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Fig. 1.  Map showing locations of six sites.  Templin Highway, Bitter 
Canyon and Bouquet Canyon are considered inland sites.  Laurel Canyon is in 
the Hollywood Hills and also considered inland.  Stunt Road and Schueren are 
coastal site Malibu Canyon. Bold indicates the name representing each site. 
 
chaparral in LA County and LFM values in this study are 
measured from leaves collected from this chamise vegetation.  
 

II. MATERIALS AND METHODOLOGY 

A. Wildfire risk and Live Fuel Moisture 
Live fuel moisture (LFM) is collected from clipping live 

foliage, weighing when wet (Ww), then re-weighing when dry 
(Wd): 

𝐿𝐹𝑀 = %&'%(
%(

∗ 100 (1) 
 
where a low fire risk is greater than 120% a moderate fire risk 
between 80% and 120%, a high risk between 60% and 80% and 
an extremely high risk less than 60% (Fig.2).  Previous studies 
have shown a strong correlation between in-situ LFM and 
vegetation index derived from satellite images [3, 4].  LFM data 
sampling intervals are typically every two weeks; however, the 
intervals can be longer during wet seasons, when leaves and 
twigs remain wet after rainfall events. This tends to force fire 
agencies to postpone their LFM sampling by a few days, since 
wet vegetation induces significant errors in LFM.   During the 
fire season, LFM sampling may also be cancelled due to the 
breakout of wildfire and other factors that may lead to difficulty 

accessing the LFM sites and or reduction of manpower 
available to collect data.  In this study, we applied linear  

 
Fig.2. Daily mean over 17 years of LFM and Enhanced Vegetation Index 
(EVI) and monthly mean of precipitation at Bitter Canyon.  LFM less than 
80% is considered high fire risk. 
 
interpolation to generate a daily dataset of LFM based on six 
selected LFM sites with biweekly sampling data with a goal of 
approximately 23 data points per year.  The LFM observation 
data were obtained from the National Fuel Moisture Database, 
USFS Wildland Assessment System and was accessed at: 
https://www.wfas.net/index.php/national-fuel-moisture-
database-moisture-drought-103. 

B. MODIS remote sensing datasets 
Land surface reflectance Moderate Resolution Imaging 

Spectroradiometer (MODIS) data MOD09A1 Version 6 and 
MYD09A1 Version 6 are level-3 product collections containing 
13 layers. MOD09A1 is acquired on satellite Terra which 
passes over the equator from north to south in the morning, and 
MYD09A1 is acquired on satellite Aqua which passes from 
south to north over the equator in the afternoon.  At a specific 
pixel location on the ground, the satellites obtain data at 
different times of the day with sensors oriented at different 
angles with respect to the earth’s surface.  For both datasets, 
pixel values in a tile are collected in an 8-day time composition 
at sinusoidal projection.  The composite allows surface 
reflection at the ground level to be estimated without 
atmospheric scattering observation.  The focus on land surface 
reflectance includes bands 1-7 in the visible and infrared 
spectrums.  Each pixel is considered to have a spatial resolution 
of roughly 500m by 500m. Each pixel contains data collected 
during days with the lowest cloud coverage and minimum 
aerosol noise within the 8 days.  The date in which the lowest 
intensity of blue band (the band with minimum wavelength) is 
also used when applicable.  The pixel value is of type 16-bit 
unsigned integer.  The bands used in this study to calculate 
vegetation indices are band 1: red (620-670)nm, band 2: near 
infrared (NIR) (841-875)nm, band 3: blue (459-479)nm, band 
4: green, (545-565)nm, and band 5: short wave infrared (SWIR) 
(1230-1250)nm.  Two additional layers provide quality 
information that applies to each pixel individually as well as the 
entire tile.  The tiles are re-projected to Universal Trans 
Mercator (UTM) system in the ellipsoid World Geodetic 
System 1984 (WGS 84). In this study, MODIS data was 
accessed at EarthExplorer: https://earthexplorer.usgs.gov/ and 
the tool used to re-project is available to download at: 
https://lpdaac.usgs.gov/tools/modis_reprojection_tool. 



 

C. Vegetation indices 
Vegetation index (VI) algorithms can be calculated using 

reflectance data and provide a quantitative evaluation of health 
and other factors related to land cover.  The most common 
indices are the Normalized Difference Vegetation Index 
(NDVI) and the Enhanced Vegetation Index (EVI).  
Normalized Difference Water Index (NDWI) and Normalized 
Difference Infrared Index (NDII) are used to monitor changes 
in water content stored in leaves.  Visible Atmospherically 
Resistant Index (VARI) uses all visible bands to evaluate the 
fraction of vegetation cover.  The five vegetation indices above 
were the most commonly used factors to estimate LFM [5]. 
Either EVI, NDWI, or VARI produced the best results at each 
of the six sites and are the focus in this study. 

 EVI focuses on the relation of the reflectance of near 
infrared and red, and in addition includes coefficients and 
reflectance in the blue portion of the visible spectrum to remove 
aerosol noise.  The gain factor, G=2.5, C1=6 and C2=7.5 are 
coefficient terms that use the blue light band to correct for 
aerosol noise in the red band; L=1 is the canopy background 
adjustment term [6].  The value of the coefficients can vary 
depending on land surface conditions.  The ones chosen in this 
study are commonly used and are also used in the previous 
studies. 
 

𝐸𝑉𝐼 = 𝐺 ∗ 012'234
012567∗234'68∗9:;35:

     (2) 
 

NDWI uses near infrared and shortwave infrared bands 
[7].  Compared to EVI, NDWI is more directly sensitive to 
changes in moisture content and less to chlorophyll.  The 
difference in near infrared and shortwave infrared intensities is 
expected to show a difference in absorption and emission 
intensities with vegetation due to interaction with the 
physiology of the vegetation. 
 

𝑁𝐷𝑊𝐼 = 012'?%12
0125?%12

    (3)  
 

VARI includes bands only in the visible spectrum where 
land cover with a greater intensity of reflection in the green 
spectrum is considered healthier [8].   
 

𝑉𝐴𝑅𝐼 = B2330'234
B23305234'9:;3

    (4) 
 

The ‘500 m State Flag’ layer of the MODIS data was used 
to throw out pixels that are marked with cloud coverage.  Linear 
interpolation was then used to fill in the gaps left by the pixel 
values that are thrown out.  A moving mean with a window of 
31 days was applied to the VI time series.   

D. Linear regression and coefficient of determination 
Linear regression was applied to measure the correlation 

between the vegetation index and the ground truth data for the 
selected six sites. Univariate linear regression was applied to 
LFM versus each of the vegetation indices.  R2 was used as the 

key measurement of model performance. Linear regression 
applied to LFM versus VI calculated from dataset MOD09A1 
over 17 years produced an empirical model function: 

 
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝐿𝐹𝑀 = 𝛽7 ∗ 𝑉𝐼 + 𝛽M    (5) 

 
We calculated VIs and regression using MODIS Terra and 
Aqua data separately. All the analysis was conducted in 
MATLAB®. 

III. RESULTS 
Comparisons of the linear regression correlation of LFM 

and three vegetation indices, EVI, NDWI, and VARI, 
calculated from MODIS satellites Terra and Aqua at six sites in 
LA County, California showed that a single VI does not 
dominate.  Furthermore, comparison of results of calendar 
years at a single sight also showed a variance of the strength of 
correlation.  
A. Comparison of vegetation indices 

The time period continuing through 2017 of data collection 
differs site to site.  Bitter, Laurel and Schueren have LFM data 
concurrent with all MODIS data, Bouquet has 16 years of 
concurrent data collection, Stunt has a 12-year period beginning 
in 2006 and Templin a 5-year period beginning in 2013. The 
vegetation index EVI performed best at three sites, VARI at 
two, and NDWI at one site.  VIs derived from MOD09A1 
collected on Terra tend to perform better than VIs derived from 
MYD09A1 data collected on Aqua. The average coefficient of 
determination at all sites show that EVI and VARI calculated 
from MOD09A1 produce the greatest R2. From here on 
vegetation indices calculated from the MOD09A1 dataset and 
three sites with concurrent collected data covering the greatest 
time period is the focus in this study. 

TABLE 1: COEFFICIENT OF DETERMINATION BETWEEN LFM AND VIS AT SIX 
SITES USING MODIS TERRA (MOD09A1) AND AQUA (MYD09A1) 

REFLECTANCE PRODUCTS 

 EVI NDWI VARI  

Site  
Terr

a 
Aqu

a Terra Aqua Terra Aqua 

Per 
Site 
Mea
n R2 

Bitter 0.73 0.74 0.70 0.67 0.68 0.67 0.70 

Templin 0.70 0.66 0.54 0.67 0.63 0.60 0.64 
Bouquet
* 0.68 0.66 0.72 0.51 0.59 0.41 0.60 

Stunt 0.62 0.61 0.59 0.46 0.59 0.58 0.58 

Laurel 0.60 0.60 0.57 0.36 0.62 0.55 0.55 

Schueren 0.44 0.42 0.52 0.46 0.65 0.58 0.51 

Per VI 
Mean R2 0.63 0.62 0.61 0.52 0.63 0.57  

*Bouquet Canyon is missing LFM data during 2004 
The sites are ordered in Table 1 by greatest to least mean R2 and the greatest 
value at each site is in bold. All p-values in this study are less than 0.05.  



Fig.3. Multi-year average of LFM, EVI, NDWI and VARI at site Bitter canyon 
from 2001 to 2017. 
 

There was an inconsistency of the days with the mean 
maximum and minimum values of the VIs in comparison to 
each other as well as the LFM daily mean time series (Fig.3).  
Of the three VI daily mean time series, EVI showed the least 
temporal difference in comparison with LFM maximum, 
minimum and growth period.  The maximum EVI is three days 
ahead of the maximum LFM and the minimum is two days 
behind LFM minimum.  The growth period represented by days 
with an increasing LFM is 190 days, and with an increasing EVI 
is 185 days.  VARI, instead, tended to peak earlier than LFM. 

B. Site comparison of LFM estimation 
Comparison of the multi-year mean at the three sites in this 

study with the greatest number of LFM samples over 
concurrent time periods from 2001 to 2017 showed a site to site 
variation of top performing VI as well as a substantial 
difference in the magnitude of an EVI time series.   One site is 
considered coastal (Schueren) and two are considered inland 
(Bitter and Laurel). 

TABLE 2: ESTIMATED LFM EMPIRICAL MODELS AT THREE SITES WITH LFM 
DATA COLLECTION DURING 2001-2017 

Site VI b1 b0 # of LFM samples 

Bitter EVI 460 4.74 394 
Laurel VARI 581 93.8 386 
Schueren VARI 418 94.1 391 

 
 EVI daily mean at the coastal site is annually consistently 

greater than the inland sites and the LFM daily mean at the 
coastal site is seasonally greater than the inland sites indicating 
greater vegetation moisture at the coastal site during the first 
half of the year (Fig. 4).  The LFM ranges (maximum value 
minus minimum value) at the three sites differed, however LFM 
means over the 17-year period were similar with a max 
difference of approximately 5. Alternatively, EVI ranges are 
similar with a value of approximately 0.10 at all sites, however 
the mean values varied by 0.13.  Comparisons of the mean 
temporal LFM collected at different sites and the mean 
temporal EVI illustrated that one univariate linear regression 
combining multiple sites, including those relatively close in 
proximity, resulted in weaker correlation than applying linear 
regression to each site separately.    
 
 

 
(a) 
 

 
 
(b) 

 
Fig.4. Comparison of three sites (a) LFM multi-year average and (b) EVI multi-
year average, both calculated using the daily data from 2001 to 2017. 

C. Comaprison of interannual calendar years 
As the site having the best correlation between LFM and VI, 

we selected Bitter Canyon to investigate inter-annual variation 
of LFM and explore the relationship with 
precipitation.  Precipitation data in relation to the Bitter Canyon 
set was collected at the Del Valle Remote Automatic Weather 
Station (RAWS network) and is one climatological factor to 
represent a monthly seasonal pattern averaged over the 17-year 
period (Fig. 2).  Both the daily mean maximum of LFM (day 
92) and EVI (day 89) had a lag time following the max monthly 
mean of precipitation which occurs in February. 

Not only is there a site to site variation of VI performance, 
there is also a year to year variation at a single site.  The year 
showing the strongest LFM versus EVI correlation at Bitter was 
2017 with an R2 of 0.94 and the year showing the weakest 
correlation was 2007 with an R2 of 0.08. Over the entire time 
period, both the LFM and EVI maximums occurred in 2005, the 
year with greatest annual precipitation (Fig. 5).  In addition, the 
LFM and EVI minimums both occurred in 2016, towards the 
end of the most extreme drought in California’s recorded 
history. 
 
 



(a) 

 
(b) 

 
Fig. 5. Time series for each calendar year time period show the interannual 
variations of (a) LFM and (b) EVI at Bitter Canyon.  Blue represents the five 
years with greatest annual precipitation (2003, 2005, 2010, 2011, and 2016), 
orange represents years with lowest annual precipitation (2007, 2012, 2013, 
2014, 2015, and 2016). Green represents other years that had a normal level of 
precipitation between 80 mm and 100 mm. Dark and shallow color indicates 
short to long gap from present. Black dashed line represents multi-annual 
average of LFM and EVI. 

 
We also investigated whether the correlation between LFM 

and VI was determined by the inter-annual difference of LFM 
or precipitation. The five years with the weakest correlation 
occur when the annual mean LFM and annual precipitation are 
both less than the mean over the time period. 

Although R2 was much higher in years with a moderate fire 
risk (LFM > 80%), the correlation decreased as annual average 
LFM or precipitation rose up (Fig. 6). Among the two extremes, 
wettest year (2005, R2=0.73) and driest year (2013, R2=0.72), 
the R2 was at the similar level, indicating very dry and very wet 
moisture condition can both weaken the strength of relationship 
between LFM and EVI. For years with the best correlation 
(above median), moisture condition was at the moderate level. 
 

IV. DISCUSSION AND CONCLUSION 
The difference across years and LFM sites can be well 

explained by the different condition of moisture.  For sites with 
a lower moisture level, EVI was less sensitive to the dynamics 
of LFM, especially when the moisture continued to decrease 
after the peak of growing season.  The coastal site tended to 

reflect a greater magnitude of EVI throughout the year, but a 
greater magnitude of LFM only seasonally compared to an 
inland site.  An inter-seasonal assessment of the strength of 
correlation may address this.   As the site to site variations of 
LFM were not similar to the type of variations of EVI, 
combining data collection from all did not provide a single 
empirical model to be utilized at multiple locations (Fig. 4).  
Unknowns such as the comparison of type of vegetation and 
spatial coverage of vegetation my attribute to this.      
 
(a) 

 
(b) 

 
Fig.6. Relationships between LFM vs. EVI coefficient of determinations (R2) 
for each year from 2001 to 2017 and (a) annual LFM mean, (b) annual 
precipitation at Bitter Canyon. Years with LFM below/above 80% were colored 
as moderate fire risk years (cyan) and high to extremely high fire risk years 
(pink). Years with extremely high and low annual precipitation were 
highlighted with labels. 
 

In the inter-annual comparison of correlation, very dry 
years (e.g. 2007) not only had an overall lower but also less 
dynamic LFM (Fig. 5), which was also reflected in model 
performance (Fig. 6). Drought, especially the prolonged ones, 
can change the pigment and plant structure and the leaf water 
absorption, and thus weaken the reflectance in NIR and SWIR 
bands, which made EVI difficult to capture the dynamics of 
LFM.  The increase in vegetation moisture can reach a 
saturation point, thus weakening the relationship of the strength 
of correlation with the inclusion of precipitation during 
relatively wet years (Fig. 6).   

Although the moisture condition had a great impact on the 
correlation between VIs and LFM, adding climatological 



variables may not help to improve the predictability of LFM 
from remotely sensed images, mainly due to the collinearity 
between climatological variables and VIs.  Instead, due to the 
inconsistency of correlation between LFM and VIs in time and 
space, LFM estimation using the remote sensing data should 
include variables that can address the inter-annual difference 
and inter-location difference [3], such as inter-annual statistics, 
cross-site statistics, and even topographical variables.  
Investigating a non-linear model can also be helpful, due to the 
saturation and insensitivity of VIs among the extremely low and 
high LFM values.  Other than that, retrieving LFM from the 
radiance transfer models (RTMs) should be considered to 
replace the traditional empirical models.  Compared with 
empirical relationship built upon in-situ measurements, RTMs 
are physically meaningful and directly address the response in 
reflectance when vegetation water content changes.  A recent 
study focused on Australia has shown promising outcome of 
deriving LFM using an inversing technique of RTM [9]. In the 
future study, we will apply RTMs to achieve a better estimation 
of LFM. 

This study demonstrates the benefits freely accessible 
MODIS data with a relatively high temporal resolution can 
contribute to measuring LFM data by improving cost and time 
efficiency.  Results indicate that a strong linear relationship is 
regionally site specific. Applying a multivariate analysis by 
introducing additional climatological variables may decrease 
interannual variation and strengthen single site correlation.  
Further investigation into site characteristics has the possibility 
to expand applications for using remote sensing satellite data to 
assess wildfire risk globally in shrubland ecosystems within a 
Mediterranean climate.  

 

 

ACKNOWLEDGEMENT 
We thank USFS Wildland Fire Assessment System (WFAS) for 
hosting and providing in situ LFM observation data. We also 
thank Dr. Son V. Nghiem from NASA Jet Propulsion 
Laboratory for research idea discussion and experiment design. 

REFERENCES 
[1] D. A. Roberts, P. E. Dennison, S. Peterson, S. Sweeney, and J. Rechel, 

"Evaluation of airborne visible/infrared imaging spectrometer (AVIRIS) 
and moderate resolution imaging spectrometer (MODIS) measures of live 
fuel moisture and fuel condition in a shrubland ecosystem in southern 
California," Journal of Geophysical Research-Biogeosciences, vol. 111, 
Aug 30 2006. 

[2] P. Schneider, D. A. Roberts, and P. C. Kyriakidis, "A VARI-based 
relative greenness from MODIS data for computing the fire potential 
index," Remote Sensing of Environment, vol. 112, pp. 1151-1167, Mar 18 
2008. 

[3] S. H. Peterson, D. A. Roberts, and P. E. Dennison, "Mapping live fuel 
moisture with MODIS data: A multiple regression approach," Remote 
Sensing of Environment, vol. 112, pp. 4272-4284, Dec 15 2008. 

[4] B. Myoung, S. H. Kim, S. V. Nghiem, S. Jia, K. Whitney, and M. C. 
Kafatos, "Estimating Live Fuel Moisture from MODIS Satellite Data for 
Wildfire Danger Assessment in Southern California USA," Remote 
Sensing, vol. 10, p. 87, 2018. 

[5] M. Yebra, P. E. Dennison, E. Chuvieco, D. Riano, P. Zylstra, E. R. Hunt, 
et al., "A global review of remote sensing of live fuel moisture content 
for fire danger assessment: Moving towards operational products," 
Remote Sensing of Environment, vol. 136, pp. 455-468, Sep 2013. 

[6] A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 
"Overview of the radiometric and biophysical performance of the MODIS 
vegetation indices," Remote sensing of environment, vol. 83, pp. 195-213, 
2002. 

[7] B. C. Gao, "NDWI - A normalized difference water index for remote 
sensing of vegetation liquid water from space," Remote Sensing of 
Environment, vol. 58, pp. 257-266, Dec 1996. 

[8] A. A. Gitelson, Y. J. Kaufman, R. Stark, and D. Rundquist, "Novel 
algorithms for remote estimation of vegetation fraction," Remote Sensing 
of Environment, vol. 80, pp. 76-87, 2002/04/01/ 2002. 

[9] M. Yebra, X. W. Quan, D. Riano, P. R. Larraondo, A. I. J. M. van Dijk, 
and G. J. Cary, "A fuel moisture content and flammability monitoring 
methodology for continental Australia based on optical remote sensing," 
Remote Sensing of Environment, vol. 212, pp. 260-272, Jun 2018. 

 


