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Abstract

Using the notion of commutative operator vessels, this work investigates de
Branges-Rovnyak spaces whose elements are sections of a line bundle of multi-
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1. Introduction

1.1. The classical case
The theory of de Branges-Rovnyak spaces of analytic functions (see for in-

stance [7, 19, 20, 21]) allows us to prove Beurling-Lax type theorem in a one
complex variable framework when leaving the setting of the Hardy space. An
illustrative example is given in the following theorem. To give the statement, we
must first recall that an element of Cn×n which is both selfadjoint and unitary
is called a signature matrix. Furthermore, for α ∈ C and f a matrix-valued
function analytic in a neighborhood of α, let Rα denote the resolvent operator
at α:

Rαf(z) =


f(z)− f(α)

z − α
, z 6= α

f ′(α), z = α.
(1.1)

It follows that the resolvent identity [19, Theorem I]

Rα −Rβ = (α− β)RαRβ

holds for any function analytic in a connected neighborhood of α and β.

Theorem 1.1. Let Ω be an open subset of the complex plane, symmetric with
respect to the real line, and let J be a signature matrix. Let X be a reproducing
kernel Hilbert space of functions analytic in Ω. Then the reproducing kernel of
X is of the form

KT (z, w) = J − T (z)JT (w)∗

−i(z − w) , (1.2)

where T is a Cn×n-valued function analytic in Ω, if and only if the following
two conditions are fulfilled:

1. RαX ⊂ X for all α ∈ Ω.

2. The structure identity

〈Rαf, g〉 − 〈f,Rβg〉 − (α− β) 〈Rβf,Rβg〉 = ig(β)∗Jf(α) (1.3)

holds for all α, β ∈ Ω and f, g ∈ X.
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See [19, Theorems III and IV], where Ω ∩ R is assumed non-empty; this
restriction was later removed in [54] and in [11] (for the corresponding theorem
in the case of the disk, see [6]).

We remark that T is J-contractive, that is, T satisfies T (z)JT (z)∗ ≤ J for
all z in the intersection of Ω and the upper half-plane C+. The positivity of
the kernel (1.2) in an open subset of the upper half-plane implies that T has a
meromorphic extension to C+ (and in fact, by reflection, to C \ R), for which
KT (z, w) is still positive definite.

If we further assume that ∞ ∈ Ω and kerRα = {0} for an arbitrary α ∈
Ω (and henceforth, for all α ∈ Ω), then the space does not contain nonzero
constants, and T is of the form

T (z) = I − iC(zI −A)−1C∗J (1.4)

where

(Af)(z) = zf(z)− lim
w→∞

wf(w) and Cf = lim
w→∞

wf(w). (1.5)

Furthermore, the resolvent operator satisfies Rα = (A− αI)−1.
In his fundamental paper [18] Beurling introduced a characterization of in-

variant subspaces under the shift operator in the Hardy space H2(D). These
subspaces are characterized as the ones of the form TH2(D), where T is an
inner function. An inner function is, by definition, an analytic function on the
unit disk such that |T (z)| ≤ 1 for |z| < 1 and with non-tangential boundary
values (which exist almost everywhere since T is bounded) having modulus one.
Important generalizations, the vector-valued case and the infinite dimensional
case, were presented later by Lax [42] and Halmos [32], respectively.

We note that (1.3) is automatically satisfied in the Hardy space H2(C+).
Therefore, applying Theorem 1.1 (restricted to subspaces of H2(C+)) on the
orthogonal complement implies the Beurling-Lax theorem, under the hypothesis
of a symmetric domain of analyticity.

1.2. Beurling theorem on Riemann surfaces
In the setting of finite bordered Riemann surfaces, several generalizations

of Beurling’s theorem were presented. Sarason, in [55], studied the invariant
subspaces of certain multiplication operators on L2 in the case of the annulus.
Invariant subspaces in Hardy spaces over a finite bordered Riemann surface
were studied by Voichick [70, 71], Voichick-Zalcman [72], Hasumi [34] and Forelli
[27] in the scalar-valued case, while Abrahamse and Douglas [2] considered the
vector-valued case (see also Abrahamse [1] and Ball [12] for the closely related
interpolation problems). A dedicated investigation of invariant subspaces in
Hardy space over a multiply connected planer domain, including corresponding
operator theory and Riesz bases, was carried out by Fedorov and Pavlov [53]
and Fedorov [25, 26]. In addition to lifting the problem to the universal cover-
ing, they use extensively the representation of the domain as a finite branched
covering of the unit disk.
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Neville [50, 51] and Hasumi [35, 36] obtained Beurling Lax type theorems for
certain classes of infinitely connected open Riemann surfaces. The crucial con-
dition is that any flat complex line bundle on the open Riemann surface admits
bounded holomorphic sections; such open Riemann surfaces were characterized
completely by Widom [73] and referred as Parreau-Widom type, see also [52].
Finally, we also mention the work of Kupin and Yuditskii [41], as they have
studied interpolation problems on infinitely connected open Riemann surfaces
of Parreau-Widom type.

1.3. Compact real Riemann surfaces
In the present paper we prove a counterpart of Theorem 1.1 in the setting of

compact real Riemann surface (i.e. compact Riemann surface equipped with an
anti-holomorphic involution τ); for a theorem in the finite dimensional case see
[10, Theorem 5.1]. Taking the compact real Riemann surface to be the double
of a finite bordered Riemann surface S we obtain, as a corollary, a Beurling
Lax type characterization of invariant subspaces of a Hardy space on S under
a pair of certain multiplication operators.

The counterpart of the kernel 1
−i(z−w) in the compact real Riemann surface

case is given by
Kζ(z, w) = ϑ[ζ](τ(w)− z)

iϑ[ζ](0)E(z, τ(w)) (1.6)

(see [10, Section 2.4] and, up to conjugation and multiplication by a constant, [9]
and [16]), while the counterpart of the kernel KT (z, w) is given in (3.1) below.
Here ϑ[ζ] is the theta function with characteristic ζ and E(·, ·) is the prime form
(for more details see Section 2.1 below or [24]). Note that the kernel (1.6) is not
always positive definite on a subset of a given real Riemann surface. The case
where it is positive definite (ζ ∈ T0 and the compact real Riemann surface is of
dividing type, see below) corresponds to the Hardy space case.

Our approach to prove de Branges type theorem (and hence Beurling Lax
type theorem) is substantially different compared to the approaches of the pa-
pers mentioned in Section 1.2. Essentially, all of these papers are using the
method of lifting the problem to the universal covering and using the classical
Beurling theorem to solve the problem. We, on the other hand, use commutative
operators vessels and operator model theory [17, 46, 68] for pairs of commuting
nonselfadjoint operators in order to build explicitly the (inner) function T . The
function T (actually a multiplicative multi-valued function, i.e. a mapping of
line bundles) is then the transfer function of a commutative two-operator vessel.
The inner space of this vessel is the given reproducing kernel Hilbert space (the
orthogonal complement in H2 to the invariant subspace in the case of Beurl-
ing Lax theorem) and the main operators are the compressed multiplication
operators by a pair of real meromorphic functions on the Riemann surface.

Furthermore, all the papers mentioned in Section 1.2 consider the setting of
multiplicative functions. They use a non-canonical approach in the sense it is
required to choose a measure on the boundary of the Riemann surface, resulting
in more complicated calculations. Our approach (as in [9, 10]) is to consider the
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half-order multiplicative differentials setting. This approach is canonical in the
sense that no selection of a measure is required.

1.4. Structure of the paper
The paper consists of six sections besides the introduction. In Section 2,

which consists of preliminaries, we review some basic definitions and results
related to compact real Riemann surfaces. In addition, we survey the theory
of vessels associated to pairs of commutative nonselfadjoint operators. Section
3 is dedicated to present new supplementary results in realization theorem and
functional models of two-operator vessels.

The main theorem, namely the de Branges structure theorem, the counter-
part of Theorem 1.1 in the compact real Riemann surfaces setting, is presented
in Section 4. In Section 5, we specialize our results to the setting of the Hardy
space and obtain versions of Beurling’s theorem on finite bordered Riemann sur-
faces. Section 6 is dedicated to study the compressed multiplication operators
associated to a real Riemann surface and a pair of meromorphic functions. To
ease the presentation, the proof of de Branges structure theorem is given later
in Section 7.

The authors wish to thank the referee for carefully reading the manuscript
and for raising valuable suggestions to improve the original draft.

2. Preliminaries

In the preliminaries section we review some necessary background and no-
tions related to the content of this paper. In the first part we survey the compact
real Riemann surfaces and their Jacobians. The second part is dedicated to the
theory of vessels associated to pairs of commutative operators. The model space
associated to an expansive mapping between certain line bundles defined on a
compact real Riemann surface is presented in the last part.

2.1. Compact real Riemann surfaces
It is a well-known fact (see [44, 46] and Section 2.2 in the upcoming pages)

that real algebraic curves and compact real Riemann surfaces play an important
role in the theory of operators vessels. A survey of the main needed tools
(including the prime form and the Jacobian) can be found in [10, Section 2], the
descriptions of the Jacobian variety of a real curve and the real torii is in [67].
For general background, we refer the reader to [24, 30, 31, 48, 49].

A compact Riemann surface X of genus g is called real if it comes equipped
with an anti-holomorphic involution τ : p 7→ τ(p) from X into itself. Let XR
be the set, assumed nonempty, of real points in X (that is the set of points
p ∈ X such that p = τ(p)). The set XR consists of k ≥ 1 disjoint connected
components homeomorphic to circles and denoted by X0, . . . , Xk−1. Two cases
should be distinguished. The first, called the dividing case, is when X\XR is not
connected; then it is a union of two connected components, X− and X+. The
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second, the non-dividing case, is when X \XR is connected. In the non-dividing
case we set an arbitrary orientation on each of the boundary components, while
in the dividing case we set the orientations according to the choice of X+ (i.e.
so that XR = X0 + . . .+Xk−1 is the positive oriented boundary of X+).

Repeating the constructions in [4, 10, 67], we fix points pj ∈ Xj where j =
0, . . . , k−1 and we choose paths from p0 to pj for j = 1, . . . , k−1, denoted by Cj ,
which do not contain any other real points. Then the collection Ag+1−k+j = Xj

and Bg+1−k+j = ±Cj ∓ τ(Cj) where j = 1, . . . , k − 1, can be extended to a
canonical basis A1, . . . , Ag, B1, . . . , Bg of the homology group H1(X,Z) such
that the complex conjugation is given by T =

(
I H
0 −I

)
, where H is a g × g

symmetric matrix depending on the number k of real circles and whether we are
in the dividing case or the non-dividing case, see [10, Equations (2.7-2.8)]. Let
ω1, . . . , ωg be the corresponding normalized basis of the space of holomorphic
differential on X, where g is the genus of X, i.e.

∫
Ai
ωj = δi,j . The period

matrix Γ is defined by Γij =
∫
Bi
ωj , and Γ is symmetric and satisfies Im Γ > 0.

It can be shown that the Hermitian part of Γ is equal to 1
2H and we write

Γ = 1
2H + iY −1.

One associates to X the Jacobian variety J(X) = Cg/Λ, where Λ is the
lattice defined by Λ = Zg + ΓZg. The Abel-Jacobi mapping from X to J(X)
defined by

µ : p −→


∫ p
p0
ω1

...∫ p
p0
ωg

 ,

is well-defined for an arbitrary base point p0 ∈ X; we take p0 ∈ X0 as chosen
above in the construction of the canonical homology basis. We note that Λ
is invariant under complex conjugation and hence the complex conjugation is
defined on J(X). Furthermore, since we chose p0 ∈ XR, it follows that τ
and the complex conjugation are equivariant under the Abel-Jacobi map, i.e.
µ(τ(p)) = µ(p). We extend µ by linearity to divisors on X. Since by Abel-
Jacobi theorem a divisor D is equivalent to zero if and only if µ(D) = 0, we also
view µ as defined on line bundles on X.

The corresponding theta function is given by

ϑ(λ) =
∑
n∈Zg

exp
(
iπntΓn+ 2iπntλ

)
,

and is a quasi-periodic function with respect to the lattice Λ, that is,

ϑ(λ+m) = ϑ(λ) and ϑ(λ+ Γn) = exp
(
−iπntΓn− 2πinλ

)
ϑ(λ),

where n,m ∈ Zg. Therefore, the theta function defines a divisor in J(X). The
theta function with characteristic a and b in Rg is defined by

ϑ

[
a
b

]
(λ) =

∑
n∈Zg

exp
(
iπ(n+ a)tΓ(n+ a) + 2iπ(n+ a)t(λ+ b)

)
.
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In this paper (as in [9, 10]), we consider the framework of multiplicative half-
order differentials. In order to construct and define the half-order differentials,
we choose an atlas (Vj , zj)j∈J on X, for which every nonempty intersection is
assumed to be simply connected. Then there exists a family of analytic square-
roots (see [37]),

(√
dzj/dzi

)
i,j∈J

, such that the following cocycle condition

√
dzi
dzj

=
√
dzi
dzk

√
dzk
dzj

(2.1)

holds on Vj ∩ Vi ∩ Vk (whenever the intersection is not empty). Among the line
bundles defined by (2.1), the line bundle corresponding to −κ ∈ J(X) (where
κ is the Riemann constant) plays an important role and is denoted by ∆. The
sections of ∆ are referred to as half-order differentials.

For ζ ∈ J(X) we define the corresponding multipliers over the cycles Aj and
Bj by

χ(Aj) = exp (−2πiaj) , χ(Bj) = exp (2πibj)

where j = 1, . . . , g and ζ = b + Γa where a, b ∈ Rg. The corresponding flat
unitary line bundle is denoted by Lζ , notice that µ(Lζ) = ζ.

A multiplicative half-order differential corresponding to ζ is a section of
Lζ ⊗ ∆. Thus, a multiplicative half-order differential is a family of functions
(fj)j∈J defined on the pre-images Ṽj of Vj , j ∈ J, on the universal covering X̃
of X, satisfying

fi(ũ) =
√
dzj
dzi

fj(ũ), ũ ∈ Ṽi ∩ Ṽj .

and
fj(ũ2) = fj(ũ1) exp

(
2πi(btm− atn)

)
,

where ũ1, ũ2 are points on the universal covering such that µ̃(u2) − µ̃(u1) =
n+ Γm (µ̃ : X̃ → Cg is the lifting of µ to the universal coverings and n,m ∈ Z).
We often abuse the notation and view fj as multi-valued function on Vj . We
always assume that ϑ(ζ) 6= 0 which is equivalent to the fact that Lζ ⊗∆ does
not have global holomorphic sections i.e. there is no non-trivial multiplicative
half-order differential which is globally holomorphic.

The Cauchy kernel plays an important role in this framework as it is the
analogue in the compact real Riemann surface to of the kernel 1

−i(z−w) in the
upper half–plane. In the line bundle case, unlike the vector bundle case (for
explicit formulas for the Cauchy kernel in the vector valued case in genus one,
see [13]), the Cauchy kernel can be described explicitly by (see [10])

Kζ(u, v) = ϑ[ζ](τ(v)− u)
iϑ[ζ](0)E(u, τ(v)) . (2.2)

Here we identify the points u, τ(v) ∈ X with the images µ(u) and µ(v) in J(X).
The prime form E(u, v) is a multiplicative differential of order − 1

2 in each of
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the variables u and v. It is defined by

E(u, v) = ϑ[δ](v − u)√
ξδ(u)

√
ξδ(v)

.

Here δ is a non-singular odd half-period and ξδ is defined by (
√
ξ2
δ (u))2 =∑g

j=1
∂ϑ[δ]
∂zj

(0)ωj(u), for more details see [24]. Its main property is that E(u, v) =
0 if and only if u = v, and thus it can be considered as the analogue for the
compact Riemann surface case of the difference between two numbers in C. In
terms of local coordinates, the prime form satisfies

E(u, v) = (t(v)− t(u)) + o((t(v)− t(u))2).

For more details on the prime form, we refer to [10, section 2.3] and [24, 49].
The Cauchy kernel is Hermitian (see [10, Proposition 2.8] and [67]) as long

as ζ belongs to a disjoint union of the g-dimensional real torii, given by:

Tν =
{
ζ ∈ J(X) : ζ =1

4diag(H) + ν1

2 eg−k+2 + . . .+ νk−1

2 eg+

ia1Im Γ1 + · · ·+ iagIm Γg
}
, (2.3)

where Γ1, . . . ,Γg are the columns of the period matrix Γ, a1, . . . , ag−k+1 ∈ R/2Z,
ag−k+2, . . . , ag ∈ R/Z and ν ∈ {0, 1}k−1. Furthermore, if X is of dividing type
and ζ ∈ T0 ([10, Theorem 2.1]), then automatically ϑ(ζ) 6= 0 and the kernel
(2.2) is positive on X+ and negative on X− (since ±Kζ(·, v) is the reproducing
kernel for the Hardy spaces H2(Lζ ⊗∆, X±), see also Section 5 below).

The Cauchy kernels satisfy an important identity, which is referred as the
collection formula (see [9] and [10]) and is used repeatedly in the sequel. First,
it is convenient to define, using the notations from [9], the following matrices.

Definition 2.1. Let y be a meromorphic function on X of degree n with simple
poles (p(j))nj=1 and residues (−cj)nj=1 given in terms of some fixed local coordi-
nates at the poles. Then for λ1, λ2 ∈ C, we set

K(λ1, λ2) = (λ1 − λ2)
(

1√
dy(u(i))

ϑ[ζ](v(j) − u(i))
ϑ[ζ](0)E(v(j), u(i))

1√
dy(v(j))

)n
i,j=1

(2.4)

K(λ1,∞) = −
(

1√
dy(u(i))

ϑ[ζ](p(j) − u(i))
ϑ[ζ](0)E(p(j), u(i))

√
cj√

dtj(p(j))

)n
i,j=1

(2.5)

K(∞, λ1) =
( √

ci√
dti(p(i))

ϑ[ζ](u(j) − p(i))
ϑ[ζ](0)E(u(j), p(i))

1√
dy(u(j))

)n
i,j=1

(2.6)

where (u(i))nj=1 and (v(j))nj=1 are the n pre-images in X of λ1 and λ2, respec-
tively, assumed to be all distinct (it is possible to extend the kernel by continuity
to ramified fibers, but we will not consider this case in the sequel). We set
K(λ1, λ2) = I for λ1 = λ2 by continuity.
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The matrices (2.4 - 2.6) satisfy the following relations, also known as the
collection formulas ([9, Section 4]):

K(λ1,∞)K(∞, λ2) = K(λ1, λ2) (2.7)
K(λ1, λ3)K(λ3, λ2) = K(λ1, λ2) (2.8)

K(λ, λ) = I. (2.9)

An additional version of the collection formula can be found in [10, Lemma 4.1].

2.2. Commutative Vessels in Hilbert space
It is a well-known fact that the best way to study a bounded nonselfadjoint

operator is to view it as an element of an underlying colligation rather than
studying directly the operator itself. There is a deep connection between in-
variant subspaces of such an operator and factorizations of the characteristic
function of a colligation (see [22]). As soon as we consider several commuting
nonselfadjoint operators, the colligation does not carry enough structure to re-
flect the interaction between the operators. It seems, see [45, 46, 66, 68], that
the appropriate framework to study several commuting nonselfadjoint operators
is via the notion of a commutative operator vessel. In this paper we consider
the case of a pair of commuting operators, although a generalization to the case
of an n-tuple of commuting operators (and even beyond to the case of a rep-
resentation of a finite dimensional real Lie algebra) does exist, see [46, 59, 61].

A commutative two-operator vessel is a collection

V = (A1 , A2 ; H , Φ , E ; σ1 , σ2 , γ , γ̃)

where H (”the inner space”) and E (”the external space”) are Hilbert spaces,
and dimE <∞. The operatorsA1 andA2 are bounded inH, commute (A1A2 =
A2A1) and with finite non-Hermitian rank, i.e.

1
i

(Ak −A∗k) = Φ∗σkΦ, k = 1, 2, (2.10)

where σ1 and σ2 are selfadjoint operators in E. Finally, γ and γ̃ are bounded
selfadjoint operators on E which satisfy the vessel conditions:

σ1ΦA∗2 − σ2ΦA∗1 = γΦ, (2.11)
σ1ΦA2 − σ2ΦA1 = γ̃Φ, (2.12)

i(σ1ΦΦ∗σ2 − σ2ΦΦ∗σ1) = γ̃ − γ. (2.13)

Equations (2.11 - 2.13) are called the input, output and linkage vessel conditions,
respectively. It is easily seen that if the colligation condition (2.10) and the
output vessel condition (2.12) are satisfied and we define γ by the linkage vessel
condition (2.13), then, the input vessel condition (2.11) holds.

9



The complete characteristic function (CCF) of a vessel is defined by [46,
Section 3.4],

W (ξ1, ξ2, z) = I − iΦ(ξ1A1 + ξ2A2 − zI)−1Φ∗(ξ1σ1 + ξ2σ2) (2.14)

and it satisfies the following metric properties (ξ1, ξ2 ∈ R):

W (ξ1, ξ2, z) (ξσ)W (ξ1, ξ2, z)∗ = (ξσ) where Im(z) = 0 (2.15)
W (ξ1, ξ2, z) (ξσ)W (ξ1, ξ2, z)∗ ≥ (ξσ) where Im(z) > 0, (2.16)

where (ξσ) stands for ξ1σ1 + ξ2σ2. The complete characteristic function, for
fixed ξ1, ξ2 ∈ C, is analytic for all z lie outside the spectrum of ξ1A1 + ξ2A2.

Given a commutative vessel, we define a polynomial (that we assume to be
not identically zero) of two complex variables, called the (affine) discriminant
polynomial, by

p(λ1, λ2) = det(λ1σ2 − λ2σ1 + γ).

The associated real (affine) plane curve C0 is called the (affine) discriminant
curve associated to V. Writing the discriminant polynomial in homogeneous
form

P (ν0, ν1, ν2) = det(ν1σ2 − ν2σ1 + ν0γ),

leads to a corresponding real algebraic curve C in P2. We always assume that
det (ξ1σ1 + ξ2σ2) is not identically zero, so C is the projective closure of C0.

In order to continue, we set the principal subspace Ĥ ⊆ H of a vessel to be

Ĥ =
∞∨

m1,m2=0
Am1

1 Am2
2 Φ∗(E) =

∞∨
m1,m2=0

A∗m1
1 A∗m2

2 Φ∗(E),

and we say that a vessel is irreducible whenever Ĥ = H.
Two vessels

(A1, A2;H,Φ, E;σ1, σ2, γ, γ̃) and (A′1, A′2;H ′,Φ′, E;σ1, σ2, γ, γ̃)

are said to be unitary equivalent if they share common external data (that is,
both have a common external space E and matrices σ1, σ2, γ and γ̃) and there
exists a unitary operator U from H to H ′ such that

A′1U = UA1, A′2U = UA2 and Φ′U = Φ. (2.17)

The following theorems were established by Livšic (see for instance [45, 46]).

Theorem 2.2 ([43, Theorem 2]). The polynomial p(A1, A2) vanishes on the
principal subspace of the colligation Ĥ.

As a consequence, it follows through the spectral mapping theorem that
the joint spectrum of A1 and A2 restricted to Ĥ lies on the curve C0. We
recall that there are several definitions for the notion of the joint spectrum of
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a pair of commuting operators. Here we mention the definition of Harte [33]
(Harte’s spectrum consists all points (λ1, λ2) ∈ C2 such that either the map x→(

(A1−λ1I)x
(A2−λ2I)x

)
is not left invertible or the map ( x1

x2 )→ (A1−λ1I)x1+(A2−λ2I)x2

is not right invertible) and Taylor [63]. These various definitions coincide when
the operators have compact imaginary parts, and in particular in our setting
(see [47], where it also shown that in this case (λ1, λ2) is in the joint spectrum
if and only if ξ1λ1 + ξ2λ2 is in the spectrum of ξ1A1 + ξ2A2 for all ξ1, ξ2 ∈ C).

The discriminant polynomial can be also described in terms of the selfadjoint
matrices σ1, σ2 and γ̃.

Theorem 2.3 ([44, Corollary 1]). The following equality holds:

det(λ1σ2 − λ2σ1 + γ) = det(λ1σ2 − λ2σ1 + γ̃).

Hence ν1σ2 − ν2σ1 + ν0γ and ν1σ2 − ν2σ1 + ν0γ̃ are (the input and output,
respectively) determinantal representations of the discriminant curve C. Then
for each ν = (ν0, ν1, ν2) ∈ C we define non-trivial subspaces of E by:

E(ν) = ker(ν1σ2 − ν2σ1 + ν0γ)

Ẽ(ν) = ker(ν1σ2 − ν2σ1 + ν0γ̃).

The complete characteristic function is a function of two independent variables
and does not admit a satisfactory factorization theory as in the single-operator
colligation case. However, we can restrict the CCF to the discriminant curve
C and to the family of subspaces E(λ). More precisely, the joint characteristic
function (JCF) [46, Section 10.3],

S(λ) = W (ξ1, ξ2, ξ1λ1 + ξ2λ2)
∣∣
E(λ), (2.18)

where λ = (λ1, λ2) ∈ C0, is a map between the subspaces E(λ) and Ẽ(λ). Fur-
thermore, it is independent of the choice of ξ1, ξ2 ∈ C when ξ1λ1 + ξ2λ2 does
not belong to the spectrum of ξ1A1 + ξ2A2. As a system theory interpreta-
tion, the joint characteristic function determines the input-output relation of
the corresponding (overdetermined)two-dimensional system by y0 = S(λ)u0,
where y0 ∈ Ẽ(λ) and u0 ∈ E(λ) are the amplitudes of the double periodic wave
functions with frequency (λ1, λ2) ∈ C0 (see [15, 68]).

In order to continue, we assume that the discriminant polynomial P (ν),
defining the discriminant curve C, is an irreducible homogeneous polynomial
and we denote by X the desingularizing Riemann surface of C. It can be
shown that the dim Ẽ(ν) ≤ s where s is the multiplicity of ν on C, see [46,
Prop. 10.5.1]. Therefore dim Ẽ(ν) = dimE(ν) = 1 for all non-singular ν ∈ C.
Therefore, in this paper, as opposed to a more general vector bundle setting,
we consider the line bundle setting. Hence, we may use the theory of theta
functions and Jacobian varieties to express concretely the Cauchy kernels, see
Section 2.1 above (for more details, see [15, 16]). We assume furthermore that
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the input and the output determinantal representations are maximal and fully
saturated as we define in the next several paragraphs allowing us to consider
line bundles on the desingularizing Riemann surface rather than line bundles on
the singular algebraic curve, see [39] in setting of determinantal representation
and [57, 58] in general.

We say that the output determinantal representation Ũ(ν) = ν1σ2 − ν2σ1 +
ν0γ̃ is maximal if any point ν ∈ C satisfies dim Ẽ(ν) = s. A stronger condi-
tion is as follows (see [69]). We define Ṽ (ν) = adj[Ũ(ν)], this is a matrix of
homogeneous polynomial of degree m− 1 where m = deg (P ) = dim(E). Then
we say that the output determinantal representation is fully saturated if all the
entries of the adjoint matrix Ṽ vanish on the adjoint divisor: (Ṽi,j) ≥ Dsing for
all i, j = 1, ...,m. Here the adjoint divisor or the divisor of singularities is given
by Dsing = (m − 3)(ν0) − (ω), where ω is the meromorphic differential defined
by

ω = dy1
∂p/∂λ2

= − dy2
∂p/∂λ1

, (2.19)

i.e. ω has poles at the singular points of C and zeros of order m− 3 at infinity
(we denote by λ1, λ2 the affine coordinates and by y1, y2 the corresponding
meromorphic functions on the desingularizing Riemann surface X). Every fully
saturated determinantal representation is maximal and the converse is true if
at each singular point of C, there are no two distinct branches with the same
tangent. As we will see below, under certain conditions, maximality (or full
saturation) of the output determinantal representation implies the maximality
(or full saturation) of the input determinantal representation (see Lemma 7.5).

As follows from the theory of determinantal representations (see [15, 17, 68]),
the pair of families E and Ẽ of one-dimensional vector spaces E(ν) and Ẽ(ν)
defined on the subset of non-singular points of C can be lifted to a pair of line
bundles, also denoted by E and Ẽ on X, the normalization of C. We note that
up to a sign, selfadjoint determinantal representations are uniquely defined up
to Hermitian equivalence: ν1σ2 − ν2σ1 + ν0γ̃ 7→ ρ∗ (ν1σ

′
2 − ν2σ

′
1 + ν0γ̃

′) ρ, ρ
is non-singular, by their corresponding line bundles. Furthermore, there exist
isomorphisms (up to some twists) between the kernel bundles E and Ẽ and line
bundles of the form Lζ ⊗∆ and L

ζ̃
⊗∆ where ζ, ζ̃ ∈ Tν for some ν, see (2.3),

and ϑ(ζ) 6= 0 and ϑ(ζ̃) 6= 0. More precisely, E ⊗ O(m − 2)(−Dsing) ∼= Lζ ⊗ ∆
and Ẽ⊗ O(m− 2)(−Dsing) ∼= L

ζ̃
⊗∆ .

These isomorphisms can be given explicitly in terms of normalized sections
of E and Ẽ, denoted by u× and ũ×, respectively, as follows (see [68, Equation
2-28]):

f(p) 7→ 1
ω(p)f(p)ũ×(p), (2.20)

similarly for E. A normalized section ũ× is the unique, up to a constant, mero-
morphic section of Ẽ ⊗ L−ζ̃ ⊗ ∆ with poles at the points of C at infinity. A
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normalized section can be explicitly described by the Cauchy kernels (and their
derivatives in the case where the poles are not simple). More explicitly, u×(p)
and ũ×(p) are column-vectors containing the Cauchy kernels (and possibly their
derivatives) evaluated at p and the m poles of the pair of coordinate mero-
morphic functions y1 and y2 on X, see (7.12) for the canonical determinantal
representation corresponding to ζ. We refer the reader to [16] for more details.

The joint characteristic function lifts to a holomorphic mapping of the line
bundles E and Ẽ on X on the complement of the points lying above the joint
spectrum of A1 and A2, in particular, in a neighborhood of the points of C
at infinity. Under the above isomorphisms, the joint characteristic function is
translated into a mapping between flat unitary line bundles. This mapping is
called the Normalized joint characteristic function (NJCF) and is denoted in the
sequel by T (p). An explicit relation between the two characteristic functions is
therefore given by (see [16, Section 6]):

S(p)u×(p) = ũ×(p)T (p). (2.21)

We can consider also the left kernel families

El(ν) = kerl(ν1σ2 − ν2σ1 + ν0γ)

Ẽl(ν) = kerl(ν1σ2 − ν2σ1 + ν0γ̃),

and their liftings, also denoted by El and Ẽl, to line bundles on X. There
exists an isomorphism between the dual bundles of E and Ẽ and El and Ẽl
up to an appropriate twist. More explicitly, Ẽl ⊗ O(m − 2)(−Dsing) is the
Serre dual of Ẽ ⊗ O(m − 2)(−Dsing) (i.e. the dual tensored with the canonical
bundle K = ∆⊗∆), so that Ẽl ⊗ O(m− 2)(−Dsing) is isomorphic to L−ζ̃ ⊗∆.
The corresponding left normalized section ũ×l is the unique, up to a constant,
meromorphic section of Ẽl ⊗ Lζ̃ ⊗ ∆ with poles at the points of C at infinity,
similarly for El. We note that the duality between the left and right kernels can
be given by the inner product with respect to ξσ = ξ1σ1 + ξ2σ2, so that given
ũ×, ũ×l can be determined uniquely by

ũ×l (p)(ξσ)ũ×(q)
ξy(p)− ξy(q) = ϑ[ζ̃](q − p)

ϑ[ζ̃](0)E(q, p)
, ũ×l (p)(ξσ)ũ×(p) = ξdy(p), (2.22)

where ξy = ξ1y1 + ξ2y2 and ξdy = ξ1dy1 + ξ2dy2. On the other hand, since our
determinantal representations are Hermitian, if ũ×(p) is a normalized section,
then ũ×(τ(p))∗ is a left normalized section. It follows from (2.22) that (after
multiplying ũ× by a constant) ũ×l (p) = εũ×(τ(p))∗ where ε = ±1 is the sign
of the determinantal representation alluded to above. It is easily seen that the
input and the output determinantal representations have the same sign and we
will always assume in the sequel, unless the contrary is explicitly stated, that
the determinantal representations have sign +1.
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3. Realization theorem and functional models

3.1. Realization theorem
The following fundamental realization question arises, whether for a given

line bundle mapping T there exists a commutative vessel, such that T is its
NJCF. A solution to this question is given, in the line bundle setting, by the
following realization theorem.

Theorem 3.1 ([68, Theorem 2.3], [46, Theorem 10.5.7] and [15, Theorem 3.3]).
A multiplicative function T (p) on X with multipliers corresponding to ζ̃ − ζ,
i.e. a mapping between flat unitary line bundles Lζ and L

ζ̃
where ζ, ζ̃ ∈ Tν ,

is the normalized joint characteristic function of a commutative two-operator
vessel with discriminant polynomial p(λ1, λ2) and maximal input and output
determinantal representations corresponding to ζ, ζ̃ ∈ J(X) if and only if T (p)
is holomorphic at the points of C at infinity, meromorphic on X \ XR and
satisfies T (p)T (τ(p)) = 1 and the kernel

T (p) ϑ[ζ](τ(q)− p)
iϑ[ζ](0)E(p, τ(q))T (q)− ϑ[ζ̃](τ(q)− p)

iϑ[ζ̃](0)E(p, τ(q))
, (3.1)

is positive definite on the domain of analyticity of T .

A multiplicative function T on X which is meromorphic on X \ XR, sat-
isfying T (p)T (τ(p)) = 1 and such that the kernel (3.1) is positive is called
(ζ, ζ̃)-expansive.

Proposition 3.2. Let X be a compact Riemann surface of dividing type and
let ζ, ζ̃ ∈ T0. Then T is (ζ, ζ̃)-expansive if and only if T is expansive on X+
(i.e |T (p)| ≥ 1 there).

Proof: Assume that the kernel (3.1) is positive and let us choose p = q ∈ X+.
As already mentioned following (2.3), since ζ and ζ̃ belong to T0 and X is of
dividing type, the Cauchy kernels are positive on X+ and (3.1) implies

ϑ[ζ](0)
ϑ[ζ̃](0)

ϑ[ζ̃](τ(p)− p)
ϑ[ζ](τ(p)− p) ≤ |T (p)|2 , (3.2)

for p ∈ X+. Consider the limit on the left hand side as p→ q0 ∈ XR. Assuming
q0 ∈ Xk, τ(q0)− q0 is equal to the k-th column of Γ. Since ζ, ζ̃ ∈ T0 and by the
properties of the theta function, the limit of the left hand side is equal to one.
Hence, for ε > 0, a point p in X+ sufficiently close to the boundary XR satisfies
|T (p)|2 ≥ 1 + ε. By reflection, a point p ∈ X− sufficiently close to XR satisfies
|T (p)|2 ≤ 1

1+ε . On the other hand, since the Cauchy kernels are negative on
X−, it follows similarly to (3.2) that

ϑ[ζ](0)
ϑ[ζ̃](0)

ϑ[ζ̃](τ(p)− p)
ϑ[ζ](τ(p)− p) ≥ |T (p)|2 ,

14



for p ∈ X−. In particular, this implies that T is analytic on X−. It then remains
to apply the maximum principle to conclude that |T (p)| ≤ 1 for all p ∈ X− and
therefore by reflection |T (p)| ≥ 1 for all p ∈ X+.

Conversely, let us assume that |T (p)| ≥ 1 for p ∈ X+. Then, by reflection,
|T (p)| ≤ 1 for p ∈ X−. In particular, T is holomorphic in X− and the multipli-
cation by T is a contraction from the Hardy space H2(Lζ⊗∆, X−) to the Hardy
space H2(L

ζ̃
⊗∆, X−). Since −Kζ(p, q) and −K

ζ̃
(p, q) are the reproducing ker-

nels of H2(Lζ ⊗ ∆, X−) and H2(L
ζ̃
⊗ ∆, X−), respectively, the kernel (3.1) is

positive on X−, see for instance [23] for the classical case, and by reflection (3.1)
is positive on X+. If the domain Ω of analyticity of T is connected then the
positivity of (3.1) on Ω follows from [5, Theorem 1.1.4]. In the general case we
argue as follows.

We choose a pair of dividing functions y1 and y2 on X (see Section 5) and
two selfadjoint determinantal representations that correspond to ζ and to ζ̃,
respectively. Then one may build a function W (ξ1, ξ2, z) by the restoration for-
mula, see [46, Chapter 10] and [68], so that S(λ) = W (ξ1, ξ2, ξ1λ1 + ξ2λ2)

∣∣
E(λ)

and S and T are related by (2.21). We note that for any ξ1, ξ2 > 0 and for
any Im (z) > 0 all the points that satisfy ξ1y1(p) + ξ2y2(p) = z are in X+,
and hence the restoration formula implies that W (ξ1, ξ2, z) satisfies the metric
properties in (2.15) and (2.16). Then it follows from the classical theory that
W (ξ1,ξ2,z)(ξσ)W (ξ1,ξ2,w)∗−(ξσ)

−i(z−w) is a positive kernel on C \ R, see for instance [23].
Finally, since T corresponds as in (2.18) and (2.21) to the restriction of W to the
curve C and to the line bundle E, we conclude that (3.1) is positive on X\XR. �

In the definition of (ζ, ζ̃)-expansive functions, we do not need to assume a
priori that ζ and ζ̃ belong to the same torus Tν . Indeed, let us assume that
ζ ∈ Tν and ζ̃ ∈ T

ν̃
and the kernel (3.1) is positive. Arguing as in the first part of

Proposition 3.2, we see that for a point p sufficiently close to q0 ∈ Xk (and on the
appropriate side of Xk with respect to the chosen orientation), ϑ[ζ](τ(p)−p)

iϑ[ζ](0)E(p,τ(p))

and ϑ[ζ̃](τ(p)−p)
iϑ[ζ̃](0)E(p,τ(p))

have signs (−1)νk and (−1)ν̃k , respectively (cf. the proof of
[10, Theorem 2.10]). On the other hand, (3.1) implies that

|T (p)|2 ϑ[ζ](τ(p)− p)
iϑ[ζ](0)E(p, τ(p)) ≥

ϑ[ζ̃](τ(p)− p)
iϑ[ζ̃](0)E(p, τ(p))

.

Hence the signs of the LHS and the RHS are equal, i.e. (−1)νk = (−1)ν̃k and
hence νk = ν̃k.

Remark 3.3. Given ζ and ζ̃ in J(X), corresponding determinantal representa-
tions λ1σ2−λ2σ1 +γ and λ1σ2−λ2σ1 + γ̃ are only determined up to Hermitian
equivalence, see [65, 64, 67]. However, given the normalized joint characteristic
function and the output determinantal representation λ1σ2−λ2σ1 + γ̃, the input
determinantal representation λ1σ2 − λ2σ1 + γ is determined uniquely.
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Assume again that the poles of y1 and y2 are all simple (for the case of mul-
tiple poles see Remark 6.11 below). Let λ1σ

′
2−λ2σ

′
1 + γ′ be some determinantal

representation corresponding to ζ, so that

ρ∗(λ1σ2 − λ2σ1 + γ)ρ = (λ1σ
′
2 − λ2σ

′
1 + γ′),

with the normalized section u′×(p) satisfying ρu′×(p) = u×(p).
Since S(p(j)) = I and using (2.21), we have ũ×j T (p(j)) = u×j , where ũ×j is

the residue of ũ×(p) at p(j). We further use the notation U× = Rowj=1,...,n (u×j )
(similarly, we define Ũ× and U ′×). Then, the relation between the input and
the output determinantal representations is given in terms of the values of T at
infinity:

U× = Ũ×T∞, where T∞ = Diag
(
T (p(j))

)
. (3.3)

Furthermore, using ρU ′× = U× and Ũ×T∞ = U×, we conclude that the in-
put determinantal representations is uniquely determined, namely ρ is uniquely
determined, by the behavior of T at infinity

ρ = Ũ×T∞(Ũ ′×)−1. (3.4)

3.2. The model space
We continue the discussion about commutative vessels, by presenting the

model space associated to a commutative two–operator vessel, see also [8, 10].
For the analogue in the single operator case, the de Branges-Rovnyak operator
model, see [14, 20, 21] and [62].

Let ζ, ζ̃ ∈ J(X) satisfying ϑ(ζ) 6= 0 and ϑ(ζ̃) 6= 0 such that ζ and ζ̃ belong
to the same real torus Tν and let T (p) be (ζ, ζ̃)-expansive function on X (see
Theorem 3.1) Then, the kernel (3.1) defines a reproducing kernel Hilbert space
denoted by H(T ). Its elements are sections of a line bundle of L

ζ̃
⊗∆ that are

holomorphic on the domain of analyticity of T .
We continue with the definition of the operator model in the case of simple

poles [68, Equation 3-3], i.e. when the meromorphic coordinate functions y1, y2
have only simple poles on X, equivalently, the divisor (ν0) is supported on n
distinct points on X (see [10] and in Section 6 below for general case). The
counterpart of the operator model (1.5), denoted by My, is defined on the
sections of the line bundle L

ζ̃
⊗∆ analytic in neighborhoods of the poles of y.

It is given by

Myf(u) = y(u)f(u) +
n∑

m=1
cmf(p(m)) ϑ[ζ̃](p(m) − u)

ϑ[ζ̃](0)E(p(m), u)
. (3.5)

where y is a meromorphic function on X of degree n with distinct simple poles
p(1), . . . , p(n) and c1, . . . , cn are the negatives of the corresponding residues. The
operator My is in fact independent of the choice of the local coordinates at

16



the poles of y used to compute the residues, this point is discussed in Section
6. Furthermore, for any pair of meromorphic functions y1, y2 ∈ M(X), the
operators My1 and My2 commute (see [10] and Section 6 below for the theorem
in the case of non-simple poles).

The counterpart of the resolvent operator (1.1), denoted by Ryα, satisfies (for
α in the neighborhood of infinity) Ryα = (My − αI)−1 and is defined, for an α
with n distinct pre-images, by (see [68, Equation 3-4])

Ryαf(u) = f(u)
y(u)− α −

n∑
j=1

f(u(j))
dy(u(j))

ϑ[ζ̃](u(j) − u)
ϑ[ζ̃](0)E(u(j), u)

, (3.6)

where y(u(j)) = α for j = 1, . . . , n. Ryα is indeed the resolvent of My by
Theorem 6.1 below, since Ryα = M

1
y−α (in the case that y has only simple poles

a direct calculation can be done). Furthermore, the resolvent operators satisfy
the resolvent identity (see [10, Theorem 4.2])

Ryα −R
y
β = (α− β)RyαR

y
β .

The model (commutative two-operator) vessel is the collection (see [68, Theorem
3.1]):

VT = (My1 , My2 ; H(T ) , ΦMod , Cn ; σ1 , σ2 , γ , γ̃) , (3.7)

where ΦMod is the evaluation operator at the poles of y1 and y2 in the case
where these poles are all simple and the output determinantal representation
is the canonical determinantal representation corresponding to ζ̃ (in general,
ΦMod involves derivatives and the adjustment for the choice of the output de-
terminantal representation, see the proof of Theorem 3.6 in Section 6 below for
details). To define the mapping between the inner space H of a vessel to its
model space, we first consider the mapping, see [68, Equation 3-5],

h 7→ξ1dy1(p) + ξ2dy2(p)
ω(p) P̃ (ξ1, ξ2, p)Φ (3.8)

(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1h,

which defines a section of Ẽ (more precisely of Ẽ ⊗ O(m − 2)(−Dsing)) and is
independent of (ξ1, ξ2) ∈ C2 as long as the resolvent exists (see Proposition 3.4
below). In (3.8), h ∈ H, p ∈ X and ω(p) is the meromorphic differential (2.19)
with zeros of order (m−3) at the points of C at infinity and poles on the divisor of
singularities. P̃ (ξ1, ξ2, p) is the projection onto Ẽ(p) along Ẽ(p(2))u · · ·u Ẽ(p(m))
where p = p(1), p(2), . . . , p(m) are the m distinct points of the intersections of
the line ξ1λ1 + ξ2λ2 = ξ1y1(p) + ξ2y2(p) with the curve C. The projection P̃ is
given by (see [15, Equations 2.29]):

P̃ (ξ1, ξ2, p) = ũ×(p)ũ×l (p) ξ1σ1 + ξ2σ2

ξ1dy1(p) + ξ2dy2(p) ,
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where ũ×(p) and ũ×l (p) are the normalized sections and the left normalized
sections of Ẽ and Ẽl, respectively. The mapping in (3.8) then defines a section
of L

ζ̃
⊗∆ by pulling back according to the isomorphism (2.20) and hence (3.8)

becomes:

h 7→ ϕh(p) def= ũ×l (p)(ξ1σ1 + ξ2σ2)Φ (3.9)
(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1h.

Proposition 3.4. The mapping (3.9) to the model space is well defined and
does not depend on the choice of ξ1 and ξ2.

Proposition 3.5. The mapping to the model space (3.9) is injective if and only
if the vessel is irreducible.

Theorem 3.6. Let V be an irreducible commutative two-operator vessel. Then
V is unitary equivalent to the model vessel VT (3.7).

Since the proofs of those statements in [68] are rather sketchy, we present
the comprehensive proofs of Proposition 3.4 and Proposition 3.5 in this section
and the proof of Theorem 3.6 in Section 6 below. Notice that given a (ζ, ζ̃)-
expansive function T , we can construct the model vessel in (3.7), by taking
λ1σ2 − λ2σ1 + γ̃ any determinantal representation corresponding to ζ̃ (in par-
ticular, for the case of simple poles we can take the canonical determinantal
representation constructed explicitly in [16], see Steps 1 & 2 of the proof of
Theorem 4.4 in Section 7), and then computing the corresponding input deter-
minantal representation λ1σ2 − λ2σ1 + γ as in Remark 3.3 and Remark 6.11.

We note that two vessels sharing the same ”external data” and the same
characteristic functions are unitarily equivalent to the same model vessel VT
(3.7). Thus, we may conclude the following result.

Corollary 3.7. Any two irreducible vessels with the same E, σ1, σ2, γ and γ̃
are unitarily equivalent if and only if the pair of the associated normalized joint
characteristic functions are equal.

Corollary 3.7 has been proved in [46] by a substantially different method
using the restoration formula.
Proof of Propostion 3.4: We have to show that (3.8) is independent of the
choice of ξ1, ξ2 as long as the resolvent exists. That is, we show that

u×(p)(ξ1σ1 + ξ2σ2)Φ(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1

= u×(p)(η1σ1 + η2σ2)Φ(η1A1 + η2A2 − η1y1(p)− η2y2(p))−1.

Let us multiply on the right by the invertible operator

(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))(η1A1 + η2A2 − η1y1(p)− η2y2(p)),
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we obtain that the equality to be verified is

u×(p)(ξ1σ1 + ξ2σ2)Φ(η1A1 + η2A2 − η1y1(p)− η2y2(p))
= u×(p)(η1σ1 + η2σ2)Φ(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p)).

After opening the parentheses and cancelling equal terms this becomes

u×(p) (ξ1η2σ1ΦA2 + ξ2η1σ2ΦA1 − ξ1η2y2(p)σ1Φ− ξ2η1y1(p)σ2Φ)
= u×(p) (η1ξ2σ1ΦA2 + η2ξ1σ2ΦA1 − η1ξ2y2(p)σ1Φ− η2ξ1y1(p)σ2Φ) .

Taking everything to the left hand side we obtain that we have to verify the
equality

(ξ1η2 − ξ2η1)u×(p) (σ1ΦA2 − σ2ΦA1 − y2(p)σ1Φ + y1(p)σ2Φ) = 0.

Using the output vessel condition the left hand side equals

(ξ1η2 − ξ2η1)u×(p) (γ̃Φ− y2(p)σ1Φ + y1(p)σ2Φ)
= (ξ1η2 − ξ2η1)u×(p) (γ̃ − y2(p)σ1 + y1(p)σ2) Φ,

and this is of course zero by the definition of u×(p). �

Proof of Propostion 3.5: If h ⊥ Ĥ then clearly Φ(ξ1A1 +ξ2A2−zI)−1h = 0
for all z 6∈ spec(ξ1A1 + ξ2A2), e.g., by expanding Taylor series in z around ∞.
Therefore ϕh = 0.

Assume conversely that ϕh = 0, i.e.,

P̃ (ξ1, ξ2, p)Φ((ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1h = 0.

We proceed now as with the restoration formula for the complete characteristic
function [46, Section 10]. For any ξ1, ξ2, z such that the line ξ1λ1 + ξ2λ2 = z
intersects C in n distinct affine points, we have∑

p∈X : ξ1y1(p)+ξ2y2(p)=z

P̃ (ξ1, ξ2, p) = I,

and we conclude that if z 6∈ spec(ξ1A1 + ξ2A2) then

Φ(ξ1A1 + ξ2A2 − zI)−1h =
∑

p∈X : ξ1y1(p)+ξ2y2(p)=z

P̃ (ξ1, ξ2, p)Φ×

((ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1h = 0.

So if det(ξ1σ1 +ξ2σ2) 6= 0 (this guarantees that the line ξ1y1 +ξ2y2 = z does not
intersect C at infinity), then Φ(ξ1A1+ξ2A2−zI)−1h = 0 for z in a neighborhood
of∞, and from the power series expansion Φ(ξ1A1 + ξ2A2)mh = 0 for all n, i.e.,
h ⊥

∨∞
m=0((ξ1A1 + ξ2A2)∗)mΦ∗(E). But

Ĥ =
∞∨
m=0

((ξ1A1 + ξ2A2)∗)mΦ∗(E),
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since det(ξ1σ1 + ξ2σ2) 6= 0. This is a corollary of [46, Proposition 10.4.1]. So
h ⊥ Ĥ.

To summarize, ϕh = 0 if and only if h ⊥ Ĥ. Therefore h 7→ ϕh is injective
if and only if the vessel is irreducible. �

4. Statement of the structure theorem

Before stating the main result of this section, the counterpart of Theorem
1.1, we fix some notations and conventions which are used in the upcoming
sections.

Notation 4.1. Let y1 and y2 be real (i.e. satisfying y(p) = y(τ(p))) meromor-
phic functions of degrees n1 and n2, respectively, generating M(X) (the field of
meromorphic functions on X). Then

(A1) For α and β in Ĉ and k = 1, 2, we denote the nk pre-images on X under
yk of α and β, assumed to be all distinct, by

(
w

(l)
k

)nk
l=1

and
(
v

(t)
k

)nk
t=1

.

(A2) In the case where y1 and y2 have only simple poles, we denote by
(
p

(j)
k

)nk
j=1

the nk poles of yk where k = 1, 2.

(A3) We denote by π : p 7→ (y1(p), y2(p)) the corresponding birational embedding
of X as an irreducible affine algebraic curve C0 ⊂ C2. Its projective closure
is denoted by C ⊂ P2. Notice that π : X → C is the normalization of C.

An important property of the model operator is given in the following lemma.

Lemma 4.2. Let X be a compact real Riemann surface and let y be a mero-
morphic function on X. Let X be a reproducing kernel Hilbert space of sections
of L

ζ̃
⊗∆ (where ζ̃ ∈ Tν) analytic in an open and connected set Ω containing

the poles of y which is invariant under My. Then the model operator My is
bounded on X.

Proof: Since in a reproducing kernel Hilbert space, strong (or even weak) con-
vergence implies pointwise convergence, we see that the operator My is closed.
Hence, since My is closed and everywhere defined, then, by the closed graph
theorem, My is bounded. �

We notice the following lemma is presented in [10] in the case where X is finite
dimensional. This result determines under which conditions Ryα is the resolvent
of the model operator My. Since the model operator is bounded (Lemma 4.2)
it follows that the resolvent exists in a neighborhood of infinity and hence we
may state the following result.
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Lemma 4.3 ([10, Section 4]). Let Ω ⊆ X be an open and connected set con-
taining the poles of a meromorphic function y. Let X be a reproducing kernel
Hilbert space of sections of L

ζ̃
⊗∆ analytic in Ω. Then, for α in a neighborhood

of infinity and f ∈ X, Ryαf and Myf are well-defined analytic sections in Ω.
Furthermore, if X is invariant under My then X is invariant under Ryα and
under this condition

Ryα = (My − αI)−1.

In particular, the kernel of the resolvent operator is trivial, i.e. kerRyα = {0}.

We notice also that a simple calculation (see the proof of Step 6 of Theorem
4.4 in Section 7) shows that if X is invariant under Ryα0 then it is unvariant
under Ryα for α in a neighborhood of α0.

The main result is presented in Theorem 4.7 below. To prove Theorem 4.7,
we first state a simpler result in Theorem 4.4. It contains the counterpart of the
”if” part of Theorem 1.1 under the assumption that the meromorphic functions
y1(·) and y2(·) have only simple poles. This assumption is dropped later in
Theorem 4.7. In these statements, recall again that Tν are the real torii given
in (2.3).

Theorem 4.4. Let X be a compact real Riemann surface and let X be a repro-
ducing kernel Hilbert space of sections of L

ζ̃
⊗ ∆ ( where ζ̃ ∈ Tν) analytic in

an open and connected set Ω. We pick two meromorphic functions, y1 and y2,
with simple poles generating M(X), such that Ω contains the points above the
singular points of C and the poles of y1 and y2. Furthermore, assume that for
some α, β ∈ C in the neighborhood of infinity such that α 6= β and such that
their n pre-images lie within Ω, the following conditions hold:

(i) X is invariant under My1 and My2 .

(ii) For every choice of f, g ∈ X it holds that

〈Rykα f, g〉 −
〈
f,Rykβ g

〉
− (α− β)

〈
Rykα f,R

yk
β g
〉

=

i(α− β)
nk∑
l,t=1

f(w(l))g(v(t))
dyk(w(l))dyk(v(t))

ϑ[ζ̃](w(l) − τ(v(t)))
ϑ[ζ̃](0)E(w(l), τ(v(t)))

. (4.1)

Then the reproducing kernel of X is of the form

KX(p, q) = T (p)Kζ(p, q)T (q)∗ −K
ζ̃
(p, q) (4.2)

for some ζ ∈ Tν and where T (·) is a (ζ, ζ̃)-expansive line bundles mapping.

Remark 4.5. It easily seen that the structure identity does not depend on the
choice of the local coordinates: each summand on the right hand side of (4.1)
is well defined since ζ̃ ∈ Tν and hence ζ̃ + ζ̃ = κ + κ and since the transition
functions of the line bundle defining ∆ were chosen to be symmetric.
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Remark 4.6. One may further consider the structure identity (4.1) when α =
β. Then, the right hand side of (4.1) is interpreted as the limit. Unless specifi-
cally stated otherwise, this case is not considered below.

The comprehensive counterpart (removing the simple poles assumption and
adding the converse statement) of Theorem 1.1, in the setting of compact real
Riemann surfaces, is given below.

Theorem 4.7. Let X be a compact real Riemann surface and let X be a repro-
ducing kernel Hilbert space of sections of L

ζ̃
⊗∆ (where ζ̃ ∈ Tν).

(a) Assume that the elements of X are analytic in an open and connected set
Ω. Let y1 and y2 be two meromorphic functions generating M(X), such
that Ω contains the points above the singular points of C and contains
the pre-images under (y1, y2)of some (β0

1 , β
0
2) ∈ R2. Furthermore, we

assume that X is invariant under Ry1
β0

1
and Ry2

β0
2
, and for some αk, βk ∈ C

in a neighborhood of β0
k, such that αk, βk 6= β0

k, αk 6= βk, k = 1, 2, the
structure identity (4.1) holds. Then, the reproducing kernel of X is of the
form

KX(p, q) = T (p)Kζ(p, q)T (q)∗ −K
ζ̃
(p, q) (4.3)

for some ζ ∈ Tν and where T (·) is a (ζ, ζ̃)-expansive line bundles mapping.

(b) Conversely, let T be a (ζ, ζ̃)-expansive mapping and assume that X has
a reproducing kernel of the form (4.3). Then all the elements of X are
analytic on ΩT (the region of regularity of T ). Furthermore, for any y(·),
a real meromorphic function on X such that all its poles are contained in
ΩT , X is My–invariant and the structure identity (4.1) holds. 3

Note that Theorem 4.7 shows in fact that if the kernel (4.3) is positive, then
T admits a meromorphic extension to X \XR, see Section 7.

In the finite dimensional case, it has been proved [10, Section 3] that T (·)
has the form of a finite Blaschke product on a compact Riemann surface, that
is, a finite product of the Blaschke factors

ba(u) = E(u, a)
E(u, a) exp

(
−2π(a− a)tY u

)
.

The proofs of Theorems 4.4 and 4.7 are presented in Section 7. We now give
the outline of the ”only if” part of the proof of Theorem 4.4. We start with the
observation that by Lemma 4.3 the kernels of the operators Ry1

α and Ry2
β are

trivial and we have

Ry1
α = (My1 − αI)−1, Ry2

β = (My2 − βI)−1. (4.4)

3 A sign difference between the characteristic functions (1.4) and (2.14), causes a difference
in the statements of Theorem 1.1 and Theorem 4.7.
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Then one proceeds as follows: we start by presenting and constructing a natural
two-operator vessel embedding the operators My1 and My2 and then we follow
the next steps:

(Step 1) Prove that the colligation conditions for My1 and My2 are equivalent to
the structure identities for y1 and y2, respectively.

(Step 2) Show that the output vessel condition holds.

(Step 3) Construct the matrix γ such that the input vessel condition holds.

(Step 4) Prove that, in our setting, the mapping (3.9), between the inner space of
the vessel to the model space, is the identity mapping.

(Step 5) Present the reproducing kernel in terms of the joint characteristic function.

(Step 6) Show that the input and output determinantal representations are fully
saturated.

(Step 7) Conclude, by the reproducing kernel Hilbert space properties, that the
reproducing kernel has the desired structure (4.2).

5. Subspaces of H2
ζ̃

and a version of Beurling’s Theorem

In this section, we present three versions of Beurling’s theorem on finite
bordered Riemann surfaces. For a short survey and related previous results, see
Section 1.2.

Let S be an open Riemann surface so that S ∪ ∂S is a finite bordered
Riemann surface of genus gS whose boundary consists of k ≥ 1 connected
components, denoted by X0, . . . , Xk−1. The double of S is a compact Rie-
mann surface X with a natural antiholomorphic involution τ , turning X into a
compact real Riemann surface of genus g = 2gS + k − 1. The boundary ∂S
coincides with the set of fixed points of τ on X (denoted by XR). Furthermore,
X is a compact real Riemann surface of dividing type since X \ XR contains
two connected components X− = S and X+. 4

As discussed in [9, Section 2], in a more general context, a flat unitary line
bundle on S ∪ ∂S can be uniquely extended to a flat unitary line bundle on
X such that certain symmetry properties are fulfilled, more precisely, to a line
bundle L

ζ̃
where ζ̃ ∈ T0.

Let now L
ζ̃

where ζ̃ ∈ T0 be a flat unitary line bundle on X and let ∆
be a square root of the canonical line bundle as in Section 2.1. Then, the
corresponding Hardy space consists essentially of sections of the line bundle

4The usual convention is X+ = S , but X− = S is more convenient for us since with
our choice of notation the characteristic function is contractive in the lower half plane, cf.
Footnote 3.
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L
ζ̃
⊗∆ analytic on S and satisfying (in the sense of non tangential boundary

values)
k−1∑
j=0

∫
Xj

f(p)∗f(p) <∞,

it becomes a Hilbert space equipped with the inner product

〈f, g〉 = 2π
k−1∑
j=0

∫
Xj

g(p)∗f(p).

See [9] for the precise definitions. Following the classical modification of the
inner product in H2, also here, for the sake of simplicity, the inner product is
multiplied by 2π and hence the reproducing kernel is − ϑ[ζ̃](τ(w)−u(j))

iϑ[ζ̃](0)E(u(j),τ(w))
and not

multiplied by 1
2π (as in [9]). To simplify notations, we set H2

ζ̃
= H2(L

ζ̃
⊗∆, X−).

Before turning to the main theorem, let us recall the definition of dividing
functions on a compact real Riemann surface.

Definition 5.1. A real meromorphic function y on a compact real Riemann
surface X is dividing if u ∈ XR if and only if y(u) ∈ R.

It is easy to see that if y is a dividing function on a compact real Riemann
surface X, then X is of dividing type and y maps X+ onto either the upper or
the lower half-plane; we will always assume that y(X+) = C+. A known result
regarding dividing functions is presented below. However, we note that only the
first part is used in the sequel.

Proposition 5.2 ([3, 4], [25, 26] and [60, Proposition 5.2]). Let y be a divid-
ing function on X. Then y has only real simple poles and simple zeros and
its residues at the poles, with respect to a real local coordinate with positive
orientation, are negative. Conversely, if X is of dividing type and y is a real
meromorphic function on X with simple real poles and negative residues with
respect to positive real local coordinate, then y is dividing.

For more information about dividing functions, see also [29]. In particular,
for any compact Riemann surface X of dividing type, there always exists a pair
of dividing functions that generates M(X), see also [40] for a far reaching high
dimensional generalization.

We now turn to state the first version of Beurling’s theorem on finite bor-
dered Riemann surfaces.

Theorem 5.3 (Beurling’s Theorem for Finite bordered Riemann surfaces: ver-
sion I). Let S be a finite bordered Riemann surface and let X be its double.
Let ζ̃ ∈ T0, let H2

ζ̃
be the corresponding Hardy space on X− and let y1 and y2

be dividing functions on X generating M(X). Furthermore, assume that for
H ⊆ H2

ζ̃
the following conditions hold:
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1. H is a closed subspace of H2
ζ̃

and is invariant under the multiplication
operators M 1

y1(·)−α
and M 1

y2(·)−α
for every α in the lower half-plane C−.

2. The elements of H⊥ (the orthogonal complement of H) have analytic ex-
tensions with bounded point evaluations in a connected neighborhood of the
poles of y1 and y2 and of the pre-images of the singular points of C (see
Notation 4.1 (A3)).

Then H is of the form
H = TH2

ζ ,

where T is a (ζ, ζ̃)-inner function for some ζ ∈ T0.

Notice that by Proposition 3.2, ζ, ζ̃ ∈ T0 implies that if T is (ζ, ζ̃)-expansive
on X then it is contractive on X− = S and thus admits non-tangential bound-
ary values almost everywhere on XR = ∂S . We say that T is (ζ, ζ̃)-inner if the
non-tangential boundary value is of absolute value one almost everywhere on
∂S .

We note that the operator Mf denotes the conventional multiplication oper-
ator by a function f while My, as before, denotes the model operator. Further-
more, for α ∈ C− and y a dividing function, the operator M 1

y(u)−α
is well-defined

on H2
ζ̃
. This follows since α ∈ C+ and therefore the function 1

y(u)−α is mero-
morphic on X and analytic in S ∪ ∂S . Hence, M 1

y(u)−α
is bounded and sends

H2
ζ̃

to H2
ζ̃
.

Before heading to the proof, we present several preliminary results. Our
first goal is to show that the structure identity (4.1) holds for all elements in
H2
ζ̃
. We start with the following result and we recall the proof for the sake of

completeness.

Lemma 5.4 ([10, Theorem 4.3]). Let α ∈ C have n distinct pre-images with
respect to a real meromorphic function y and let ζ̃ ∈ J(X) such that θ(ζ̃) 6= 0.
Then the Cauchy kernels K

ζ̃
(·, w) are the eigenvectors of the resolvent operator

Ryα with eigenvalues 1
y(w)−α

.

Proof: We apply the resolvent operator Ryα (3.6) on K
ζ̃
(·, w). Then, a direct

computation, using the collection formula [10, Lemma 4.1], yields the following
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identity

(
RyαKζ̃

(·, w)
)
(v) =

K
ζ̃
(v, w)

y(v)− α −
n∑
j=1

K
ζ̃
(u(j), w)
dy(u(j))

ϑ[ζ̃](u(j) − v)
ϑ[ζ̃](0)E(u(j), v)

=
K
ζ̃
(v, w)

y(v)− α −
−1
i

n∑
j=1

1
dy(u(j))

ϑ[ζ̃](τ(w)− u(j))
ϑ[ζ̃](0)E(τ(w), u(j))

ϑ[ζ̃](u(j) − v)
ϑ[ζ̃](0)E(u(j), v)

=
K
ζ̃
(v, w)

y(v)− α −
−ϑ[ζ̃](τ(w)− v)
iϑ[ζ̃](0)E(τ(w), v)

(
1

y(v)− α −
1

y(w)− α

)

=
K
ζ̃
(v, w)

y(v)− α −Kζ̃
(v, w)

(
1

y(v)− α −
1

y(w)− α

)

= 1
y(w)− α

K
ζ̃
(v, w).

�
Using the preceding lemma, we may conclude and prove that the structure
identity holds on a dense subset of H2

ζ̃
.

Lemma 5.5. Let α, β ∈ C−. Then the structure identity (4.1) holds on the
linear span of Cauchy kernels inside H2

ζ̃
.

Proof: Since y is dividing, it maps X+ to C+ and X− to C−. Thus, for
α, β ∈ C−, their pre-images are in X−. Hence, for all f ∈ H2

ζ̃
, Ryαf and Ryβf

are well-defined analytic sections of L
ζ̃
⊗∆ on X−.

It is enough to verify that (4.1) holds on a pair of (minus) kernels functions
f(u) = K

ζ̃
(u, v) and g(u) = K

ζ̃
(u, v), where w, v ∈ X−. Then, starting with the

left hand side of (4.1) and using Lemma 5.4, we compute separately the three
components. The first two components, using Lemma 5.4, are given by:〈

RyαKζ̃
(u,w),K

ζ̃
(u, v)

〉
= −1
y(w)− α

〈
K
ζ̃
(u,w),−K

ζ̃
(u, v)

〉
(5.1)

= −1
y(w)− α

K
ζ̃
(v, w),

and similarly, 〈
K
ζ̃
(u,w), RyβKζ̃

(u, v)
〉

= −1
y(v)− β

K
ζ̃
(v, w). (5.2)

The third element, applying Lemma 5.4 once again, is(
α− β

) 〈
RyαKζ̃

(u,w), RyβKζ̃
(u, v)

〉
= α− β
y(w)− α

〈
K
ζ̃
(u,w), RyβKζ̃

(u, v)
〉

(5.3)

=−
(α− β)K

ζ̃
(v, w)

(y(w)− α)(y(v)− β)
.
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Summing all three components together, (5.1), (5.2) and (5.3), one may con-
clude:

〈Ryαf, g〉−
〈
f,Ryβg

〉
− (α− β)

〈
Ryαf,R

y
βg
〉

= (5.4)

=−K
ζ̃
(v, w)

(
1

y(w)− α
− 1
y(v)− β

− α− β
(y(w)− α)(y(v)− β)

)

=−K
ζ̃
(v, w) y(v)− y(w)

(y(w)− α)(y(v)− β)
.

On the other hand, the right hand side (we use the notation RHS) of (4.1) can
be simplified by using [10, Lemma 4.1] twice. The first part of the calculation
is:

RHS =i(α− β)
n∑

l,t=1

K
ζ̃
(w(l), w)K

ζ̃
(v(t), v)

dy(w(l))dy(v(t))
ϑ[ζ̃](w(l) − τ(v(t)))
ϑ[ζ̃](0)E(w(l), τ(v(t)))

=−
n∑
t=1

K
ζ̃
(v(t), v)

dy(v(t))

n∑
l=1

α− β
dy(w(l))

ϑ[ζ̃](τ(w)− w(l))
ϑ[ζ̃](0)E(τ(w), w(l))

ϑ[ζ̃](w(l) − τ(v(t)))
ϑ[ζ̃](0)E(w(l), τ(v(t)))

=i(α− β)
(

1
β − α

− 1
y(w)− α

)
n∑
t=1

(
K
ζ̃
(v(t), v)

dy(v(t))

)
K
ζ̃
(w, τ(v(t)))

=i
(

1 + α− β
y(w)− α

)
n∑
t=1

1
dy(v(t))

ϑ[ζ̃](τ(v)− v(t))
ϑ[ζ̃](0)E(τ(v), v(t))

ϑ[ζ̃](v(t) − w)
ϑ[ζ̃](0)E(v(t), w)

.

(5.5)

Using the collection formula once again, we have the following equality

−
n∑
t=1

1
dy(v(t))

ϑ[ζ̃](τ(v)− v(t))
ϑ[ζ̃](0)E(τ(v), v(t))

ϑ[ζ̃](v(t) − w)
ϑ[ζ̃](0)E(v(t), w)

=− (−i) ϑ[ζ̃](τ(v)− w)
iϑ[ζ̃](0)E(w, τ(v))

(
1

y(w)− β
− 1
y(v)− β

)

=− i
(

1
y(w)− β

− 1
y(v)− β

)
K
ζ̃
(v, w). (5.6)

Substituting (5.6) in (5.5) leads to

RHS =i
(

1 + α− β
y(w)− α

)
i

(
1

y(w)− β
− 1
y(v)− β

)
K
ζ̃
(v, w)

=− y(v)− y(w)
(y(v)− β)(y(w)− α)

K
ζ̃
(v, w),
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as in (5.4). �

Moreover, using Lemma 5.5, we show below that the operator Ryα is a
bounded operator on H2

ζ̃
.

Lemma 5.6. Let α ∈ C− and let y be a dividing function. Then the resolvent
operator Ryα is a well-defined bounded operator on H2

ζ̃
.

Proof: Using Lemma 5.5, the structure identity (4.1) holds for any linear com-
bination of Cauchy kernels. We use the structure identity in order to prove the
boundedness of Ryα. In (4.1), we choose f = g to be a linear combination of
Cauchy kernels and we set β = α ∈ C−. Then we have:

Im 〈Ryαf, f〉 − Im (α) ‖Ryαf‖2 = (5.7)

iIm (α)
n∑

l,t=1

f(v(l))f(v(t))
dy(v(l))dy(v(t))

ϑ[ζ̃](v(l) − τ(v(t)))
ϑ[ζ̃](0)E(v(l), τ(v(t)))

.

The right hand side of Equation (5.7), in view of Remark 4.5, does not depend
on the local coordinates choice. As a result, we deduce from (5.7) the following
inequality:

‖Ryαf‖2 ≤ Cα ‖Ryαf‖ ‖f‖+Dα‖f‖2, (5.8)

for some constants Cα and Dα (depending only on α); we use here the fact that
the point evaluations on H2

ζ̃
are bounded. The inequality (5.8) is true for any

f in a dense subset of H2
ζ̃
. Hence, dividing by ‖f‖2 and taking the supremum

over f implies that the operator Ryα is bounded on this dense subspace and
therefore extends to a bounded operator on H2

ζ̃
. We denote the extension by T

and we see that Tf(p) = Ryαf(p) for all f ∈ H2
ζ̃

and all p ∈ X− again by the
boundedness of the point evaluations.

�

Combining the last two results, Lemma 5.5 and Lemma 5.6, we conclude that
since Ryα is bounded and since the structure identity holds on a dense subset,
the structure identity holds in H2

ζ̃
.

Corollary 5.7. Let α, β ∈ C− and let y be a dividing function on a compact
real Riemann surface X. Then the structure identity (4.1) holds in H2

ζ̃
.

The link between Ryα-invariant subspaces and subspaces which are invariant
under multiplication operators is illustrated in the following lemma.

Lemma 5.8. Let H be a subspace of H2
ζ̃

and α ∈ C−. Then H is Ryα-invariant if
and only if the orthogonal complement H⊥ is invariant under the multiplication
by 1

y(·)−α .
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Proof: Since Ryα is bounded by Lemma 5.6, it is sufficient to prove that
(Ryα)∗f = M 1

y(·)−α
f for f in H2

ζ̃
, where M is the multiplication operator. One

may obtain the following〈
K
ζ̃
(·, v), RyαKζ̃

(·, w)
〉

= −
〈

(Ryα)∗K
ζ̃
(·, v),−K

ζ̃
(·, w)

〉
(5.9)

= −
(

(Ryα)∗K
ζ̃
(·, v)

)
(w).

On the other hand, using Lemma 5.4, we have〈
K
ζ̃
(·, v), RyαKζ̃

(·, w)
〉

= −
〈
K
ζ̃
(·, v),− 1

y(w)− α
K
ζ̃
(·, w)

〉

= − 1
y(w)− αKζ̃

(w, v). (5.10)

Hence, combining (5.9) and (5.10) yields the desired result for f = K
ζ̃
(·, v), a

(minus) kernel function, and hence for all f in H2
ζ̃
. �

To apply Theorem 4.4, one needs to show that the structure identity holds
also on ∂S in a neighborhood of the poles of y1 and y2. This point is proved
in Lemma 5.9 below.

Lemma 5.9. Let X be a compact real Riemann surface of dividing type, let
y(·) be a dividing function on X and let H2

ζ̃
be the Hardy space corresponding to

ζ̃ ∈ T0. Furthermore, we assume that H is a closed subspace which is invariant
under M 1

y(u)−α
where α ∈ C− and the elements of H⊥ have analytic extensions

in a neighborhood of the poles of y(·). Then:

1. The subspace H⊥ is Ryα0
-invariant for any α0 ∈ R in a neighborhood of

infinity.

2. The structure identity may be extended to α0 6= β0 in R in a neighborhood
of infinity (see Remark 4.6, for the case where α0 = β0 ∈ R).

Proof: We fix α0 ∈ R and let f be an element of H2
ζ̃

that has an analytic
continuation in the neighborhood of the poles of y and of the fiber of y above
α0, so that Ryα0

f is a well defined analytic section of L
ζ̃
⊗ ∆ on X−. First,

we show explicitly that Ryα0
f belongs to H2

ζ̃
. The strategy is to divide the

integration path XR(ε) (a contour approximating XR, see [9] for the precise
details) into two parts. The first is over the set of arcs near the pre-images
of α0 (where f can be continued analytically). We denote the first integration
path by Xα0

R (ε). The second path, Xα0
R (ε)c def= XR(ε)\Xα0

R (ε), is contained in a
compact set where 1

y(u)−α0
can be bounded. Namely, we examine

sup
ε>0

∫
X
α0
R (ε)

∣∣Ryα0
f
∣∣2 + sup

ε>0

∫
X
α0
R (ε)c

∣∣Ryα0
f
∣∣2 . (5.11)
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We note that since f has analytic continuation in a neighborhood of the fiber
above α0, Ryα0

f is holomorphic on this neighborhood and hence, in particular,
continuous there. Thus the first summand is bounded.

On Xα0
R (ε)c, 1

y(u)−α0
is bounded from above by some constant 0 < M and

the second summand of (5.11) becomes

sup
ε>0

∫
X
α0
R (ε)c

∣∣Ryα0
f
∣∣2 = sup

ε>0

∫
X
α0
R (ε)c

∣∣∣∣∣∣ f(u)
y(u)− α −

n∑
j=1

hj
ϑ[ζ](u(j)

0 − u)
ϑ[ζ](0)E(u(j)

0 , u)

∣∣∣∣∣∣
2

≤ sup
ε>0


√√√√∫

X
α0
R (ε)c

∣∣∣∣ f(u)
y(u)− α0

∣∣∣∣2 +

√√√√√∫
X
α0
R (ε)c

∣∣∣∣∣∣
n∑
j=1

hj
ϑ[ζ](u(j)

0 − u)
ϑ[ζ](0)E(u(j)

0 , u)

∣∣∣∣∣∣
2


2

≤ sup
ε>0

M
√∫

X
α0
R (ε)c

|f(u)|2 +

√√√√√∫
X
α0
R (ε)c

∣∣∣∣∣∣
n∑
j=1

hj
ϑ[ζ](u(j)

0 − u)
ϑ[ζ](0)E(u(j)

0 , u)

∣∣∣∣∣∣
2


2

,

(5.12)

where the coefficients (hj)nj=1 depend on the pre-images of α0. The statement

follows since f belongs to H2
ζ̃

and furthermore ϑ[ζ](u(j)
0 −u)

ϑ[ζ](0)E(u(j)
0 ,u)

is bounded on a

compact set containing Xα0
R (ε)c. Thus, f ∈ H⊥ implies that Ryα0

f belongs to
H2
ζ̃
.

In order to continue and conclude that H⊥ is invariant under Ryα0
, we fix

a sequence (αj)∞j=1 ⊆ C− converging to α0 ∈ R in a neighborhood of infinity
and we show that Ryαjf converges to Ryα0

f in norm. Also here, we divide the
integration path, now on XR, into two parts:

lim
i→∞

∣∣∣∣Ryα0
f −Ryαif

∣∣∣∣2
H2

ζ̃

= lim
i→∞

∫
X
α0
R (0)

∣∣Ryα0
f(u)−Ryαif(u)

∣∣2 +

lim
i→∞

∫
X
α0
R (0)c

∣∣Ryα0
f(u)−Ryαif(u)

∣∣2 . (5.13)

The second summand tends to zero due to a similar analysis as in (5.12). To
show that the first summand also vanishes, we note that in general, for any
section f analytic on a neighborhood U of the fiber of y over α0 (assuming the
fiber is unramified), (Ryαf)(p) is jointly analytic in (α, p) ∈ {|α− α0| < ε} × U
(for sufficiently small ε). The analyticity in p follows immediately from the
definition of Ryα. The analyticity in α follows by the following argument. We
examine (Ryαf)(p) as a function of α, where p = p0 is fixed. The first term in
(Ryαf)(p0), that is f(p0)

y(p0)−α , is meromorphic with a simple pole at α = y(p0).
On the other hand, also the second term, containing the summation of the
Cauchy kernels, has a simple pole at α = y(p0). Furthermore, both terms have
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the same residue at the simple pole y(p0) and hence their subtraction yields a
holomorphic function of α. It then remains to apply the Hartog’s Theorem, see
for instance [38, Theorem 2.2.8], to conclude the local joint-analyticity property
of (Ryαf)(p).

As a consequence, Ryαif(p) converges to Ryα0
f(p) uniformly in p on a neigh-

borhood of each u
(j)
0 in the fiber over α0, in particular on a small arc of

the boundary near u(j)
0 and so the second limit in (5.13) is also zero. Hence

‖Ryαif −R
y
α0
f‖2

H2

ζ̃

converges to zero, i.e., Ryαif converges to Ryα0
f in H2

ζ̃
. Since

we know that for any f ∈ H⊥, Ryαif ∈ H⊥ for all i ∈ N, we conclude that
Ryα0

f ∈ H⊥.
To show that (2) holds, we choose a sequence (βj)j∈N ⊂ C− converging to

β0 ∈ R in a neighborhood of infinity such that α0 6= β0. According to Lemma
5.7, the structure identity (4.1) holds for any pair of elements of the sequences
(αj)j∈N and (βj)j∈N. Considering j →∞, we obtain the following identity:

lim
j→∞

( 〈
Ryαjf, g

〉
−
〈
f,Ryβjg

〉
− (αj − βj)

〈
Ryαjf,R

y
βj
g
〉 )

=

lim
j→∞

i(αj − βj) n∑
l,t=1

f(w(l)
j )g(v(t)

j )

dyk(w(l)
j )dyk(v(t)

j )

ϑ[ζ̃](w(l)
j − τ(v(t)

j ))

ϑ[ζ̃](0)E(w(l)
j , τ(v(t)

j ))

 .

(5.14)

The limit on the right hand side exists due to the analytic continuation to
neighborhoods of the fibers over α0 and β0. Since Ryαj converges to Ryα0

and
Ryβj converges to Ryβ0

in the operator norm, the limit on the left hand side
coincides with the corresponding value for the operators Ryα0

and Ryβ0
.

To complete the proof, by continuity, the limit on the right hand side of
(5.14) exists also for α0 = β0 ∈ R, and we take the expression on the right hand
side as its definition, see Remark 4.6. �

As we have gathered all the required preliminary results, we may present
the proof of the first version of Beurling’s theorem.

Proof of Theorem 5.3: Let y1(·) and y2(·), as in the statement, be dividing
functions on X. Thus, using Proposition 5.2, the poles of y1 and y2 are real and
simple.

Applying Lemma 5.8, the assumption that H is invariant under the multipli-
cation operators M 1

y1(u)−α
and M 1

y2(u)−β
is translated to: H⊥ is invariant under

the operators Ry1
α and Ry2

β where α, β ∈ C−. By Corollary 5.7, the structure
identity automatically holds in H2

ζ̃
for all α, β ∈ C−.

By assumption, the elements of H⊥ have analytic extensions with bounded
point evaluations to a (connected) neigborhood of the poles of y1 and y2 and
of the preimages of the singular points of C. Then, using Lemma 5.9, H⊥ is
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invariant under the bounded operator Rykα where α ∈ R in a neighborhood of
infinity. Furthermore, the structure identity can be extended to α, β ∈ R in a
neighborhood of infinity.

Combining all the observations above, we can apply Theorem 4.7 to the
orthogonal complement H⊥. Thus, H⊥ is a reproducing kernel Hilbert space
with reproducing kernel of the form

KH⊥(p, q) = T (p)Kζ(p, q)T (q)∗ −K
ζ̃
(p, q),

where T is (ζ, ζ̃)-expansive function for some ζ ∈ T0. By Proposition 3.2, T is
contractive on X−, and since −Kζ and −K

ζ̃
are the reproducing kernels of H2

ζ

and of H2
ζ̃
, respectively, it follows by the general theory of reproducing kernel

spaces, see [21, 56], that H⊥ is contractively included in H2
ζ̃

and its generalized
orthogonal complement is TH2

ζ which is likewise contractively included in H2
ζ̃

with respect to the range norm. On the other hand, we know that H⊥ is isomet-
rically included in H2

ζ̃
therefore so is its generalized orthogonal complement, and

hence the multiplication by T is an isometry from H2
ζ to H2

ζ̃
and so T is inner. �

The natural condition for a Beurling Lax theorem using de Branges structure
theorem, see [56], is to assume that the invariant subspace is a contractively
included subspace of the Hardy space. However, in our approach, we note that
the structure identity does not automatically hold in a contructively included
subspace of the Hardy space and Lemma 5.8 does not hold either when replacing
H⊥ by the Brangesian generalized orthogonal complement. Thus, we add these
assumptions in order to state a Beurling’s theorem when T is contractive instead
of inner.

Theorem 5.10 (Beurling’s Theorem for Finite bordered Riemann surfaces:
version II). Let S be a finite bordered Riemann surface where X is its double
and let y1 and y2 be dividing real meromorphic functions generating M(X). Let
H be a contractively included subspace of the Hardy space H2

ζ̃
on S = X− such

that its generalized orthogonal complement H[⊥] is invariant under Ry1
α and Ry2

α

for all Im (α) < 0 and the structure identity holds in H[⊥]. Furthermore, we
assume that the elements of H[⊥] have analytic extensions with bounded point
evaluations to a connected neigborhood of the poles of y1 and y2 and of the
preimages of the singular points of C. Then H is of the form

H = TH2
ζ ,

for some (ζ, ζ̃)-contractive mapping T .

The Beurling’s theorems in [26] and [72] assume that H is invariant under
all multiplication operators belonging to some algebra of functions (in [72],
the collection of functions analytic inside a multiply connected domain R and
continuous in R). Hence, we are motivated to formulate the following version
of Beurling’s theorem.
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Corollary 5.11 (Beurling’s Theorem for Finite bordered Riemann surfaces:
version III). Let S be a finite bordered Riemann surface and let X be its double.
Let H be a closed subspace of the Hardy space H2

ζ̃
on S = X− corresponding

to ζ̃ ∈ T0 such that the following conditions hold:

1. H is invariant under the multiplication operators by all functions in the
algebra of functions analytic in S and continuous on S ∪ ∂S .

2. The elements of H⊥ have analytic extensions with bounded point evalua-
tions in an open neigborhood of a relatively open set U ⊆ ∂S .

3. There exists a pair of dividing functions y1 and y2 such that their poles
and the pre-images of the singular points of the corresponding algebraic
curve belong to U .

Then H is of the form
H = TH2

ζ ,

where T is a (ζ, ζ̃)-inner function for some ζ ∈ T0.

Proof: The functions f1(u) = 1
y1(u)−α and f2(u) = 1

y2(u)−β
(where α, β ∈ C−)

are analytic in S and continuous on S ∪ ∂S . Therefore, by assumption, H is
invariant under the multiplications by f1 and f2. It remains to apply Theorem
5.3. �

We note that every dividing function has poles on every boundary component
and hence a necessary condition is that U∩Xj 6= ∅ for j = 0, . . . , k. It is plausible
to assume that it is a sufficient condition for the existence of the required pair
of dividing functions, see [25] for related results in the case of planar domains.

6. Compressed multiplication operators on compact real Riemann
surfaces

We begin by giving an alternative definition of the compressed multiplication
operator My which is applicable also when y has arbitrary poles. Let S be a
finite set of points in X. We denote by MS(L

ζ̃
⊗∆) the vector space of germs

of meromorphic sections of L
ζ̃
⊗∆ in a neighborhood of S and with poles only

in S. Then, we consider the decomposition

MS(L
ζ̃
⊗∆) = MS,+(L

ζ̃
⊗∆)⊕MS,−(L

ζ̃
⊗∆),

where MS,+(L
ζ̃
⊗∆) denotes the set of germs of holomorphic sections of L

ζ̃
⊗∆

in a neighborhood of S while MS,−(L
ζ̃
⊗ ∆) is the set of global meromorphic

sections of L
ζ̃
⊗∆ with poles in S. This decomposition is indeed a direct sum

decomposition, since by assumption L
ζ̃
⊗∆ has no global non-zero holomorphic

section and therefore

MS,+(L
ζ̃
⊗∆) ∩MS,−(L

ζ̃
⊗∆) = {0}.
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The sum of the two subspaces equals all of MS(L
ζ̃
⊗∆) since there exist global

meromorphic sections with any prescribed principal parts, see (6.2) below. For
f ∈MS(L

ζ̃
⊗∆) we write the corresponding decomposition as f+ + f−. We fix

a real meromorphic function y such that all the poles of y belong to S and we
define

My : MS,+ 7→MS,+

f(p) 7→ (y(p)f(p))+.

In other words, My is given by

(Myf)(u) = y(u)f(u) + cf (u).

Here f is a holomorphic section of L
ζ̃
⊗∆ in a neighborhood of S and cf is the

unique global meromorphic section with divisor of poles contained in the divisor
of poles of y, such that y(u)f(u) + cf (u) is analytic at the poles of y.

It follows immediately from the properties of the Cauchy kernel that in the
case when y has only simple poles the new definition of My coincides with the
definition of the model operator in (3.5). It also follows that we can write the
model operator when y has also non-simple poles as

Myf(u) =y(u)f(u)+

i

n∑
m=1

sm∑
l=1

sm∑
j=l

am,−j
f (j−l)(p(m))

(j − l)!(l − 1)!K
(0,l−1)
ζ̃

(u, τ(p(m))), (6.1)

where the set of the poles of y and their orders are given by
(
p(m))n

m=1 and
(sm)nm=1, respectively, and where am,−j is the −j-th Laurent coefficient of y at
p(m) (see also [10, Equation 4.21]). Here (and in the rest of this section) we use
the notation

K
(j,l)
ζ̃

(u,w) def= ∂j+l

∂uj∂wl
K

(j,l)
ζ̃

(u,w), (6.2)

where the derivatives are computed with respect to some local coordinates (in
coordinate free terms, this is a higher order connection for the corresponding line
bundles). In particular, K(0,l)

ζ̃
(·, w) is a global meromorphic section of L

ζ̃
⊗∆

which has a pole of order l+1 at τ(w) with the principal part, in terms of a local
coordinate t centered at τ(w) used to compute the derivative in (6.2), given by
− l!
itl+1 .

In order to prove Theorem 6.2 below, we first present some preliminary re-
sults. The next important result appeared partially in [10, Theorem 4.10]. Here,
we present a more general statement with a comprehensive and an alternative
proof.

Theorem 6.1. Let S be a finite set of points on X and let A be the algebra
of meromorphic functions on X whose poles are contained in S. The mapping
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y 7→ My, where y is a meromorphic function on X whose poles are contained
in S, is an algebra homomorphism from A into the algebra of linear operators
on the vector space MS,+(L

ζ̃
⊗∆).

In other words, for a two-variables polynomial g(x1, x2) and pair of mero-
morphic functions y1 and y2 with poles in S, the model operator satisfies

Mg(y1,y2) = g(My1 ,My2).

In particular, My1 y2 = My1My2 and My1+y2 = My1 +My2 .

Proof of Theorem 6.1: Let f = f+ be an element in MS,+(L
ζ̃
⊗∆), then,

by definition, My1+y2f = My1f+My2f . We set My1My2f = h+ = (h+ +h−)+
and we show that h+ = My1 y2f . We also set y2 · f+ = g+ + g− and then we
have

h+(p) =y1(p)g+(p)− h−(p)
=y1(p)

(
y2(p)f(p)− g−(p)

)
− h−(p),

and hence
y1(p)y2(p)f(p) = h+(p) +

(
h−(p) + y1(p)g−(p)

)
.

However, h−(p) + y1(p)g−(p) is a global meromorphic section with poles in S,
so
(
y1(p)y2(p)f(p)

)
+ = h+(p) and My1y2f = h+ follows. �

The main result in this section is given in the next theorem.

Theorem 6.2. Let y1 and y2 be a pair of meromorphic functions on a compact
real Riemann surface X. Let us assume that the structure identity, given in
(4.1), holds in a reproducing kernel Hilbert space X for a pair of meromorphic
functions y1 and y2. Then, the structure identity holds for all functions in the
algebra of meromorphic functions generated by y1 and y2.

We start with the following technical result required later in the proof of
Proposition 6.6.

Lemma 6.3. Let a, b, d ∈ N such that 0 ≤ a, b < d and let c0, . . . , cd be a
sequence of real numbers such that c0 6= 0. Then, the equality

lim
x,y→0

d−1−a∑
j=0

cd−(j+a+1)

b!j!
∂j+b

∂xj∂yb

∑d−1
q=0 cq

∑d−q
t=1 x

q+t−1yd−t∑d
p=0 cpx

p
∑d
p=0 cpy

p
= δb,a (6.3)

holds, where δ stands for the Kronecker delta.

Proof: Along the proof, we use the notations f(x) def=
∑d
p=0 cpx

p,

g[n] def= 1
n!

dn

dxn
1

f(x)

∣∣∣∣
x=0

and h[m] def=
m∑
n=0

g[n]g[m− n].
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According to Leibniz product rule, the following identity holds

lim
x,y→0

∂j+b

∂xj∂yb

∑d−1
q=0 cq

∑d−q
t=1 x

q+t−1yd−t

f(x) f(y) =
j∑

k=0

b∑
l=0

j!g[k]
(j − k)!

b!g[l]
(b− l)!

d−1∑
q=0

cq×

lim
x,y→0

∂(j−k)+(b−l)

∂xj−k∂yb−l

d−q∑
t=1

xq+t−1yd−t.

(6.4)

The two-variable polynomial in the numerator on the LHS of (6.4) has zero
coefficients for all monomials of combined degree less than d− 1, and the same
is therefore true after multiplying it by the Taylor series of 1

f(x)f(y) . Hence, all
mixed derivatives of orders j and b such that j + b < d− 1 are zero. Since the
outer sum on the LHS of (6.3) is summed up to d− 1− a, the LHS of (6.3) is
zero whenever b < a.

We move to consider the case where a ≤ b. First, we note that
d−1∑
q=0

cq lim
x,y→0

∂(j−k)+(b−l)

∂xj−k∂yb−l

d−q∑
t=1

xq+t−1yd−t ={
(j − k)!(b− l)!c(j−k)+(b−l)−(d−1) d− 1 ≤ (j − k) + (b− l),

0 otherwise.

Here we repeat the same argument (as used in the b < a case), we note that
if j < d − b − 1, the mixed derivatives on the LHS of (6.4) are again zero.
Whenever d− 1 ≤ b+ j, the RHS of (6.4) becomes

RHS = lim
x,y→0

j∑
k=0

b∑
l=0

j!b!g[k]g[l]
(j − k)!(b− l)!

∂(j−k)+(b−l)

∂xj−k∂yb−l

d−1∑
q=0

cq

d−q∑
t=1

xq+t−1yd−t

=
j+b−d+1∑
s=0

s∑
l=0

j!g[s− l]b!g[l]cj+b−d+1−s.

The last equality is the result of setting s
def= k + l. It follows from the last

observation that the LHS of (6.3) can be rewritten as follows (we just set j′ =
d− 1− a− j, b′ = b− a and m = b′ − j′):

LHS =
d−1−a∑
j=d−1−b

cd−j−a−1

j+b−d+1∑
s=0

cj+b−d+1−s

s∑
l=0

g[s− l]g[l]

=
b−a∑
j′=0

b−a−j′∑
s=0

cb−a−j′−scj′h[s]

=
b′∑
s=0

h[s]
b′∑

m=s
cm−scb′−m. (6.5)
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We note that h[s] is just the s-Taylor coefficient at zero of 1
f(x)

1
f(x) (recall that

c0 6= 0). On the other hand,
∑b′

m=s cm−scb′−m is the (b′ − s)-Taylor coefficient
at zero of f(x)f(x). Hence, (6.5) is the b′-Taylor coefficient at zero of the mul-
tiplication of f(x)f(x) and 1

f(x)
1

f(x) . The b′-Taylor coefficient of the function
identically equal to one is clearly equal to zero whenever b′ > 0, or equivalently,
when b > a and equal to 1 if b′ = 0 or b = a. Hence the claim follows. �

In the next proposition we will show that the structure identity is equivalent
to an appropriate colligation condition for the model operator. To identify
exactly the matrix appearing on the right hand side of the colligation condition,
we will need the following two technical remarks.

Remark 6.4. For each component Xi where 0 ≤ i ≤ k − 1, one may attach
a sign (−1)µi with µi = 0 or µi = 1 as a sign of an appropriate differential
(if in addition X is of dividing type and XR is given the natural orientation,
then µi = 0 for all i). Then, for any f ∈  L

ζ̃
⊗ ∆, where ζ̃ ∈ Tν and for

any p ∈ Xi we have f(τ(p) = (−1)µi+νif(p) (we set ν0 = 0). Furthermore,
signK

ζ̃
(q, q) = (−1)µi+νi where q is close to Xi on the positive side with respect

to the chosen orientation. For more details we refer to [10, Section 2].

Remark 6.5. Let y(p) be a real meromorphic function with n poles of order
s1, . . . , sn. Then, the poles of y are either real or appear as conjugate pairs
(recall that our compact real Riemann surface X is not necessarily of dividing
type and y is not necessarily dividing). We denote by

(
p(r))r

r=1 the real poles,
and by

(
p(r))r+2m

r=r+1 the m pairs of non-real poles (n = r + 2m).

Proposition 6.6. Let y be a real meromorphic function on a compact real
Riemann surface X. Let X be a reproducing kernel Hilbert space of section of
L
ζ̃
⊗∆ which is invariant under the operators Ryα, Ryβ and My for fixed α, β ∈ C.

Then the structure identity (4.1) is equivalent to the colligation condition (2.10)
for the operator My. Here Φ = Φy is the evaluation operator that maps a section
f holomorphic at the poles of y to the values of f and its Taylor coefficients of
order up to sr − 1 at p(r) where r = 1, . . . , n. σ = σy is defined by

σy =



P1

...
Pr

0 Pr+2

Pr+1 0
...

0 Pr+2m

Pr+2m−1 0

 , (6.6)

where Pr are upper-skew-triangular Hankel matrices (Hankel matrices with zero
entries below the main skew-diagonal) of sizes sr where the (γ, δ)-entry (where
γ, δ = 0, . . . , sr − 1 and γ+ δ < sr) is equal to minus the corresponding Laurent
coefficients ar,−(γ+δ+1) of y at the pole p(r), see (6.8), with P1, . . . ,Pr further
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multiplied by (−1)µi+νi , see Remark 6.4, depending on the component Xi con-
taining the corresponding real pole.

Proof: First, using the notation in (6.2), let us consider the following version
of the collection formula 5

i
(
y(v)− y(τ(w))

)
K
ζ̃
(v, w) =

n∑
r=1

sr−1∑
δ,γ=0

K
(0,γ)
ζ̃

(v, τ(p(r)))

γ! Ar;γ,δ

K
(δ,0)
ζ̃

(p(r), w)

δ! . (6.7)

Here A = Diagr=1,...,n [Ar;γ,δ]γ,δ=0,...,sr−1 is a block diagonal matrix (we will
also write Ay to indicate the dependence on the meromorphic function y when-
ever needed for clarity) with entries defined by (6.10) below.

To see that (6.7) holds, we fix w = w0 ∈ X, such that w0 /∈ P(y) and
y(w0) has n distinct pre-images. Then, both sides of (6.7) are meromorphic
sections of L

ζ̃
⊗∆ in v. Furthermore, both sides of (6.7) have poles at (p(r))nr=1

of orders (sr)nr=1, respectively, and the additional singularity on the left hand
side at v = τ(w0) is removable. We set the entries of A to be the negative
Laurent coefficients of y at (p(r))nr=1 such that both sides of (6.7) share the
same principal parts. More precisely, we use a local parameter tr centered at
p(r). We assume for later purposes that tr is real on Xi and compatible with
the chosen orientation if p(r) ∈ Xi is a real pole, and that the local coordinates
centered at complex conjugate poles are complex conjugate to each other. Then,
the expansion of y(·) at p(r) is given by

y(v) = ar,−sr tr(v)−s
r

+ . . .+ ar,−1tr(v)−1 + . . . , (6.8)

while the expansion of the Cauchy kernel K
ζ̃
(p(r), w0) is

K
ζ̃
(v, w0) =

∞∑
j=0

1
j!K

(j,0)
ζ̃

(p(r), w0)tr(v)j .

Hence, the Laurent coefficient of tr(v)−l (where 0 < l ≤ sr) of the LHS of (6.7)
is

i

sr−l∑
j=0

ar,−(l+j)
1
j!K

(j,0)
ζ̃

(p(r), w0). (6.9)

To get the coefficient of tr(v)−l on the RHS of (6.7), we recall that K(0,γ)
ζ̃

has a pole of order γ + 1 at τ(p(r)) with principal part − γ!
itr(v)γ+1 (see remark

5 We note that this generalization of the collection formula is written in terms of the
Hermitian Cauchy kernel and not in terms of the non-Hermitian kernel as in Definition 2.1
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above). We therefore set γ = l − 1 and obtain that the coefficient of tr(v)−l on
the RHS of (6.7) is

i

sr−1∑
δ=0

Ar;γ,δ

K
(δ,0)
ζ̃

(p(r), w0)

δ! .

To match this to (6.9), we take j = δ. We see that we need Ar;γ,δ = 0 for
j > sr − l, i.e., for γ + δ > sr − 1, i.e., the sr × sr matrix [Ar;γ,δ]s

r−1
γ,δ=0 is skew-

upper-triangular where for the elements on or above the main skew diagonal we
obtain i 1

δ!ar−(γ+δ+1) = i
δ!Ar;γ,δ yielding finally

Ar;γ,δ =
{
ar,−(γ+δ+1), γ + δ < sr,

0, otherwise.
(6.10)

Since, by assumption, there are no non-zero global holomorphic sections, we
may conclude that (6.7) holds for any v ∈ X.

It is convenient to use the following notations (see Lemma 4.3)

F = (My − αI)−1f and G = (My − βI)−1g.

Recall that using (4.4), F and G are the images of resolvent operators acting
on f and g, respectively. Thus, the left hand side of the structure identity (4.1)
can then be rewritten as〈

(My − αI)−1f, g
〉
−
〈
f, (My − βI)−1g

〉
−

(α− β)
〈
(My − αI)−1f, (My − βI)−1g

〉
=
〈
(My − βI)−∗ ((My)∗ −My) (My − αI)−1f, g

〉
= 〈((My)∗ −My)F,G〉 . (6.11)

We then substitute (6.7) (with v = τ(v(t)) and w = τ(w(l))) and (6.11) on the
LHS and RHS of structure identity (4.1) (multiplied by (−1)), respectively, and
we get the expression

〈(My − (My)∗)F,G〉 =− (α− β)
n∑

l,t=1

f(w(l))
dy(w(l))

K
ζ̃
(τ(v(t)), τ(w(l))) g(v(t))

dy(v(t))

=− i
n∑
r=1

sr−1∑
δ,γ=0

(
n∑
l=1

f(w(l))
dy(w(l))

K
(δ,0)
ζ̃

(p(r), τ(w(l)))
)

× Ar;γ,δ

γ!δ!

(
n∑
t=1

K
(0,γ)
ζ̃

(τ(v(t)), τ(p(r))) g(v(t))
dy(v(t))

)
.

(6.12)

Noting that y(w(l)) = α, the evaluation of f at w(l) in terms of F (an equivalent
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formula ties G and g) may be written as (see (6.1)):

f(w(l)) =(My − α)F (w(l))

=i
n∑

m=1

sm∑
k=1

sm∑
j=k

am,−j
F (j−k)(p(m))

(j − k)!(k − 1)!K
(0,k−1)
ζ̃

(w(l), τ(p(m))).

We write the first inner sum on the right hand side of (6.12), as follows:

n∑
l=1

f(w(l))
dy(w(l))

K
(δ,0)
ζ̃

(p(r), τ(w(l))) = i

n∑
m=1

sm∑
k=1

sm∑
j=k

am,−j
F (j−k)(p(m))

(j − k)!(k − 1)!

×
n∑
l=1

K
(δ,0)
ζ̃

(p(r), τ(w(l)))K(0,k−1)
ζ̃

(w(l), τ(p(m)))

dy(w(l))
.

(6.13)

Differentiating the collection formula for the function 1
y(·)−α , with simple poles

w(l), δ times with respect to v and k − 1 times with respect to w leads to

n∑
l=1

K
(δ,0)
ζ̃

(v, τ(w(l)))K(0,k−1)
ζ̃

(w(l), τ(w))

dy(w(l))
=

= i
∂δ+k−1

∂vδ∂wk−1

(
1

y(v)− α −
1

y(w)− α

)
K
ζ̃
(v, τ(w)). (6.14)

Therefore, the inner sum in (6.13) vanishes whenever p(r) 6= p(m). Furthermore,
we change the summation indices to be j′ = j − k and k′ = k − 1 and the RHS
of (6.13) becomes

i

sr−1∑
j′=0

F (j′)(p(r))
j′!

sr−1−j′∑
k′=0

ar,−(j′+1+k′)

k′! (6.15)

n∑
l=1

K
(δ,0)
ζ̃

(p(r), τ(w(l)))K(0,k′)
ζ̃

(w(l), τ(p(r)))

dy(w(l))
.

Evaluating the RHS of (6.14) at τ(w) = v = p(r), using the local parameter tr
centered at p(r) (notice that since γ, k′ ≤ sr − 1 we can omit higher order terms
in t(v) and t(w)), leads to

∂δ+k′

∂t(v)δ∂t(w)k′
1

tr(w)− tr(v)

(
tr(v)sr

ar,−sr + . . .+ (ar,0 − α)tr(v)sr −

tr(w)sr

ar,−sr + . . .+ (ar,0 − α)tr(w)sr
)
t(v)=0
t(w)=0

.
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Thus, (6.14) becomes

n∑
l=1

K
(δ,0)
ζ̃

(p(r), τ(w(l)))K(0,k′)
ζ̃

(w(l), τ(p(r)))

dy(w(l))
= −i

(
∂δ+k′

∂t(v)δ∂t(w)k′∑sr

β=1 ar,−β
∑β−1
η=0 tr(w)sr−β+ηtr(v)sr−1−η

(ar,−sr + . . .+ (ar,0 − α)tr(w)sr )(ar,−sr + . . .+ (ar,0 − α)tr(v)sr )

)
t(v)=0
t(w)=0

.

(6.16)

Substituting (6.16) in the RHS of (6.15) leads to

sr−1∑
j′=0

F (j′)(p(r))
j′!

sr−1−j′∑
k′=0

ar,−(j′+k′+1)

k′!

(
∂δ+k′

∂t(v)δ∂t(w)k′∑sr

β=1 ar,−β
∑β−1
η=0 tr(w)sr−β+ηtr(v)sr−1−η

(ar,−sr + . . .+ (ar,0 − α)tr(w)sr )(ar,−sr + . . .+ (ar,0 − α)tr(v)sr )

)
t(v)=0
t(w)=0

,

(6.17)

and, by applying Lemma 6.3 to the inner sum in (6.17) (with d = sr, a = j′,
b = δ, c· = ar,·−sr ), we conclude that (6.15) is just equal to F (δ)(p(r)). Similarly,
for the second inner sum in (6.12), we have

n∑
t=1

K
(0,γ)
ζ̃

(τ(v(t)), τ(p(r))) g(v(t))
dy(v(t))

=
n∑
t=1

K
(γ,0)
ζ̃

(τ(p(r)), τ(v(t))) g(v(t))
dy(v(t))

=G(γ)(τ(p(r))).

Finally, we move back to evaluate (6.12) and we summarize:

〈(My − (My)∗)F,G〉 =− i
n∑
r=1

sr∑
γ=0

sr∑
δ=0

G(γ)(τ(p(r)))
γ! Ar;γ,δ

F (δ)(p(r))
δ!

=− iΦy(G)∗ Per (y) Ay Φy(F )
=iΦy(G)∗ σy Φy(F ).

Here Φy returns for each pole p(r) of y the first sr − 1 Taylor coefficients, more
precisely,

Φy : f 7→ Col
r=1,...,n

Col
δ=0,...,sr−1

f (δ)(p(r))
δ! . (6.18)

Moreover, the matrix σy is equal to −Ay (defined in (6.10)) up to the blocks
permutation corresponding to conjugate poles of a real meromorphic function
y and up to the signs associated to each boundary component, see Remark 6.4.
We denote the corresponding signed permutation matrix by

Per (y) def=
(
Ry o
0 Cy

)
, (6.19)
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where

Ry = Diag
j=1,...,r

((−1)µij+νij Isj ), Cy =


0 Isr+2

Isr+1 0
. . .

0 Isr+2m
Isr+2m−1 0

 ,

and where ij is defined by p(j) ∈ Xij . �

We note that the matrix σy is selfadjoint. It is an immediate consequence
of the assumption that y is real (and hence the Laurent coefficients of y, with
appropriate choice of local coordinates, are real at real points and conjugate to
each other at complex conjugate points).

In the upcoming proofs we extensively use the following notation.

Notation 6.7. We denote by P(yk) the set of poles of yk, we set nk = |P(yk)|
for k = 1, 2 and n = |P(y1) ∪ P(y2)|. The set of poles is denoted by

(
p(m))n

m=1
and we denote by smk the order of yk at a pole p(m) (we set smk = 0 when p(m) /∈
P(yk)), for k = 1, 2 and m = 1, . . . , n. Furthermore, we denote the cumulative
order of a pole by sm = sm1 + sm2 and the maximum by ŝm = max(sm1 , sm2 ).

The operators Φ11,Φ22,Φ12 and Φ̂12 return the Taylor coefficients of a sec-
tion f of L

ζ̃
⊗∆ at the poles of P(y1)∩P(y2)c, P(y2)∩P(y1)c,P(y1)∩P(y2) and

P(y1) ∩ P(y2), up to orders of sm1 − 1, sm2 − 1, sm − 1 and ŝm − 1, respectively.
Φp

(m)

1 , Φp
(m)

2 and Φp
(m)

12 return the first sm1 , sm2 and sm Taylor coefficients of f
at p(m), respectively.

The block matrix K
ζ̃
(P1, P2) is defined byK(k1,k2)

ζ̃
(p(m1)

1 , τ(p(m2)
2 ))

k1!k2!


k1,k2


m1,m2

, p
(m1)
1 ∈ P(y1) and p

(m2)
2 ∈ P(y2),

where m1 = 1, . . . , n1, k1 = 0, . . . , sm1
1 − 1, m2 = 1, . . . , n2, k = 0, . . . , sm2

2 − 1.
Similarly, we define the row vector K

ζ̃
(u, P`):

K
ζ̃
(u, P`) = Row

m=1,...,n`
Row

k=0,...,sm
`
−1

K
(0,k)
ζ̃

(u, τ(p(m)
` ))

k! , p
(m)
` ∈ P(y`).

For the case p(m1)
1 = p

(m2)
2 , we replace

K
(k1,k2)

ζ̃

(p(m1)
1 ,τ(p(m2)

2 ))

k1!k2! in K
ζ̃
(P1, P2) by

the coefficient of t1,m1(u)k1 , where t1,m1(u) is the corresponding local coordinate,

in the Laurent series of
K

(0,k2)

ζ̃

(u,τ(p(m2)
2 ))

k2! at p(m1)
1 .

Remark 6.8. Using Notation 6.7, the model operator (6.1) can be written in
the following form

Mykf(u) = yk(u)f(u) + iK
ζ̃
(u, Pk) Ayk Φyk(f), (6.20)
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where Ayk is the block diagonal matrix with upper-skew-triangular Hankel blocks
given by (6.10).

Proof of Theorem 6.2: Using Proposition 6.6, it is sufficient to prove that
for an arbitrary two-variables polynomial g(x1, x2) with real coefficients and the
meromorphic function z = g(y1, y2), the operator Mz satisfies the appropriate
colligation condition. It is enough to show that if the colligation condition holds
for My1 and My2 then it holds for My1 +My2 and My1My2 . We let Φk = Φyk ,
see (6.18), and σk = σyk , see (6.6).

First, by summing the colligation conditions for My1 and My2 , we simply
have

My1 +My2 −My1∗ −My2∗ = iΦ∗1σ1Φ1 + iΦ∗2σ2Φ2 = iΦ∗σΦ,

where Φ = Φ11⊕Φ̂12⊕Φ22, see Notation 6.7, and σ = σ11⊕σ̂12⊕σ22. The block
diagonal matrices σ11 and σ22 contain the blocks corresponding to the Laurent
coefficients of y1 and y2 at the poles in P(y1) ∩ P(y2)c and P(y2) ∩ P(y1)c,
respectively. The matrix σ̂12 contains the summation of the Laurent coefficients
of y1 and y2 at the joint poles. As for the case where a joint pole does not
belong to P(y1 + y2) or its order is less than ŝm for y1 + y2, then the matrix σ̂12
will contain zeros at the corresponding entries. Thus, the colligation condition
for My1+y2 follows.

Our next aim is to show that the colligation condition for My1y2 holds with
σy1y2 as constructed in (6.6) and so we first examine the block entries σy1y2 ,
more precisely the Hankel matrix Ay1y2,r corresponding to the pole p(r), see
(6.10). Its (γ, δ)-entry is

Ay1y2,r;γ,δ =
k+sr∑
j=0

a1,r,−sr1+ja2,r,sr1+k−j , γ + δ < sr, (6.21)

where k = −(γ + δ + 1) and a1,r,· and a2,r,· are the Laurent coefficients of y1
and y2 respectively at p(r). Then one may show that (6.21) becomes

Ay1y2,r =
(

Ay1,rY
r

2
0sr2×sr

)
+
(

Ay2,rY
r

1
0sr1×sr

)T
, (6.22)

where Y r1 and Y r2 are Toeplitz matrices of sizes sr2× sr and sr1× sr, respectively,
given by

[Y r` ]γ = 1, . . . , sr − sr`
δ = 1, . . . , sr

=
{
a`,r,γ−δ sr` ≥ δ − γ
0 sr` < δ − γ

(6.23)

(the entries of the first and the second matrix products on the right hand side
of (6.22) correspond to the index j ≤ sr1 − γ − 1 and to j ≥ sr1 − γ in (6.21),
respectively).

Moving on to examine My1y2 = My1My2 , one can show, using the com-
mutativity of My1 and My2 and the colligation conditions associated to y1y2

43



(Proposition 6.6), the following
1
i

(
〈My1My2f, g〉 − 〈f,My1My2g〉

)
= 〈σ1Φ1M

y2f,Φ1g〉+ 1
i

(
〈My2f,My1g〉 − 〈f,My1My2g〉

)
= 〈σ1Φ1M

y2f,Φ1g〉+ 1
i

(
〈My2f,My1g〉 − 〈f,My2My1g〉

)
= 〈σ1Φ1M

y2f,Φ1g〉+ 〈σ2Φ2f,Φ2M
y1g〉 . (6.24)

For the sake of simplicity, we first assume that P(y1) ∩ P(y2) = ∅. It follows
that the expression in (6.24), using the matrix representations as presented in
(6.20), becomes

1
i

(
〈My1My2f, g〉− 〈f,My1My2g〉

)
=

=Φ1(g)∗σ1

(
Φ1(y2 · f) + iK

ζ̃
(P1, P2)Ay2Φ2(f)

)
+(

Φ2(y1 · g)∗ − iΦ1(g)∗A∗y1
K
ζ̃
(P2, P1)∗

)
σ2Φ2(f), (6.25)

where K
ζ̃
(P2, P1) is defined similarly to K

ζ̃
(P1, P2).

We now show that two of the terms in (6.25) vanish. Using the hermi-
tian structure of the Cauchy kernels, we have K

ζ̃
(P2, P1)∗ = K

ζ̃
(τ(P1), τ(P2)),

where the last matrix is again similarly defined. Furthermore, using the signed
permutation matrices corresponding to real and complex conjugate poles, see
(6.19), we have:

σ1K
ζ̃
(P1, P2)Ay2 −A∗y1

K
ζ̃
(τ(P1), τ(P2))σ2 =

σ1K
ζ̃
(P1, P2)Ay2 −A∗y1

Per (y1) K
ζ̃
(P1, P2) Per (y2)σ2 = 0, (6.26)

since σk = −Per (yk) Ayk = −A∗yk Per (yk), see Proposition 6.6.
For the remaining two terms in (6.25), since we assumed that P(y1) ∩

P(y2) = ∅, it follows from (6.22) that for all p(r) ∈ P(y1), Ay1y2,r = Ay1,rY
r

2
and the matrix Y r2 is a square lower-triangular Toeplitz matrix consisting of
a1,r,0, . . . , a1,r,sr1−1. The k-th Taylor coefficient (0 ≤ k < sr = sr1) of y2f at p(r)

is equal to
∑k
j=0 a2,r,k−j

f(j)(p(r))
j! . Then we may write

Φ1(y2f) = Diag
p(r)∈P(y1)

(Y r2 ) Φ1(f),

and similarly for Φ2(y1f), and (6.25) becomes
1
i

(
〈My1My2f, g〉 − 〈f,My1My2g〉

)
=Φ1(g)∗σ1 Diag

p(r)∈P(y1)
Y r2 Φ1(f) + Φ2(g)∗( Diag

p(r)∈P(y2)
Y r1 )∗σ2Φ2(f)

=(Φ1 ⊕ Φ2)(g)∗
(
σ1 Diag

p(r)∈P(y1)(Y r2 ) 0
0 σ2 Diag

p(r)∈P(y2)(Y r1 )

)
(Φ1 ⊕ Φ2)(f)

=Φy1y2(g)∗σy1y2Φy1y2(f).
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Notice that when passing from the second line to the third line, we have used
the block diagonal structure of the matrices σ, with the selfadjoint diagonal
blocks at the real poles and the selfadjoint 2 × 2 off diagonal block matrices
at the complex conjugate poles, see (6.6). Notice also that in the case where
y1 has a pole at p(r) and y2 has a zero at p(r) (or vice versa), so that the
order of the pole of y1y2 at p(r) is less than sr, the main skew diagonal (and
possibly some higher skew diagonals) of the Hankel matrix Ay1,rY

r
2 will be zero

since in the Toeplitz matrix Y r2 the main diagonal (and possibly some lower
diagonals) will be zero. It follows that we can omit these zero entries and the
corresponding entries f(sr)(p(r))

sr! , g
(sr)(p(r))
sr! (and possibly some lower derivatives)

in (Φ1 ⊕ Φ2)(f), (Φ1 ⊕ Φ2)g), so that the equality between the third and the
fourth lines in the above calculation still holds.

For the case of a pair of meromorphic functions with common poles, it follows
from the block diagonal structure of the matrices σ that it is enough to verify
the colligation condition for a single pole (or a pair of complex conjugate poles)
and that the previous argument still holds for p(r) ∈ P(y1) ∩ P(y2)c and for
p(r) ∈ P(y2) ∩ P(y1)c. In order to examine Φp

(r)

1 My2f for p(r) ∈ P(y1) ∩ P(y1),
we first evaluate the k-th Taylor coefficient of My2f(u) (k < sr1) at p(r). We
consider the expansions of y2(u), f(u), and K

(0,l−1)
ζ̃

(u, τ(p(r))) using the local
coordinate tr(u) centered at p(r) and then

dk

duk
1
k!

y2(tr(u))f(tr(u)) + i

sr2∑
l=1

sr2∑
j=l

a2,r,−jf
(j−l)(tr(u))

(j − l)!(l − 1)! K
(0,l−1)
ζ̃

(tr(u), τ(tr(u)))


=
sr2+k∑
j=0

a2,r,−(j−k)
f (j)(p(r))

j! + i

sr2∑
l=1

sr2∑
j=l

a2,r,−jf
(j−l)(tr(u))

(j − l)!(l − 1)!

(
K

(0,l−1)
ζ̃

(u, τ(p(r)))
)
k

=[a2,r,k, . . . , a2,r,−sr2 , 0, . . . , 0︸ ︷︷ ︸
sr1−1−k times

]Φp
(r)

12 (f)+

i Row
l=1,...,sr2

1
(l − 1)!

(
K

(0,l−1)
ζ̃

(u, τ(p(r)))
)
k

Ay2,rΦ
p(r)

2 (f),

where
(
K

(0,l−1)
ζ̃

(u, τ(p(r)))
)
k

denotes the k-th Laurent coefficient and Φp
(r)

12 (f)
consists of the Taylor coefficients of f up to order sr − 1 since k varies between
0 and sr1 − 1. The first row matrix appearing on the last right hand side is the
row number k of the Toeplitz matrix Y r2 (here Y r2 is not a square matrix since
sr1 6= 0, see (6.23)) whereas the second row matrix is the same row of the block
K
ζ̃
(P (r)

1 , P
(r)
2 ) in K

ζ̃
(P1, P2) corresponding to p1 = p2 = p(r), see Notation 6.7,

and then we have:

Φp
(r)

1 My2f = Col
k=0,...,sr1−1

(
dk

dt(u)k
1
k!M

y2f(u)|t(u)=0

)
=Y r2 Φp

(r)

12 (f) + iK
ζ̃
(P (r)

1 , P
(r)
2 )Ay2,rΦ

p(r)

2 (f).
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Similarly, we have

Φp
(r)

2 (My1g) = Y r1 Φp
(r)

12 (g) + iK
ζ̃
(P (r)

2 , P
(r)
1 )Ay1,rΦ

p(r)

1 (f).

If p(r) is a real pole, we substitute the last two equalities on the right hand
side of the last line of (6.24), repeat the same argument as in (6.25)–(6.26) to
see that two of the terms vanish, and for the remaining two terms we have up
multiplication by −(−1)µir+νir (we expand naturally Φp

(r)

1 and Φp
(r)

2 to Φp
(r)

12 )

Φp
(r)

1 (g)∗Ay1,rY
r

2 Φp
(r)

12 (f) + Φp
(r)

12 (g)∗(Y r1 )∗A∗y2,rΦ
p(r)

2 (f)

=Φp
(r)

12 (g)∗
((

Pr
1Y

r
2

0sr2×sr

)
+
(
(Y r1 )TPr

2 0sr×sr1
))

Φp
(r)

12 (f).

The sum in parentheses is exactly the matrix Ay1y2,r, see (6.22) above, so that
we obtain the diagonal block corresponding to p(r) in σy1y2 of the colligation
condition for My1y2 . The calculation for the case of a pair complex conjugate
poles is similar. �

To conclude this section, we present the proof of Theorem 3.6, but first we
present a short technical lemma.

Lemma 6.9. Let G be an s× s upper-skew-triangular Hankel matrix (a Hankel
matrix with zero entries below the main skew-diagonal)

Gi,` = gi+`+1, 0 ≤ `, i < s, i+ ` < s,

where gs 6= 0. Then, the inverse of G is a lower-skew-triangular Hankel matrix
which is given by

(
G−1)

i,`
= di+`+1

dxi+`+1
1

(i+ `+ 1)!g(x)

∣∣∣∣
x=0

0 ≤ `, i < s, `+ i ≥ s− 1,

where g(x) =
∑s
i=1 gix

−i + g1(x) for any g1(x) analytic at zero.

Proof: Let us denote the lower-skew-triangular Hankel matrix given in the
lemma by F . Then for α ≤ β (otherwise, the entry is zero) we have

(GF )α,β =
s−α−1∑
i=s−β−1

Gα,iFi,β =
β−α∑
i=0

Gα,s−β+i−1Fs−β+i−1,β

=
β−α∑
i=0

gs−(β−α−i)
ds+i

dxs+i
1

(s+ i)!g(x)

∣∣∣∣
x=0

,

which is the (β − α)-th Laurent coefficient of the multiplication of g(x) by 1
g(x)

and hence equal to δβ,α. �
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Proof of Theorem 3.6: To prove the validity of the right most equality in
(2.17), we first define the unitary mapping U by (3.9). Therefore, we have

U : h 7→ ϕh(p) = ũ×l (p)(ξσ)Φ(ξA− ξy(p))−1h,

where ξσ, ξA and ξy(p) stand for ξ1σ1 +ξ2σ2, ξ1A1 +ξ2A2 and ξ1y1(p)+ξ2y2(p),
respectively. We fix an arbitrary element h ∈ H, we consider a local coordinate
tj(u) centered at p(j) ∈ P(y1) ∪ P(y2) and we fix (ξ1, ξ2) such that ξy(p) has a
pole of order ŝj at p(j) for all j (see Notation 6.7; notice that this is equivalent
to ξσ being invertible). Then the operator valued function (ξA− ξy(p))−1 has
a zero of order ŝj at p(j) with the ŝj , . . . , 2ŝj − 1 Taylor coefficients equal to
those of −1

ξy(p)IH . We recall that ũ×l (p) has a pole at (p(j)) of order ŝj . It
follows that ϕh(p) is analytic at the poles of ξy. Let Φξyϕh(p) be the vector
of the Taylor coefficients of ϕh(p) at the poles of ξy(p) as before (6.18). Then,
applying Lemma 6.9 to ξy at each of the poles p(j), we have that

Φξyϕh(p) = −A−1
ξy Ũ

×
l (ξσ)Φh. (6.27)

Here Aξy is the block diagonal matrix (6.10) with upper-skew-triangular Hankel
blocks consisting of the coefficients of the singular parts of ξy(p) and Ũ×l denotes
the n×n matrix with rows the coefficients of the principal parts of ũ×l (p), that
is,

Ũ×l = Col
j=1,...,|P(y1)∪P(y2)|

Col
k=1,...,ŝj

(ũ×l )(j,−k). (6.28)

where (·)(j,−k) denotes the −k Laurent coefficient at p(j). It follows from (6.27)
that Φh = ΦMod(ϕh), where

ΦMod = −(ξσ)−1(Ũ×l )−1AξyΦξy. (6.29)

In particular, when y1 and y2 have simple poles and one considers the canonical
determinantal representation constructed explicitly in [16], see Steps 1 & 2 of
the proof of Theorem 4.4 in Section 7, we have Ũ×l = Per (y1, y2) (see (7.12)),
ξσ = −Per (y1, y2) Aξy and hence ΦMod = Φξy; for the general case, see Remark
6.10 below. We note that ΦMod in (6.29) does not depend on the selection of
(ξ1, ξ2) since (3.8) does not depend on (ξ1, ξ2), see Lemma 3.4.

To verify the validity of the two remaining identities in (2.17), we illustrate
and continue the calculation for the operator A1 and the direction ξ = (1, 0)
(we can always assume by a linear change of variables that σ1 is invertible and
sj1 = ŝj for all j):

ϕA1h(p) =ũ×l (p)σ1Φ(A1 − y1(p))−1A1 h

=ũ×l (p)σ1Φ(A1 − y1(p))−1 (A1 − y1(p) + y1(p)) h
=y1(p)ϕh(p) + ũ×l (p)σ1Φh. (6.30)

Substituting (6.27) where ξ = (1, 0) shows that the second summand on the
right hand side of (6.30) equals −ũ×l (p)(Ũ×l )−1Ay1Φy1ϕh. However it follows
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from the definition of Ũ×l that ũ×l (p) and −iK
ζ̃
(p, P1)Ũ×l have the same poles

and the same principal parts. Since these are row vectors with entries sections
of L

ζ̃
⊗∆ and since L

ζ̃
⊗∆ has no global holomorphic sections it follows that

ũ×l (p) = −iK
ζ̃
(p, P1)Ũ×l . (6.31)

Therefore the second summand on the right hand side of (6.30) equals iK
ζ̃
(p, P1)Ay1Φy1ϕh,

and this leads to

ϕA1h(p) = y1(p)ϕh(p) + iK
ζ̃
(p, P1)Ay1Φy1ϕh.

This is, see (6.20), the definition of the model operator My1ϕh corresponding
to y1.

Finally, it remains to show that the Hilbert space H(T ) = {ϕh : h ∈ H}
with the inner product inherited form H, is a reproducing kernel Hilbert space
with the reproducing kernel (3.1).

We use the properties of the characteristic functions of the vessel V. Since
ũ×l (p) = ũ×(τ(p))∗, (2.21) and (2.18), together with T (p)T (τ(p))∗ = 1 and
(2.15), imply that

T (p)u×l (p) = ũ×l (p)ξσW (ξ1, ξ2, ξy(p))(ξσ)−1.

Together with an identity which is presented in the next section, see (7.23)
below, and (2.22) applied to both the input and the output determinantal rep-
resentations, this yields the following

KT (p, q) =T (p)Kζ(p, q)T (q)∗ −K
ζ̃
(p, q)

=
T (p)u×l (p)(ξσ)u×l (q)∗T (q)∗

−i(ξy(p)− ξy(q))
−

ũ×l (p)(ξσ)ũ×l (q)∗

−i(ξy(p)− ξy(q))

=ũ×l (p)ξσW (ξ1, ξ2, ξy(p))(ξσ)−1W (ξ1, ξ2, ξy(q))∗ξσ − ξσ
−i(ξy(p)− ξy(q))

ũ×l (q)∗

=ũ×l (p)(ξσ)Φ(ξA− ξy(p))−1(ξA− ξy(q))−∗Φ∗(ξσ)∗ũ×l (q)∗.

Thus, we may conclude that

〈ϕh(p),KT (p, q)〉H(T ) =
〈
h, (ξA− ξy(q))−∗Φ∗(ξσ)∗ũ×l (q)∗

〉
H

=ũ×l (q)(ξσ)Φ(ξA− ξy(q))−1h

=ϕh(q).

�

Remark 6.10. Let us define analogously to (6.28)

Ũ× = Row
j=1,...,|P(y1)∪P(y2)|

Row
k=1,...,ŝj

(ũ×)(j,−k),
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then it follows as in (6.31) that

ũ×(p) = iU×K
ζ̃
(P1, p),

where the column vector K
ζ̃
(P1, p) is defined similarly to Notation (6.7). Plug-

ging (6.31) and the last equality into the first identity of (2.22), and compar-
ing to (6.7), which can be rewritten as K

ζ̃
(p, P1)AξyKζ̃

(P1, τ(q)) = i(ξy(p) −
ξy(q))K

ζ̃
(p, q), yields then −Ũ×l ξσŨ× = Aξy. It follows that (ξσ)−1(Ũ×l )−1Aξy =

−Ũ× and then finally it follows from (6.29) that ΦMod = (Ũ×)Φξy.

Remark 6.11. Using the notations introduced above, my may generalized Re-
mark 3.3 for the general case of not necessarily simple poles. In general, the
joint characteristic function S satisfies the property that S(p) − I has zero at
p(j) of order ŝj (this is referred to as equal to identity at infinity, see [46] and
the remark in [15, p. 280]). Then, we consider a block diagonal matrix where
the j-th block is a lower triangular Toeplitz matrix with the (α, β)-entry equal
to the Taylor coefficient Tj,α−β of T at p(j) (1 ≤ β ≤ α ≤ ŝj). Denoting this
matrix by T∞ and analyzing the power series expansion of (2.21) at each of
the poles p(j), it follows that the equalities in (3.3) and (3.4) still hold (see [46,
Proposition 11.2.2], for a particular case).

7. Proof of the structure theorem

As mentioned in Section 4, our strategy to prove Theorem 4.4 is to embed
the operators My1 and My2 in a commutative two-operator vessel of the form

(My1 , My2 ; X , Φ , E ; σ1 , σ2 , γ , γ̃ ), (7.1)

where (see Notation 6.7) n = |P(y1) ∪ P(y2)|, E = Cn, and where Φ is the
evaluation operator from X to E at the poles of y1 and y2, namely,

f 7→

f(p(1))
...

f(p(n))

 . (7.2)

The discriminant curve of the vessel (7.1) will turn out to be the image C of the
birational embedding p 7→ (y1(p), y2(p)) of X into P2 (see Notation 4.1 (A3)).
Proof of Theorem 4.4: The proof consists of seven steps. We start by re-
calling the relation between the colligation condition and the structure identity.

Step 1. The colligation conditions (2.10) of the collection (7.1) are equivalent
to the structure identities (condition (ii), Theorem 4.4), where σk for k = 1, 2
are given in (7.4) below.
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This result is just a special case of Proposition 6.6 which yields the colligation
condition (2.10) for the collection (7.1)

1
i
〈(Myk − (Myk)∗)F,G〉X = 〈σkΦ(F ),Φ(G)〉E k = 1, 2. (7.3)

Here Φ is the evaluation operator (7.2) at the n poles of y1 and y2 and σk is
given by

σk = Per (y1, y2) Diag
j=1,...,n

(cjk), (7.4)

where Per(y1, y2) is a matrix of size n × n constructed as in (6.19) but for the
union of poles of y1 and y2 and where cjk is minus the residue of yk at p(j) and
is set to be zero whenever p(j) is not a pole of yk. The matrices σ1 and σ2 are
selfadjoint, since y1 and y2 are real.

Step 2. Let γ̃ be defined by γ̃ = Per (y1, y2) γ̃′ where

γ̃′j,l =

c
l
1h
l
2 − cl2hl1, p(j) = p(l)(

cj1c
l
2 − c

j
2c
l
1

)
ϑ[ζ̃](p(l)−p(j))

ϑ[ζ̃](0)E(p(l),p(j))
, otherwise,

(7.5)

where cjk and hjk, for a p(j) ∈ P(yk), are defined by the expansion of yk at p(j)

using a local coordinate tj centered at p(j)

yk(u) = − cmk
tj(u) + hmk +O(|tj |),

otherwise (p(j) /∈ P(yk)), we set cjk = 0 and hjk = yk(p(j)). Then, the output
vessel condition

σ1ΦMy2 − σ2ΦMy1 = γ̃Φ (7.6)

holds for σ1 and σ2 as defined in (7.4).

The matrix γ̃ is given explicitly by

γ̃j,k =


(−1)µij+νij

(
ck1h

k
2 − ck2hk1

)
τ(p(j)) = p(k), j = k,

ck1h
k
2 − ck2hk1 τ(p(j)) = p(k), j 6= k,(

cj1c
k
2 − c

j
2c
k
1

)
ϑ[ζ̃](p(k)−τ(p(j)))

ϑ[ζ̃](0)E(p(k),τ(p(j)))
, otherwise,

(7.7)

where a real pole p(j) belongs to Xij . γ̃ is selfadjoint since ζ ∈ Tν and the
meromorphic functions y1 and y2 are real. This completes the proof of Step 2.
Proof of Step 2: We note that Ak, defined in the proof of Proposition 6.6,
is a diagonal matrix (since we are now in a simple poles setting). Furthermore
(7.6) becomes

A2ΦMy1 −A1ΦMy2 = Per (y1, y2) γ̃′Φ. (7.8)
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Below, for the sake of simplicity, we begin by calculating the j-th entry of the left
hand side of (7.8) for the case where p(j) ∈ P(y2)∩P(y1)c, we use hj1 = y1(p(j))
and cj1 = 0 to conclude:

[LHS]j =
(
cj1y2(p(j))− cj2y1(p(j))

)
f(p(j))−

∑
p(l)∈P(y1)

cl1f(p(l)) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

=− cj2h
j
1f(p(j))− cj2

∑
p(l)∈P(y1)

cl1f(p(l)) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

. (7.9)

For the case where p(j) ∈ P(y2) ∩ P(y1), we use the local coordinate tj(u) and
the properties of the Cauchy kernel to get:

[A2ΦMy1f ]j =− cj2f(p(j))
(
−cj1
tj(u) + hj1 + o(|tj |) + cj1

tj(u)

)∣∣∣∣∣
tj(u)=0

−

cj2
∑

p(j) 6=p(l)∈P(y1)

cl1f(p(l)) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

,

and similarly for [A1ΦMy2f ]j . Therefore, the LHS of (7.8), in the case of a
joint pole, is given by

[LHS]j =
(
cj1h

j
2 − c

j
2h
j
1

)
f(p(j))− cj2

∑
p(l)∈P(y1)
p(j) 6=p(l)

cl1f(p(l)) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

+ cj1
∑

p(l)∈P(y2)
p(j) 6=p(l)

cl2f(p(l)) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

.

(7.10)

One may note, using that cjk = 0 when p(j) /∈ P(yk), that both (7.9) (and the
similar expression for the case where p(j) ∈ P(y1) ∩ P(y2)c) and (7.10) can be
written as

[LHS]j =f(p(j))
(
cj1h

j
2 − c

j
2h
j
1

)
−∑

p(l)∈P(y1)∪P(y2)
p(j) 6=p(l)

f(p(l))
(
cj2c

l
1 − c

j
1c
l
2

) ϑ[ζ̃](p(l) − p(j))
ϑ[ζ̃](0)E(p(l), p(j))

. (7.11)

The right hand side of (7.11) coincides exactly with [γ̃′Φf ]j , where γ̃′ is given
by (7.5). This completes the proof of Step 2. �

Before moving to prove Step 3, we make several remarks. At this stage, we
have constructed, using the Cauchy kernels, the output determinantal repre-
sentation of the collection (7.1) from the line bundle L

ζ̃
⊗ ∆ and the pair of
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meromorphic functions that gives the birational embedding p 7→ (y1(p), y2(p))
of X into P2. This canonical determinantal representation was introduced in
[16] (see also [60]), up to left multiplication by Per (y1, y2). It is shown there
that it is indeed a determinantal representation of C corresponding to ζ̃, i.e., its
kernel bundle is isomorphic up to a twist (see the discussion preceding (2.20))
to L

ζ̃
⊗∆ (the canonical determinantal representation is always maximal and

fully saturated, the proof is given in [16, Theorem 5.1] under the assumption
that the singularities of C are ordinary multiple points, e.g., nodes).

The associated left normalized section at v, is given by a vector of Cauchy
kernels at v and π−1(∞), namely, it is a vector of form

[ũ×l (v)]j = ϑ[ζ̃](τ(p(j))− v)
ϑ[ζ̃](0)E(τ(p(j)), v)

(7.12)

(see [16] and note that here p(j) is evaluated under τ(·) due to the multiplication
by Per (y1, y2)).

The next result follows from the Generalized Cayley–Hamilton Theorem
(Theorem 2.2) since Step 4 below implies that the vessel V is irreducible. We
use a different approach based on Theorem 6.1.

Lemma 7.1. The joint spectrum of My1 and My2 lies in C0.

Proof: Let us assume that (λ1, λ2) ∈ Spec (My1 ,My2). Then, using the spec-
tral mapping theorem, we have

p(λ1, λ2) ∈ Spec (p(My1 ,My2)) ,

where p is the discriminant polynomial of the vessel. Furthermore, using Theo-
rem 6.1, we conclude that

p(My1 ,My2) = Mp(y1,y2) = 0.

Thus, p(λ1, λ2) = 0 and (λ1, λ2) ∈ C0 follows. �

Step 3. We define γ by

γj,k = Ψj,k +


(−1)µij+νij

(
ck1h

k
2 − ck2hk1

)
τ(p(j)) = p(k), j = k,

ck1h
k
2 − ck2hk1 τ(p(j)) = p(k), j 6= k,(

cj1c
k
2 − c

j
2c
k
1

)
ϑ[ζ̃](p(k)−τ(p(j)))

ϑ[ζ̃](0)E(p(k),τ(p(j)))
, otherwise,

(7.13)
where

Ψ = Per (y1, y2)
[
i(ci1c

j
2 − ci2c

j
1)KX(p(i), p(j))

]
i,j=1,...,n

Per (y1, y2)

=
[
i(ci1c

j
2 − ci2c

j
1)KX(τ(p(i)), τ(p(j)))

]
i,j=1,...,n

.

Then, the input vessel condition (2.11) and the linkage condition (2.13) hold.
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Since X is a reproducing kernel space, it follows that

ΦΦ∗ =
[
KX(p(i), p(j))

]
i,j=1,...,n

. (7.14)

Then, Equation (7.13) is derived by substituting (7.4), (7.7) and (7.14) in the
linkage condition (2.13).

Step 4. The mapping

h 7→ ũ×l (v)(ξ1σ1 + ξ2σ2)Φ(ξ1A1 + ξ2A2 − ξ1y1(v)− ξ2y2(v))−1h, (7.15)

where h ∈ X, is the identity, in the sense that the two sections of L
ζ̃
⊗∆ coincide

in Ω ∩
(
X \ π−1(Spec (My1 ,My2))

)
.

We prove that the section on the right hand side coincide with h in the
neighborhood of the poles of y1 and y2. The statement then follows by analytic
continuation.

Let us recall that the mapping (7.15) is independent of the choice of the
direction (ξ1, ξ2) (see [68, Section 3] and Proposition 3.4 above for more details).
Hence, for the sake of simplicity, we illustrate the calculation in the direction
ξ = (1, 0). Furthermore, we take v ∈ Ω such that y1(v) does not belong to the
spectrum of My1 and y−1

1 (y1(v)) ⊂ Ω. A direct computation leads to:

h 7→ũ×l (v)(1 · σ1 + 0 · σ2)Φ(My1 − y1(v))−1h

=ũ×l (v)σ1ΦRy1
y1(v)(h)

=ũ×l (v)σ1Φ

 h(·)
y1(·)− y1(v) −

n∑
j=1

h(u(j))
dy1(u(j))

ϑ[ζ̃](u(j) − ·)
ϑ[ζ̃](0)E(u(j), ·)


and so

h 7→ũ×l (v)σ1

 h(u)
y1(u)− y1(u) −

n∑
j=1

h(u(j))
dy1(u(j))

ϑ[ζ̃](u(j) − u)
ϑ[ζ̃](0)E(u(j), u)

∣∣∣∣∣∣
u=p(l)

n
l=1

=− ũ×l (v)σ1

 n∑
j=1

h(u(j))
dy1(u(j))

ϑ[ζ̃](u(j) − p(l))
ϑ[ζ̃](0)E(u(j), p(l))

n
l=1

, (7.16)

where
(
u(j))n

j=1 are the points in Ω such that y1(u(j)) = y1(v). Note that using
the 2× 2 diagonal-block structure of σ1 (defined in (7.4)), we have

σ1

 n∑
j=1

h(u(j))
dy1(u(j))

ϑ[ζ̃](u(j) − p(l))
ϑ[ζ̃](0)E(u(j), p(l))

n
l=1

(7.17)

=

cl1 n∑
j=1

h(u(j))
dy1(u(j))

ϑ[ζ̃](u(j) − τ(p(l)))
ϑ[ζ̃](0)E(u(j), τ(p(l)))

n
l=1

.
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Note that using the fact that σ as given in (7.4) is the product of the signed
permutation matrix Per (y1, y2) and of a diagonal matrix, we have

h 7→ −
n∑
j=1

h(u(j))
dy1(u(j))

n∑
l=1

ϑ[ζ̃](τ(p(l))− v)
ϑ[ζ̃](0)E(τ(p(l)), v)

cl1
ϑ[ζ̃](u(j) − τ(p(l)))
ϑ[ζ̃](0)E(u(j), τ(p(l)))

. (7.18)

We use a version of the collection formula as presented in (2.7) to simplify the
second summation in (7.18), which is equal to −dy1(v) whenever u(j) = v and
zero otherwise. Hence one may conclude that

h 7→ −
n∑
j=1

h(u(j))(−δu(j),v) = h(v),

where δu(j),v denotes the Kronecker delta, that is, δu(j),v = 1 if and only if
v = u(j).

Remark 7.2. Note that the section defined by the mapping (7.15), can be ex-
tended analytically (with bounded point evaluations) to Ω∪(X\π−1(Spec (My1 ,My2))).
Since the operators My1 ,My2 have finite dimensional non Hermitian parts, the
spectrum of My1 and My2 contains real points and isolated non-real points.
Therefore, we can assume without loss of generality that also X \ Ω contains
real points and isolated non-real points. In particular, Ω ∩ τ(Ω) is open, con-
nected and symmetric, and therefore, without loss of generality, we may assume
that Ω is symmetric.

Step 5. The reproducing kernel of X restricted to Ω \ π−1(Spec (My1 ,My2))
is given in terms of the complete characteristic function W (2.14) of the vessel
(7.1) by

KX(p, q) =−
ũ×l (p)(ξσ)ũ×l (q)∗

−i(ξy(p)− ξy(q))
+ (7.19)

ũ×l (p)(ξσ)W (ξ1, ξ2, ξy(p))(ξσ)−1W (ξ1, ξ2, ξy(q))∗(ξσ)ũ×l (q)∗

−i(ξy(p)− ξy(q))
.

X, by assumption, is a reproducing kernel Hilbert space and in particular

h(p) = 〈h,KX(·, p)〉X . (7.20)

On the other hand, the mapping to the model space is, by Step 4, the identity.
Thus, we have

ũ×l (p)(ξ1σ1 + ξ2σ2)Φ(ξ1A1 + ξ2A2 − ξ1y1(p)− ξ2y2(p))−1h = h(p). (7.21)

Combining equations (7.20) and (7.21), one may conclude that the reproducing
kernel can be expressed explicitly in terms of the model space mapping by:

KX(p, q) =ũ×l (p)(ξσ)Φ(ξA− ξy(p))−1× (7.22)
(ξA− ξy(q))−∗Φ∗(ξσ)∗ũ×l (q)∗.
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A classical computation in the single-operator colligation setting (a similar com-
putation can be found in [46, Chapter 10]) yields the following relation:

(ξσ)Φ(ξA− ξy(p))−1(ξA− ξy(q))−∗Φ∗(ξσ)∗

= ξσW (ξ1, ξ2, ξy(p))(ξσ)−1W (ξ1, ξ2, ξy(q))∗ξσ − ξσ
−i(ξy(p)− ξy(q))

,

(7.23)

where ξy = ξ1y1 + ξ2y2, ξσ = ξ1σ1 + ξ2σ2 and W (ξ1, ξ2, ·) is the complete
characteristic function (2.14). Finally, we substitute (7.23) in (7.22) to get
(7.19).

A corollary from Step 5 is given below and is used later in this proof.

Corollary 7.3. Let p0 be a point on X such that all the pre-images of ξ1y1(p0)+
ξ2y2(p0) with respect to ξ1y1+ξ2y2 belong to Ω for some (ξ1, ξ2). Then (y1(p0), y2(p0))
does not belong to the joint spectrum of My1 and My2 .

Proof: Let us choose α such that the pre-images with respect to ξy of α,
assumed to be distinct and denoted by p1, . . . , pn, belong to Ω. Then R

(ξy)
α f is

a well defined section of L
ζ̃
⊗∆ on Ω for any f in X, but this does not mean

that X is invariant under R(ξy)
α . As a consequence, it does not a-priori imply

that α does not belong to the spectrum of M (ξy).
We use (7.19) to show that W (ξ1, ξ2, z) can be extended analytically to a

neighborhood of ξy(p0). First, we take β in a neighborhood of infinity and,
as a consequence, the pre-images q1, . . . , qn of β under ξy belong to Ω. Notice
that the rows u×l (qj) for j = 1, . . . , n are linearly independent and form an
invertible matrix (follows by (2.7) and (2.9)). Furthermore, we assume without
loss of generality that ξσ invertible. Hence, using (7.19), we can analytically
express F (p) def= ũ×l (p)W (ξ1, ξ2, ξy(p)) in terms of KX(p, qi), W (ξ1, ξ2, ξy(qi))
and ũ×l (qi) where i = 1, . . . , n as well as u×l (p) and ξy(p) − β. It follows that
F (p) is analytic on Ω except possibly for poles at the poles of ξy.

We choose α to be an element in a punctured neighborhood of α0 = ξy(p0).
We may assume that α has n distinct pre-images p1, . . . , pn with respect to ξy
which all belong to Ω. We then consider (7.19) and define the matrix Ũ×l (α),
with rows the values of ũ×l at the pre-images of α (similarly, we define the
matrix Ũ×(α) with columns the values of ũ× at the pre-images of α). The
matrix Ũ×l (α) is invertible and the inverse is given by (see (2.22)) Ũ×l (α0)−1 =
(ξσ)Ũ×(α) Diagj

(
1

dy(pj)

)
. Then

W (ξ1, ξ2, α) = (ξσ)Ũ×(α) Diag
j=1,...n

(
1

ξdy(pj)

)
Col

j=1,...n
F (pj). (7.24)

If (y1(p0), y2(p0)) is not a singular point of the algebraic curve C, we can,
without loss of generality, take ξ1 and ξ2 such that α0 has n distinct pre-images.
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By continuity, the same is then true for α in a neighborhood of α0. It then follows
from (7.24) that W (ξ1, ξ2, z) can be extended analytically to a full neighborhood
of α0.

We turn now to the case where (y1(p0), y2(p0)) is singular. We use a local
coordinate t centered at p0 so that ξy(p) = t(p)r where r is the ramification
index of ξy at p0. Then (7.24) can be rewritten in the form

W (ξ1, ξ2, α) = (ξσ)
n∑
i=1

Ũ×(pi)F (pi)
ξdy(pi)

. (7.25)

We may assume that as α goes to α0, the points p1, . . . , pr go to p0 whereas
pr+1, . . . , pn remain distinct. Then the summation in (7.25) from r + 1 to n
extends to an analytic function on a full neighborhood of α0. For the sum of the
first r terms p1, . . . , pr, correspond to t, εt, . . . , εr−1t, where ε is a primitive r-th
root of unity. All the elements in the matrix φ(p) = ũ×(p)F (p) are analytic near
p0, so that, in terms of the local coordinate t, we may write φ(t) =

∑∞
k=0 φkt

k.
Then the sum of the first r terms becomes

r−1∑
j=0

φ(εjt)
y′(εjt) =

r−1∑
j=0

∑∞
k=0 φk(εjt)k

r(εjt)r−1 = 1
rtr−1

∞∑
k=0

φkt
k
r−1∑
j=0

(εj)−(r−1)(εj)k

=1
r

∞∑
k=0

φkt
k−r+1

r−1∑
j=0

(εk+1)j .

The inner summation vanishes as long as εk+1 6= 1, as it is the sum of k + 1-st
powers of all r-th roots of unity In particular, the inner summation vanishes
whenever k < r − 1 and thus the negative-index coefficients are zero. It follows
that W (ξ1, ξ2, z) can be extended to α0 and hence to a (full) neighborhood of
α0.

In both case, the singular and the non-singular cases, W (ξ1, ξ2, z) can be
extended analytically to ξy(p0). It is well known, see for instance [22], that if
the characteristic function of an irreducible colligation can be extended analyt-
ically to a (full) neighborhood of α0, then α0 lies outside the spectrum of the
operator. By Step 4, the mapping (7.15) is injective and hence by Proposition
3.5 the vessel V is irreducible, it follows that the single-operator colligation de-
rived from V in the direction (ξ1, ξ2) is also irreducible. Hence ξy(p0) does not
belong to the spectrum of ξ1M

y1 + ξ2M
y2 and therefore (y1(p0), y2(p0)) does

not belong to the joint spectrum of My1 and My2 . �

Step 6. The input and the output determinantal representations of the vessel
(7.1) are fully saturated.

For the definitions of maximality and fully saturated, we refer to Section 2.2
above, see also [15, 68]. The output determinantal representation of (7.1) is
maximal and fully saturated by construction. We proceed to prove maximality
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and full saturation of the input determinantal representation. First, we present
several preliminary results.

Lemma 7.4. Let X be a compact Riemann surface of genus g which is the
normalization of a curve C ⊂ P2 with the bi-rational embedding π : X → P2.
Let Ω be an open subset of X containing the pre-images of the singular points
of C and let p ∈ Ω. Then there exists a polynomial h ∈ C[z1, z2] such that
h(π(p)) = 0 and all the zeros of h ◦ π on X are in Ω.

Proof: We denote by µk the Abel-Jacobi mapping from X(k) to J(X), sending
an effective divisors of degree k to the Jacobian and we continue to denote by n
the degree of C. Let us assume, without loss of generality, that the base point
of the Abel-Jacobi mapping p0 belongs to Ω and, furthermore, we choose p0
which does not belong to the finite set of the Weierstrass points.

Let k > 0 be the degree of a polynomial h ∈ C[z1, z2] and let D be the
effective divisor of h. We know that D is linear equivalent to k · L, where L is
a divisor of straight line, that is,

D ≡ k · L. (7.26)

Conversely, let D be an effective divisor of degree k n satisfying (7.26) and con-
taining the divisor of singularities, see the discussion preceeding (2.19). Then,
for sufficiently large k, D is the divisor of some homogeneous polynomial of
degree k (by the completeness of the linear system of the adjoint curves, see e.g.
[28]).

Let D be a divisor that contains p and the singular points, that is D ≥
p+Dsing. We define an effective divisor D′ by

D′ = D − p−Dsing.

By assumption Ω contains the pre-images of the singularities of C and p ∈ Ω
and then it follows that D is supported in Ω if and only if D′ is supported in
Ω.

Recall that by the Abel-Jacobi theorem, (7.26) holds if and only if

µk n(D) = k · µn(L), (7.27)

and hence, using (7.27), we have

µDeg(D′)(D′) = k µn(L)− µ(1+deg(Dsing))(p+Dsing).

We turn to consider the divisor g ·p0. This divisor, since p0 is the base point
of the Abel-Jacobi mapping, is zero under the mapping µg(·). Furthermore,
since p0 is not a Weierstrass point, µg(·) is invertible at g · p0. Therefore, using
that p0 ∈ Ω, µg(Ω(g)) contains an open ball around zero (where Ω(`) stands for
the set of effective divisors of degree ` with support in Ω).

For any j > 0 we have jµg(Ω(g)) ⊆ µj·g(Ω(jg)) and hence for a sufficiently
large j0, the equality µj0·g(Ω(j0g)) = J(X) holds. As a consequence, µl(Ω(l)) =
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J(X) for l ≥ j0g. It remains to choose k such that kn−1−deg (Dsing) ≥ j0g. �

The following result appeared in [15, Section 2]) without a proof.

Lemma 7.5. Let us assume that the singular points of the discriminant curve
C lie outside the joint spectrum of (A1, A2). Then the following statements hold:

1. If either the input or the output determinantal representations of a vessel
is maximal then so is the other.

2. If either the input or the output determinantal representations of a vessel
is fully saturated then so is the other.

Proof: Assume that the output determinantal representation is maximal and
all affine singular points λ lie outside the joint spectrum of (A1, A2). Then, S(λ),
for any λ outside the spectrum of (A1, A2), is a linear mapping from E(λ) to Ẽ(λ).
Similarly, the JCF of the adjoint vessel S̃(λ) (see [17]), for any λ outside the
spectrum of (A1, A2), is a linear mapping from Ẽl(λ) to El(λ). Hence, E(λ) and
Ẽ(λ) share the same dimension for all affine singular points λ ∈ C. For the points
at infinity, the fibers of the input and output determinantal representations
simply coincide, since the input and output determinantal representations share
the same matrices σ1 and σ2. In particular, they have the same dimension.

Let us now assume that the output determinantal representation is fully
saturated. Then, for a singular affine point λ0 = (λ0

1, λ
0
2) ∈ C0, we choose

ξ1 and ξ2 such that ξσ = ξ1σ1 + ξ2σ2 is invertible and such that ξ1λ
0
1 + ξ2λ

0
2

does not belong to spectrum of ξ1A1 + ξ2A2, by continuity this is also true in a
neighborhood of λ0. Then, one may consider the identity (see for instance [46])

(λ1σ2 − λ2σ1 + γ̃)W (ξ1, ξ2, ξ1λ1 + ξ2λ2) =

W̃ (ξ1, ξ2, ξ1λ1 + ξ2λ2) (λ1σ2 − λ2σ1 + γ) (7.28)

where

W̃ (ξ1, ξ2, z) = I − i(ξ1σ1 + ξ2σ2)Φ(ξ1A1 + ξ2A2 − zI)−1Φ∗,

and hence, using (2.15), we have:

(λ1σ2 − λ2σ1 + γ̃) =W̃ (ξ1, ξ2, ξ1λ1 + ξ2λ2) (λ1σ2 − λ2σ1 + γ)×
(ξσ)W (ξ1, ξ2, ξ1λ1 + ξ2λ2)∗(ξσ)−1.

The adjoint operator is anti-multiplicative, that is, it satisfies adj(AB) = adj(B) adj(A),
and therefore:

Ṽ (λ) = adj W̃ (ξ1, ξ2, ξ1λ1 + ξ2λ2)V (λ) adj(ξσ)W (ξ1, ξ2, ξ1λ1 + ξ2λ2)∗(ξσ)−1.
(7.29)

Since W̃ (ξ1, ξ2, ξ1λ1 + ξ2λ2) and W (ξ1, ξ2, ξ1λ1 + ξ2λ2)∗ are by assumption an-
alytic in a neighborhood of λ0, it follows by (7.29) that if all entries of V (λ)
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vanish to a certain order, so do all the entries of Ṽ (λ) and hence if the input
determinantal representation is fully saturated, so is the output one. Similarly,
the second direction follows by multiplying (7.28) on the left by the inverse of
W̃ (ξ1, ξ2, ξ1λ1 + ξ2λ2).

To understand the behavior at infinity, we consider the homogeneous version
of (7.28), that is

(ν1σ2 − ν2σ1 + ν0γ̃)W (ν0ξ1, ν0ξ2, ξ1ν1 + ξ2ν2) =

W̃ (ν0ξ1, ν0ξ2, ξ1ν1 + ξ2ν2) (ν1σ2 − ν2σ1 + ν0γ) .

Then, we use a different affine chart and repeat the argument above. �

Using the previous results, we may conclude the main argument of this step.
Proof of Step 6: Using Lemma 7.5, it is enough to show that for any p0 ∈ Ω
the point (y1(p0), y2(p0)) lies outside the joint spectrum of My1 and My2 .

Using Lemma 7.4 and assuming p0 ∈ Ω, there exists a polynomial g sat-
isfying g(π(p0)) = 0 such that the entire fiber of the meromorphic function
g(y1, y2) above 0 belongs to Ω. We define a new meromorphic function w1(p) =
g(y1(p), y2(p)). We assume without lose of generality that w1 is real, other-
wise we replace w1(p) by w1(p)w1(τ(p)) (it is well-defined since we may assume
that Ω is symmetric, see Remark 7.2). Then we define w2(p) = h(y1(p), y2(p))
for some two-variable polynomial h with real coefficients such that w1 and w2
generate M(X).

We now take α1 and α2 in a neighborhood of infinity and such that w′1
def=

1
w1(z)−α1

and w′2
def= 1

w2(z)−α2
have simple poles. Then all the pre-images of −1

α1

under w′1 lie in Ω. Since the structure identity holds for y1 and y2, then by
Proposition 6.6 the colligation condition hold for My1 and My2 . Therefore, by
Theorem 6.2, Mw1 satisfies the colligation condition and then again by Proposi-
tion 6.6 the structure identity holds for w1. We then take β′ in a neighborhood
of infinity and let β = 1+β′α1

β′ in a neighbourhood of α1. Then one can show

that 1
w′1−β′

= − 1
β′

(
1 + 1

β′
1

w1−β

)
and therefore R

w′1
β′ = − 1

β′

(
I + 1

β′R
w1
β

)
. It

follows by a straightforward verification that if the structure identity holds for
w1 then it also true for w′1 (and similarly for w′2). Hence, repeating Steps (1-5)
but now with Mw′1 and Mw′2 implies that the collection

(Mw′1 , Mw′2 ; X , Φ(w′1,w′2) , E(w′1,w′2) ; σw′1 , σw′2 , γ(w′1,w′2) , γ̃(w′1,w′2) ),

is again a commutative two-operator vessel. Since all the pre-images of w′1(p0) =
−1
α1

under w′1 lie in Ω, Corollary 7.3 implies that (w′1(p0), w′2(p0)) does not belong
to the joint spectrum of Mw′1 and Mw′2 .

Assume that the statement is not true, that is, (y1(p0), y1(p0)) belongs to
the joint the spectrum of My1 and My2 . Then by the spectral mapping theo-
rem for a pair of commuting operators, (w1(p0), w1(p0)) belongs to the joint of
spectrum Mw1 and Mw2 (see [47] and Theorem 6.1). Furthermore, using the
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spectral mapping theorem for rational function [63], (w′1(p0), w′1(p0)) belongs to
the joint spectrum of Mw′1 and Mw′2 , a contradiction. �

Step 7. The reproducing kernel of X is equal to

KX(p, q) = T (p)Kζ(p, q)T (q)∗ −Kζ̃(p, q),

where T is the normalized joint characteristic function associated to the vessel
(7.1).

Using Step 6, the input and output determinantal representations are maxi-
mal and hence we turn to examine the NJCF (the normalized joint characteristic
function, which is related to the JCF by (2.21)). Using (7.19) and repeating in
the reverse order the calculation at the end of the proof of Theorem 3.6 yields
the required result. �

We now turn to present the proof of Theorem 4.7.

Proof of Theorem 4.7: Let y1(·) and y2(·) be two meromorphic functions,
not necessarily with simple poles, generating M(X). The corresponding bi-
rational embedding of X onto a curve C defined by the closure in P2 of the
curve C0 is given by

π : X → C0 ⊆ C2

p 7→ (y1(p), y2(p)).

Let us consider the pair of meromorphic functions defined by

ỹk(p) def= 1
yk(p)− α0

k

α0
k ∈ R for k = 1, 2.

Since yk has a finite number of critical points, we can choose α0
k in a neighbor-

hood of β0
k such that the pre-images of α0

1 and α0
2 are non critical points of y1

and y2 and the functions ỹ1(p) and ỹ2(p) have only simple poles.
Note that X is invariant under Ryk

α0
k

implies X is invariant under M ỹk . Fur-
thermore, the same verification as in the proof of Step 6 of Theorem 4.4 above
shows that the validity of the structure identity for yk (for some αk, βk in a
neighborhood of α0

k) implies that the structure identity holds for ỹk (for some
α̃k, β̃k in a neighborhood of infinity).

The functions ỹ1(p) and ỹ2(p) define a new birational embedding of X into
P2, but onto a different curve, denoted by C̃, defined by the closure of C̃0:

π̃ : X → C̃0 ⊆ C2

x 7→ ((y1(p)− α0
1)−1, (y2(p)− α0

2)−1).

The new critical points of π̃ (except the critical points inherited from π) can be
only the points above the poles of (y1(p)−α0

1)−1 and (y2(p)−α0
2)−1. However,
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by assumption, the pre-images of α0
1 and α0

2 are regular. Thus (π̃)−1C̃sing ⊆
(π)−1Csing and the regularity assumption of (y1(p), y2(p)) implies regularity of
(ỹ1(p), ỹ2(p)).

We now can apply Theorem 4.4. We embed the operators M ỹ1 and M ỹ2

into a commutative vessel of the form

V′ = (M (y1−α0
1)−1

, M (y2−α0
2)−1

; X , Φ , E ; σ1 , σ2 , γ, γ̃ ).

Then the reproducing kernel is of the form

K(p, q) = T ′(p)Kζ(p, q)T ′(q)∗ −Kζ̃
(p, q),

where T ′ is the normalized joint characteristic function of the vessel V′. This
completes the proof of part (a).

We now turn to prove part (b). Let y1 = y be a real meromorphic function,
we choose y2, another real meromorphic function, such that all the poles of y2
are contained in Ω and y1 and y2 generate M(X). The pair of meromorphic
functions defines a birational embedding onto a curve C in P2.

Then we apply the realization theorem for the NJCF T (i.e. Theorem 3.1)
and thus we have a commutative two-operator vessel V with input and output
determinantal representations corresponding to ζ and ζ̃ and with the normalized
joint characteristic function T . The associated model vessel is given by

VT = (My1 , My2 ; H(T ) , Φmod , Cn ; σ1 , σ2 , γ , γ̃ ).

Then, using Theorem 3.6, VT is an irreducible commutative two-operator ves-
sel which is unitary equivalent, on its principal subspace, to V and with the
normalized joint characteristic function T .

Furthermore, X is invariant under My1 and hence also Ry1
α -invariant for α

in the neighborhood of infinity. To complete the proof, we mention that by
Proposition 6.6, the structure identity is equivalent to the colligation condition.
Hence the colligation condition for My1 in VT implies that the structure identity
for y1(·) = y(·) holds. �

We note that in the proof of Theorem 4.7, if y has only simple poles then
we can choose y2 with simple poles. Furthermore, we can take the output de-
terminantal representation to be the canonical determinantal corresponding to
ζ̃. Then the input determinantal representation is the canonical determinantal
representation corresponding to ζ multiplied the by the values of T at infinity,
see Remark 3.3, and Φmod is just the evaluation operator at the poles of y1 and
y2.
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pages 1–29. Birkhäuser, Basel, 1994.

[48] D. Mumford. Tata lectures on theta. I, volume 28 of Progress in Mathe-
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