.

Proof. In the former case x∧ (y ∨ z) ≤ yy`(x∧ y)∨ z = (yy`ya∧ yy`y)∨ z =
(ya ∧ y) ∨ z = (x ∧ y) ∨ z. The latter case follows by left–right duality. �

We now use this limited form of distributivity to prove that `-pregroups
are semidistributive.

Lemma 2.5. The inequality x′∧(y′∨z′) ≤ (x′∧y′)∨z′ holds whenever there
are x and y such that one of the following four cases obtains:

x′ = y`x, x′ = xy`, x′ = yrx, x′ = xyr,

y′ = y`y, y′ = yy`, y′ = yry, y′ = yyr.

Proof. This follows from Corollary 2.4, since y`yy` = y` and yryyr = yr. �

Theorem 2.6. Each `-pregroup is semidistributive.

Proof. By order duality it suffices to prove meet semidistributivity, i.e. that
x ∧ y = x ∧ z implies x ∧ (y ∨ z) ≤ y. Suppose therefore that x ∧ y = x ∧ z
and let x′ = y`x, y′ = y`y, and z′ = y`z. It follows that x′ ∧ y′ = x′ ∧ z′.

Lemma 2.5 now implies that x′∧(y′∨z′) ≤ (x′∧y′)∨z′ = (x′∧z′)∨z′ = z′,
therefore x′ ∧ (y′ ∨ z′) ≤ x′ ∧ z′ = x′ ∧ y′ ≤ y′. But multiplying the inequality
x′ ∧ (y′ ∨ z′) ≤ y′ by y on the left yields that x∧ (y ∨ z) ≤ yy`(x∧ (y ∨ z)) =
y(x′ ∧ (y′ ∨ z′)) ≤ yy′ = yy`y = y. �

Each modular join semidistributive (or meet semidistributive) lattice is
in fact distributive: modularity implies that it does not contain the pentagon
N5 as a sublattice, while semidistributivity implies that it does not contain
the diamond M3 as a sublattice.

Corollary 2.7. Each modular `-pregroup is distributive.
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The problem of determining whether `-pregroups are distributive is
therefore equivalent to the problem of determining whether they are modular,
i.e. whether some `-pregroup contains the pentagon N5 as a sublattice.

We can in fact obtain more information about the lattice reducts of
`-pregroups with the help of Lemma 2.5, namely that certain non-distributive
lattices cannot occur as sublattices of `-pregroups.

Recall that the monolith of a subdirectly irreducible algebra is its small-
est congruence other than the identity relation.

Definition 2.8. Let L be a subdirectly irreducible lattice and µ be its
monolith. We shall say that µ involves a if 〈a, b〉 ∈ µ for some b distinct
from a, i.e. if the µ-equivalence class of a is not a singleton. A triple of
elements 〈a, b, c〉 of L will be called forbidden if a ∧ (b ∨ c) � (a ∧ b) ∨ c and
moreover µ involves b. The lattice L will be called forbidden if it contains a
forbidden triple.

Theorem 2.9. Forbidden lattices are not sublattices of any `-pregroup.

Proof. Let L be a subdirectly irreducible sublattice of an `-pregroup G with
monolith µ and a forbidden triple 〈a, b, c〉. Then 〈b, d〉 ∈ µ for some d ∈ L
distinct from b. We may assume without loss of generality that either d > b
or d < b. Suppose first that d > b.

We use λy : L → G to denote the left multiplication map λy : x 7→ yx
and ρy : L → G to denote the right multiplication map ρy : x 7→ xy. Recall
that these maps are lattice homomorphisms.

Firstly, observe that λbb` : L → G is a lattice embedding: if it were
not, then b = λbb`b = λbb`d ≥ d, since 〈b, d〉 ∈ µ. It follows that the map
λb` : L→ G is also a lattice embedding, since λbb` = λb ◦ λb` .

Lemma 2.5 states that λb`a ∧ (λb`b ∨ λb`c) ≤ (λb`a ∧ λb`b) ∨ λb`c. Since
λb` is a lattice embedding, it follows that a∧ (b∨ c) ≤ (a∧ b)∨ c, contrary to
the hypothesis that 〈a, b, c〉 is a forbidden triple.

If instead of d > b we have d < b, we use the map ρb`b instead of λbb` to
show that ρb` : L→ G is a lattice embedding. Then again ρb`a∧(ρb`b∨ρb`c) ≤
(ρb`a ∧ ρb`b) ∨ ρb`c by Lemma 2.5, hence a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c using the
fact that ρb` is a lattice embedding. �

Corollary 2.10. A simple non-distributive lattice cannot occur as a sublat-
tice of an `-pregroup.

It is not immediately obvious that this corollary does not follow directly
from semidistributivity by some lattice-theoretic argument. For example, the
only simple semidistributive lattice with a greatest (or least) element is the
two-element chain (see [4]), therefore the corollary does not provide any new
information about which lattices with a greatest (or least) element occur as
sublattices of `-pregroups. Nevertheless, it is indeed not a direct consequence
of semidistributivity: Freese & Nation [4] managed to construct a simple
semidistributive lattice which is not distributive.
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Finally, let us show that in `-pregroups only powers of positive elements
are positive, a fact which is well known in the case of `-groups. The argument
in fact applies to each lattice-ordered monoid satisfying x ≈ (1 ∧ x)(1 ∨ x)
where products distribute over joins and meets. The fact that each `-pregroup
satisfies this equation was proved in [5, Lemma 1].

Proposition 2.11. In every `-pregroup 1 ∧ xn ≤ x holds for each n ≥ 1.

Proof. We first observe that 1∧y ≤ x(1∨x)m if and only if 1∧y ≤ x(1∨x)m+1

for all m ≥ 0 (where z0 := 1 for each z):

1 ∧ y ≤ x(1 ∨ x)m ⇐⇒ 1 ∧ y ≤ (1 ∧ x)(1 ∨ x)(1 ∨ x)m

⇐⇒ 1 ∧ y ≤ (1 ∧ x)(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ (1 ∨ x)m+1 ∧ x(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ (1 ∨ x)m+1 and 1 ∧ y ≤ x(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ x(1 ∨ x)m+1.

It follows that 1 ∧ xn ≤ x holds if and only if 1 ∧ xn ≤ x(1 ∨ x)n−1. But
1 ∧ xn ≤ xn ≤ xxn−1 ≤ x(1 ∨ x)n−1. �

Corollary 2.12. Let n ≥ 1. In every `-pregroup 1 ≤ xn if and only if 1 ≤ x.

This yields an alternative proof of the following known fact.

Corollary 2.13. In every `-pregroup 1 ≤ x ∨ x`.

Proof. By the previous corollary it suffices to prove that 1 ≤ (x ∨ x`)2:
1 ≤ xx` ≤ xx ∨ xx` ∨ x`x ∨ x`x` = (x ∨ x`)2. �
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