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Daniel Rohrlich *
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(Received 20 August 2018; revised 23 March 2020; accepted 17 November 2020; published 21 December 2020)

We revisit the “counterfactual quantum communication” of Salih et al. [1], who claim that an observer
“Bob” can send one bit of information to a second observer “Alice” without any physical particle traveling
between them. We show that a locally conserved, massless current—specifically, a current of modular
angular momentum, Lz mod 2ℏ—carries the one bit of information. We integrate the flux of Lz mod 2ℏ
from Bob to Alice and show that it equals one of the two eigenvalues of Lz mod 2ℏ, either 0 or ℏ, thus
precisely accounting for the one bit of information he sends her. We previously [2] obtained this result using
weak values of Lz mod ℏ; here we do not use weak values.

DOI: 10.1103/PhysRevLett.125.260401

H. Salih, Z.-H. Li, M. Al-Amri, and M.S. Zubairy [1]
describe a remarkable effect, which they call “counterfac-
tual quantum communication”: transmission (across a
“transmission channel”) of information from a sender to
a receiver “without any physical particles traveling between
them.”Y. Cao et al. [3] and I. Alonso Calafell et al. [4] have
demonstrated this effect experimentally. For all our famili-
arity with quantum nonlocality, the effect is startling. It
involves neither nonlocal quantum correlations (which
anyway do not transmit information) nor the relative phase
of the Aharonov-Bohm effect. If any effect evokes
Einstein’s famous phrase “spooky action at a distance,”
it is this one. Yet we show below that counterfactual
quantum communication does, after all, depend on a
conserved local current crossing the “transmission
channel” between Alice and Bob; it is a current of modular
[5] angular momentum Lz mod 2ℏ. Consistent with the
analysis of Salih et al. [1], the conserved current is
massless. Our demonstration of the conserved local current
indicates that the effect is, after all, not spooky; it also
highlights the importance of modular variables in under-
standing quantum nonlocality.
We will describe a thought experiment equivalent to the

one of Salih et al. [1]. But for clarity we begin, like [1], with
a toy version of the experiment. Figure 1 shows a particle
wave packet in a cavity of length L, with Alice at the left
end of the cavity (which is closed and reflects the particle),
and Bob at the right end (which is closed and reflects the
particle but which Bob can open). Halfway between the
two ends is a thin barrier; it transmits the particle with (a
small) amplitude i sin ϵ and reflects it with amplitude cos ϵ.
Let the particle, with Δx ≪ L (as in Fig. 1) and a large
expectation value p of the momentum (such that

Δp ≪ jpj), start from Alice’s end and hit the barrier; it
then either returns with amplitude cos ϵ or continues toward
Bob with amplitude i sin ϵ. We can represent the evolution
of these wave packets via a unitary matrix U:

UðϵÞ ¼
�

cos ϵ i sin ϵ

i sin ϵ cos ϵ

�
: ð1Þ

Note that UðjϵÞUðϵÞ ¼ Uð½jþ 1�ϵÞ and, by induction,
½UðϵÞ�j ¼ UðjϵÞ. (Factors of −1 due to wave-packet
bounces at the ends cancel.) Thus, if the initial state of

the particle is
�
1

0

�
(the particle is on Alice’s side), then

after j laps back and forth to the barrier, the particle is in the

state
� cos jϵ
i sin jϵ

�
, and if jϵ ¼ π=2, the particle is certain to

be on Bob’s side of the barrier. Let T denote the time
required for the particle to get to Bob’s side with certainty,
and let v denote the speed of the particle in either direction.
Then j times back and forth correspond to a distance jL and
a time jL=v; taking j ¼ π=2ϵ, we obtain T ¼ πL=2ϵv as
the time when the particle is on Bob’s side with certainty.

mirror (optional)

barrier

L/2 L/2

FIG. 1. Alice and Bob at opposite ends of a single cavity with a
barrier placed symmetrically between them. A particle wave
packet is initially at Alice’s end.
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At time T, the particle is on Bob’s side; at time 2T, it is back
on Alice’s side with an overall phase factor −1 ¼ cos π, etc.
We now consider a protocol that allows Bob to send a

single bit of information to Alice. Bob has the option of
keeping his end of the cavity closed with a mirror. Every
wave packet that arrives at his end is reflected. Wave
packets from Alice and Bob hit the barrier simultaneously,
interfering constructively on Bob’s side, and at time T, after
j laps such that jϵ ¼ π=2, the particle is certainly at Bob’s
end. Bob’s other option is to remove the mirror and leave
his end of the cavity open. Now with probability sin2 ϵ, a
wave packet that hits the barrier will continue on to Bob
and escape the cavity altogether. Ultimately, so would the
particle. But “ultimately” corresponds to unlimited wave-
packet hits on the barrier, i.e., to an arbitrarily long
experiment. As long as the time is finite (as it must be
in any realistic experiment), the number of hits is finite
(even if proportional to 1=ϵ) and sin2 ϵ times that number is
arbitrarily small, i.e., nothing enters the transmission
channel. In effect, Bob, by removing his mirror, turns
the barrier into a mirror such that the particle cannot leave
Alice’s side of the cavity. Then Alice, by checking her end
of the cavity at time T, learns of Bob’s choice: if she finds
the particle there, Bob removed the mirror; if not, he left the
mirror covering his end. Bob sends Alice one bit of
information and, if he removed the mirror, no physical
particle traveled between Alice and Bob to order ϵ. Still, if
Bob left the mirror covering his end, the particle did
travel from Alice to Bob (and back). Thus, Alice and
Bob have not achieved complete counterfactual quantum
communication.
Note, we have avoided writing ϵ → 0 because it suggests

the unphysical limit T → ∞. A physical experiment cannot
last forever, hence T must be finite (though T can be
arbitrarily large). Below we define ϵA, ϵB, and ϵB=ϵA and
their limits ϵA → 0, ϵB → 0, and ϵB=ϵA → 0 such that ϵA,
ϵB, and ϵB=ϵA are arbitrarily small but ϵA ≠ 0 ≠ ϵB.
For complete counterfactual quantum communication,

consider Fig. 2. Near Bob’s end, there are two thin barriers.
Barrier A transmits with amplitude i sin ϵA and reflects with
amplitude cos ϵA; barrier B transmits with amplitude
i sin ϵB and reflects with amplitude cos ϵB. The distance
between Alice’s end and barrier A is still L=2, and we set it
equal to nB times the distance between barriers A and B.
Thus, in the time L=v it takes a wave packet to bounce from

barrier A to Alice’s end and then back to barrier A, a wave
packet between barriers A and B could bounce back and
forth nB times. Now let nBϵB ¼ π=2. Then a wave packet
bouncing between barriers A and B can escape through B in
the time L=v it takes a wave packet to reflect to Alice from
barrier A and then bounce back to barrier A.
And now we add a restriction: barrier A is comple-

tely closed off (in effect, ϵA ¼ 0) except at times
t ¼ L=2v; 3L=2v; 5L=2v;…. Thus, if Alice releases a
wave packet from her end at time t ¼ 0, it reaches barrier
A at time t ¼ L=2v and passes through barrier A with
amplitude i sin ϵA or reflects from it with amplitude cos ϵA.
If the particle wave packet arrives at barrier A at any time t
that is not on the list t ¼ L=2v; 3L=2v; 5L=2v;…, it
reflects with amplitude 1. Note, this restriction on barrier
A simplifies the evolution as follows: between two con-
secutive approaches of the wave packet to barrier A from
Alice’s end (e.g., between times t ¼ L=2v and t ¼ 3L=2v),
the wave packet bouncing between barriers A and B cannot
pass through barrier A because barrier A is completely
closed off. Thus, without loss of generality we can take t
from the list (because otherwise the evolution is trivial) and
even take the initial time to be t ¼ 0.
Let us now consider all possible evolutions of Alice’s

wave packet once it reaches barrier A. Let jA index the
collisions (separated in time by L=v) of the wave packet on
Alice’s side with barrier A; we take 1 ≤ jA ≤ nA, defining
nA implicitly via nAϵA ¼ π=2 in analogy with nB. Likewise,
we let jB index the collisions with barrier B of a wave
packet between the barriers. We define a protocol for Bob
to choose “logic 0” or “logic 1”: Bob chooses “logic 0” by
not closing his end of the cavity (i.e., “0” indicates “zero
closing”). What is the probability that a wave packet
crossing from Alice’s side will exit to the right (through
barrier B)? We ask this question not only to understand the
effect of Bob’s choice but also to keep the protocol
counterfactual. Once the wave packet crosses barrier A
in the direction of barrier B, it bounces up to nB times
between the barriers, and for each bounce, the probability
that it escapes to the right is sin2 ϵB. The total probability is
then nB sin2 ϵB, which is negligible for ϵB → 0. The particle
does not pass beyond barrier B; it reaches barrier B and
crosses barrier A back to Alice. As in the toy version with
Bob’s mirror in place, it spends some time on Alice’s side
of barrier A and some time on Bob’s side but never crosses
barrier B.
Now, for the jAth collision from Alice’s side, the

probabilities for the particle to reflect back to her or cross
over to Bob are cos2ðjAϵAÞ and sin2ðjAϵAÞ, respectively, in
analogy with Eq. (1). This result now tells us how to
keep the protocol counterfactual. The total probability
for the particle to exit right for 1 ≤ jA ≤ nA isPnA

jA¼1 sin
2ðjAϵAÞnBðϵBÞ2, which we can rewrite as

ðnA=2ÞnBðϵBÞ2 since the average value of sin2ðjAϵAÞ in
the range 1 ≤ jA ≤ nA is 1=2. Hence the condition ϵA → 0

“transmission channel”

mirror (optional)

barrier B

barrier A

L/2

FIG. 2. Alice and Bob at opposite ends of an asymmetrical
cavity with two barriers between them. A particle wave packet is
initially at Alice’s end.
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does not by itself keep this protocol counterfactual, i.e.,
does not zero the probability that the particle enters the
transmission channel. We must require ðnA=2ÞnBðϵBÞ2 ¼
ðπ2=8ÞϵB=ϵA → 0 as well, i.e., both ϵA → 0 and
ϵB=ϵA → 0. We will refer to this stricter condition as the
“double limit.” Thus, for “logic 0” and in the double limit,
no part of the wave function exits right. At time TA ¼
πL=2ϵAv (after nA ¼ π=2ϵA trips between Alice and barrier
A, each taking time L=v), the particle is on Bob’s side of
barrier A; at time 2TA, it is back to Alice with an overall
phase factor −1, and so on.
For “logic 1,” Bob closes his end of the cavity with a

perfectly reflecting mirror. At jA ¼ 1, a single wave packet
of amplitude i sin ϵA passes through barrier A, then self-
interferes through barrier B into a single wave packet with
amplitude i sin ϵA that is about to hit Bob’s mirror. Bob
briefly removes the mirror, and nothing reflects left. Yet
also the probability of finding the particle to the right of
barrier B is negligible for ϵA → 0. For successive values of
jA, the evolution is the same except that a factor cosjA−1ðϵAÞ
multiplies the amplitude; for ϵA → 0, however, it reduces to
1. Thus, for “logic 1,” Alice always finds the particle on her
side—not because it returned but because it never left, as in
the toy version without Bob’s mirror. Indeed, the proba-
bility for Alice to find the particle on her side after nA
reflections approaches 1 for ϵA → 0.
Have we achieved counterfactual quantum communica-

tion with this protocol? Indeed, we have. Bob is beyond the
cavity, at its very end, which he either covers or does not
cover with a mirror. He is never in the “transmission
channel” between barrier B and his end of the cavity. Nor is
the particle ever in the transmission channel, for ϵA → 0
and ϵB=ϵA → 0. For logic 1, the total amplitude to be in the
transmission channel cannot be greater than ϵA. After nA
times that the wave packet on Alice’s side hits barrier A, the
total probability that the particle enters the transmission
channel is at most nAjϵAj2 ¼ ðπ=2ϵAÞjϵAj2 ¼ πϵA=2 and is
negligible for ϵA → 0 (as in the case of logic 0). Bob uses
the particle to send one bit to Alice: if the wave packet is
consistently at her end of the cavity, then Bob chose “logic
1”; if the wave packet is at her end only at specified times,
then Bob chose “logic 0.” Either way, the particle never
crosses the transmission channel separating them.
So far we have merely argued, with Salih et al. [1], that

complete counterfactual quantum communication is pos-
sible. We now show, however, that this argument leads to a
paradox: it violates Noether’s fundamental theorem on
symmetries and conservation laws. Figure 3 shows a
variation on our experiment, with a z axis and two identical
cavities placed parallel to it, symmetrically above and
below. Define Lz ≡ −iℏ∂=∂ϕ where ϕ is the conjugate
angle about the z axis, then eiπLz=ℏ effects a π rotation about
the z axis. If jψ↑i and jψ↓i represent the same state but in
the upper and lower cavities, respectively, then the operator
eiπLz=ℏ interchanges them (up to a relative phase).

Now suppose Bob applies logic 0 to the upper cavity and
logic 1 to the lower cavity. Figure 3 shows the wave packet
in a symmetric superposition above and below the z axis (at
Alice’s end). The cavities in which the particle moves (in a
superposition) are invariant under a rotation of π about the z
axis, and the operation eiπLz=ℏ leaves the state of the particle
invariant. And herein lies the paradox. We have seen that
the particle’s evolution depends sensitively on the con-
ditions in the transmission channel—whether or not there is
a mirror, etc. But we have also seen that in the double limit
ϵA → 0 and ϵB=ϵA → 0, the probability that the particle
enters the transmission channel is negligible! If the particle
doesn’t enter the transmission channel, then the potential in
which it moves is invariant under a π rotation eiπLz=ℏ and the
“modular angular momentum” Lz mod 2ℏ must be con-
served. (Note that, in the exponent, Lz is automatically Lz
mod 2ℏ.) But, it seems, modular angular momentum is not
conserved: if the initial phase between the components of
the particle is set to 0, after a time 2TA it will be π and vice
versa, corresponding to a shift in angular momentum (mod
2ℏ) of ℏ. This paradox arises when we consider the particle
in a superposition of states in two cavities. A related
paradox (Fig. 4) has just one cavity, with Bob’s mirror in a
superposition that is invariant under a π rotation about the Z
axis. The particle in the cavity, facing a superposition of
logics 0 and 1, becomes entangled with the position of the
mirror. After a time 2TA, the particle and mirror disen-
tangle, with only a relative phase factor −1 between the
mirror positions testifying to the transient entanglement.
What happened to conservation of modular angular
momentum? Do the particle and the mirror exchange
Lz? Both paradoxes suggest that the particle entered a
region from which it was excluded.

z

FIG. 3. Alice and Bob at opposite ends of two cavities,
symmetrically about the z axis. The potential (excluding the
mirror) is invariant under a π rotation about the z axis, as is the
initial particle superposition.

z,Z

FIG. 4. Alice and Bob again share a single cavity, with the
mirror at Bob’s end in a superposition of two orthogonal states.
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As Sherlock Holmes would say, “When you have
eliminated the impossible, whatever remains, however
improbable, must be the truth!” We have, with Salih et al.
[1], eliminated the possibility that the particle entered the
transmission channel; therefore, its evolution must con-
serve modular angular momentum, however implausible
that might seem.
What we now calculate is the flow of modular angular

momentum across barriers A and B into the transmission
channel for the case of the first paradox: the two parallel
cavities of Fig. 3. We do this by calculating the expectation
value of eiπLz=ℏ in a state that is an initial superposition
½jψ↑i þ jψ↓i�=

ffiffiffi
2

p
, where ψ↑ and ψ↓ indicate localized

particle amplitudes in the upper and lower cavities in Fig. 3,
respectively; ψ↑ and ψ↓ depend implicitly on jA and jB,
and thus on time. To the lower cavity, Bob applies logic 1
and then nothing from Alice’s end of the lower cavity
tunnels through barrier A. The amplitude on Alice’s side is
cosjAðϵAÞ, which is simply 1 in our double limit ϵA → 0 and
ϵB=ϵA → 0: the particle in the lower cavity never leaves
Alice. At the same time, to the upper cavity, Bob applies
logic 0; then any wave packet crossing barrier B never
returns but tunnels into the transmission channel with
vanishing probability. Thus, the probability that the particle
remains on Alice’s side is cos2ðjAϵAÞ, while the probability
that it tunnels to (and reflects from) barrier B is sin2ðjAϵAÞ,
as we saw.
We have accounted for the probabilities in detail. But we

have not yet calculated the expectation value heiπLz=ℏi.
Since eiπLz=ℏ interchanges jψ↑i and jψ↓i, we have
heiπLz=ℏi ¼ ℜhψ↑jψ↓i, where ℜ indicates the real part.
Thus, heiπLz=ℏi contains a contribution cosðjAϵAÞ from
Alice’s side of barrier A but none from between barriers
A and B since, in the lower cavity, the particle never enters
the region between barriers A and B (see Table I). Does the
transmission channel contribute to heiπLz=ℏi?
The amplitude for the particle to enter the transmission

channel is a product of factors that depend on Bob’s choice
of logic 1 or logic 0. First, logic 0: the amplitude for the
particle to pass through barrier A is i sinðjAϵAÞ, as calcu-
lated. Once it passes through barrier A, there is an
amplitude cosjB−1ðϵBÞði sin ϵBÞ for the particle to cross
barrier B into the transmission channel on the ðjB − 1Þth
collision with it. The product amplitude is then
i sinðjAϵAÞ cosjB−1ðϵBÞði sin ϵBÞ, which we can replace with
−ϵB sinðjAϵAÞ in our double limit. Next, logic 1: the
amplitude for the particle to pass through barrier A is

cosjA−1ðϵAÞði sin ϵAÞ, since the particle never returns to
Alice’s side and only reflects jA − 1 times with amplitude
ðcos ϵAÞjA−1 before it finally passes through on the jAth
collision, with amplitude sin ϵA. It then enters between
barriers A and B where (since Bob has covered his end
with a mirror) its amplitude to reach the transmission
channel is sinðjBϵBÞ. Multiplying the amplitudes, we get
cosjA−1ðϵAÞði sin ϵAÞi sinðjBϵBÞ. But in our double limit, we
can replace cosjA−1ðϵAÞ by 1 and sin ϵA by ϵA to get
−ϵA sinðjBϵBÞ as the amplitude in the transmission channel
for logic 1. Now for the product of products in the last
column, we obtain ϵA sinðjBϵBÞϵB sinðjAϵAÞ, which factors
into ½ϵA sinðjAϵAÞ� × ½ϵB sinðjBϵBÞ�, as the contribution to
heiπLz=ℏi from the transmission channel for a given jA, jB.
We now sum over jA and jB. Why? Consider an

evolution in which the particle, initially on Alice’s side,
passes through barrier A and reflects between barriers A and
B a total of nB times, ultimately crossing back to Alice.
Although there are nB reflections off barrier B, there is only
one “path” in the sense of Feynman’s sum over paths. By
contrast, the evolution in the transmission channel is a sum
over “paths” in which each pair jA, jB defines a unique path
with the particle crossing barrier A on the jAth collision
with it and entering the transmission channel on the jBth
collision with barrier B. There are jAjB distinct paths. We
first sum over jB from 1 to nB. Since ϵB ¼ π=2nB, the sum
simplifies to an integral in our double limit:

lim
ϵB→0

XnB
jB¼1

ϵB sin jBϵB ¼ lim
nB→∞

XnB
jB¼1

π

2nB
sinðjBπ=2nBÞ

¼ π

2

Z
1

0

dx sinðπx=2Þ ¼ 1: ð2Þ

Then, replacing A for B everywhere in Eq. (2), we get the
same result, namely 1.
But instead of setting nA equal to π=2ϵA, as we did for

Bob’s protocol, we can leave it arbitrary. Then the
corresponding integral in Eq. (2) approaches (in the double
limit) 1 − cosðnAϵAÞ. Now let us sum the contributions to
heiπLz=ℏi from the entire cavity. The entire cavity includes
Alice’s side, which contributes cosðnAϵAÞ to heiπLz=ℏi; the
intermediate region between barriers A and B, which
contributes nothing; and the transmission channel, which
contributes 1 − cosðnAϵAÞ. For any value of nA, the sum
equals 1. There is no loss of modular angular momentum;
the total Lz mod 2ℏ (summed over the range of z) remains a

TABLE I. Particle amplitudes in three regions as functions of jA, jB, and “logic 0” (top row) or “logic 1” (bottom row). The arrows
indicate how the amplitudes simplify toward the “double limit.” In each row, the squared absolute values of the amplitudes sum to 1.

Alice’s side Between A and B Transmission channel

logic 0 (open) cosðjAϵAÞ i sinðjAϵAÞ cosjBðϵBÞ → i sinðjAϵAÞ i sinðjAϵAÞ cosjB−1ðϵBÞði sin ϵBÞ → −ϵB sinðjAϵAÞ
logic 1 (covered) cosjAðϵAÞ → 1 cosjA−1ðϵAÞði sin ϵAÞ cosðjBϵBÞ → iϵA cosðjBϵBÞ cosjA−1ðϵAÞði sin ϵAÞi sinðjBϵBÞ → −ϵA sinðjBϵBÞ
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constant of the motion. And, though we sum over jA and
jB, each pair jA, jB corresponds to a time in the evolution of
the particle wave packet—the time at which Alice and Bob
have completed their respective numbers of laps. The flux
of modular angular momentum across barriers A and B into
the transmission channel changes with time.
We thus arrive at a striking resolution of the paradox of

Fig. 3: the expectation value heiπLz=ℏi ¼ 1 is invariant after
all, but the particle never enters the transmission channel!
What enters the transmission channel is the angular
momentum of the particle, mod 2ℏ. We have integrated
the flux of Lz mod 2ℏ between Bob and Alice and shown
that it equals one of the two eigenvalues of Lz mod 2ℏ,
namely 0 or ℏ, accounting for the one bit of information he
sends her. Modular angular momentum is a nonlocal
dynamical variable, but the particle and its modular angular
momentum separate locally—at a point—without action at
a distance (just as the “weak Cheshire cat” parts ways
locally with its grin [6]). In the paradox of Fig. 4, the
particle itself never entered the space of the mirror, but ℏ
mod 2ℏ of its modular angular momentum flowed into it
and would show up as an ℏ shift in LZ mod 2ℏ, i.e., as a π
rotation of the mirror wave function.
Note that we can demonstrate local conservation of the

nonlocal quantities heiπLz=ℏi and heiπLZ=ℏi only because z
and Z, the locations of the particle and mirror along the
symmetry axis, commute with these conserved quantities.
With respect to locality, modular angular momentum is a
hybrid quantity: heiπLz=ℏi and heiπLZ=ℏi are locally con-
served along the z, Z axis, although they act nonlocally in
the perpendicular plane (e.g., reveal relative phases
between the upper and lower wave packets in Fig. 3).
There is no modular angular momentum in Fig. 2, but there
is modular energy H mod h=2T, and Bob’s choice of logic
0 or logic 1 governs the distribution of modular energies at
Alice’s end. Our calculation is not a full treatment of
quantum conserved currents, yet we have demonstrated a
new approach to nonlocality in quantum mechanics.
Quantum mechanics is indeed nonlocal. But instead of
“spooky action at a distance,” we uncover here a much
more satisfactory interpretation of counterfactual quantum
communication: properties of a particle can travel locally

through regions from which the particle itself is excluded.
Quantum mechanics is not, after all, so spooky [7].
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