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Wildfires are increasing in risk and prevalence. The most destructive wildfires

in decades in Australia occurred in 2019–2020. However, there is still a chal-

lenge in developing effective models to understand the likelihood of wildfire

spread (susceptibility) and pre-fire vegetation conditions. The recent launch of

NASA’s ECOSTRESS presents an opportunity to monitor fire dynamics with a

high resolution of 70 m by measuring ecosystem stress and drought conditions

preceding wildfires. We incorporated ECOSTRESS data, vegetation indices,

rainfall, and topographic data as independent variables and fire events as

dependent variables into machine learning algorithms applied to the historic

Australian wildfires of 2019–2020. With these data, we predicted over 90% of

all wildfire occurrences 1 week ahead of these wildfire events. Our models iden-

tified vegetation conditions with a 3-week time lag before wildfire events in the

fourth week and predicted the probability of wildfire occurrences in the subse-

quent week (fifth week). ECOSTRESS water use efficiency (WUE) consistently

emerged as the leading factor in all models predicting wildfires. Results suggest

that the pre-fire vegetation was affected by wildfires in areas with WUE above

2 g C kg�1 H₂O at 95% probability level. Additionally, the ECOSTRESS evapo-

rative stress index and topographic slope were identified as significant contribu-

tors in predicting wildfire susceptibility. These results indicate a significant

potential for ECOSTRESS data to predict and analyze wildfires and emphasize

the crucial role of drought conditions in wildfire events, as evident from ECOS-

TRESS data. Our approaches developed in this study and outcome can help

policymakers, fire managers, and city planners assess, manage, prepare, and

mitigate wildfires in the future.

Introduction

Wildfires have increased in severity and intensity world-

wide (Bowman & Sharples, 2023; Lindenmayer & Tay-

lor, 2020). These have sparked significant concern due to

their destructive impacts on the environment, climate,

communities, human well-being, and economies (Filkov

et al., 2020). Among the common sources of wildfires are

human activity and natural causes such as lightning

strikes, with climate change increasing susceptibility and

exacerbating conditions (Lewis et al., 2015). Therefore,

reliable wildfire susceptibility models are essential to

ensure public safety, natural resource planning, and risk

management. Such models could help identify areas with

higher fire risk, enabling authorities to prioritize monitor-

ing and resource allocation in those vulnerable regions,

even with limited resources (Whitburn et al., 2016).

The robustness and sensitivity of models rely heavily

on available data. Before the advent of remote sensing,

wildfire occurrences were collected mainly by post-fire

field surveys, which were time-consuming and often

lacked ignition points (Lim et al., 2019). However, with

the introduction of remote sensing methods and satellite

monitoring systems, spatially comprehensive datasets are
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available on demand. This has helped researchers in

quantifying climate, topographical, and human factors

toward the contribution of wildfires around the world.

Fire data products, such as the Moderate Resolution

Imaging Spectroradiometer (MODIS), are currently freely

available online, enabling access to the timing and spatial

distribution of fires and their characteristics worldwide

(Wulder et al., 2012).

The variables to predict wildfires can be categorized

into topography, vegetation, climate, and human activities

(Abram et al., 2021; Fern�andez-Guisuraga et al., 2023;

Ganteaume et al., 2013; Nami et al., 2018; Parisien

et al., 2012). Topographic effects on wildfire (e.g., slope,

aspect, and elevation) are primarily indirect by influenc-

ing the type of vegetation, local climate, and human

accessibility (Jaafari et al., 2017; Nami et al., 2018; Pari-

sien et al., 2012). These factors also have direct impacts

on wildfire intensity (Cheney & Sullivan, 2008), spread

rate (Morandini et al., 2018), and risk of ignition (Calvi~n-

o-Cancela et al., 2017). Climate variables (rainfall, tem-

perature, humidity, and wind) directly and indirectly

influence wildfire events (Jaafari et al., 2017; Nami

et al., 2018; Parisien et al., 2012). Recent studies show

that heat extremes and drought associated with climate

change also make our environment increasingly vulnera-

ble to devastating wildfires (Bowman et al., 2017; Deb

et al., 2020; Halofsky et al., 2020; Lim et al., 2019). Sev-

eral studies over the past century have observed that the

fire frequency and area burned correlated with air tem-

perature and precipitation variability, thus increasing the

concern over the impact of climate change (Bergeron &

Flannigan, 1995; Fried et al., 2004; Zhang et al., 2015).

Vegetation (land cover), on the other hand, affects wild-

fire and fire spread through fuel characteristics such as

vegetation type, water availability, evapotranspiration

(ET), and evaporative stress index (ESI), affecting the

moisture in the plants and fuel load (Archibald

et al., 2018; Fisher et al., 2017; Nami et al., 2018). These

variables are widely used to analyze and understand burn

severity, susceptibility, and occurrences of wildfire (Harri-

son et al., 2021; Pascolini-Campbell et al., 2022; Pimont

et al., 2021).

ECOSTRESS was launched by NASA in June 2018, pro-

viding thermal infrared measurements and subsequent

science products with approximately 70 m spatial resolu-

tion on the ground (Fisher et al., 2020). Data from

ECOSTRESS primarily addresses how water availability

affects key climate biomes worldwide, drought estimation,

and agricultural vulnerability (Anderson et al., 2021;

Cooley et al., 2022; Doughty et al., 2023; Fisher

et al., 2020; Hamberg et al., 2022). ECOSTRESS also pro-

vides these high spatial resolution thermal data at the

highest available temporal resolution (1–5 days), allowing

researchers and fire management agencies to monitor land

surface conditions and respond more effectively to fire

risk conditions. ECOSTRESS shows how ecosystems

change with climate and creates a crucial link between the

water cycle and natural and human-inflicted plant health

(Fisher et al., 2017). ET data acquired throughout the day

enables the evaluation and measurement of plant stress

imposed by seasonal drought and wildfire

(Pascolini-Campbell et al., 2022; Poulos et al., 2021).

ECOSTRESS offers superior spatiotemporal resolution

and the ability to monitor diurnal cycles compared to

previous studies (Li et al., 2021; Wen et al., 2022; Xiao

et al., 2021). Recent studies have demonstrated that

ECOSTRESS-based predictors (ET and ESI) revealed

promising relationships between pre-/post-fire vegetation

conditions and burn severity, attributing to its ability to

monitor and assess the daily patterns of plant stress

induced by seasonal drought and wildfires (Hatch

et al., 2022; Pascolini-Campbell et al., 2022; Poulos

et al., 2021). However, the challenge lies in integrating

these variables into predictive models to capture the com-

plex interactions between vegetation stress, environmental

conditions, and wildfire dynamics. Further research is

needed to understand better how ECOSTRESS data can

evaluate pre-fire vegetation conditions and determine

wildfire susceptibility.

To predict wildfire events, fire weather indices (FWI)

were among the first probability mapping trials. FWI is

commonly used to define an area’s seasonal and long-time

forest fire hazard, produced from environmental factors

such as weather data (dry bulb temperature, humidity,

wind speed, etc.) to calculate fire danger rating and fuel

moisture content (Fosberg, 1978; Srock et al., 2018). This

led to the development of spatial models to predict wildfire

susceptibility using geographic information systems (GIS)

and remote sensing (RS), implemented in different

approaches, such as fuzzy logic and the analytical network

process (ANP) (Tonini et al., 2020). The conventional para-

metric statistical modeling techniques, such as fuzzy logic

by weighting inputs, may be problematic because of subjec-

tive ranking (Satir et al., 2016). An alternative approach is

to learn the complex nonlinear relationships associated

with fire directly from observational and numerical data

modeling using machine learning algorithms (Bui

et al., 2018). Recently, machine learning algorithms such as

neural networks, support vector machine, random forest

(RF), and logistic regression (LR) classifiers have achieved

reasonably reliable results in various natural hazard suscep-

tibility mapping studies (Satir et al., 2016). On the other

hand, the geographically weighted regression (GWR) algo-

rithm proves to be an effective technique in understanding

spatial autocorrelation by connecting multiple local regres-

sion models at each data point and weighting all results

2 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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from the point as a function of distance (Fotheringham

et al., 2003; Koutsias et al., 2010; Wang et al., 2005). How-

ever, designing wildfire models that effectively incorporate

machine learning algorithms to capture pre-fire vegetation

conditions remains challenging.

Combining the recent advances in remote measurement

(ECOSTRESS) and machine learning for wildfire predic-

tion, this study aims to bridge these capabilities by devel-

oping effective wildfire susceptibility models that provide

insights into pre-fire vegetation conditions. To this aim,

we designed models that incorporate pre-fire vegetation

conditions obtained from ECOSTRESS data to predict the

probability of future wildfire occurrence. These models

make use of various biophysical factors, including MODIS

MCD64A1 fire product, digital elevation model (DEM),

slope, aspect, ECOSTRESS data (i.e., ET, ESI, land surface

temperature—LST, water use efficiency—WUE), NDVI

generated from Sentinel-2 data, and rainfall data. The

predictability of models and biophysical factors were

assessed to understand pre-fire vegetation conditions and

wildfire susceptibility (the likelihood or potential of an

area experiencing wildfires to indicate the possibility of

wildfire occurrence). Finally, we delve into the biophysical

factors and their possible applications to enhance opera-

tional fire suppression and management.

Materials and Methods

Study area

Our study focuses on the south-eastern region of Austra-

lia (Fig. 1). The climate over the region is characterized

as temperate, with December and January being the hot-

test months (Hennessy et al., 2005). In recent years, the

south-eastern part has been experiencing increasing fre-

quency of wildfires. However, the 2019–2020 bushfire sea-

son was unprecedented in intensity and devastation. It is

widely known as ‘Black Summer.’ Throughout the sum-

mer, multiple fires scorched large tracts of land in Victo-

ria and New South Wales of Australia, resulting in 34

fatalities and huge losses of land and wildlife (Bushfires in

Victoria—Research Guides, 2020). Fires were ignited in

September 2019 and were contained by early March 2020.

The state of New South Wales had the highest number of

homes lost (2439), followed by Victoria (396). The Black

Summer was the worst bushfire season on the state of

Victoria’s record. New South Wales also experienced the

longest continuous burning in the history of Australia’s

bushfires. It consumed more than 4 million hectares.

The most predominant land cover types in Southeast

Australia are hummock grasslands and eucalypt wood-

lands (Williams et al., 2015). In general, Australia is

known to be the lowest-elevation continent in the world,

with an elevation averaging 330 m. The highest points on

the other continents are all more than twice the height of

Australia’s highest peak, Mount Kosciuszko, which is

2228 m above sea level.

Data Acquisition and Processing

We chose 2019–2020 data to examine wildfire dynamics,

driven by the extreme nature of the fire season, the avail-

ability of high-resolution ECOSTRESS data, and the goal

of developing robust models capable of depicting severe

wildfire events. We used nine variables from four sources

as explanatory variables (Table 1). Fire occurrences, refer-

ring to actual wildfires, were obtained between September

2019 and March 2020 using the MODIS MCD64A1

(500 m resolution) product (Giglio et al., 2022). These

data served as independent variables for building and val-

idating the models and were created to record the pres-

ence and absence of fires, classified as 0 and 1,

respectively. The centroid pixel points of fire occurrences

were then used to align with corresponding values from

the ECOSTRESS dataset. Rainfall data were obtained from

the Bureau of Meteorology, Australia, for all 7 months,

which was then compiled and interpolated using the

Inverse Distance Weighting method. DEM derivatives

such as slope and aspect were also created. Sentinel-2 L2A

data at a resolution of 10 m were used to compute

NDVI. This NDVI data was then resampled to match the

70 m resolution of the ECOSTRESS dataset. ECOSTRESS

data products, including ET, evaporative stress index

(ESI), land surface temperature (LST), and water use effi-

ciency (WUE), acquired from NASA LPDAAC AppEARS,

were used to model wildfire dynamics (Fisher et al., 2020;

Zhu et al., 2022). A mosaic dataset in a raster format was

created for each variable over the 7 months between Sep-

tember 2019 and March 2020. All the selected variables of

raster images were resampled to ECOSTRESS datasets to

ensure that they were harmonized for subsequent analysis.

Our model aims to understand wildfire susceptibility

and pre-fire vegetation conditions. Susceptibility in this

study refers to the likelihood or potential of an area

experiencing wildfires, indicating the overall possibility of

wildfire occurrence. Fire occurrence probability is a

numerical value ranging from 0 to 1, quantifying this

likelihood. These concepts are closely related to each

other. Susceptibility is the broader concept that reflects

the potential for wildfire, while fire occurrence probability

provides a precise, quantitative measure of that potential.

An increase in fire occurrence probability directly corre-

lates with greater susceptibility. Pre-fire vegetation condi-

tion is quantified using NDVI, ET, ESI, LST, and WUE

for a particular fire season. These variables were calcu-

lated during the fire season, aligning with our study’s

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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focus on the biophysical conditions of vegetation that

directly influence fire susceptibility prior to wildfire

events. We focused on these explanatory variables con-

tributing to wildfire dynamics rather than specific ignition

sources (such as lightning strikes or human activities),

which are essential for understanding the initiation of

fires. This approach permits us to concentrate on the fac-

tors contributing to wildfire susceptibility and pre-fire

vegetation conditions, particularly under extreme climate

conditions such as those experienced during the

2019–2020 ‘Black Summer’ in South-Eastern Australia.

Design of wildfire models

Two categories of models were developed in this study:

general models and monthly models. The general models

provide an overarching view of wildfire susceptibility

throughout the season, while the monthly models delve

into specific time frames. The monthly models build on

the insights gained from the general models to provide a

finer temporal resolution for understanding and predict-

ing wildfire risk. In essence, the general models set the

stage for broader patterns, while the monthly models

zoom in on critical periods, offering complementary per-

spectives on wildfire dynamics.

The general models were explicitly constructed to esti-

mate wildfire susceptibility and quantify the significance

of input biophysical factors over the entire wildfire period

from September 2019 to March 2020. These models uti-

lized the mean values of explanatory variables at each

pixel location within the study area throughout this

period as independent input variables, with the samples

collected from MODIS ground fire points during

2019–2020 serving as the dependent variable. The study

integrated a range of explanatory variables, including

ECOSTRESS data, vegetation indices, climatic parameters,

and topographical factors to quantitatively assess their

respective impacts on wildfire prediction.

Figure 1. Study area showing ground fire locations in 2019–2020 from MODIS.

4 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Examining Wildfire Dynamics Using ECOSTRESS Data Y. Zhu et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.422, W

iley O
nline Library on [05/11/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://zslpublications.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Frse2.422&mode=


To facilitate an efficient allocation of resources, policy

implementation, and response to the unique characteris-

tics and demands of specific urban areas, we conducted

an evaluation of wildfire susceptibility for cities in

South-Eastern Australia. The results of general models

were used to assess the extent of fire-affected areas. Mean-

while, we implemented a 5 km radial buffer around the

boundaries of each city, following the methodology out-

lined in Chen et al. (2022). Such analysis considered the

extended area of every existing fire object and the tempo-

ral spread of fires in proximity, allowing for a more accu-

rate evaluation of each city’s susceptibility. Subsequently,

we calculated the mean value of the predicted wildfire

susceptibility (occurrence probability) within the buffer

area to provide a representative measure of the cities’

wildfire susceptibility.

The monthly models were designed to capture pre-fire

vegetation conditions and predict wildfire spread 1 week

ahead. We set up a 3-week time lag for data collection

prior to a wildfire event in the fourth week and predict

the wildfire susceptibility in the following week (fifth

week) using a real-world record of wildfire events. The

mean values of the selected data in 3 weeks were com-

puted to minimize or eliminate gaps. The model, for

example, to predict wildfire susceptibility in the first week

of September (September 1–7), was built using the mean

values of explanatory variables during a three-week time

from August 1 to August 21. Such a design is to create an

effective model to predict wildfire spread and assess the

impact of pre-fire plant stress on following wildfire occur-

rence. The workflow diagram of monthly models is

shown in Figure 2. The Australian bushfires started to

spread in the first week of September 2019 and faded in

early April 2020. The fires ceased at the end of October

2019 in south-eastern Australia and reignited in late

November 2019. To understand the impact of change in

the climate condition of the country after the first fire

and to effectively assess the fire influential factor, we built

three monthly models to predict (1) the first week of Sep-

tember (the week when the first wildfire started), (2) the

last week of November, and (3) the first week of Decem-

ber (the weeks when the second fire started).

In general, a machine learning approach is based on

algorithms that have the capacity to effectively learn from

data and make accurate assessments or predictions. This

learning process involves modeling the hidden relation-

ships between a set of input variables (explanatory vari-

ables) and the occurrences of the phenomenon (the

dependent variable) (Tonini et al., 2020). We randomly

acquired 2037 wildfire occurrence points within the study

area in total. Of these, 70% (1426 wildfire occurrence

points) were allocated for training, while the remaining

30% (611 wildfire occurrence points) were reserved for

validation. Here, we evaluated LR, GWR, and RF algo-

rithms to create models that fit relationships between

wildfire events and the explanatory variables. The fit rela-

tionships from these models were then used in the sus-

ceptibility mapping and assessment of variable influence.

Linear regression (LR), in particular, demands the inde-

pendence of explanatory variables. To mitigate the impact

of the correlation between these variables, we employed a

regularization technique using LASSO (L1 regularization).

LASSO penalizes the coefficients of correlated variables,

prompting the LR model to favor a subset of independent

variables and enhance model robustness. Meanwhile, we

incorporated the global forest loss due to fire data

between 2019 and 2020 (Tyukavina et al., 2022) to vali-

date our results. This dataset maps forest loss due to fire

and matches sample-based area estimates �SE for all con-

tinents except Africa.

In this study, we employed three methods (LR, GWR,

and RF) to quantify the importance of input variables in

our wildfire susceptibility models. Before applying LR and

GWR, we normalized the explanatory variables to a com-

mon scale based on their observed maximum and mini-

mum values derived from zonal statistics (Steel

et al., 2021; Zhu et al., 2022). This normalization ensures

equal levels of contributions from all variables. Such scal-

ing facilitates straightforward comparison and interpreta-

tion of variable importance. In the LR model, variable

Table 1. Explanatory variables used in this research and their data

sources.

Category Explanatory variables Source

ECOSTRESS Evapotranspiration

(ET)

70 m resolution ECOSTRESS

data from LPDAAC AppEARS

https://lpdaacsvc.cr.usgs.gov/

appeears/

Evaporative stress

index (ESI)

Land surface

temperature (LST)

Water use efficiency

(WUE)

Vegetation

Index

Normalized

Difference

Vegetation Index

(NDVI)

SENTINEL-2 Data (10 m

resolution, band 4 and 8 is

used) https://scihub.

copernicus.eu/dhus/#/home

Climate Rainfall Bureau of Meteorology,

Australia http://www.bom.

gov.au/climate/data/

Topography Elevation 9 arc-second DEM (~250 m

resolution) from Geoscience

Australia (Hutchinson

et al., 2008)

Slope Derived from DEM

Aspect

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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importance was quantified using the coefficients derived

from the regression, with larger coefficients indicating

greater importance in influencing wildfire susceptibility.

For GWR, the importance of each variable was deter-

mined by calculating the mean of the standardized coeffi-

cients from the local models of parameter estimates

(Fotheringham et al., 2003). In the RF model, the impor-

tance of each input variable was quantified using the

mean decrease in accuracy, which assesses the difference

in out-of-bag model error between the original dataset

and a dataset with the input variable randomly permuted

(Liaw & Wiener, 2002).

Our training and validation samples from the MODIS

MCD64A1 product record the binary 1 (presence) and 0

(absence) of fires. Therefore, to evaluate the accuracies of

wildfire susceptibility modeling, we categorized pixels as

either fire or non-fire based on a probability threshold of

0.5. Pixels with a probability greater than 0.5 were identi-

fied as fire pixels, while those with a probability of 0.5 or

less were identified as non-fire pixels. This binary classifi-

cation was used to assess the models’ performance in pre-

dicting fire susceptibility.

Results

The main results of this study are presented as (1) asses-

sing the model performance to evaluate stability and con-

sistency; (2) identifying the cause of fire occurrences by

understanding the importance of explanatory variables;

and (3) susceptibility mapping, which includes predicting

wildfire susceptibility and assessing the cities at risk of

wildfire spread.

Model results and accuracy assessment

Given the set of explanatory variables as inputs, we

mapped the wildfire susceptibility for each pixel using

three models—LR, GWR, and RF. The models were

developed to predict wildfire susceptibility for the entire

wildfire period (general models), the first week of Sep-

tember, the last week of November, and the first week

of December. The performance of these models was

assessed through a confusion matrix (Table 2). Overall,

the accuracy of all models exceeded 83%, demonstrating

the built models’ effectiveness by utilizing ECOSTRESS,

topography, climate, and vegetation factors. RF pro-

duced the highest overall accuracy (91%) for the gen-

eral model, compared to LR (83%) and GWR (84%).

Overall, the general models performed worse than the

monthly models except for the RF model for December

prediction. LR models showed consistent accuracy

(between 83% and 88%) for the general and monthly

models. GWR for the general model (84%) has a sig-

nificantly lower accuracy than monthly models, with

more than 92%. RF models present an impressive over-

all accuracy for the general and monthly models, with

more than 90%, except for the model of December

(85%).

Figure 2. Workflow diagram of the monthly models for the wildfire susceptibility (occurrence probability) map.
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Importance of explanatory variables

Regression coefficients obtained from LR and GWR

models and the relative importance of RF were used to

determine the significance of explanatory variables

(Table 3). These metrics were used to comprehensively

assess the significance of the explanatory variables across

different models. General models were created using data

from September to March 2020 and monthly models for

September, November, and December. Variables from

ECOSTRESS, vegetation index, climate, and topography

exhibit varying ranks in different models due to their

diverse characteristics across models. However, despite

these ranking variations, ECOSTRESS WUE consistently

emerges as the most significant variable in predicting

wildfire susceptibility in the evaluations of both general

and monthly models. In the general models, WUE consis-

tently secures the first position in LR and RF and holds

the third rank in GWR. Moreover, it consistently ranks in

the top four variables in monthly models, except for the

September and December models of GWR. The following

top-ranking variables are ESI and Slope, significantly con-

tributing to wildfire susceptibility predictions. Other vari-

ables, like NDVI and rainfall, also contribute to these

predictions. In contrast, aspect, LST, and elevation consis-

tently rank as the least significant variables in these

models. Some coefficients are zero in LR with LASSO

indicating that the corresponding features are not realisti-

cally contributing to the model. This particular procedure

essentially excludes these unproductive features from the

predictive equation. This is how LASSO penalty effectively

performed feature selection.

When comparing the variations among different

models, it becomes evident that the variable rankings in

general models across various algorithms exhibit better

consistency and stability than the monthly model rank-

ings. Specifically, the general models, such as LR and RF,

demonstrate similar variable rankings, while GWR shows

slight variations from them. The monthly models also

yield results similar to the general models, albeit with

slightly higher variations in variable rankings. Overall, LR

general and monthly models in variable rankings are

more stable than RF and GWR.

Based on the analyses above, it is noteworthy that

ECOSTRESS WUE consistently ranks as the top-ranking

variable. Statistical analysis of fire occurrence was con-

ducted concerning the data ranges of these main predic-

tor variables to delve deeper into their impact based on

the general model of LR. This can examine pre-fire

Table 2. The overall accuracy assessments of wildfire susceptibility

models.

Models

Logistic

regression

Geographically weighted

regression

Random

forest

General

models

83% 84% 91%

Monthly models

Sep 83% 95% 92%

Nov 85% 93% 92%

Dec 88% 96% 85%

Table 3. Regression coefficients of explanatory variables in LR and GWR models and variable importance in RF models for general and monthly

models.

Explanatory variables

ECOSTRESS
Vegetation Index Climate

Topography

ESI WUE ET LST NDVI Rainfall Slope Elevation Aspect

Logistic regression

General 3.02 22.79 0 0 0.46 �1.68 5.28 2.91 �0.28

Sep 0 5.72 �1.47 �0.73 3.07 �8.38 3.29 1.13 �0.91

Nov 0.01 4.97 0 �1.11 6.76 0 3.14 0.30 �0.85

Dec 0.04 0 0 0 7.32 0 3.93 0.86 �0.01

Geographically weighted regression

General 0.08 0.11 �0.06 �0.08 �0.02 �0.12 �0.28 �0.04 0.00

Sep 0.10 �0.02 �0.14 �0.13 �0.02 �3.29 �0.14 �0.01 0.00

Nov �0.72 0.72 0.70 �0.18 0.11 0.18 0.02 �0.08 0.00

Dec �0.66 0.10 1.04 0.10 �0.01 0.17 0.22 �0.13 0.00

Random forest

General 0.07 0.24 0.09 0.07 0.06 0.08 0.21 0.14 0.03

Sep 0.07 0.29 0.05 0.06 0.08 0.22 0.1 0.09 0.03

Nov 0.07 0.24 0.05 0.05 0.27 0.06 0.13 0.09 0.04

Dec 0.1 0.11 0.25 0.03 0.27 0.06 0.12 0.05 0.02
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vegetation conditions and their correlation with different

wildfire probabilities during the fire season. As depicted

in Figure 3, the probability of fire occurrence increases as

ECOSTRESS WUE values rise, highlighting the significant

relationship between fire occurrence and these variables.

In the general model of LR (Fig. 4a), WUE had an aver-

age of 1.88 g C kg�1 H2O across the study area during

the fire season and exhibited a significant correlation with

wildfire, with an LR coefficient of 16.17. Significantly,

95% of the vegetation burned during wildfires has WUE

values greater than 2 g C kg�1 H2O.

Spatial distribution of wildfire susceptibility

The susceptibility maps of South-Eastern Australia were

predicted based on general models of LR, GWR, and RF

to provide an overview of the probability of wildfire

occurrence. All three models produced the maps with a

resolution of 70 m in line with the spatial resolution of

ECOSTRESS datasets. According to Figure 4, the suscepti-

bility maps consistently indicate that the likelihood of

wildfire occurrence is highest along the coastal areas, con-

sistent with observations made during the 2019–2020
wildfire event and forest loss due to fire (Tyukavina

et al., 2022).

The wildfire probability maps from the three models

reveal the hotspot areas of wildfire occurrence. These

areas are predominantly concentrated in the protected

areas, particularly within national parks characterized by

vegetated regions, including Alpine, Kosciuszko, Deua,

Wollemi, Morton, Blue Mountain, LNE Special Manage-

ment, and UME Special Management. As an example, we

provide a close-up view of the wildfire-prone areas within

the Alpine National Park region, projected by the LR gen-

eral model in Figure 4b. These areas are vulnerable to

wildfire from the prediction maps of the three models.

Consistent with the variable importance results, the

susceptibility maps generated by the LR (Fig. 4a) and RF

(Fig. 4d) general models exhibit a higher degree of simi-

larity than those produced by GWR (Fig. 4c).

Figure 5 illustrates the cities prone to wildfires based

on the susceptibility results of RF general model. Accord-

ing to the predictions, the Macedon Ranges and Murrin-

dindi in Victoria State, the mid-north coast, and Coffs

Harbor regions (between Blue Mountain and Clarence

Valley) in New South Wales show high susceptibility to

wildfires, followed by the greater Sydney and Melbourne

areas. This information is vital for policymakers, fire

managers, forest rangers, and urban planners in evaluat-

ing, managing, preparing for, and mitigating wildfire risks

in proximity to cities around wildland biomes.

Discussion

Model performance and application
scenarios

This research presents an in-depth analysis of wildfire

dynamics in South-Eastern Australia and examines vari-

ous biophysical factors, including slope, elevation, aspect,

rainfall, NDVI, and ECOSTRESS data as independent var-

iables to establish the cause-and-effect relationship with

fire points as the dependent variable. It should be noted

that our study is the largest wildfire ECOSTRESS analysis

to date (Bonney et al., 2020; Pascolini-Campbell

et al., 2022; Poulos et al., 2021). It focuses on quantifying

the impact of drought on wildfire using NASA’s ECOS-

TRESS, which assesses the effects of water availability on

climate biomes worldwide (Fisher et al., 2020). Creating

high-resolution (70-meter) wildfire susceptibility images

using these models proves valuable for visualizing fire

during wildfire seasons. Tyukavina et al. (2022) identified

forest loss due to wildfires across temperate regions of

Australia (Fig. 4). Our wildfire susceptibility maps align

Figure 3. The influence of the main predictor variable ECOSTRESS WUE for fire occurrence is based on the general model of logistic regression.

8 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Examining Wildfire Dynamics Using ECOSTRESS Data Y. Zhu et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.422, W

iley O
nline Library on [05/11/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://zslpublications.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Frse2.422&mode=


with their findings. While our study focuses on wildfires

from September 2019 to March 2020, the forest loss data-

set spans the entire years of 2019 and 2020. Despite not

being perfectly aligned in dates, we qualitatively observed

that the regions identified as highly susceptible in our

models closely correspond with areas of forest loss due to

wildfires. This comparison validates our model’s reliability

and demonstrates its effectiveness in identifying the areas

with different levels of wildfire susceptibility.

Although MODIS fire detection operates at a

500-meter resolution, we used the central point of the

MODIS 500-meter grid cells to represent wildfire occur-

rences. In contrast, high-resolution datasets, such as

Sentinel-2 and ECOSTRESS-derived variables, were used

as independent variables. We built machine-learning

models using these variables to predict wildfire

susceptibility. While MODIS may miss smaller fires due

to its resolution limitations, the detailed high-resolution

predictor variables provide critical insights into local con-

ditions. This approach enhances our ability to predict

potential fire-prone areas. By integrating MODIS fire data

with high-resolution independent variables, we can gener-

ate detailed 70-meter wildfire susceptibility maps, effec-

tively capturing fine-scale variations in wildfire risk.

We constructed general and monthly wildfire suscepti-

bility prediction models utilizing machine learning and

biophysical factors. The general models provide an overall

insight into the critical biophysical factors contributing to

wildfire occurrence. Therefore, this model can be valuable

in pinpointing areas (such as the mid-north coast and

Coffs Harbor regions in New South Wales, as shown in

Fig. 5) that demand intensive monitoring. The monthly

Figure 4. Wildfire susceptibility (occurrence probability) maps overlaid with fire locations and forest loss due to fire: (a) logistic regression, (b) a

zoomed-in version of highly susceptible fire areas within the Alpine National Park region produced by logistic regression, (c) geographically

weighted regression, and (d) random forest. The maps use a probability scale ranging from 0 to 1. Areas with a probability value of 0 are

considered not vulnerable to fire, while areas with a probability value of 1 are the most susceptible.
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models can predict the likelihood of wildfire spreading in

the near future (1 week ahead) and identify the key con-

trolling factors of the pre-fire during that period. These

results can guide firefighters and forest managers in plan-

ning and implementing fire-fighting measures in advance.

Previous studies consider pre-fire vegetation conditions

over months or years, which can provide valuable insights

into longer-term ecological trends (Forkel et al., 2019;

Kuhn-R�egnier et al., 2021). However, our study aims

explicitly to predict wildfire susceptibility based on the

vegetation conditions within the current fire season,

emphasizing real-time wildfire prediction. By concentrat-

ing on the 3 weeks preceding the wildfire, we developed

monthly models to capture the most relevant data for

predicting wildfire susceptibility, demonstrating that the

vegetation’s response to environmental stressors directly

indicates wildfire risk during the current season (Coop

et al., 2016). This focus provides the most practical and

relevant information for timely predicting and managing

imminent wildfire threats using recent biophysical

conditions from readily available and easily manageable

satellite data over a short period of time.

Model testing is crucial in choosing the most appropri-

ate model, enhancing reliability, and minimizing uncer-

tainty. Overall, the RF model exhibited the highest

accuracy, followed by the GWR and LR mode (Table 2).

Therefore, the RF general and monthly models are suit-

able for precise prediction scenarios, particularly in appli-

cations related to wildfire prevention and management

departments (Collins et al., 2018; Gibson et al., 2020;

Mohajane et al., 2021). However, they are often not easily

explainable due to their complex machine-learning

nature. GWR generates a local regression model at each

point (pixel) based on locally associated similar or more

homogeneous pixels. Consequently, these local models are

generally higher than those of a single regression model

for the entire image (Fotheringham et al., 2003; Oliveira

et al., 2014). The LR models can offer advantages in

representing the relationship between dependent and

explanatory variables on a global scale (Iban &

Figure 5. Map showing the ranking of wildfire probability in different districts of the study area. Maroon represents regions more vulnerable to

wildfire, while areas with light yellow show less susceptibility.
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Sekertekin, 2022; Lee, 2005). Furthermore, they provide

consistent results across both general and monthly

models.

Influential factors and their implications

This study explored the influencing factors, including

ECOSTRESS (ESI, WUE, ET, and LST), vegetation index

(NDVI), climate (rainfall), and topography, that contrib-

ute to wildfire susceptibility and effectively demonstrated

their significance. The study identified WUE from

NASA’s ECOSTRESS as the most critical factor. WUE,

the ratio of carbon uptake to water use, averages 1.88 g C

kg�1 H2O over the study area during the fire season. As

demonstrated in Figure 3, areas with WUE exceeding 2 g

C kg�1 H₂O have a 95% probability of experiencing vege-

tation burning during wildfire events. Previous studies

have demonstrated that the increase in WUE can be

attributed to droughts and rising temperatures (Hatfield

& Dold, 2019; Pascolini-Campbell et al., 2022; Peters

et al., 2018). Plants respond to droughts by partially clos-

ing their stomata to limit their evaporative water loss,

even though this comes at the expense of carbon uptake

through photosynthesis. This trade-off strategy maximizes

their WUE, as observed in numerous individual plants in

laboratory and field settings (Peters et al., 2018; Tyuka-

vina et al., 2022). Plant types exhibited convergence in

WUE irrespective of climate (Cooley et al., 2022). This

indicates that South-Eastern Australia likely experienced

drought conditions during the wildfire season, a conclu-

sion supported by previous studies (Bowman, William-

son, Price, et al., 2021; Bowman, Williamson, Gibson,

et al., 2021; Byrne et al., 2021; Deb et al., 2020; Kumar

et al., 2021; Rao et al., 2022; Squire et al., 2021).

Another evidence linking the Black Summer in

South-Eastern Australia to drought is the ESI, which has

been shown to contribute to wildfire predictions (Rich-

ardson et al., 2022). ESI has also been demonstrated to

be effective at capturing early signs of “flash droughts,”

occurring during extended periods of hot, dry, and

windy conditions leading to rapid depletion of moisture

(Deng et al., 2022; Edris et al., 2023). Various studies

have shown that the propagation of wildfires is signifi-

cantly impacted by vegetation conditions, which is an

essential factor in determining fuel characteristics such

as vegetation type, water availability, drought, and ET

(Taufik et al., 2017). These factors, in turn, affect the

moisture levels in the plants and fuel load, ultimately

influencing the spread and intensity of the fire (Nurdiati

et al., 2022). Our results emphasize that ECOSTRESS

WUE and ESI effectively detected and revealed the

drought conditions associated with South-Eastern Aus-

tralia’s Black Summer.

Although the positive coefficient for ESI in Table 3

might initially seem counterintuitive—suggesting a higher

likelihood of fire in wetter conditions—this can be

explained by vegetational seasonal dynamics and ecologi-

cal characteristics. ESI typically reflects water availability,

with higher ESI values indicating lower water stress and

relatively wetter conditions. Our study focused on periods

of seasonal vegetation growth, specifically during the

spring and summer. During these times, higher ESI values

often correspond to increased vegetation growth. This

lush growth results in greater biomass that becomes

highly combustible, thereby elevating the risk of wildfires

as the season progresses (Byrne et al., 2021; Collins

et al., 2023). This aligns with ecological patterns observed

in many regions where rapid vegetation growth during

wetter periods can increase fuel availability, leading to

higher fire risk once the vegetation becomes dry (Ellis

et al., 2022; Sullivan et al., 2012). Therefore, the temporal

lag effect should happen between the high ESI (wetter

conditions) and the subsequent drying out of vegetation.

As the vegetation dries, it can contribute to increased fuel

loads, elevating the risk of fire outbreaks.

NDVI has been identified as one of the top explanatory

variables for fire occurrences, which aligns with the find-

ings of previous research conducted by Zhang

et al. (2013) and Murphy et al. (2019). NDVI is a mea-

sure used to assess the level of greenery in a region.

According to previous studies, NDVI serves as a “switch”

to indicate whether a region is vegetated rather than

directly predicting specific outcomes (Murphy

et al., 2019; Zhang et al., 2013). Meanwhile, NDVI is

indirectly linked to water content in leaves, which acts as

a proxy for fuel moisture content (Tavakkoli Piralilou

et al., 2022; Zacharakis & Tsihrintzis, 2023). Fuel mois-

ture content is a primary factor in fire behavior and

spread by directly affecting the flammability of vegetation

(Yebra et al., 2018). Our study aligns with these findings,

further confirming that NDVI is a critical factor in pre-

dicting wildfire susceptibility.

While our results indicate rainfall as a significant factor

(Ch�eret & Denux, 2007), it may not have been the pri-

mary contributor to the wildfires. For instance, in

November and December, some areas exhibited a high

predicted probability of wildfires despite receiving rela-

tively high levels of rainfall. On the contrary, some areas

received substantial rainfall in September, which marked

the beginning of the wildfire season. However, these areas

did not experience any wildfires. Consequently, it is rea-

sonable to conclude that the absence of rainfall alone may

not be the sole reason behind the wildfire spread. Other

factors and conditions likely played significant roles (Har-

rison et al., 2021; Pascolini-Campbell et al., 2022; Pimont

et al., 2021).
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Few studies show that the change in LST is likely to

cause wildfire spread (Halofsky et al., 2020; Lim

et al., 2019). However, our data revealed that the LST of

South-Eastern Australia during the wildfire season did

not exhibit an effective increase compared to the pre-fire

season. Our findings further indicate that LST was the

least influential factor in predicting wildfire susceptibility,

as observed in both general and monthly models. The

South-Eastern Australia wildfires occurred from Septem-

ber 2019 to March 2020, with an initial cessation in late

October 2019 in South-Eastern Australia followed by a

reignition in late November 2019. The most severe fires

occurred from December 2019 to January 2020, during

the wintertime (Abram et al., 2021). Notably, LST during

that period did not reach levels comparable to the initial

stage of the wildfires between September and October,

contributing to its reduced significance as a predictive

factor.

In summary, our findings indicate that drought is a

significant contributing factor to wildfire events, which is

in line with the results reported by Clarke et al. (2022)

and Lim et al. (2019). Prolonged droughts have increased

the likelihood of wildfires and made them more

challenging to control (Bowman et al., 2009; Canadell

et al., 2021). Meanwhile, our study highlights the signifi-

cance of using NASA’s ECOSTRESS data to assess the

impact of water availability on key climate biomes world-

wide (Fisher et al., 2020; Zhu et al., 2023). We quantified

the influence of drought on wildfires based on ECOS-

TRESS WUE and ESI data. This underscores the value of

ECOSTRESS data in current and future wildfire predic-

tion analyses.

Conclusions

Our research has developed general and monthly models

to predict wildfire occurrences by combining machine

learning algorithms with various biophysical factors

(Fig. 6). These models effectively serve different applica-

tion scenarios—general models provide a comprehensive

perspective on wildfire susceptibility for wildfire preven-

tion and monitoring. In contrast, monthly models can

understand pre-fire vegetation conditions and predict the

likelihood of wildfire spread in the near future (1 week

ahead), aiding in proactive fire-fighting measures. Nota-

bly, both models consistently identified ECOSTRESS

Figure 6. Using NASA ECOSTRESS and other data in conjunction with machine learning, we were able to predict >90% of wildfire occurrences

1 week ahead of time for Australia’s 2019–2020 fire season. WUE and evaporative stress index (ESI) were major predictor variables based on the

general logistic regression model coefficients (Table 3).
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WUE as the most influential factor, with 95% of wildfire-

affected vegetation displaying WUE values exceeding 2 g

C kg�1 H2O. Furthermore, ECOSTRESS ESI was identi-

fied as a significant contributor to wildfire predictions.

These influencing factors indicated the pivotal role of

drought conditions in wildfire occurrences, as observed

from ECOSTRESS data. The findings provide insight into

developing effective strategies for managing, preventing,

mitigating, monitoring, and predicting wildfires.
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