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COMPOSITION OF RATIONAL FUNCTIONS:

STATE-SPACE REALIZATION AND APPLICATIONS

DANIEL ALPAY AND IZCHAK LEWKOWICZ

Abstract. We define two versions of compositions of matrix-valued rational functions
of appropriate sizes and whenever analytic at infinity, offer a set of formulas for the cor-
responding state-space realization, in terms of the realizations of the original functions.
Focusing on positive real functions, the first composition is applied to electrical circuits
theory along with introducing a connection to networks of feedback loops. The second
composition is applied to Stieltjes functions.

AMS Classification: 08A02 26C15 37F10 47B33 47N70 94C05
Key words: composition, convex invertible cones, electrical circuits, feedback loops, posi-
tive real functions, rational functions of non-commuting variables, state-space realization,
Stieltjes functions
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1. Introduction

This work is focused on composition FL(FR) of rational functions FL(z), FR(z), where the
subscript stands for “left” and “right”. In general composition of functions is classical,
e.g. [22]. Although composition of rational functions plays an important role in the theory
of dynamical systems (see e.g. [5], [12]), a few associated questions are yet unsolved. We
here touch upon three aspects.

• Families of functions which are closed under composition.
• Applications of composition of functions.
• State realization of FL(FR) in terms of the realizations of FL(z) and FR(z).

Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which
supported this research.
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2 D. ALPAY AND I. LEWKOWICZ

In principle there exist results on each of these items: For example, applications of com-
positions to electrical circuits theory was studied in [36]. Little is known in the setting of
realization theory (besides the case where one of the function is a Moebius map; see for
instance [10, Theorem 1.9, p. 35]). Realization of composition of, not necessarily rational,
Q-functions was already addressed in [29].

In the present work we define and study two compositions of matrix-valued rational
functions and whenever analytic at infinity, provide formulas for the respective state-
space realization.

For the first composition we offer an application to electrical circuits. In turn, we introduce
a connection with feedback-loop networks, see the various figures below. Implications of
this novel idea go well beyond the scope of this work.

Stieltjes functions, were explored in [31] in the setting of moment problems; the Nevanlinna-
Pick interpolation problem in this class was studied in that reference in the scalar case, and
for the matrix-valued case see [2], [14, 15] and [24]. We here characterize their state-space
realization and then show that both composition schemes, leave the family of Stieltjes
functions invariant. Our motivation to consider Stieltjes functions stemmed in part from
the following possible link with statistical physics. Positive measures σ on (0,∞) play
an important role in statistical physics, as functions of repartition of energy levels of a
particle (or, more generally, of a system). The associated Laplace transform

Z(β) =

∫ ∞

0

e−βedσ(e),

assumed convergent in Reβ > 0, is called the partition function. See for instance [32, p.
138], [39, p. 66]. When σ is discrete, with unit jumps at E1, E2, . . . we have

(1.1) Z(β) =
∑

j

e−βEj .

One can associate with such a measure another object, namely the function ϕ defined by

(1.2) ϕσ(z) =

∫ ∞

0

z

t− iz
dσ(t),

provided σ satisfies

(1.3)

∫ ∞

0

dσ(t)

1 + t
< ∞

The function ϕσ is a Stieltjes function and the study of compositions of such functions,
associating to two measures σ1 and σ2 on (0,∞) a third measure corresponding to the
composition ϕσ1(ϕσ2) (together with possibly an imaginary constant; see formula (6.3))
should have some physical interpretation, in particular in the case of discrete finite mea-
sures.

2. Realization of rational functions analytic at infinity

We first recall that a p ×m-valued function F (z), analytic at infinity, can be written in
the form

(2.1) F (z) = D + C(zIn − A)−1B,
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where D = F (∞) and where A,B,C are matrices of appropriate sizes. Expression (2.1) is
called a realization. Sometimes we shall find it convenient to use, the same A,B,C,D, the
engineering shorthand notation, (introduced by H.H. Rosenbrock, see e.g. [37, Chapter
1, Section 2]) of a (n+ p)× (n+m) realization array1 RF ,

(2.2) RF =

(

A B

C D

)

Whenever for a given F , analytic at infinity, the dimension of A in (2.1), (2.2) is the small-
est possible, the realization is called minimal and the dimension of A is the McMillan
degree of F (z). In this case, the realization is unique up to a change of coordinates
meaning that for a n× n non-singular matrix S,

(2.3)
(
S 0
0 Ip

)−1
( A B
C D )
︸ ︷︷ ︸

RF

(
S 0
0 Im

)
,

is another minimal realization of F (z) similar to RF . In particular, the spectrum of the
A part, is preserved.

Up to this point, the above realization description is a classical textbook material and we
refer the reader to [6, Section 3.4], [10], [38, Section 6.4 and Remark 6.7.4].

For future reference we cite additional known results

Proposition 2.1. Let

F (z) = C(zI − A)−1B +D

be a p × p-valued rational function, where D is non-singular. Then, (F (z))−1 is well
defined and a realization array associated with it, i.e. with

(2.4) (F (z))−1 =
(
C(sI −A)−1B +D

)−1
:= Cinv(sI −Ainv)

−1Binv +Dinv ,

can be written as

(2.5)

(

Ainv Binv

Cinv Dinv

)

=

(

A−BD−1C −BD−1

D−1C D−1

)

.

For proof see e.g. [11, Theorem 2.4].

Remark 2.2. One can re-write Eq. (2.5) as
(
Ainv Binv
Cinv Dinv

)
= ( A 0

0 0 ) +
(

−B
Ip

)
D
−1 ( C Ip ) .

The following known result, see e.g. [11, Section 2.5], will also be useful.

Proposition 2.3. Let

F1(z) = C1(sI − A1)
−1B1 +D1 and F2(z) = C2(sI −A2)

−1B2 +D2

be p× k and k ×m-valued rational functions, respectively. Then, F1F2 is a p×m-valued
rational function whose state-space realization may be given by

(2.6) RF1F2 =

(
A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

)

.

1R stands for “realization” or “Rosenbrock”.



4 D. ALPAY AND I. LEWKOWICZ

We next recall in the tensor (a.k.a. Kronecker) product M ⊗ N of a pair of matrices
M ∈ Cp×l and N ∈ Cm×q so that M ⊗N is of dimensions mp× lq and takes the form2

M ⊗N :=





m11N m12N ··· m1,lN

m21N m22N ··· m2,lN

...
... ···

...
mp1N mp2N ··· mp,lN



 .

For more information, see e.g. [27, Chapter 4].

We next formulate the focal problem of this work.

Problem formulation

Let FL(z) be
3 a p× p-valued rational function of McMillan degree n and let FR(z) be a

q × q-valued rational function of McMillan degree m. Their minimal realization arrays
are (n+ p)× (n+ p) and (m+ q)× (m+ q), respectively

(2.7) RL =

(

AL BL

CL DL

)

RR =

(

AR BR

CR DR

)

,

i.e.

(2.8) FL(z) = DL + CL (zIn −AL)
−1

BL , FR(z) = DR + CR(zIm − AR)
−1BR .

Assuming that FL(FR) a composition of these functions, is well defined, we seek a formula
for a state-space realization of this composition4,

(2.9) FL(FR(z)) = Dcomp + Ccomp(zIk − Acomp)
−1Bcomp ,

in terms of the realization of the original systems (2.7), for some natural k, i.e. a corre-
sponding realization array is,

(2.10) RFL(FR) =

(
k

︷ ︸︸ ︷

Acomp Bcomp

Ccomp Dcomp

)

.

In particular, find both: k, see (2.9), (2.10), the dimension of the realization of the
composed system and the corresponding McMillan degree.

Remark 2.4. a. Even when one starts with minimal realizations of FL and FR, of
McMillan degrees n and m respectively, k the dimension of the realization, see (2.9),
(2.10) is not necessarily minimal, i.e. k may be bigger than the McMillan degree of the
composition.

b. In Section 3 one obtains that in the realization, see (2.9), (2.10)

k = mn,

and in fact, this is the McMillan degree of the composed function, see Remark 3.8.
In contrast, in Section 5

k ≤ n.

2 M =





m11 m12 ··· m1,l

m21 m22 ··· m2,l

...
... ···

...
mp1 mp2 ··· mp,l





3Recall, the subscript stands for “Left” and “Right”.
4The subscript stands for “composition”.
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3. Composition of functions - first version

Presentation of the first version of composition of functions, is split into three subcases.

3.1. The case where fR(z) is scalar.

Proposition 3.1. Let fR(z) be a scalar-valued5 rational function, of the form,

fR(z) = dR + cR (zIm − AR)
−1

bR ,

then

Fl (fR(z)) = DL + CL (fR(z)In −AL)
−1

BL

admits a state space realization of the form

Fl (fR(z)) = Dcomp + Ccomp(zIk −Acomp)
−1Bcomp ,

of state dimension

k = mn,

and a realization array of the form
(

Acomp Bcomp

Ccomp Dcomp

)

=

(

In ⊗AR − (In ⊗ bR) (dRIn −AL)
−1

(In ⊗ cR) −(In ⊗ bR) (dRIn −AL)
−1

BL

CL (dRIn −AL)
−1

(In ⊗ cR) DL + CL (dRIn −AL)
−1

BL

)

.

Proof : By construction,

FL(fR) = DL + CL (fR(z)In −AL)
−1

BL

= DL + CL

((
fR(z)

...
fR(z)

)

−AL

)−1

BL

= DL + CL

((
dR+cR(zIm−AR)−1bR

...
dR+cR(zIm−AR)−1bR

)

− AL

)−1

BL

= DL + CL

(

dRIn −AL +

(
cR(zIm−AR)−1bR

...
cR(zIm−AR)−1bR

))−1

BL

= DL + CL

(
(dRIn −AL) + In ⊗

(
cR (zIm −AR)

−1
bR
))−1

BL

= DL + CL (dRIn −AL + (In ⊗ cR) (In ⊗ (zIm −AR)
−1) (In ⊗ bR))

−1
BL

= DL + CL




dRIn −AL
︸ ︷︷ ︸

D̂

+ (In ⊗ cR)
︸ ︷︷ ︸

Ĉ



zInm − In ⊗AR
︸ ︷︷ ︸

Â





−1

(In ⊗ bR)
︸ ︷︷ ︸

B̂






−1

BL

= DL + CL

(

D̂−1 + D̂−1Ĉ
(

zInm − (Â+ B̂D̂−1Ĉ)
)−1

(−B̂D̂−1)

)

BL

5To ease reading, scalar functions are denoted by small letters.



6 D. ALPAY AND I. LEWKOWICZ

= DL + CLD̂
−1BL

︸ ︷︷ ︸

Dcomp

+CLD̂
−1Ĉ

︸ ︷︷ ︸

Ccomp




zInm − (Â + B̂D̂−1Ĉ)

︸ ︷︷ ︸

Acomp






−1

(−B̂D̂−1BL)
︸ ︷︷ ︸

Bcomp

,

where we have used Proposition 2.1 with

Â := In ⊗ AR B̂ = In ⊗ bR Ĉ := In ⊗ cR D̂ := dRIn − AL ,

and thus the construction is complete. �

Remark 3.2. One can re-write the last result as,
(

Acomp Bcomp

Ccomp Dcomp

)

=
(

In⊗AR 0

0 DL

)

+
(

−In⊗bR

CL

)

( dRIn−AL )
−1 ( In⊗cR BL ) .

3.2. The case where AL is diagonalizable. Here diagonalizability assumption of AL,
the state matrix associated with FL(z) essentially reduces the problem to a composition
by a sum of degree one rational functions. The details are as follows.

We start by diverting a little, and exploit diagonalizability of A to obtain a result whose
applicability is well beyond the scope of this work.

Proposition 3.3. Let A ∈ C
n×n be a diagonalizable matrix and let a1, . . . , aν ∈ C, for

some ν ∈ [1, n], be its distinct eigenvalues. Denote by n1, . . . , nν the corresponding
algebraic multiplicity, i.e. for some (non-unique) non-singular V ∈ Cn×n,

(3.1) A = V −1





a1In1
a2In2

...
aνInν



V
ν
∑

j=1
nj = n .

(I) Let B a n×m matrix. Then, the pair A,B is controllable if and only if, with V

from (3.1) one can write

(3.2) V −1B =






β1

β2

...
βν






} n1

} n2

} nν

where each of the matrices β1, . . ., βν is of a full rank.

In particular, m ≥ max(n1, n2, . . . , nν).

(II) Let C be a p× n matrix. Then, the pair A,C is observable if and only if, with V

from (3.1) one can write

(3.3) CV = ( γ1
︸︷︷︸

n1

γ2
︸︷︷︸

n2

· · · γν
︸︷︷︸

nν

)

where each of the matrices γ1, · · · , γν is of a full rank.

In particular, p ≥ max(n1, n2, . . . , nν).

(III) Let

F (z) = C(zIn − A)−1B +D,
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be a p×m-valued rational function where A,B,C are as above. RF , an (n+ p)× (n+m)
realization array of F (z),

RF =

(

A B

C D

)

,

is minimal, if and only if each of the above 2ν matrices, β1 , . . . , βν and γ1 , . . . , γν
in (3.2) and (3.3) respectively, is of a full-rank.

Proof : (I) By the P-B-H eigenvector’s test, see e.g. [28, Theorem 6.2-5], a pair A, B is
uncontrollable, if and only if (up to relabeling the eigenvalues of A) there exists 0 6= v ∈ Cn

so that

(3.4) v∗A = a1v
∗ and v∗B = 0.

Using (3.1) one can write

u∗ := v∗V −1 with u =





u1
0
...
0



 0 6= u1 ∈ C
n1.

Substituting in (3.2), controllability means that

u∗
1β1 6= 0,

and since u1 is arbitrary, one may conclude that the rank of the n1 ×m matrix β1 is at
least n1. Since similar reasoning can be applied with j = 2, . . . . ν, this part of the claim
is established.

Item (II) follows from item (I) by controllability-observability duality.

Item (III) follows from the first two items by recalling that a realization is minimal if and
only if it is both controllable and observable. �

For a diagonalizable matrix A, the eigenvalues-eigenspaces description of in (3.1) is the
best known. However, it is inherently non-unique, i.e. one can also write,

A = (WV )−1





a1In1
a2In2

...
aνInν



WV W :=

(W1
W2

...
Wν

)
ν
∑

j=1
nj=n

Wj∈C
nj×nj non−singular.

We next introduce a unique eigenvalues-eigenspaces description of a diagonalizable matrix
A, to be used in the sequel. This is an extended version of a classical result, see e.g. [25,
Ch. 6, Thms. 8 & 9]

Lemma 3.4. Let A ∈ Cn×n be a diagonalizable matrix and let a1, . . . , aν ∈ C, (with
ν ∈ [1, n]) be its distinct eigenvalues, i.e. ν is the degree of the minimal polynomial
associated with A.
Then, there exist (oblique) projections6, Π1, . . ., Πν satisfying,

ΠjΠk =
{

Πj j=k

0n j 6=k

ν∑

j=1

Πj = In ,

6For j = 1, . . . , ν the rank of Πj is equal to the algebraic multiplicity of the corresponding aj .
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so that one can write,

A =

ν∑

j=1

Πjaj .

Furthermore, this presentation is unique.

It now follows that the pencil associated with A can be written as,

(Inz − A)−1 =
ν∑

j=1

Πj(z − aj)
−1

Πj .

Note that using (3.1) the projections in Lemma 3.4 are actually given by,

Π1 = V
−1





In1
0·In2

...
0·Inν



 V · · · Πν = V
−1





0·In1
0·In2

...
Inν



 V .

We can now use Lemma 3.4 to obtain a convenient state space realization of a rational
function.

Lemma 3.5. Let F (z) be a p×m-valued rational function and assume that the associated
n× n state-matrix A, is diagonalizable.
(I) Denote by a1, . . . , an the eigenvalues (including multiplicity) of A.
Then, there exist rank-one (oblique) projections Π1, . . . Πn satisfying,

ΠjΠk =
{

Πj j=k

0n j 6=k

n∑

j=1

Πj = In ,

so that F (z) admits a unique minimal realization of the form,

(3.5)

F (z) = D + C
n∑

j=1

Πj(z − aj)
−1

ΠjB

= D +
n∑

j=1

Cj(z − aj)
−1Bj

= D +
n∑

j=1

(z − aj)
−1CjBj

= D +
n∑

j=1

CjBj(z − aj)
−1

j=1, ... , n,

Bj :=ΠjB n×m

n
∑

j=1
Bj=B

Cj :=CΠj p×n,

n
∑

j=1
Cj=C.

(II) For some ν ∈ [1, n], denote by â1, . . . , âν, the distinct eigenvalues of A.
Then, there exist (oblique) projections7 Π̂1, . . . Π̂ν satisfying,

Π̂jΠ̂k =
{

Π̂j j=k

0n j 6=k

ν∑

j=1

Π̂j = In ,

7For j = 1, . . . , ν the degree of the projection Π̂j is equal to the algebraic multiplicity of âj.
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so that F (z) admits a minimal realization of the form,

(3.6)

F (z) = D + C
ν∑

j=1

Π̂j(z − âj)
−1

Π̂jB

= D +
ν∑

j=1

Cj(z − âj)
−1Bj

= D +
ν∑

j=1

(z − âj)
−1CjBj

= D +
ν∑

j=1

CjBj(z − âj)
−1

j=1, ... , ν,

Bj :=Π̂jB n×m

ν
∑

j=1
Bj=B

Cj :=CΠ̂j p×n,

ν
∑

j=1
Cj=C.

Furthermore, if ν = n or when m = p = 1, this presentation is unique.

Recalling that minimality of realization is preserved under change of coordinates, see
(2.3), we next exploit Lemma 3.4 to specify a minimal realization of a rational function
to be used in the sequel.

One can now apply part (I) of Lemma 3.5 to FL(z) and consider a composition FL(FR).

Proposition 3.6. Consider the system in the problem formulation assuming that:
(i) AL, the n× n state-matrix associated with FL(z) is diagonalizable,
(ii) The eigenvalues of AL (including multiplicity) denoted by a1, . . . , an ∈ C, are so
that the q × q matrices

(3.7) ∆j := DR − ajIq j = 1, . . . , n,

are all non-singular.

In each of the three following cases of composition FL(FR), one obtains, a realization of
as in Eqs. (2.9), and (2.10) i.e.

FL (FR(z)) = Ccomp (zIk −Acomp)
−1

Bcomp +Dcomp,

where k = mn and

(3.8) Acomp =

(
AR−BR∆−1

1 CR

...
AR−BR∆−1

n CR

)

and Dcomp = DL+
n
∑

j=1
Cj∆

−1
j Bj .

(I) If q = n, namely FR(z) is n× n-valued, then in (2.9) and (2.10)

(3.9) Bcomp = −





BR∆−1
1 B1

...

BR∆−1
1 Bn



 Ccomp = ( C1∆
−1
1 CR ··· Cn∆

−1
n CR ) .

(II) If q = p, namely both FL(z) and FR(z) are p× p-valued, then in (2.9) and (2.10),

(3.10) Bcomp = −





BR∆−1
1 C1B1

...

BR∆−1
n CnBn



 Ccomp = (∆−1
1 CR ··· ∆−1

n CR ) ,
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or

(3.11) Bcomp = −





BR∆−1
1

...

BR∆−1
n



 Ccomp = ( C1B1∆
−1
1 CR ··· CnBn∆

−1
n CR ) .

(III) Assume that p = 1 i.e. fL(z) is scalar-valued and FR(s) is q × q-valued where
q is a parameter. Here we define n scalars

(3.12) ηj := CjBj j = 1, . . . , n,

and then in (2.9) and (2.10),

(3.13) Bcomp = −





BR∆−1
1

...

BR∆−1
n



 Ccomp = ( η1∆
−1
1 CR ··· ηn∆

−1
n CR ) .

Proof of Proposition 3.6 We here find it convenient to introduce an auxiliary function
F̃L and to apply (3.5) to it, i.e.

F̃L(z) = DL +
n∑

j=1

γj (z − aj)
−1

βj ,

where the parameters β1 . . . , βn and γ1 , . . . , γn will be defined in the sequel.

We now consider realization of composition of these functions namely, using Eq. (3.7),

(3.14)

F̃L(FR) = DL +
n∑

j=1

γj (FR − ajIq)
−1

βj

= DL +
n∑

j=1

γj

(
CR(zIm − AR)

−1BR +DR − ajIq
)−1

︸ ︷︷ ︸

(FR(z)−ajIq)
−1

βj

= DL +
n∑

j=1

γj (CR(zIm −AR)
−1BR +∆j)

−1
βj .

Since by assumption the q×q matrices ∆1, . . . , ∆n are all non-singular, using Proposition
2.1, one can equivalently write Eq. (3.14) as

F̃L(FR) = DL +
n∑

j=1

γj

(

(∆−1
j CR)

(
(zIm − (AR − BR∆

−1
j CR)

)−1
(−BR∆

−1
j ) + ∆−1

j

)

βj

= DL +
n∑

j=1

γj∆
−1
j βj +

n∑

j=1

(
γj∆

−1
j CR

) (
zIm − (AR − BR∆

−1
j CR)

)−1 (
BR∆

−1
j βj

)
.

This can be compactly written as

(3.15) RF̃L(FR) =

(

Acomp Bcomp

Ccomp Dcomp

)

=







AR−BR∆
−1

1
CR

. . .
AR−BR∆−1

n CR

−BR∆
−1

1
β
1

...

−BR∆−1

n βn

γ
1
∆

−1

1
CR ··· γn∆

−1

n CR
DL+

n∑

j=1

γj∆
−1

j
βj







.

(I) To obtain (3.9) substitute

βj = Bj γj = Cj j = 1, . . . , n.
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(II)(a) To obtain (3.10) substitute

βj = CjBj γj ≡ 1 j = 1, . . . , n.

(II)(b) To obtain (3.11) substitute

βj ≡ 1 γj = CjBj j = 1, . . . , n.

(III) To obtain (3.13) substitute

βj ≡ 1 γj = CjBj = ηj j = 1, . . . , n,

so the construction is complete. �

3.3. The case where fL(z) is scalar with AL is non-diagonalizable. Here, one can
still obtain realization of composition of functions. However, the technical details are
not as elegant as the diagonalizable case. For simplicity of exposition this is illustrated
through an example.

Example 3.7. Consider the case where

fL(z) = dL + 1
(s+a)2

a > 0 dL ∈ R parameters8.

To see that here, AL is not diagonalizable, recall that a minimal realization of fL may be
given by,

RfL =

(
−a 1 0
0 −a 1
1 0 dL

)

.

Let now FR(z) be a q× q-valued rational function. Then, the composition fl(FR) is given
by

fl(FR) = dLIq + (aIq + FR)
−2

and we compute, in stages, a corresponding state-space realization.

First, a realization of FR + aIq is trivially given by

RFR+aIq =

(

AR BR

CR DR + aIq

)

and following Proposition 2.1 one has that,

R(FR+Iq)−1 =

(

AR −BR(DR + aIq)
−1CR −BR(DR + aIq)

−1

(DR + aIq)
−1CR (DR + aIq)

−1

)

.

Next, following Proposition 2.3

R(FR+aIq)−2 =

(
AR −BR(DR + aIq)

−1CR −BR(DR + aIq)
−2CR −BR(DR + aIq)

−2

0 AR −BR(DR + aIq)
−1CR −BR(DR + aIq)

−1

(DR + aIq)
−1CR (DR + aIq)

−2CR (DR + aIq)
−2

)

and finally,

RfL(FR) =

(
AR −BR(DR + aIq)

−1CR −BR(DR + aIq)
−2CR −BR(DR + aIq)

−2

0 AR −BR(DR + aIq)
−1CR −BR(DR + aIq)

−1

(DR + aIq)
−1CR (DR + aIq)

−2CR dLIq + (DR + aIq)
−2

)

.

�

8In Section 4 we shall use the fact that fL(z) is positive real whenever dL ≥ 1
8a2 .
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Remark 3.8. In Propositions 3.1 and 3.6 and in Example 3.7, the degree of the realization
of FL(FR), the composition of functions, is (up to minimality) equal to the product of the
McMillan degrees of the original realizations.

4. Applications to electrical circuits and to feedback-loop networks

In the sequel we shall denote by9 CL, CR the open left, right, halves of the complex plane
(and by CR the closed right half of the complex plane).

We shall denote by (Pk) Pk the set of k × k positive (semi) definite matrices.

Recall that a p× p-valued functions F (z) is said to be positive if

(4.1) ∀z ∈ Cr

F (z) analytic

(F (z) + (F (z))∗) ∈ Pp .

In engineering it is further restricted so that

F (z)|z∈R
∈ R

p×p,

and then called positive real. For details see e.g. [6], [13], [16], [17], [18], [19], [20], [40].

We first establish a connection with the previous section.

Observation 4.1. Whenever both FL(z) and FR(z) are positive real, then in each of the
three above cases, i.e. Propositions 3.1, 3.6 and Example 3.7, the resulting composed
function FL(FR), is positive real.

Indeed, in terminology of scalar functions, a positive real function maps the right half
plane to itself.

Duality between rational positive real functions and the driving point immittance of
R − L − C electrical circuits, has already been recognized for about ninety years, e.g.
[16], [17], [18], [19]. This has lead to rich and well-established theory, see e.g. [6], [13],
[20], [40].

This duality is illustrated through two simple examples in Figures 1 and 2.

Zin → L C

Figure 1. Zin(z) = ((zL)−1 + zC)
−1

.

One can next address a higher level of this duality between positive real rational functions
and the driving point immittance of R−L−C electrical circuits: Composition of rational
functions is translated, in circuits language, to substituting elements by sub-networks,

9As before, the subscript stands for “left” or “right”
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Zin → Rn−1 Cn−1 Rn CnC1R1 R2

RL

C2

•

•

•

•

• • •

• ••

Figure 2. Zin(z) = RL +
n∑

j=1

(Rj
−1 + zCj)

−1
|
RL=dL Rj=

γj
aj

Cj=
1
γj

= dL +
n∑

j=1

γj(z + aj)
−1.

while preserving the original configuration. For instance, zL and zC in Figure 1 are
substituted in Figure 3 by the impedance network ZG and the admittance network YF ,
respectively. This suggests constructing an elaborate network when the basic building
blocks are p× p-valued positive real functions, see Section 7.

Zin → ZG YF

Figure 3. Zin(z) =
(
YF + ZG

−1
)−1

.

To the above mentioned duality we now add a third aspect, namely interconnection of
feedback loops. This is best illustrated by an example. Let G and F be square matrix-
valued (possibly scalar) rational functions so that

det(G) 6≡ 0 and det(G−1 + F ) 6≡ 0.

Then, the input-output relation of the feedback loop in Figure 4 is well defined and is
given by

Out =
(
F +G−1

)−1
· In.

In
+

−
G

Out

F

Figure 4. Out = (F +G−1)
−1

· In

Now, one can identify F and G in Figure 4, with YF and ZG respectively, from Figure
3.
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As an engineering application of item (III) of Proposition 3.6 see Figures 2, 5, 6.

Figure 7 presents an engineering application of Example 3.7.

Connection between positive real rational functions and feedback loops is further elabo-
rated on in Section 7.

In Out

γn
an

γ1
a1

1
γn
z

1
γ1
z

dL

•
•

•

+

+

-

-

+ +
+

+
+

+

+

Figure 5. Out = fL(z) · In with fL(z) = dL +
n∑

j=1

γj(z + aj)
−1

5. Composition of functions - second version

Here, we address a second version of composition of realizations. Specifically, using (2.8)
we set

(5.1) FL(FR(z)) = DL + CL(FR(z)−AL)
−1BL.

To this end, we assume that

n, the McMillan degree of FL(z), is equal to the dimension of FR(z).

Moreover assume that the n× n matrix DR − AL is non-singular, i.e.

(5.2) det(DR − AL) 6= 0.

We can now present the main result of this section.
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In Out

γn
an
Iq

γ1
a1
Iq

1
γn
FR

1
γ1
FR

dLIq

•
•

•

+

+

-

-

++
++

+
+

+

Figure 6. Out = fL (FR(z)) · In with fL(z) = dL +
n∑

j=1

γj(z + aj)
−1

In Out1
a
Iq

1
a
Iq

FR FR

dLIq

+

- -

+ +
+

Figure 7. Out = fL (FR(z)) · In with fL(z) = dL + 1
(s+a)2

a > 0, dL∈R parameters.

Proposition 5.1. Under the above premises, the composed function, see (2.9), (2.10),
(5.1) and (5.2), is p× p-valued and of McMillan degree m. A corresponding realization
array is given by

(

Acomp Bcomp

Ccomp Dcomp

)

=

(

AR −BR(DR −AL)
−1CR BR(DR −AL)

−1BL

−CL(DR −AL)
−1CR DL + CL(DR −AL)

−1BL

)

.
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Remark 5.2. Sometimes we shall find it convenient to re-write the result of Proposition
5.1 as

(
Acomp Bcomp

Ccomp Dcomp

)

=
(
AR 0
0 DL

)
+
(

BR

CL

)

(DR−AL )
−1 (−CR BL ) .

Remark 5.3. Note that by (2.3) the matrix AL is coordinates-dependent. This in par-
ticular implies that almost always one can make condition (5.2) satisfied.

Remark 5.4. A simple example illustrating the difference between the two versions of
composition dealt with in this work, is when FR(z) = fR(z)In, where fR(z) is scalar
rational.

Proof of Proposition 5.1: In the sequel we shall use the identity,

(5.3) (In +XY )−1 = In −X(Im + Y X)−1Y

X∈Cn×m

Y ∈Cm×n

−16∈spect(XY ).

We now have

FL(FR(z)) = DL + CL




CR(zIm −AR)

−1BR +DR
︸ ︷︷ ︸

FR(z)

−AL






−1

BR

= DL + CL

(
CR(zIm − AR)

−1BR + (DR −AL)
)−1

BR

= DL + CL(DR − AL)
−1



In + CR(zIm − AR)
−1

︸ ︷︷ ︸

X

BR(DR −AL)
−1

︸ ︷︷ ︸

Y





−1

BL

= DL + CL(DR − AL)
−1×

×



In − CR(zIm − AR)
−1

︸ ︷︷ ︸

X



Im +BR(DR −AL)
−1

︸ ︷︷ ︸

Y

CR(zIm − AR)
−1

︸ ︷︷ ︸

X





−1

BR(DR − AL)
−1

︸ ︷︷ ︸

Y



BL

= DL + CL(DR − AL)
−1×

×
(

In − CR

(
zIm − AR +BR(DR − AL)

−1CR

)−1
BR(DR − AL)

−1
)

BL

= DL + CL(DR − AL)
−1BL

︸ ︷︷ ︸

Dcomp

−

−CL(DR −AL)
−1CR

︸ ︷︷ ︸

Ccomp




zI −AR +BR(DR − AL)

−1CR
︸ ︷︷ ︸

−Acomp






−1

BR(DR −AL)
−1BL

︸ ︷︷ ︸

Bcomp

,

A critical part is when one substitutes in (5.3) the values, X := CR(zIm − AR)
−1 and

Y := BR(DR − AL)
−1. �

We conclude this section by examining the extent to which the main result is coordinates-
dependent.
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Remark 5.5. Assume the realizations of FL and FR are minimal and consider a change of
coordinates as in (2.3), i.e. for some non-singular SL, SR (n×n and m×m respectively),

(
SL 0
0 Ip

)−1 (
AL BL

CL DL

) (
SL 0
0 Ip

) (
SR 0
0 In

)−1 ( AR BR

CR DR

) (
SR 0
0 In

)
.

Substituting in Proposition 5.1 yields

(5.4)

Acomp= S−1
R

ARSR−S−1
R

BR(DR−S−1
L

ALSL)
−1CRSR = S−1

R (AR−BR(DR−S−1
L

ALSL)
−1CR)SR

Bcomp= S−1
R

BR(DR−S−1
L

ALSL)
−1S−1

L
BL = S−1

R (BR(DR−S−1
L

ALSL)
−1S−1

L
BL)

Ccomp= −CLSL(DR−S−1
L

ALSL)
−1CRSR = (−CLSL(DR−S−1

L
ALSL)

−1CR)SR

Dcomp= DL+CLSL(DR−S−1
L

ALSL)
−1S−1

L
BL = DL+CL(SLDRS−1

L
−AL)

−1BL ,

which may be a different system.
In the special case where,

(5.5)
(
SL 0
0 In

) (
AL BL

CL DL

)
=
(
AL BL

CL DL

) (
SL 0
0 In

)
,

(5.4) can be written as the following change of coordinates,
(

SR 0
0 Ip

)−1 (
Acomp Bcomp

Ccomp Dcomp

)(
SR 0
0 Ip

)

.

We also remark that the set of invertible matrices SL satisfying (5.5) forms a multiplicative
group.

6. Stieltjes functions

Recall that in (4.1) we described positive functions F (z) as those that

(6.1) ∀z ∈ Cr

F (z) analytic

(F (z) + (F (z))∗) ∈ Pp .

The subset of positive functions in (6.1), where in addition

(6.2) ∀z ∈ Cr ( 1
iz
F (z) + ( 1

iz
F (z))∗) ∈ Pp ,

are called Stieltjes functions10 .

In the sequel we shall rely on the following result taken from11 [24, Theorem 3.1] (where
originally poles at infinity are allowed): Stieltjes functions are exactly those which be can
be written in the form

(6.3) F (z) = i∆+

∫ ∞

0

z

t− iz
dσ(t), ∆ ∈ Pp ∀z ∈ Cr ,

where the p× p-valued positive measure σ satisfies
∫ ∞

0

dσ(t)

1 + t
< ∞.

Here we focus on the rational case, namely where the measure σ has a finite number of
jumps.

10Note that we are not consistent with [24, Definition 3.1] where instead of positive functions described
in (6.1), they use Nevanlinna functions analytically mapping the upper half plane to itself.

11A proof of this result is given in [31].
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For example, a straightforward calculation reveals that all scalar rational Stieltjes func-
tions of degree one, f(z), may be parametrized as,

f(z) = i (δ+ β
α
) +

β

z + iα

α>0

β>0

δ≥0.

This observation is next generalized to all rational functions satisfying (6.3).

Proposition 6.1. Let F (z) be a p×p-valued rational function, analytic at the origin and
at infinity, of McMillan degree n.
F (z) is a Stieltjes function, satisfying (6.1) and (6.2), if and only if, it can be written as,

(6.4) F (z) = i
(
Cα−1C∗ + δ

)
+ C(zIn + iα)−1C∗ with

C∈Cp×n full rank

α∈Pn

δ∈Pp .

Proof : First recall, see e.g. [4, Lemma 1.1(II)], [6, Chapter 5], [23], that from the
realization matrix formulation of the K-Y-P Lemma it follows that a rational function
F (z), analytic at infinity, is positive12 if and only if, up to change of coordinates, its
minimal realization satisfies

(6.5)
(
−In 0
0 Ip

)
RF +R∗

F

(
−In 0
0 Ip

)
∈ Pn+p .

Next, note that (6.3) gives an analytic extension of F (z) to Cr iR− such that

(6.6) (F (−z∗))∗ = −F (z).

Recall now that positive functions which in addition satisfy (6.6) are called Positive Odd.
In the real rational case they are known in electrical engineering as Lossless or Foster, see
e.g. [6], [13], [40].

Furthermore, if in addition F (z) is odd, i.e. (6.6) holds, then its realization array RF may
be chosen so that

(6.7)
(
−In 0
0 Ip

)
RF +R∗

F

(
−In 0
0 Ip

)
= 0,

see e.g. [3, Theorem 4.1], [6, Section 5.2]. Note now that (6.7) means that the (n+ p)× (n+ p)
matrix

(
−In 0
0 Ip

)
Rf is skew-Hermitian, namely,

(
i
(
−In 0
0 Ip

)
RF

)
=
(
i
(
−In 0
0 Ip

)
RF

)∗
,

which in turn can be written as,

RF =

(

−iα C∗

C i∆

)

with
α=α∗

C∈Cp×n

∆=∆∗.

Thus far one can conclude that

(6.8) F (z) = i∆+ C(zIn + iα)−1C∗ with
α=α∗

C∈Cp×n

∆=∆∗.

We next show that

(6.9) α ∈ Pn ,

12It may be complex or real.
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and that

(6.10) ∆ = Cα−1C∗ + δ for some δ ∈ Pp .

To this end, using the fact that by assumption, F (z) is analytic at the origin, i.e. α is
non-singular, we shall find it convenient to re-write the F (z) in (6.8) as

F (z) = i
(
∆− Cα−1C∗

)
+ izCα−1(zα−1 + iIn)

−1α−1C∗ with

α=α∗

C∈Cp×n

∆=∆∗,

and hence,
1
iz
F (z) = 1

z
(∆− Cα−1C∗) + Cα−1(zα−1 + iIn)

−1α−1C∗.

We can now substitute the above F (z) in (6.2) to obtain,

( 1
z
(∆−Cα−1C∗)+Cα−1(zα−1+iIn)−1α−1C∗+( 1

z
(∆−Cα−1C∗)+Cα−1(zα−1+iIn)−1α−1C∗)

∗
) ∈ Pp ∀z ∈ Cr ,

i.e.

(6.11) 2Re(z)
(

1
|z|2

(∆−Cα−1C∗)+(Cα−1(zα−1+iIn)−1)α−1(Cα−1(zα−1+iIn)−1)
∗
)

∈ Pp ∀z ∈ Cr .

Clearly, having (6.9) along with (6.10) implies that (6.11) holds. Thus, there is the
converse direction to consider.

First, note that since (6.11) holds in particular for all points of z ∈ Cr (up to n points)
so that the matrix zα−1 + iIn is nearly singular, this in fact implies that α−1 ∈ Pn i.e.
(6.9) holds.

Similarly, as (6.11) is satisfied in particular for z ∈ Cr “sufficiently small”, it implies that
(6.10) holds as well, so the claim is established. �

Remark 6.2. Eq. (6.4) may be viewed as a parametrization of all rational Stieltjes
function analytic at the origin and at infinity.

We now next review this result. To this end we recall the following.

Remark 6.3. Consider the following statements for a full-rank matrix Z ∈ Cp×n.

(i) (X Z∗

Z Y ) ∈ Pn+p .

(ii) Y ∈ Pp and X − Z∗Y −1Z ∈ Pn .

(iii) X ∈ Pn and Y − ZX−1Z∗ ∈ Pp .

Then, (ii) implies (i) and if n ≥ p then the converse is true as well.

Then, (iii) implies (i) and if p ≥ n then the converse is true as well.

Remark 6.3 leads to the conclusion that Proposition 6.1 and Remark 6.2 can be alterna-
tively formulated as follows.

Remark 6.4. All n×n-valued rational Stieltjes function F (z), analytic at the origin and
at infinity, of McMMillan degree m, with n ≥ m, may be parametrized as

F (z) = i∆+ C
(
zIm + i(C∗∆−1C + η)

)−1
C∗

∆∈Pn

C∈Cn×m full rank

η∈Pm ,
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namely admitting a realization of the form,

RF =

(

−i(C∗∆−1C + η) C∗

C i∆

) ∆∈Pn

C∈Cn×m full rank

η∈Pm .

In the sequel, we shall find it convenient to use the following.

Remark 6.5. Denoting

γ := −iC,

one can re-write the realization of F (z) in Proposition 6.1 as

(6.12) RF =

(

−iα C∗

C i∆

)

= i
(
−In 0
0 Ip

) (
α γ∗

γ ∆

)

where

(6.13)
(
α γ∗

γ ∆

)
∈ Pn+p and

α∈Pn

γ∈Cp×n full rank

n≥p.

To further emphasize the difference between Stieltjes functions and those discussed in
Section 4, we have the following.

Remark 6.6. As already mentioned the family of Stieltjes functions is a proper subset of
Positive Odd functions13, which in turn is a proper subset of Positive functions. Consider
the following properties.
• Each of these three sets is closed under positive scaling and summation and thus is a
convex cone.

• Both Positive functions and its subset of Positive Odd functions are closed under
inversion, namely if F (z) is Positive (Odd) then (F (z))−1 is well defined and is Positive
(Odd). Thus, each of these two sets is a Convex Invertible Cone. In [21] this fact was
explored in the framework of real functions.

• If F (z) is a Stieltjes function then (F (z))−1 is well defined Positive Odd function,
which can not be a Stieltjes function. Indeed, from Remark 6.5 it follows that

−i
(

lim
z → ∞

F (z)
)

∈ Pp but + i
(

lim
z → ∞

(F (z))−1
)

∈ Pp .

Recall now that the K-Y-P Lemma, see e.g. [4] [6, Chapter 5], characterizes positive
rational functions, along with some sub-families, through properties of their minimal
realizations. We can now introduce an adaptation of the K-Y-P Lemma to Stieltjes
functions and then use it to construct from a given realization a whole family of Stieltjes
functions of various dimensions and McMillan degrees.

Corollary 6.7. Let F (z) be a rational function with p outputs, analytic at infinity, of
McMillan degree n, as in (2.1) and (2.2) i.e.

F (z) = D + C(zIn − A)−1B RF =

(

A B

C D

)

.

13 For example 1
s+1

is a positive function which is not odd and 1
s+i

is a positive odd function which is

not Stieltjes.
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Then, F (z) is a Stieltjes function, if and only if the realization RF can be chosen so that
each of the four blocks A,B,C,D is of a full rank and

(6.14) − i
(
−In 0

0 Ip

)
RF ∈ Pn+p .

Moreover, let U ∈ Cν×n and V ∈ Cπ×p be full rank matrices, for some ν ∈ [1, n] and
π ∈ [1, p]. Then,

RF̂ = ( U 0
0 V )RF ( U 0

0 V )
∗
,

is a realization of a π × π-valued Stieltjes function F̂ (z) (analytic at the origin) of McMil-
lan degree ν.

Indeed the claim follows from Proposition 6.1, Remarks 6.3 and 6.5 along with the fact
that T is a full rank matrix so that the H = TMT ∗ is well defined, the product matrix
H is positive (semi-)definite if and only if M is positive (semi-)definite.

Following Remark 6.5 and Corollary 6.7 we shall call a realization RF of a Stieltjes function
canonical if it satisfies (6.12) with (6.13), or equivalently (6.14).

Note that a realization remains canonical under unitary change of coordinates, i.e. in
(2.3) S−1 = S∗.

We next show that the set of rational Stieltjes function is closed under the second version
of composition of functions, see Section 5.

Proposition 6.8. Consider a pair of rational Stieltjes functions, FL(z), FR(z), analytic
at the origin and at infinity: FL(z) is p× p-valued of McMillan degree n and FR(z) is
n× n-valued of McMillan degree m with n ≥ m.

If the realization of both FL(z) and FR(z) is canonical14, then the composition FL(FR)
in (5.1) is a p × p-valued rational Stieltjes function of McMillan degree m, given in a
canonical realization.

Proof : Using Proposition 6.1 along with Remark 6.5 below left, we have RFL
a realiza-

tion array of FL(z) and using Remark 6.4, below right, we have RFR
a realization array

of FR(z),

RFL
=

(

−iαL (iγL)
∗

iγL i(γLαL
−1γL

∗ + δ)

)

RFR
=

(

−i(γR
∗
∆R

−1γR + η) (iγR)
∗

iγR i∆R

)

γL∈C
p×n full rank γR∈Cn×m full rank

αL∈Pn ∆R∈Pn

δ∈Pp η∈Pm .

Substituting in Proposition 5.1 yields that a realization of Fcomp = FL(FR) in (5.1) is
given by

RFcomp = i

(

−(γ∗

R∆R
−1γR + η) + γ∗

R (∆R+αL )
−1

γR γ∗

R (∆R+αL )
−1

γL
∗

−γL (∆R+αL )
−1

γR γLαL
−1γL

∗ + δ − γL (∆R+αL )−1
γL

∗

)

14Thus the condition in (5.2) is trivially satisfied.
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A straightforward exercise enables one to re-write this realization as,

(6.15) RFcomp = i

(
−Im 0
0 Ip

)




(
η 0
0 δ

)
+
(

γ∗
R

−γLα
−1
L

∆R

) (
∆R

−1 − (∆R+αL )
−1)

︸ ︷︷ ︸

M

(
γ∗
R

−γLα
−1
L

∆R

)∗



 .

︸ ︷︷ ︸

W

Now as by assumption, both αL and ∆R are in Pn, it implies that

M :=
(
∆R

−1 − (∆R+αL )
−1) ∈ Pn ,

as well. From the structure it follows that15

W :=
((

η 0
0 δ

)
+
(

γ∗
R

−γLα
−1
L

∆R

)

M

(
γ∗
R

−γLα
−1
L

∆R

)∗)

∈ Pm+p .

From Remarks 6.3 and 6.5 it thus follows that the resulting Fcomp = FL(FR) in (5.1), is a
Stieltjes function. �

7. Future work

In this work we focused on composition of rational functions their state-space realization
and applications. Yet, this research area is mostly open. We here point out at three
sample problems of various level of importance.

• Assume having a small set of “simple” (e.g. low degree) rational functions as “building
blocks”.
Synthesis: What functions can be generated from these building blocks.
Analysis: Given a complicated rational function, can it be, and if yes how, “factorized”
or “decomposed” into a composition of simpler building blocks.

Synthesis is further discussed below. To emphasize the the importance of analysis, recall
that in Remark 3.8 it was pointed out that in the first version composition, the McMillan
degree of FL(FR) is equal to the product of the McMillan degrees of the original functions
FL(z) and FR(z). Thus “decomposition” may significantly simplify the functions at hand.

As an illustration consider the following rational function of two variables

(7.1) φ(F,G) :=
(
F +G−1

)−1
.

Note that this is function on non-commuting variables, in fact,

φ(G−1, F−1) = φ(F,G).

Note now that the driving point impedance in Figure 3 can be written as,

Zin = φ(YF , ZG),

and a basic feedback loop in Figure 4, may be viewed as

Out = φ(F,G) · In.

Now composition of such φ functions yields

φ(Fc, Gc) =













Fa +G−1
a

︸ ︷︷ ︸
Fc

+
(
Fb +G−1

b

)−1

︸ ︷︷ ︸

G
−1
c













−1

where
Fc = φ(Fa,Ga)

Gc = φ(Fb,Gb).

15To be precise, rank(W ) = min(n, m+ p).
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An illustration of the converse problem let the starting point be the above function
(

Fa +G−1
a +

(
Fb +G−1

b

)−1
)−1

,

and using φ from (7.1), one needs to rewrite it in the form of

φ
(
φ(Fa, Ga), (φ(Fa, Ga))

−1)
.

• In Section 4 we presented inter-relations between (i) positive real rational functions
(ii) driving point inpedance of R− L− C networks and (iii) feedback loops.

As already mentioned, identifying items (i) with (ii) is classical. Moreover, there is a
whole list of synthesis schemes how to construct an R − L − C circuit whose driving
point impedance realizes a prescribed positive real rational function: Bott-Duffin, Brune,
Darlington, Foster to name but few, see e.g. [6], [20].

The inter-relation between (i) and (iii) suggests that one can exploit these electrical circuit
synthesis schemes to construct, out of simple building blocks, an elaborate network of
feedback loops. As a potential application, see Figures 6 above or 8 below.

In Out

Fa

Ga

Gb

Fb

+ -

-

+

-

Figure 8. Out =
(

Fa + Ga
−1 +

(
Fb +Gb

−1
)−1
)−1

· In

For example the above φ in (7.1) is positive real in the sense that if F (z) and G(z) are
positive real, φ satisfies (4.1) or (6.1). However, this study requires caution in at least
two ways:
(i) The application to constructing feedback loop networks, transcends the framework
where the building blocks, like F (z) or G(z), are rational positive. For instance, in
Figure 4 the functions F (z) and G(z) are only required to satisfy det(G) 6≡ 0 and
det(F +G−1) 6≡ 0. They need not be positive and in principle even not necessarily ratio-
nal.
(ii) Study of rational functions of non-commuting variables in general and positive real is
praticular, has been flourishing recently, as sample references see e.g. [1], [7], [8], [9], [33],
[34], [35], [30]. Nevertheless many properties of these functions are yet to be explored. For
example, there is a long way to go to extend (as proposed above) some of the known elec-
trical circuits synthesis schemes to the framework of non-commuting variables in order to
render it an engineering tool for designing multi-inputs multi-outouts feedback networks.
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• Assuming the dimensions of all matrices involved are suitable and that M is non-
singular, the results in Remarks 2.2, 3.2 and 5.2 are all in the framework of,

( Y 0
0 Z ) +

(
±BR

CL

)
M

−1 (±CR BL ) .

This observation calls for further investigation.
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[11] H. Bart, I. Gohberg, M.A. Kaashoek & A.C. Ran, A State Space Approach to Canonical Factor-

ization with Applications, Operator Theory Advances & Applications, Vol. 200, Birkhäuser, 2010.
[12] A.F. Beardon, Iterations of Rational Functions, series Graduate Texts in Mathematics, Vol. 132.

Springer 1991.
[13] V. Belevich, Classical Network Theory, Holden-Day, San-Francisco, 1968.
[14] V. Bolotnikov, “Bitangential Nevanlinna-Pick problem in the Stieltjes class“ (in Russian), Kharkov

Univ., 1984
[15] V. Bolotnikov, “The two-sided Nevanlinna-Pick problem in the Stieltjes class“, in Contributions to

operator theory and its Applications (T. Furuta, I. Gohberg, and T. Nakazi, Eds.), Oper. Theory
Adv. Appl. 61, pp. 15-37, 1993.

[16] O. Brune, “Synthesis of a finite two terminal network whose driving point impedance is a prescribed
function of frequency”, J. Math. Phys., Vol. 10, pp. 191-236, 1931.

[17] O. Brune, Synthesis of a finite two-terminal network whose driving point impedance is a prescribed

function of frequency, Thesis (MIT), 1931.
[18] W. Cauer, “The realization of impedances of Prescribed frequency dependence” (in German), Archiv

für Elektrotechnik, Vol. 17, pp. 355-388, 1926.
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