
Table 1: Optimized tuning parameters of models 
Model Parameters Group 1 Group 2 

SVM 
C 10 10 
�ü 0.01 0.01 
�+ 0.1 0.1 

Lasso �ù 0.0001 0.0001 
Ridge �ù 1 1 
Neural 

Network 
Batch Size 40 100 

Epochs 100 100 
KNN K 8 5 
PLS # of Components 6 6 
Size Training 4665 Testing 519 

Table 2: Comparison of models performance 

Model Group 1 Group 2 
R2 MSE R2 MSE 

SVM 0.966 0.032 0.985 0.014 
OLS 0.956 0.041 0.976 0.022 

Ridge 0.956 0.041 0.976 0.023 
Lasso 0.956 0.041 0.976 0.022 
PLS 0.956 0.042 0.975 0.023 
KNN 0.950 0.047 0.972 0.026 

Neural Network 0.955 0.042 0.975 0.023 
Evaluation 

(SVM) 0.939 0.061 0.962 0.038 

 
Figure 3: The scatterplot of predicted and actual EVI values of each model from Group 1 with color indicating PDF, as well 
as identity line (red lines). 

 
Figure 4: The scatterplot of predicted and actual EVI values of each model from Group 2 with color indicating PDF, as well 
as identity line (red lines). 
 



Generally, the inclusion of NDVI, LAI and FPAR has 
contributed to the model performance, as the R2 values 
increase from 0.939 to 0.962, as well as MSE decrease from 
0.061 to 0.038 in the evaluation process using SVM. In 
addition, the deviated points in the circled region in the Fig. 
3a have moved closer to the identity line in the Fig. 4a. Figure 
4h also shows the convergence of the points compared to Fig. 
3h, while the region with higher PDF values (yellow to green) 
is also more situated in the identity lines. This is due to 
smaller standard deviation 𝜎𝜎 values as it is described in the 
equation (2). 
 

4. DISCUSSION  
 
The study found that the EVI values can be effectively 
estimated using only SSR Band 1-7 value as mode inputs. It 
is because the training and testing datasets is carefully 
selected with quality assurance and have been monthly 
averaged. It is also due to vegetated regions of MENA is 
characterized as low biomass regions. However, the EVI is 
designed to enhance the vegetation detection with improved 
sensitivity in the high biomass regions. Therefore, the 
advantages of using EVI do not outstand comparing to other 
VI such as NDVI. However, the inclusion of other 
biophysical parameters (LAI and FPAR) also helps to further 
improve the model performance up to 0.985 and 0.962 of R2 
values in the testing and evaluation processes, respectively. 
In addition, the efforts such as adding penalties (Lasso, 
Ridge), and regularization in the Neural Network exempt the 
potential of model overfitting. It confirms the results from 
previous studies showing the EVI highly correlated with the 
LAI [8, 9] and linearly related to FPAR [10]. To increase the 
forecasting performance, high resolution datasets with 
additional parameters such as natural and human factors can 
be used. [7]. For instance, environmental factors, atmospheric 
conditions, soil moisture and Agri management principles 
which influences EVI could improve predictive performance 
of the machine learning models. Additionally, MODIS BRDF 
corrected products such as MCD43 and the Multi-
Angle Implementation of Atmospheric Correction algorithm
 (MAIAC) will be used in future work. Previous studies have 
found that EVI is highly sensitive to the bidirectional effect 
and it is necessary to use BRDF corrected products in 
vegetation analysis [12]. The workflow of the data 
acquirement (Google Earth Engine: 
https://code.earthengine.google.com/b5e37e0c9eda7ea8911f
40aa031122d4) and model training (Google Colab: 
https://colab.research.google.com/drive/1sfcnXrfLqZLuE2Y
sJtQtwZAdh8QoHxsJ) is fully deployed on the cloud 
services. It can be easily modified and applied to the other 
researches. 
 

5. CONCLUSION 
Initially models were built to predict EVI-2018 using surface 
reflectance data only. After adding more predictors such as 
EVI-2017, NDVI, FPAR and LAI model predictive power is 

increased up to 96% of 𝑅𝑅2  value with lower MSE, which 
concludes that these parameters have high impact on EVI. 
Model predicted EVI is very highly correlated with actual 
EVI, as most of the points are closed to the line except with 
some deviations at the higher values. Regression models, 
OLS and Partial least squares has almost the same 𝑅𝑅2 . 
Nevertheless, Penalized method such as Ridge and Lasso are 
preferred over OLS since they can handle the issues with 
overfitting and can generate sparse solutions. Lasso model 
can be used as dimension reduction techniques as it generates 
sparse solutions. Since there are some bands with zero 
weights, those bands can be eliminated from the data. In order 
to increase the model performance of Neural networks 
regularization techniques can be applied. It is assumed that 
low predictive performance for extreme EVI values in 
MENA region may be attributed due to high levels of 
atmospheric noise.  
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