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altitudes, as shown in Figure 12. The vertical profile of H2O MMR for Boxes 1–4 are shown in Figure 

12. In Box 1, the H2O MMR is 5.92 g/kg at 600 hPa on 12 October, which is higher (<1.67g/kg) 

compared to the other days at this pressure level and lower at the surface (10.45 g/kg at 925 hPa lower 

than the average value of 1.57 g/kg). The H2O MMR is clearly higher near the surface before the 

cyclone which contains latent heat to help the cyclonic conditions. In Box 2, similar variations are 

observed on 13 October, where the H2O MMR is higher (3.36 g/kg) at 500 hPa corresponding to other 

days and lower at 700 hPa (3.52 g/kg). Data is not available at lower altitudes (higher pressure levels 

due to cyclonic disturbance) on 13 October in this region. 
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3.9. Variation of H2O MMR

Strong cyclonic conditions with the approach of the cyclone towards land influence the H2O
mass mixing ratio (H2O MMR); the values were enhanced close to the surface and increase at higher
altitudes, as shown in Figure 12. The vertical profile of H2O MMR for Boxes 1–4 are shown in Figure 12.
In Box 1, the H2O MMR is 5.92 g/kg at 600 hPa on 12 October, which is higher (<1.67 g/kg) compared
to the other days at this pressure level and lower at the surface (10.45 g/kg at 925 hPa lower than the
average value of 1.57 g/kg). The H2O MMR is clearly higher near the surface before the cyclone which
contains latent heat to help the cyclonic conditions. In Box 2, similar variations are observed on 13
October, where the H2O MMR is higher (3.36 g/kg) at 500 hPa corresponding to other days and lower
at 700 hPa (3.52 g/kg). Data is not available at lower altitudes (higher pressure levels due to cyclonic
disturbance) on 13 October in this region.
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In Box 3, enhancement in the H2O MMR is observed at a lower altitude (high pressure level) and
is highest (15.65 g/kg) at the surface level (925 hPa). Higher water content before the cyclone kept a
large amount of latent heat that helped the forward motion of the cyclone, and as the cyclone hit a
particular region, the vertical profile indicated towards cyclonic conditions and the water content is
found to be higher at higher altitudes in comparison to the surface.

3.10. AOD, Angstrom Exponent (AE), and Total Column Water (TCW)

In Figure 13, we have shown temporal variations of AOD and AE for the period 1–20 October 2014
using MODIS Terra and Aqua data. The large variations in aerosol properties was mainly attributed to
the wind speed and direction associated with the cyclone bringing more marine air masses over the
region during 8–14 October. Due to the cyclonic conditions, daily data was not available at different
dates, so we have considered average MODIS Terra and Aqua data.
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In Box 1, the average AOD and AE during 1–20 October 2014, respectively, are 0.42 and 1.68; in
Box 2, AOD shows 0.51 and AE 1.75; in Box 3, AOD 0.45 and AE 1.67; and in Box 4, AOD shows 0.78 and
AE 1.57. The average AOD is highest in Box 4 with higher AE values due to air mass bringing pollutants
and also due to crop burning in the northern part of India during October–November [7,24–26]. Prior
to 6 October, AOD and AE values in Boxes 1–3 show anthropogenic aerosols and in Box 4, the effect of
crop residue burning. On 6 October, AOD increases in Boxes 1 and 2, 0.92 and 1.00, and low values in
Box 4. A rapid decrease in AOD values with a decrease in AE suggests the mixing of marine air mass
due to southeasterly winds associated with the cyclone. In Box 3, AOD values show an increase until 9
October 2014, due to the mixing of a northwesterly air mass. After 9 October 2014, northeasterly winds
bring marine air mass and AOD decreases with an increase in AE. In Box 4, a sharp decrease in AE
with low AOD values shows a strong mixing of anthropogenic aerosols, biomass aerosols, and dust.

In Figure 14, we have shown Kanpur AERONET AOD, AE, and total column water data close to
Box 4. AOD in Kanpur shows a higher value (1.12) on 6 October that decreases (0.25) till 15 October
with corresponding AE values 1.43 and 1.23. Until 7 October, AOD shows high value (>1) with high
AE (>1) value that shows the effect of biomass/crop burning. On 8 October, AOD is less than one
with AE (>1), which shows the effect of local anthropogenic emissions. Further, AOD decreases with
a decrease in AE until 11 October, showing a mixing of aerosols. We found that total column water
decreases before the cyclone hits Kanpur: 1.73 cm on 12 October decreased from 3.98 cm on 6 October,
which again shows higher values 2.58 on 15 October and 3.27 on 16 October, due to heavy rainfall
on October 14. These results are well in agreement with NCEP/NCAR reanalysis data where RH
decreased at the Box 1 location and similar conditions recovered on 15 October that existed prior to the
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cyclone being formed. We found a sudden increase in AOD, AE, and TCW on 16 October; these values
show the effect of the mixing of biomass burning aerosols with suspended water molecules (smog)
that started after the rainfall.
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3.11. Single Scattering Albedo (SSA)

Frequency dependency of SSA, as shown in Figure 15, for the period 6–16 October 2014 shows
a decrease in SSA during 6–9 October, with an increase in wavelengths showing dominance of fine
particles of local emission. Comparison of SSA on 6 and 7 October shows an increase in SSA found at
lower wavelengths and a decrease at higher wavelengths that indicates enhancement in anthropogenic
aerosols due to local emission. On 8 October, SSA values further decrease, which indicate enhancement
of more absorbing aerosols and this can affect the radiative budget of the atmosphere and help in the
intensification of the cyclone [50]. SSA on 9 October indicates a strong mixing of aerosols. On 10 and 11
October, SSA values were found to be lower at lower wavelengths and higher at higher wavelengths
that indicate the dominance of dust, and on 12 October, SSA was found to be lowest, indicating the
strong mixing of dust with local absorbing aerosols.
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Figure 15. Frequency dependency of single scattering albedo (SSA) at four wavelengths 440, 675, 870,
and 1020 at Kanpur AERONET station during 06–16 October 2014. No data is available on 13, 14, and
15 October.

On 16 October, SSA was high with an average value 0.95 at all wavelengths, with higher AOD
and AE values indicating the presence of suspended water molecules in the atmosphere over Kanpur.
Low values of SSA during the period 10–12 October show higher concentrations of black carbon due
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to mixing of bio mass burning aerosol before the cyclone, and as the cyclone reached near to land,
a strong mixing of dust and local emission was clearly seen.

4. Conclusions

Hudhud was one of the worst cyclones that affected the life of many people and caused a huge
loss of properties. This cyclone caused a record heavy rainfall not only at the coastal region but also
in northern parts of India and Nepal. During October 2014, we found rapid growth in the difference
of sea surface temperature and land temperature compared to earlier years. The analysis of several
meteorological and atmospheric parameters provided a good understanding of cyclone dynamics
and its impacts. A low-pressure region is formed with a change in SST of 1.5 degrees. On 13–14
October, relative humidity was very high at higher altitudes (between 300–400 hPa) over a large
region with lower omega (−0.4) which was instrumental in the slow forward and large vertical motion
of the cyclone that caused heavy rain. Surface latent heat flux was very high during 7–12 October.
All these conditions were favorable conditions for the cyclone that caused heavy damage in coastal
parts and also in the central and northern parts of India. As the cyclone reached the coastal region,
the height of tropopause increased, which helped stratospheric ozone escape to the troposphere.
Pronounced changes were found in TCO during 12–14 October over all four boxes. Due to the
increase in tropospheric ozone, the concentration of CO at lower altitudes was enhanced. We found
enhancement in the H2O mass mixing ratio at the middle troposphere. Aerosol optical properties
were also affected as we found the effect of crop burning in coastal regions (Box 1) also mixed with
marine aerosols as the cyclone reached the area. Due to the cyclone, we observed strong mixing of
anthropogenic aerosols, biomass aerosols, and dust over central and coastal regions. The TCO was
found to decrease in the northern parts prior to the cyclone. The results discussed show pronounced
changes in ocean, land, atmosphere, and meteorological parameters from the day the cyclone was
formed until its landfall and even further. The magnitude of changes in different parameters were
clearly observed at different pressure levels on different dates, showing the dynamics of changes along
the cyclone track from landfall to northward movement. Such changes clearly show strong coupling
between ocean–land–atmosphere associated with the cyclone impact meteorological conditions in
widespread areas, affecting weather conditions and bringing excessive rains causing flash floods.
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