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Figure 8 shows the seasonal spatial patterns of CALIPSO columnar Dust AOD (DAOD) at 532
nm, over the Red Sea and the surrounding areas averaged for December–February (DJF), March–May
(MAM), June–August (JJA), and September–November (SON) between 01/2007 and 12/2015. It must
be clarified that the seasons have been defined based on the temporal and spatial characteristics of
Aeolian dust activity over the Red Sea [10,63]. From the geographical distributions of DAOD, it is
revealed that the dust activity over the Red Sea peaks in summer, while it diminishes during winter.
Moreover, a strong north-to-south and west-to-east DAOD increasing gradient is apparent over the
study domain, throughout the year. The maximum DAODs (up to 0.5) are recorded over the southern
parts of the Red Sea and Saudi Arabia in summer and spring, respectively. In autumn (SON), DAODs
do not exceed 0.3, while in winter (DJF), the minimum DAODs (less than 0.1) throughout the year are
observed over the eastern parts of the Sahara Desert.
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Observations (CALIPSO) Dust AOD at 532 nm, for the three-month averages: December to February
(DJF), from March to May (MAM), from June to August (JJA), and from September to November (SON),
for the period 01/2007–12/2015.

In order to illustrate the vertical distribution of dust aerosols over the Red Sea, the seasonal
extinction coefficient profiles (Clim-DE), which were averaged over the period 2007–2015, have been
produced for each sub region (NRS, NCRS, SCRS, SRS). As indicated in Figure 9, throughout the
year, the main portion of dust aerosols is confined in the lowest troposphere (lower than 1 km),
with maximum Clim-DE values ranging from 0.08 (Figure 9d) to 0.24 (Figure 9o) km−1, depending
on the sub region. Mean dust extinction coefficient gradually decreases with height, reaching values
that are less than 0.01 km−1 up to 6 km−1. Furthermore, elevated dust aerosol layers (2–5 km) are
evident mainly between March and August and for latitudes southern to 20◦N, encompassing the
SCRS and SRS regions, while during autumn and winter, dust aerosol layers are in general suppressed
below 5 km height. Among the sub regions, the highest extinction coefficients are found during
MAM in the northern domains (NRS and NCRS), while the corresponding values in SCRS and SRS
are observed during JJA. The synergistic implementation of the mean DAOD product (Figure 7) and
the climatological extinction coefficient profiles (Figure 9) provides an insight regarding the seasonal
variation of dust aerosols three-dimensional distribution above the Red Sea.
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The strong spatial and temporal variability of DAOD across the study domain is driven by the
geographical features as well as on the different meteorological mechanisms favoring dust mobilization
and uplifting over arid areas of the eastern Saharan Desert and the Arabian Peninsula [63–65]. Dust
generating dynamical processes include meteorological mechanisms of different scales, such as
cyclones and anticyclones [66,67], Nocturnal Low-Level Jets [68,69], and Haboobs [70,71]. Between
February and April, mid-latitude Mediterranean cyclones associated with cold fronts passages result
in a long-range transport of Saharan dust aerosol towards the northern Red Sea [63,72]. By contrast,
during summer the major sources of dust aerosols are the Arabian Peninsula deserts (An-Nafud,
Ad-Dahna, Rub-Al-Khali) and the local sources of Eritrea and the Republic of Sudan. Under favorable
synoptic conditions, dust events take place over the southern Red Sea [63,73]. In addition, the dust
aerosol transport and deposition processes are highly dependent on the local topography in the vicinity
of the Red Sea. At the northern parts (NRS, NCRS), the less complex surface elevation and the flatter
topography allow for the free transport of dust aerosol plumes. On the contrary, in the southern parts
of the Red Sea (SCRS, SRS) mountain ridges along both the African and Arabian Peninsula coastlines
confine dust aerosol flows creating persistent dust layers for extended periods [16]. The removal
processes of dust aerosol particles include both dry and wet deposition [74,75]. Dry deposition
(or gravitational settling) is the predominant removal mechanism of mineral particles from the
atmosphere in the north Red Sea (NRS, NCRS), while over its southern parts, wet deposition plays
a key role [72]. The higher dust aerosol load over the southern part of Red Sea [10] in combination
with the predominance of wet removal processes results in an increased dust aerosol deposition and
input to the southern parts of the Red Sea with respect to its northern parts.
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4. Discussion

In this work, we studied a combination of atmospheric and meteorological factors, including SST,
dust deposition (DAOD), and wind activities regulating Red Sea phytoplankton growth using 20 years
(1997–2016) observation and reanalysis data. We discovered a bias in the OC-CCI data owed to the data
merge from different sensors leading to some inconsistency over different time periods. The systematic
high bias values occurred mainly during the service period of MERIS sensor. We presented this
issue of inconsistency in the time series variation of Chl-a in Figure 3 and discussed it in Section 3.3.
To overcome this problem, we divided the data into three periods: before MERIS (1998–2002), during
MERIS (2003–2011), and after MERIS (2012–2016), and compared each time frame with the entire
time period (1998–2016). Our results confirmed that except for the central Red Sea during (1998–2002)
and for NRS during (2012–2016), the correlation maps of most Red Sea regions match those of the
entire time period. This is an important conclusion that supports the validity of using OC-CCI data
for the long-term correlative analysis that is the focus of this work. An evident negative relationship
between Chl-a and SST anomalies is observed and a major decline in Chl-a is correlated with the
warmer waters of 2015 and thereafter. Hence, we argue against previous research [7] proposing that the
warmer climate conditions could make the Red Sea ecosystem more productive, since phytoplankton
could not get underlying nutrition [76]. The vertical analysis of dust aerosol optical depth proved
that DAOD is a reliable indicator of dust deposition over the Red Sea ecosystem. We found that
dust deposition contributed at different extents over different regions of the Red Sea to the Chl-a
anomalies. This is clear from the positive correlation between DAOD and Chl-a at different lags. It is
noteworthy that the SCRS exhibits a two-month lag, thus confirming the impact of the anomalous
event during June 2015 [19]. However, not all of the dust events could induce phytoplankton blooms,
due to the varying nature of the dust sources. For instance, SRS received more wet deposition as
compared to the NRS (see Figure 5), resulting in more bioavailable nutrient (e.g., Fe, Si) for ocean
ecosystems. Meanwhile, the positive correlation between wind speed and Chl-a verified that preferred
wind patterns could enhance the horizontal intrusion of nutrient-rich water to the southern Red Sea [3].
We found that stronger winds brought more nutritious water from Gulf of Aden into the Red Sea
(see SRS in Figure 4(b5–b8)). Furthermore, strong wind also enhanced vertical mixing, thus bringing
deeper water that is nutrient rich to be brought into the euphotic zone [3]. This is clear from the
positive correlation between Chl-a and wind speed anomalies over the northernmost Red Sea as shown
in Figure 4(b8). Ocean circulation is a quite important factor influencing the phytoplankton blooms
distribution [3,19]. Hence, it is expected that the inflow of nutrient-rich seawater from the Gulf of
Aden can affect most regions of the Red Sea, including NCRS, SCRS, and SRS. Our 19 years analysis
showed a similar monthly correlation variability between Chl-a and SST anomalies for the central and
southern regions, but not for the NRS, suggesting the role that the inflow played here (See Figure 6a).
Moreover, since mesoscale anti-cyclonic eddies affect phytoplankton blooms through transferring
nutrients and/or Chl-a to the open waters in the central Red Sea, our cross correlation maps showed
the eddies’ role, resulting in the October 2002 bloom that wsa reported in Sofianos and Johns [2]
(see Figure 4(a2,a6,b2,b6)) and the June 2015 bloom reported in Li et al. [19] (see Figure 7, Chl-a and
DAOD anomalies at lag 2). The CALIPSO AOD climatology supported the dust contribution to the
Chl-a, as discussed above and showed by the positive correlation coefficients (Table 2), since the dust
activity peaked during summer and diminished during winter (see Figure 8). The extinction coefficient
vertical profiles validated the dust aerosols contribution since the elevated dust layers (2–5 km) were
evident during summer season mainly over the SCRS and SRS regions (see Figure 9).

5. Conclusions

This study considers a combination of different factors that are regulating nutrient supply in
the Red Sea environment that may contribute to the observed anomalous phytoplankton outbreaks.
We found that the Red Sea environment experienced, as expected, a negative correlation between SST
and Chl-a observations. This negative correlation is plausible since phytoplankton normally blooms
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during winter. However, we also found that this negative relationship still holds between SST and
Chl-a anomalies, with few exceptions that can be attributed to some eddy activities or possible wet
dust deposition. It is clear that anomalously cooler water, either from upwelling or intruding current
from Gulf of Aden, could bring nutrients leading to enhanced phytoplankton blooming. On the other
hand anomalously warmer water experiences reduced phytoplankton blooming because of nutrients
shortage that is induced by stronger stratification and reduced mixing layer depth. This is evident
from the extremely high SST anomalies paired with extremely low Chl-a anomalies during 2015–2016.
Hence, we believe that warmer climate conditions could make the Red Sea ecosystem less productive.
The extent of the June, 2010 anomalous event over the entire Red Sea environment made it quite
interesting and it was deeply investigated. A combination of factors, ranging from SST anomalies,
wet and dry dust deposition, and elevated wind speeds all contributed to the extent of that event.
The strong north-to-south, west-to-east increasing gradient of the DAOD explains the higher dust
activity on the southern regions of the Red Sea environment during summer and spring seasons
that agrees with the higher productivity. This is evident from the correlation maps between Chl-a
and DAOD anomalies at specifically two and three months lags over the southern Red Sea yet still
with some contributions to the other regions as well at 0 lag. Our multi sensor approach together
with the correlative analyses enhanced our understating of varying contributing atmospheric and
meteorological factors into the phytoplankton blooms. Further research will be conducted for specific
cases of anomalous blooms over the Arabian Gulf to investigate the regional extent of contributing
factors to other neighboring water bodies.
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