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Orange, California 92866, USA
2Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653,
Beer-Sheva 84105, Israel

(Received 14 April 2018; accepted 28 May 2018; published online 20 June 2018)

The Bargmann-Fock-Segal space plays an important role in mathematical physics and
has been extended into a number of directions. In the present paper, we imbed this
space into a Gelfand triple. The spaces forming the Fréchet part (i.e., the space of test
functions) of the triple are characterized both in a geometric way and in terms of the
adjoint of multiplication by the complex variable, using the Stirling numbers of the
second kind. The dual of the space of test functions has a topological algebra structure,
of the kind introduced and studied by the first named author and Salomon. Published
by AIP Publishing. https://doi.org/10.1063/1.5035352

I. INTRODUCTION

The reproducing kernel Hilbert space F1 of entire functions with reproducing kernel ezw is
associated with the names of Bargmann, Segal, and Fock and will be called in this paper as the Fock
space (more precisely, it is the symmetric Fock space associated with C; see Ref. 10). It plays an
important role in stochastic processes, mathematical physics, and quantum mechanics; for recent
work on the topic see, e.g., Refs. 19 and 23. The space F1 is isometrically included in the Lebesgue
space of the plane with weight dA(z)B 1

π e−|z |
2
dxdy, and a key feature of F1 is that the adjoint of the

operator of multiplication by the complex variable is the operator of differentiation. It is of interest
to look at various generalizations of F1. One approach consists in slightly modifying the weight
function, see, e.g., the studies of Refs. 17, 27, and 29, and another line is to change the kernel (that
is, the norms of the monomials) in an appropriate way, for instance, replacing the exponential by the
Mittag-Leffler function in the case of the gray noise theory; see, e.g., Ref. 28. Then too the weight
is changed, but not always in an explicit way. Here we consider the family (Fm)∞m=1 of reproducing
kernel Hilbert spaces with the reproducing kernel

km(z,ω)=
∞∑

n=0

znωn

(n!)m , m= 1, 2, . . . (1.1)

The spaceFm can then be easily described as the space of all Taylor series of the form f (z)=
∑∞

n=0 fnzn

for which
∞∑

n=0

| fn |
2(n!)m <∞.

For m = 1, the space is equal to the classical Fock space, and the case m = 2 was defined and studied
in Ref. 8.

The main results are as follows: The first is a geometric characterization of the spaces Fm in
terms of a weight; the second main result is the characterization of Fm in terms of the adjoint operator
of multiplication by z, associated with the Stirling numbers of second kind; see (4.2). This generalizes
the well known case of m = 1 and opens the ground for future applications such as interpolation and
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sampling theorems in the setting of Fm; see, for instance, the papers1,14 for the case of F1. The third
main result is obtaining a structure of topological algebra for the inductive limit of the dual of the
space ∩∞m=1Fm. This allows us to work locally in a Hilbert space rather than in the non-metrizable
space ∪m∈NF2−m.

The outline of the paper is as follows. In Sec. II, we review some facts on the Mellin transform.
In Sec. III, using the Mellin transform, we give a geometric characterization of the spaces Fm for
m ∈N. A characterization of these spaces in terms of the adjoint of the operator of multiplication
by z and using the Stirling numbers of the second kind is given in Sec. IV. A related Bargmann
transform is defined in Sec. V. In Sec. VI, we define a Gelfand triple in which we imbed the Fock
space. We observe that the intersection

⋂∞
m=1 Fm is a nuclear space, and its dual is an algebra of the

type introduced in Ref. 9.

II. PRELIMINARIES

Let (a, b) an open interval of the real line, and let f and g be such that both f (x)xc�1 and g(x)xc�1

are summable on [0,∞) for c ∈ (a, b). The Mellin transform of f, denoted by M( f ) , is given by

M( f )(c)B
∫ ∞

0
xc−1f (x)dx, c ∈ (a, b).

In particular, the Mellin transform of the function f 1(x) = e�x is the Gamma function,

M( f1)(c)=
∫ ∞

0
xc−1e−xdx = Γ(c), c > 0.

The Mellin convolution of f and g is defined by

( f ∗ g)(x)B
∫ ∞

0
f (

x
t

)g(t)
dt
t
=

∫ ∞
0

f (t)g(
x
t

)
dt
t

, x > 0.

An important relation between the Mellin transform and the Mellin convolution, see, e.g., Ref. 16,
Theorem 3, is given by

M( f ∗ g)(c)= (M( f )(c))(M(g)(c)), c ∈ (a, b).

III. GEOMETRIC DESCRIPTION OF Fm

Recall that the Fock space F1 consists of those entire functions f for which∫∫
C
| f (z)|2e−|z |

2
dA(z)<∞

and is the reproducing kernel Hilbert space with reproducing kernel ezw . In this section, we give for
m = 2, . . . a geometric characterization for the space

Fm =



f (z)=
∞∑

n=0

anzn is entire with
∞∑

n=0

|an |
2(n!)m <∞




which is the reproducing kernel Hilbert space with reproducing kernel (1.1), when equipped with the
inner product

〈 f , g〉Fm B
∞∑

n=0

fngn(n!)m, where f (z)=
∞∑

n=0

fnzn, g(z)=
∞∑

n=0

gnzn,

for every f , g ∈Fm. First, we use the properties of the Mellin transform to build the kernels Km(z),
which are generalizations of the modified Bessel function of the second order, also called the
Macdonald function. Let K1(x) = e�x and for every integer m > 1 define the function

Km(x)B (K1 ∗ · · · ∗ K1)(x), x ∈R+, (3.1)
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that is, the function K1(x) Mellin-convoluted m many times with itself.

Lemma 3.1. Let m be an integer. The following properties hold:

(1) For m > 1, the kernel Km has the integral representations

Km(x)=
∫ ∞

0
· · ·

∫ ∞
0

e
−

∑m−1
i=1 xi−

x∏m−1
i=1 xi∏m−1

i=1 xi
dx1 · · · dxm−1 (3.2)

and

Km(x)=
∫
R
· · ·

∫
R

e−
m√x(

∑m−1
i=1 eti +e−

∑m−1
i=1 ti )dt1 · · ·dtm−1. (3.3)

(2) The function Km is monotone decreasing in (0,∞).
(3) The Mellin transform of Km is given by

M(Km)(x)= Γ(x)m, x > 0,

and so ∫ ∞
0

xnKm(x)dx = (n!)m, n ∈N. (3.4)

Proof. Part 1 is proved by induction on m: if m = 2, we get

K2(x)=
∫ ∞

0
e−x/te−t dt

t
=

∫ ∞
0

e−x1−
x

x1

x1
dx1.

Suppose formula (3.2) holds for m. Then

Km+1(x)= (Km ∗ e−t)(x)=
∫ ∞

0
Km

(
x

xm

)
e−xm

dxm

xm

=

∫ ∞
0
· · ·

∫ ∞
0

e
−

∑m−1
i=1 xi−

x
xm∏m−1

i=1 xi∏m−1
i=1 xi

e−xm

xm
dx1 · · · dxm

=

∫ ∞
0
· · ·

∫ ∞
0

e
−

∑m
i=1 xi−

x∏m
i=1 xi∏m

i=1 xi
dx1 · · · dxm,

i.e., (3.2) holds for m + 1 and hence for every m > 1. Next, we use (3.2) and the change of variables
si = ln(xi), 1 ≤ i ≤ m � 1, to obtain

Km(x)=
∫
R
· · ·

∫
R

e
−

∑m−1
i=1 esi− x

e
∑m−1

i=1 si ds1 · · · dsm−1,

and by another change of variables ti = si − ln( m
√

x), 1 ≤ i ≤m − 1, we get

Km(x)=
∫
R
· · ·

∫
R

e−
m√x(

∑m−1
i=1 eti + e−

∑m−1
i=1 ti )dt1 · · · dtm−1.

From the representation (3.2), it is easily seen that Km(x) is a monotone decreasing function. Finally,
the Mellin transform of Km is given by

M(Km)(c)=M( f1)(c) · · ·M( f1)(c)= (Γ(c))m, c > 0;

therefore ∫ ∞
0

xc−1Km(x)dx = (Γ(c))m, c > 0.

For c = n + 1, we have ∫ ∞
0

xnKm(x)dx = (Γ(n + 1))m = (n!)m.
�
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In the special case m = 2, we get that

K2(x)=
∫
R

e−
√

x2 cosh(t)dt, x ∈R+

is the Bessel function of the second kind; see Ref. 8. For an arbitrary m > 2, the kernel Km(x)
can be expressed in terms of the Meijer G-functions; see Ref. 20, Chap. 5 for the latter. We
now show how the generalized Fock spaces Fm are obtained from the kernels Km(x) in a natural
way.

Theorem 3.2. For any integer m ≥ 1, the space Fm is equal to the space of all entire functions
f :C→C satisfying the condition ∫∫

C
| f (z)|2Km(|z |2)dA(z)<∞. (3.5)

Moreover, the inner product of Fm is given by

1
π

∫∫
C

f (z)g(z)Km(|z |2)dA(z)=
∞∑

n=0

fngn(n!)m, f , g ∈Fm,

and Fm has the orthonormal basis
{

zn

(n!)m/2

}∞
n=0

.

Proof. A straightforward computation shows that∫∫
C

znzkKm(|z |2)dA(z)=
∫ ∞

0

∫ 2π

0
rneinθrke−ikθKm(r2)rdθdr

=

∫ 2π

0
ei(n−k)θdθ

∫ ∞
0

rn+k+1Km(r2)dr

= 2πδn,k

∫ ∞
0

r2n+1Km(r2)dr

= 2πδn,k

∫ ∞
0

unKm(u)
du
2

= π(n!)mδn,k .

Let f =
∑∞

n=0 fnzn and g=
∑∞

n=0 gnzn be entire functions. Then

π

∫∫
C

f (z)g(z)Km(|z |2)dA(z)=
∞∑

n,k=0

fngk

∫∫
C

znzkKm(|z |2)dA(z)

=

∞∑
n,k=0

fngkδn,k(n!)m =

∞∑
n=0

fngn(n!)m,

which implies that f ∈Fm if and only if condition (3.5) holds, i.e.,

1
π

∞∑
n=0

| fn |
2(n!)m =

∫∫
C
| f (z)|2Km(|z |2)dA(z)<∞

as wanted. Furthermore, the inner product in Fm is then given by

〈 f , g〉Fm =

∞∑
n=0

fngn(n!)m =
1
π

∫∫
C

f (z)g(z)Km(|z |2)dA(z).
�

In the case m = 2, similar yet different spaces related to other families of orthogonal polynomials,
appear in Ref. 26, Lemma 4 and Ref. 25.

Remark 3.3. Let 0 < ε < 1. Then ε
n! < 1 for every n ≥ 0 and hence
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∞∑
m=1

εmkm(z,ω)=
∞∑

m=1

εm*
,

∞∑
n=0

znωn

(n!)m
+
-
=

∞∑
n=0

*
,

∞∑
m=1

(
ε

n!

)m+
-
znωn

=

∞∑
n=0

ε

n!

(
1

1 − ε
n!

)
znωn = ε ·

∞∑
n=0

znωn

n! − ε

and
∞∑

m=1

εm

m!
km(z,ω)=

∞∑
n=0

(
e
ε
n! − 1

)
znωn.

IV. OPERATOR THEORETIC DESCRIPTION OF Fm

Let a and b be respectively the operators of multiplication by z and of differentiation, i.e., a=Mz

and b= ∂
∂z . Both a and b are defined on polynomials and more generally on entire functions. They

satisfy the familiar commutation relation

[b, a]= ba − ab= I .

In the Fock space F1, a and b are unbounded operators and satisfy

a∗ = b and b∗ = a.

This relation is very important, as the Fock space is the only space of entire functions for which a and
b are adjoint to each other; see Ref. 10. We generalize this result by presenting a relation between
the operators a and b in the space Fm. That gives us another characterization of the space Fm. We
first introduce the Stirling numbers of the second kind S(k, n), which appear naturally in the theory
of ordering bosons.

Definition 4.1 (Stirling numbers of the second kind). For k ∈N0 and n ∈N0, the numbers
S(k, n) are defined by the recurrence formula

S(k, n)= nS(k − 1, n) + S(k − 1, n − 1), k, n ≥ 1

with the initial values S(k, 0) = δk ,0 and S(k, n) = 0 if k < n.
It is well known, see Refs. 12 and 13, that

(ab)k =

k∑
n=1

S(k, n)anbn, k ≥ 1,

and this operator is called the Mellin derivative operator of order k (with c = 0); see Ref. 16,
Lemma 9.

Theorem 4.2. Let m ≥ 1 be an integer. The operators a and (ba)m−1b are closed densely defined
operators on the space Fm and their domains coincide,

Dom(a)=Dom((ba)m−1b)=D,

where

D=



f (z)=
∞∑

n=0

fnzn :
∞∑

n=0

| fn |
2(n!)mnm <∞



⊆Fm. (4.1)

Moreover, the adjoint operator of a in Fm is given by

a∗ = (ba)m−1b, with Dom(a∗)=Dom
(
(ba)m−1b

)
=D.

Furthermore, let H be a Hilbert space of entire functions in which the polynomials are dense, and
let m ∈N. If the adjoint operator of a in H is equal to the operator (ba)m−1b, i.e., if

(Mz)
∗ =

∂

∂z



m−1∑
n=1

S(m − 1, n)zn ∂
n

∂zn


, (4.2)
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then H=Fm and there exists c > 0 for which

〈 f , g〉H = c · 〈 f , g〉Fm , ∀f , g ∈H.

Proof. It is easy to see that a and (ba)m−1b are closed densely defined operators on Fm. If
f (z)=

∑∞
n=0 fnzn ∈Fm, then

f ∈Dom(a) ⇐⇒ af =
∞∑

n=0

fnzn+1 ∈Fm ⇐⇒

∞∑
n=0

| fn |
2((n + 1)!)m <∞

and

f ∈Dom((ba)m−1b) ⇐⇒ (ba)m−1bf =
∞∑

n=1

fnnmzn−1 ∈Fm

⇐⇒

∞∑
n=1

| fn |
2n2m((n − 1)!)m =

∞∑
n=1

| fn |
2(n!)mnm <∞.

Therefore, Dom(a)=Dom((ba)m−1b)=D as in (4.1). Next, if

g(z)=
∞∑

n=0

gnzn ∈Dom(a∗),

there exists

h(z)=
∞∑

n=0

hnzn ∈Fm

such that 〈af , g〉Fm = 〈 f , h〉Fm for every f ∈Dom(a) . In particular, for f (z) = zn (n ≥ 0), we get

gn+1((n + 1)!)m = 〈zn+1, g〉Fm = 〈z
n, h〉Fm = hn(n!)m,

and hence hn = gn+1(n + 1)m for every n ≥ 0. Thus,

h ∈Fm =⇒

∞∑
n=0

|hn |
2(n!)m =

∞∑
n=0

|gn+1 |
2(n + 1)2m(n!)m <∞

=⇒

∞∑
n=1

|gn |
2(n!)mnm <∞=⇒ g ∈D,

hence Dom(a∗) ⊆D. Finally, if g ∈D=Dom((ba)m−1b) , then

〈 f , (ba)m−1bg〉=

〈 ∞∑
n=0

fnzn,
∞∑

n=0

(n + 1)mgn+1zn
〉
=

∞∑
n=0

fn(n + 1)mgn+1(n!)m

=

∞∑
n=0

fngn+1((n + 1)!)m =

〈 ∞∑
n=0

fnzn+1,
∞∑

n=0

gnzn
〉
= 〈af , g〉,

for every f ∈D=Dom(a), which proves that g ∈Dom(a∗). Therefore, D ⊆Dom(a∗) and hence
Dom(a∗)=D. By the previous calculation, we also know that a∗ = (ba)m−1b. Now suppose that H is
a Hilbert space which contains all polynomials such that

a∗ = (ba)m−1b

in H. Then for every f ∈Dom(a) ∩H and g ∈Dom((ba)m−1b) ∩H,

〈af , g〉H = 〈 f , (ba)m−1bg〉H, (4.3)

and as both Dom(a) and Dom((ba)m−1b) contain all polynomials, we apply (4.3) for the choice
f (z) = zl, g(z) = zk (k, l ≥ 0); thus
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〈zl+1, zk〉H = 〈af , g〉H = 〈 f , (ba)m−1bg〉H

= 〈zl, kmzk−1〉H = km〈zl, zk−1〉H, k, l ≥ 0.

We now prove by induction that for every k ≥ 0 and l ≥ k,

〈zl+1, zk〉H = 0 :

• If k = 0, we know that 〈zl+1, 1〉H = 0 for every l ≥ 0.
• Assume that for some k ≥ 0, we have 〈zl+1, zk〉H = 0 for every l ≥ k. Therefore, 〈zl+2, zk+1〉H =

(k + 1)m〈zl+1, zk〉H = 0 for every l ≥ k, which means that

〈zl+1, zk+1〉H = 0

for every l ≥ k + 1, as wanted.

Thus the family {zk }∞k=0 is orthogonal in H and one can easily see that

〈zk , zk〉H = km〈zk−1, zk−1〉H, ∀k ≥ 1,

which implies that

〈zk , zk〉H = (k!)m〈1, 1〉H.

To conclude, if f (z)=
∑∞

k=0 fkzk and g(z)=
∑∞

k=0 gkzk ∈H, then

〈 f , g〉H =
∞∑

k,l=0

fkgl〈z
k , zl〉H =

∞∑
k=0

fkgk(k!)m〈1, 1〉H,

i.e., the inner product inH is equal to the one inFm, up to a positive multiplicative constant c= 〈1, 1〉H.
As H is a Hilbert space which contains all the polynomials, it follows that

H=



f =
∞∑

n=0

fnzn : 〈 f , f 〉H = c
∞∑

n=0

| fn |
2(n!)m <∞



=Fm.

�

In the previous theorem, we proved that Fm is the only Hilbert space which contains all polynomials
and in which the adjoint operator of a=Mz is equal to the operator

(ba)m−1b=
∂

∂z



m−1∑
n=1

S(m − 1, n)zn ∂
n

∂zn


.

One can see that we have the relations

bna= abn + nbn−1 and ban = anb + nan−1

for every n ∈N, and, in particular, the operators a and a∗ do not satisfy the commutation relation.
However we have the following result.

Proposition 4.3. The commutator of a and a∗ = (ba)m−1b is equal to

[a∗, a]= I +
m−1∑
n=1

(n + 1)S(m, n + 1)anbn. (4.4)

Proof. As

a∗ = (ba)m−1b= b
m−1∑
n=1

S(m − 1, n)anbn,

we have
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[a∗, a]= b
m−1∑
n=1

S(m − 1, n)anbna − ab
m−1∑
n=1

S(m − 1, n)anbn

= b
m−1∑
n=1

S(m − 1, n)an(abn + nbn−1) − ab
m−1∑
n=1

S(m − 1, n)anbn

= (ba − ab)
m−1∑
n=1

S(m − 1, n)anbn + b
m−1∑
n=1

nS(m − 1, n)anbn−1

=

m−1∑
n=1

S(m − 1, n)anbn +
m−1∑
n=1

nS(m − 1, n)(anb + nan−1)bn−1

=

m−1∑
n=1

(n + 1)S(m − 1, n)anbn +
m−1∑
n=1

n2S(m − 1, n)an−1bn−1,

and as S(m � 1, 1) = S(m � 1, m � 1) = S(m, m) = 1, we have

[a∗, a]= I + mam−1bm−1 +
m−2∑
n=1

(n + 1)[S(m − 1, n) + (n + 1)S(m − 1, n + 1)]anbn

= I + mam−1bm−1 +
m−2∑
n=1

(n + 1)S(m, n + 1)anbn

= I +
m−1∑
n=1

(n + 1)S(m, n + 1)anbn.

�

Sequentially, a straightforward calculation shows that

‖af ‖2Fm
= ‖a∗f ‖2Fm

+ ‖ f ‖2Fm
+

m−1∑
k=1

(
m
k

) 

∞∑
n=0

| fn |
2(n!)mnk


for every f ∈ D, which guarantees that all the terms in the identity are finite. It is tempting to write
the last identity (with some abuse of notation) as

‖af ‖2Fm
= ‖a∗f ‖2Fm

+ ‖ f ‖2Fm
+

m−1∑
k=1

(
m
k

)
〈 f , (ab)k f 〉Fm ;

however f ∈ D does not necessarily imply that f ∈Dom((ab)k).
Finally, we have the following relation between the operators a, b and the family of spaces

(Fm)m∈Z. For every n ≥ 1,

• the Fock space F1 satisfies

an(F1) ⊆F0 and bn(F1) ⊆F0;

• if m > 1, then
an(Fm) ⊆Fm−1 and bn(Fm) ⊆Fm,

• if m < 1, then
an(Fm) ⊆Fm and bn(Fm) ⊆Fm−1.

Remark 4.4. Unlike the situation in the Fock space, where the adjoint of b is equal to a, in the
space Fm, the adjoint operator of b is equal to

b∗*
,

∞∑
k=0

fkzk+
-
=

∞∑
k=0

fk
(k + 1)m−1

zk+1;

thus b∗ , a if m > 1.
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V. GENERALIZED BARGMANN TRANSFORM

Recall that the normalized Hermite functions are defined by

ηn(t)=
1

π1/42n/2
√

n!
e

t2
2
(
e−t2 ) (n)

, n ∈N0.

The family {ηn}
∞
n=0 is an orthonormal basis of the Lebesgue space L2(R, dt). Furthermore, see Ref. 24,

p. 436, the ηn are uniformly bounded by some constant, i.e.,

∃C > 0 such that |ηn(t)| ≤C, for every n ∈N and t ∈R.

Similarly to the symmetric Fock space associated with C, see, e.g., Ref. 10, that is, F1, there is a
fourth characterization of the space Fm, given by a mapping from L2(R, dt) into Fm, presented in the
following proposition.

Proposition 5.1. Let m ≥ 2. For every t ∈R and z ∈C define the function

hm(z, t)B
∞∑

n=0

zn

(n!)m/2
ηn(t). (5.1)

Then,

1. for every t ∈R, the function hm(·, t) is entire.
2. f ∈Fm if and only if there exists g ∈L2(R, dt) such that

f (z)=
∫
R

hm(z, t)g(t)dt = 〈g, hm(z, ·)〉L2(R,dt). (5.2)

Proof. Since the functions ηn(t) are all bounded by C, the sum in (5.1) converges, and so
hm(·, t) is entire. Next, let f (z)= 〈g, hm(z, ·)〉L2(R,dt) for some g ∈L2(R, dt) . Then,

f (z)=
∫
R

*
,

∞∑
n=0

zn

(n!)m/2
ηn(t)g(t)+

-
dt =

∞∑
n=0

zn

(n!)m/2

∫
R
ηn(t)g(t)dt.

As the system {ηn}
∞
n=0 forms an orthonormal basis of L2(R, dt) , we have Parseval’s equality

∞∑
n=0

�����

∫
R
ηn(t)g(t)dt

�����

2

=

∫
R
|g(t)|2dt,

and hence f ∈Fm since

∞∑
n=0

�����
1

(n!)m/2

∫
R
ηn(t)g(t)dt

�����

2

(n!)m = ‖g‖2L2(R,dt) <∞.

Finally, let f ∈Fm. It can be written as f (z)=
∑∞

n=0 anzn with
∑∞

n=0 |an |
2(n!)m <∞. Setting

g(t)=
∞∑

n=0

(n!)m/2anηn(t),

we observe that

‖g‖2L2(R,dt) =

∞∑
n=0

|an |
2(n!)m <∞

and finally that

〈hm(z, ·), g〉L2(R,dt) =

∞∑
n=0

zn

(n!)m/2
(n!)m/2an = f (z).

�
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This characterization of Fm motivates us to consider an associated Bargmann transform. For any
g ∈L2(R, dt) , we define the Bargmann transform of g to be

Bm(g)B
∞∑

n=0

zn

(n!)m/2

∫
R
ηn(t)g(t)dt = 〈g, hm(z, ·)〉L2(R,dt).

The mapping Bm : L2(R, dt)→Fm is unitary; it satisfies

Bm(ηn)(z)=
zn

(n!)m/2
and ‖g‖L2(R,dt) = ‖Bm(g)‖Fm

for every g ∈L2(R, dt) .

Remark 5.2. In case where m = 1, B1 is the well-known Bargmann transform and the function
h1(z, t) can be written in closed form as

h1(z, t)= e2tz−t2−z2/2.

When m > 1, finding an explicit closed formula for the function hm(z, t) might involve new
generalizations of the exponential function.

VI. A GELFAND TRIPLE ASSOCIATED WITH THE FAMILY (Fm)m∈Z

The reproducing kernel Hilbert spaces {Fm}
∞
m=1, starting from the Fock space F1, form a

decreasing sequence, i.e.,

F1 ⊃F2 ⊃ . . . ⊃Fm ⊃Fm+1 ⊃ . . . .

So it makes sense, in the spirit of the theory of Gelfand triples (as developed, for instance, in the
books21,22) to consider the intersection space

F=
∞⋂

m=1

Fm

=



f =
∞∑

n=0

anzn such that ‖ f ‖m =
∞∑

n=0

|an |
2(n!)m <∞,∀m ∈N




,

which consists of entire functions and its dual. We consider the dual space of each Fm, with respect
to the Fock space F1.

Lemma 6.1. For every m ≥ 1, the dual space of Fm, with respect to F1 is

F2−mB (Fm)′ =



b= (bn)n∈N0 : ‖b‖22−m :=
∞∑

n=0

|bn |
2(n!)2−m <∞




.

Therefore, we have the Gelfand triple

∞⋂
m=1

Fm ⊂F1 ⊂

∞⋃
m=1

F2−m. (6.1)

The inclusion map from Fm into Fm+1 is nuclear, and it follows that ∩∞m=1F2−m is a Fréchet nuclear
space, and, in particular, a perfect space in the terminology of Gelfand and Shilov; see Ref. 22. The
dual space ∪∞m=1F2−m has two different sets of properties, topological and algebraic; the first follows
from the theory of perfect spaces, and the structure algebra comes from the form of the weights.
The fact that the product is jointly continuous comes from the theory of reflexive Fréchet spaces; see
Ref. 15, Sec. IV.26, Theorem 2.

We begin with the topological properties. Although not metrizable, the space ∪∞m=1F2−m behaves
well with respect to sequences and compactness:
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(1) A sequence converges in the strong (or weak) topology of the dual if and only if its ele-
ments are in one of the spaces F2−m and converges in the topology of the latter; see Ref. 22,
p. 56.

(2) A subset of ∪∞m=1F2−m is compact in the strong topology of the dual if and only if it is included
in one the spaces F2−m and compact in the topology of the latter; see Ref. 22, p. 58.

These properties allow us to reduce to the Hilbert space setting and sequences the study of continuous
functions from a compact metric space into ∪∞m=1F2−m.

The algebra structure is given by the convolution product (or Cauchy product) defined as
follows:

a ∗ bB *
,

n∑
k=0

akbn−k
+
-n∈N0

, (6.2)

where a= (an)n∈0N and b= (bn)n∈0N belong to the dual.

Proposition 6.2. The space

F′B
∞⋃

m=1

F2−m =



b= (bn)n∈N0 :∃m ≥ 1, ‖b‖2−mB
∞∑

n=0

|bn |
2

(n!)m−2
<∞




is a topological algebra; the convolution product is jointly continuous with respect to the two variables
and satisfies

‖a ∗ b‖2−p ≤ A(q − p)‖a‖2−q‖b‖2−p, (6.3)

for every a ∈F2−q and b ∈F2−p, where p, q ∈N such that q ≥ p + 1.
The weights αn = n! satisfy

αm+n =
√

(m + n)! ≥
√

m!n!= αmαn

for every m, n ∈N0 and
∑∞

n=0(αn)−2 =
∑∞

n=0
1
n! = e<∞. Using these properties of the weight, the

statements in the proposition follow then from Ref. 9 or, in a maybe more explicit way, from Ref. 2,
Exercise 5.4.8, p. 260–261, with

A(q − p)= *
,

∞∑
n=0

α
2(p−q)
n

+
-

1/2

= *
,

∞∑
n=0

(
1
n!

)q−p
+
-

1/2

<∞

for q � p ≥ 1.

We note that (6.3) is called the Väge inequality and originates with the work of Väge; see Refs. 11
and 30.

Consider now a F1-valued function, say, f, defined a compact set (for instance [0, 1]). When
viewing f as∪∞m=1F2−m-valued, one can define differentiability and compute explicitly the derivative,
which will take values in one of the spaces F2−m rather than in the Fock space itself. Using the Väge
inequality one can also consider stochastic type integrals of the form∫ 1

0
f (t) ∗ g(t)dt,

where f and g are continuous from [0, 1] into F′ as Riemann integrals. The image of [0, 1] under the
function f ∗ g is then compact, and the integral is computed in one of the spaces F2−m. See Refs. 3, 4,
7, and 5 for similar arguments and applications, Ref. 5 being in the setting of quaternionic stochastic
processes. Finally, we refer to Ref. 6 for the study of the quaternionic Fock space and to Ref. 18 for
some of its generalizations in the quaternionic setting.
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https://doi.org/10.1016/j.acha.2009.11.004
https://doi.org/10.1016/j.acha.2009.11.004
https://doi.org/10.1016/j.spa.2010.03.004
https://doi.org/10.7494/opmath.2012.32.3.401
https://doi.org/10.1063/1.4977082
https://doi.org/10.1063/1.4977082
https://doi.org/10.1016/j.spa.2014.05.007
https://doi.org/10.1007/s12190-012-0608-2
https://doi.org/10.1007/s00020-015-2220-y
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1119/1.2723799
https://doi.org/10.1016/j.aim.2016.09.019
https://doi.org/10.1007/bf02649101
https://doi.org/10.1137/0515015
https://doi.org/10.1016/j.jfa.2013.07.020
https://doi.org/10.2307/1967695
https://doi.org/10.1016/s0022-247x(02)00052-5
https://doi.org/10.1016/s0022-247x(02)00052-5

	Generalized Fock Spaces and the Stirling Numbers
	Recommended Citation

	Generalized Fock Spaces and the Stirling Numbers
	Comments
	Copyright


	Generalized Fock spaces and the Stirling numbers

