Drug Safety Scientometrics Overview Highlights Public Health Issues

Philippe Gorry
University of Bordeaux, philippe.gorry@u-bordeaux.fr

Enrique Seoane-Vazquez
Chapman University, seoanevazquez@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles

Part of the Other Pharmacy and Pharmaceutical Sciences Commons, and the Pharmacy Administration, Policy and Regulation Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
17th INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
ISSI2019
with a Special STI Indicators Conference Track
2-5 September 2019
Sapienza University of Rome, Italy

PROCEEDINGS
VOLUME II
Drug Safety scientometrics overview highlights public health issues.

Philippe Gorry¹ and Enrique Seoane-Vazquez²

¹ philippe.gorry@u-bordeaux.fr
GREThA UMR CNRS 5113, University of Bordeaux, (France)
² seoaneveazquez@chapman.edu
Dpt.of Biomedical & Pharmaceutical Sciences, School of Pharmacy, Chapman University, (USA)

Introduction

Drug safety

Although clinical trials are required for all new drugs before market approval, firms and drug regulatory agencies regularly face adverse drug reactions (ADR) in postmarketing phase which conduct to drug warning or withdrawal with deleterious impact on public health. Therefore, Drug Safety (DS) also known as Pharmacovigilance, is the science of monitoring ADR (Cobert, 2012). Despite that DS has a social welfare function, it has not been the study of any scientometrics analysis

Objectives

Our goal is to fill this gap by mapping the DS literature. This analysis might highlight some trends, the role of drug regulatory and firms in diffusing information, understand better some DS controversial events, help scholars in mastering pharmacovigilance literature, and it contribute to further development on literature-based discovery of ADR with the help of natural language processing.

Materials & Methods

Literature search on DS was run in Scopus® database until 31/12/2018, with a query across the title, abstract or keywords in all types of records using a string of 21 different keywords identified as MesH terms after mindmapping the MesH hierarchy. A corpus of 1,3350,138 documents was analyzed. In addition, a specific query on DS journals was run and 8,854 documents were isolated. Bibliometric analysis was done using Scopus embedded statistic functions and descriptive statistics analyses were run using Excel® and Xlstat® add-in package. Visualization of bibliometric network was performed with VOSviewer®, a network analysis software. “Reference Publication Year Spectroscopy” (RPYS) analysis (Marx, 2014), toward the identification of the historical roots of DS research field was done using CRExplorer®, a software for cited references analysis, delayed recognition (DR) publications were identified with the calculation of the Beauty coefficient (B), a parameter-free (Ke, 2015).

Results

Drug Safety research trends

A corpus of more than 1.3 M DS documents were gathered (72% articles, 14% reviews, 4% letters and 12% others). If publications on DS were published early during the 20th century with the founding of the FDA (1938), we focused our analysis after the Kefauver-Harris Amendment (1962) which revolutionize drug assessment after the thalidomide birth defect tragedy. Publications on DS started to rise with some delay in the early 70’ and then, the number of publications stayed stable around 18.000 publications/year until 2001 (Figure 1).

![Figure 1. Trends of Drug Safety publications.](image)

Then DS publications increased steady reaching 60.000 publications/year in 2015. Publications in DS journals represent only 1.57%. In the last 20 years, only 0,15% of the DS publications were sponsored by pharma firms. An analysis of press releases in Factiva® database identified a peak of media news covering DS between 2005-2009 at the time of anti-cox2 drugs withdrawal. The analysis of co-occurrence of words in the corpus of DS journals’ papers visualize distinct keywords’ groups centred around “Pharmacoepidemiology”, “Safety”, and “Pharmacovigilance”, which changes along the last 20 years (data not shown). We undertake a detailed trends analysis of the main keywords. Figure 1 show the trends of the top 5 keywords by total publications numbers (side effects: 510,101; Adverse Drug
Reaction (ADR): 166,297; Drug withdrawn: 154,233; Drug evaluation: 82,913; Drug toxicity: 61,953. Some keywords in use at the beginning are no longer cited and vice et versa. Since the anti-cox2 controversy, the main keywords associated with DS publications is “Side Effect” and not anymore ADR.

Drug Safety publishing actors

The top 5 countries publishing on DS are in the order: USA (31%) United Kingdom (9%) Germany (7%), Japan (6%) and Italy (6%). However, the EU countries account as much publications than US underlying the importance of the EMA. Moreover, all BRICS countries ranked in the top 30 countries (data not shown). The DS research intensity was further explored at country level by looking at any correlation between DS publications, population size, health expenses by GDP and pharmaceutical expenses per capita (source: OECD) (Table 1).

Table 1. Correlation matrix (Pearson)

<table>
<thead>
<tr>
<th>DS pub.</th>
<th>Pop. size</th>
<th>Health % GDP</th>
<th>Pharma exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.911</td>
<td>0.762</td>
<td>-0.194</td>
</tr>
<tr>
<td>Pop. size</td>
<td>1</td>
<td>0.597</td>
<td>-0.026</td>
</tr>
<tr>
<td>Health % GDP</td>
<td>0.762</td>
<td>1</td>
<td>-0.490</td>
</tr>
<tr>
<td>Pharma exp.</td>
<td>-0.194</td>
<td>-0.026</td>
<td>1</td>
</tr>
</tbody>
</table>

NB: Values in bold are different from 0 with α=0.05

The top 3 publishing institutions are Harvard Medical School (US), INSERM (FR) and Veterans affairs (US) with more than 10.000 total publications each. NIH (US) is ranked only 10th and FDA (US) is lagging behind after 50th with 3763 publications. To be noticed, the 1st pharma firm, Pfizer, ranked 12th with 6891 publications (data not shown).

Drug safety historical roots

To gain historical insight on important past DS publications, we run a RPYS analysis. The deviation of the number of Cited References (CRs) from the median pinpointed years 1959, 1977, 2005 and 2012 as more significant than the others (data not shown). To identify the CRs responsible for these peaks, we sorted the list of unique CRs published by their citations’ frequency. The top publication was a paper on “A method for estimating the probability of adverse drug reactions” (Naranjo, 1981).

Delayed Recognition of Drug Safety publications

To identify DR papers in DS, we calculate the “Beauty coefficient” for the top 400 most cited (between 10127 and 556 citations) papers on DS. We identified 8 candidate DR papers among which the publication of Naranjo (1981) (data not shown). We further explored an interesting case with B=393, an article describing “A rating scale for extrapyramidal side effects”. This publication has been delayed for 23 years and its citations awakening with the rise of interest in extrapyramidal side effects (EPSE), a drug-induced movement disorder by antipsychotics.

Discussion

While DS is a major issue, we reported for the first time a landscape analysis of the literature. It reveals some characteristics: (1) research increase recently (2000) while major drug regulation backed to 1960 (2) it is a heterogeneous research field which concepts evolved a lot in half century (3) most of publications are published outside core journals, probably by clinicians (2) the contribution of the industry is marginal, even if some firms are publishing a lot, raising questions about the industry responsibilities (4) US and EU countries are leading as expected because of the size of their drug market, but there is no correlation with pharmaceutical expenses (5) US federal institutions are lagging behind the universities in reporting DS (6) anti-cox2 ADR controversy has awakened DS research field (7) identification of DR papers raise questions about resistance to the discovery of ADR and therefore its public health impact. Further studies are in need to measure if DR papers are linked to delayed drug withdrawn. Finally, our analysis supports the prospective for literature-based discovery in DS.

References

