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Evolution of superoscillations for Schrödinger equation
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1Politecnico di Milano, Dipartimento di Matematica, Via E. Bonardi, 9, 20133 Milano, Italy
2Schmid College of Science and Technology, Chapman University, Orange,
California 92866, USA

(Received 21 June 2017; accepted 31 August 2017; published online 19 September 2017)

Aharonov-Berry superoscillations are band-limited functions that oscillate faster than
their fastest Fourier component. Superoscillations appear in several fields of science
and technology, such as Aharonov’s weak measurement in quantum mechanics, in
optics, and in signal processing. An important issue is the study of the evolution of
superoscillations using the Schrödinger equation when the initial datum is a weak
value. Some superoscillatory functions are not square integrable, but they are real
analytic functions that can be extended to entire holomorphic functions. This fact
leads to the study of the continuity of a class of convolution operators acting on suit-
able spaces of entire functions with growth conditions. In this paper, we study the
evolution of a superoscillatory initial datum in a uniform magnetic field. Moreover,
we collect some results on convolution operators that appear in the theory of super-
oscillatory functions using a direct approach that allows the convolution operators
to have non-constant coefficients of polynomial type. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991489]

I. INTRODUCTION

Superoscillations are band-limited functions with the apparently paradoxical property that they
can oscillate faster than their fastest Fourier component. They arise in a number of physical and
mathematical contexts, for example, in signal processing and from Aharonov’s weak-measurement
in quantum mechanics, see Refs. 1, 9, and 10 and also the work of Ferreira and Kempf.19,20,22,23 In
optics and in other fields, Berry and some of his coauthors have given fundamental contributions,
see, for example, Refs. 12, 11, 13, 15, and 16. We also quote the paper of Lindberg25 for optical
super-resolution. The case of superoscillatory functions in several variables has been considered by
Berry14 and a more systematic study of the mathematical theory of superoscillating sequences in
several variables has been recently done in Ref. 6.

To provide the necessary background, we recall that a sequence of the form

Yn(x, a)B
n∑

j=0

Cj(n, a)eikj(n)x, n ∈N, (1)

where a ∈R and Cj(n, a) and kj(n) are real valued functions of the variables n, a, and j, is called the
generalized Fourier sequence. A generalized Fourier sequence Yn(x, a) is said to be a superoscillating
sequence if |kj(n)| ≤ 1 and if there exists a compact subset of R, on which Yn converges uniformly to
eig(a)x, where g is a continuous real valued function such that |g(a)| > 1.

The classical example of a superoscillating sequence that appears in the weak measurement is
given by

Fn(x, a)=
(
cos

( x
n

)
+ ia sin

( x
n

))n
=

n∑
j=0

Cj(n, a)ei(1− 2j
n )x

with a > 1, x ∈R, and

Cj(n, a)=

(
n
j

) (
1 + a

2

)n−j (1 − a
2

) j

. (2)
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This sequence converges on R locally uniformly to eiax. The explanation of the superoscillatory
phenomenon is based on the definition of weak values. A weak measurement of a quantum observable
represented by the self-adjoint operator A, involving a pre-selected state ψ0 and a post-selected state
ψ1, leads to the weak value

AweakB
(ψ1, Aψ0)
(ψ1,ψ0)

= b + ib′.

The weak value Aweak is a complex number. Its real part b and its imaginary part b′ can be interpreted
as the shift b and the momentum b′ of the pointer recording the measurement.

An important feature of the weak measurement is that, in contrast with the strong measurements
of von Neumann (given by the expectation value of the operator A),

AstrongB (ψ, Aψ),

the real part b of Aweak can be very large with respect to Astrong because (ψ1,ψ0) can be very small
when the states ψ0 and ψ1 are almost orthogonal. This is what produces the superoscillations.

In a series of papers2–5,17 and the forthcoming monograph,8 a method to study the evolu-
tion of superoscillations using the Schrödinger equation has been developed. It is based on Green
functions and convolution operators acting on entire functions. Precisely we consider the Cauchy
problem

i
∂ψ

∂t
(t, x)=H(x)ψ(t, x), ψ(0, x)=Yn(x, a), (3)

where H is the Hamiltonian operator. Once we obtain a closed form for the solution of the Cauchy
problem, for example, using the fundamental solution, the problem that we face is to study the
behavior of the solution ψn(t, x) as n tends to infinity.

In most of the cases that we have treated, such as the free particle, the harmonic oscillator, and the
particle in a uniform electric field, see Ref. 7, the convolution operators, which we have to consider,
are of the form

Up

(
t,
∂

∂x

)
B
∞∑

m=0

am(t)
∂pm

∂xpm ,

where p ∈N and am are suitable complex numbers that depend on the Hamiltonian H and can depend
on time. Using such operators, the solution to the Cauchy problem can be written as

ψn(t, x)=Up

(
t,
∂

∂x

)
Yn(x, a).

In order to show that superoscillations persist in time, we need to explicitly compute the limit

lim
n→∞

ψn(x, t)

and see if the limit function keeps the superoscillatory behavior. This problem is naturally studied in
the complex setting.

Indeed, we replace the real variable x by the complex variable z so the operator Up

(
t, ∂
∂x

)
becomes Up

(
t, ∂
∂z

)
. The functions Yn(x, a) extend to entire holomorphic functions with suitable

growth conditions and on such class of functions the operator Up

(
t, ∂
∂z

)
acts continuously.

Once we have established the continuity of Up

(
t, ∂
∂z

)
, the above limit can be computed as

lim
n→∞

ψn(z, t)=Up

(
t,
∂

∂z

)
lim
n→∞

Yn(z, a)

in the complex setting and then we take the restriction to the real line. For the study of the evolution
of superoscillatory functions under the Schrödinger equation with a singular potential, it turns out
that we cannot consider just the class of operators Up

(
t, ∂
∂z

)
with constant coefficients with respect

to z, but that we have to consider the case in which the coefficients am are analytic functions of z.
The general setting that allows us to guarantee that the operators Up

(
t, ∂
∂z

)
are continuous on a

suitable space of entire functions uses Ehrenpreis’ theory of Analytically Uniform spaces (AU-spaces
for short),18 see also Ref. 27. We will give the ideas of how it works in Sec. V. This theory is very
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general and also allows the study of convolution operators with constant coefficients that act on the
space of Sato-hyperfunctions.

In the case of operators

Up

(
t,
∂

∂z

)
B
∞∑

m=0

am(z)
∂pm

∂zpm

with analytic coefficients am(z), a direct approach is needed. We have to consider the problem of
finding those entire functions f (z) with suitable growth conditions such that

∞∑
m=0

am(z)
∂pm

∂zpm f (z)

is an entire function.
In this paper, we study the operators Up

(
t, ∂
∂z

)
in the case in which the coefficients are poly-

nomials am(z). This problem is of independent interest. Then we apply these results to study the
evolution of superoscillations in a uniform magnetic field in the homogeneous case. Precisely, we
set r= (x, y, z) to be the coordinates of the space and consider the Schrödinger equation in a uniform
magnetic field

i
∂

∂t
ψn(r, t)=

[
−

1
2
∆ − i

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(x2 + y2)

]
ψn(r, t)

with the superoscillatory initial datum given by

ψn(r, 0)=
n∑

j=0

Cj(n, a)ei(1− 2j
n )(x+y+z),

where the coefficients Cj(n, a) are as in (2). Using the fundamental solution, we prove that

ψn(r, t) =
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )

·

n∑
j=0

Cj(n, a)ei
(
1− 2j

n

)
(x+y+z−(x−y) tan( t

2 ))−i
(
1− 2j

n

)2
( t

2 +2 tan( t
2 )).

(4)

Using the continuity of convolution operators, we then prove that as n tends to infinity, ψn(r, t)
tends for any t ∈ (0, π) uniformly on compact sets in R3 to φa(r, t), the solution with initial datum
φa(r, t)= eia(x+y+z). Precisely

lim
n→∞

ψn(r, t)=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )−ia2( t
2 +2 tan( t

2 ))+ia(x+y+z−(x−y) tan( t
2 )). (5)

We point out that the superoscillatory behavior persists in time because ψn terms such

as ei
(
1− 2j

n

)
(x+y+z−(x−y) tan( t

2 )), containing the band-limited factor |1 − 2j
n | ≤ 1, lead to the term

eia(x+y+z−(x−y) tan( t
2 )) with a > 1 in the limit function.

The plan of the paper is as follows: Sec. II contains the study of the convolution operators
with polynomial coefficients. In Sec. III, we recall the fundamental solution of the Schrödinger
equation in a uniform magnetic field and we give a preliminary result, which is necessary to study
the superoscillatory behavior of the solutions. In Sec. IV, we consider the homogeneous case, and in
Sec. V, we study the nonhomogeneous case. Here we need the theory of superoscillatory functions
in several variables.

II. ENTIRE FUNCTIONS AND OPERATORS ASSOCIATED WITH SUPEROSCILLATIONS

The theory of AU-spaces is very general and it has been used in several cases when we considered
convolution operators with constant coefficients. The aim of this section is to use direct methods to
recover some results in the constant coefficient case that can be extended to the case of non-constant
coefficients. We recall some well known definitions on entire functions, which will be useful to study
the continuity of operators that appear in the theory of superoscillatory functions.
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Let f be a non-constant entire function of a complex variable z. We define

Mf (r)=max
|z |=r
|f (z)|, for r ≥ 0.

The non-negative real number ρ defined by

ρ= lim sup
r→∞

ln ln Mf (r)

ln r

is called the order of f. If ρ is finite, then f is said to be of finite order, and if ρ=∞, the function f is
said to be of infinite order.

In the case f is of finite order, we define the non-negative real number

σ = lim sup
r→∞

ln Mf (r)

rρ
,

which is called the type of f. If σ ∈ (0,∞), we call f of normal type, while we say that f is of minimal
type if σ = 0 and of maximal type if σ =∞. The constant functions are said to be of minimal type of
order zero.

Definition 2.1. Let ρ ∈ (0,∞) and σ ∈ [0,∞]. We denote by Aρ,σ the class of entire functions
that are either of order less than ρ or of order ρwith type at most σ. We consider inAρ,σ the topology
of relatively uniform convergence: for ρ ∈ (0,∞) and σ ∈ [0,∞), a sequence fn ∈Aρ,σ converges to
f ∈Aρ,σ in Aρ,σ if

‖fn − f ‖ε = sup
z∈C
|fn(z) − f (z)|e−(σ+ε) |z |ρ → 0 for all ε > 0,

and for ρ ∈ (0,∞) and σ =∞, a sequence fn ∈Aρ,∞ converges to f ∈Aρ,∞ in Aρ,∞ if

‖fn − f ‖ε = sup
z∈C
|fn(z) − f (z)|e−|z |

ρ+ε
→ 0 for all ε > 0.

Remark 2.2. Note that convergence in Aρ,σ implies locally uniform convergence. The topology
on Aρ,σ is however not the relative topology induced by the topology of locally uniform convergence
but a finer topology: indeed, if f (z)=

∑+∞
k=0 akzk is an entire function, then fn(z)=

∑n
k=0 akzk converges

locally uniformly to f (z), but if f <Aρ,σ , then f n obviously does not converge to f in Aσ,ρ. Indeed,
as pointed out in Ref. 28, in order for a sequence fn ∈Aρ,σ to be a Cauchy sequence, it is necessary
and sufficient that

(i) for each ε > 0, there exists K =K(ε) such that

sup
z∈C
| fn(z)|e−(σ+ε) |z |ρ <K

respectively if σ =∞,
sup
z∈C
| fn(z)|e−|z |

ρ+ε
<K ,

(ii) for every fixed z ∈C, the sequence fn(z) ∈C is a Cauchy sequence in C.

There exists a well known characterization of functions in Aρ,σ in terms of their Taylor
coefficients, see Ref. 28.

Theorem 2.3. Suppose that the entire function f has the Taylor expansion f (z)=
∑+∞

n=0 fnzn,then
f ∈Aρ,σ if and only if

lim sup
n→∞

n
√

(n!)1/ρ | fn | ≤ (ρσ)1/ρ, for ρ ∈ (0,∞), σ ∈ [0,∞), (6)

or

lim sup
n→∞

n
√

(n!)1/(ρ+ε) | fn | = 0, for all ε > 0, for ρ ∈ [0,∞) and σ =∞. (7)

We introduce now a family of convolution operators Up( ∂∂z ) depending on a parameter p ∈N,
which appear in the theory of superoscillatory functions.
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Definition 2.4. Given a sequence of complex numbers (an)n∈N0 and a number p ∈N, we define
the formal operator

Up

(
∂

∂z

)
B

+∞∑
n=0

an
∂pn

∂zpn , (8)

where ∂
∂z is the derivative with respect to z. We say that the operator Up( ∂∂z ) can be applied to an

entire function f if the series

Up

(
∂

∂z

)
f (z)B

+∞∑
n=0

anf (pn)(z) (9)

converges for at least one point z ∈C.

Operators of form (8) play an important role in the theory of superoscillations. Setting

bk =

{
an, if k = np
0, otherwise

,

one has

Up

(
∂

∂z

)
=

+∞∑
k=0

bk
∂k

∂zk
. (10)

Operators of this form have been studied in Ref. 28. Since easy modifications of the proofs therein
show the following results, we only prove the first lemma explicitly in order to present the techniques
applied. Actually, instead of adapting the proofs in Ref. 28, the following lemmas can even be obtained
by applying the results in Ref. 28 to (10) taking into account the definition the coefficients bk .

The following three lemmas correspond to Lemmas 2.1–2.3 in Ref. 28 and characterize operators
of form (8) that are applicable to a space Aρ,σ .

Lemma 2.5. Let ρ ∈ (0, +∞) and σ ∈ (0,∞) and let p ∈N be a given fixed number. If for every
f ∈Aρ,σ series (9) converges for z = 0, then

lim sup
n→∞

pn
√

((pn)!)1−1/ρ |an | < (ρσ)−1/ρ. (11)

Conversely, suppose that (11) is satisfied. Then (9) converges absolutely for every f ∈Aρ,σ and every
z ∈C.

Proof. If (11) is not satisfied, then there exists an increasing sequence of natural numbers nk

such that

|ank | >

(
(ρσ)−1/ρ −

1
k

)pnk

((pnk)!)−1+1/ρ,

where k = k0, k0 + 1, k0 + 2, . . . with k0 > (ρσ)1/ρ. By (6), the function

f (z)B
+∞∑

k=k0

1
(pnk)! ank

zpnk

then belongs to Aρ,σ but

+∞∑
n=0

anf (pn)(0)=
+∞∑

k=k0

ank f (pnk )(0)=
+∞∑

k=k0

1=+∞,

which contradicts the assumption that (9) converges at z = 0 for any function in Aρ,σ .
Now assume that (11) holds true. Then there exists τ with 0 < τ < (ρσ)−1/ρ and L > 0 such that

|an | < Lτpn((pn)!)−1+1/ρ for all n ∈N0.

Observe that for f ∈Aρ,σ and ξ ∈C, the function

fξ (z)= f (z + ξ)=
+∞∑
k=0

f (n)(ξ)
n!

zn
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also belongs to Aρ,σ . Thus, by (6), for every ε > 0, there exists a constant Kε > 0 such that

| f (n)(ξ)| <Kε
(
(ρσ)1/ρ + ε

)n
(n!)1−1/ρ for all n ∈N0.

If in particular we choose ε small enough, such that βB
(
(ρσ)1/ρ + ε

)
τ < 1, then

+∞∑
n=0

���an f (pn)(ξ)��� ≤KεL
+∞∑
n=0

βn =
KεL

1 − β
,

which concludes the proof. �

Lemma 2.6. Let ρ ∈ (0, +∞). If (9) converges for every f ∈Aρ,0 at z = 0, then

lim sup
n→∞

pn
√

((pn)!)1−1/ρ |an | < +∞. (12)

Conversely, suppose that (12) is satisfied. Then (9) converges absolutely for every f ∈Aρ,σ and every
z ∈C.

Lemma 2.7. Let ρ ∈ [0, +∞). If (9) converges for every f ∈Aρ,∞ at z = 0, then

lim sup
n→∞

pn
√

((pn)!)1−1/(ρ+ε) |an | <∞ (13)

for some ε > 0. Conversely, if (13) holds true for some ε > 0, then (9) converges absolutely for every
f ∈Aρ,σ and every z ∈C.

In order to investigate the superoscillatory behavior, it is in certain situations necessary to consider
differential operators of form (8), but with non-constant coefficients. Although we consider in this
paper only operators with constant coefficients, we state the following results, which consider the
case of polynomial coefficients, for the sake of completeness.

Definition 2.8. Given q sequences of complex numbers (an,0)n∈N0 , . . . , (an,q)n∈N0 and we set
Pn(z)=

∑q
j=0 an,jzj. For p ∈N, we define the formal operator

Up,q

(
z,
∂

∂z

)
B

+∞∑
n=0

Pn(z)
∂pn

∂zpn , (14)

whose coefficients are polynomials of degree lower or equal to q. We say that Up,q

(
z, ∂
∂z

)
is applicable

to the class Aρ,σ if the series
+∞∑
n=0

Pn(z)f (pn)(z)

converges for any f ∈Aρ,σ and any z ∈C.

Convolution operators with polynomial coefficients are also studied in Ref. 28. As before, the
following result can be obtained by simple adaptations of the techniques used therein. Again, one
can also consider Up,q

(
z, ∂
∂z

)
as an operator of the form (10), where bk are polynomial coefficients

that equal Pn if k = nj and 0 otherwise. Then one can directly apply Theorem 2.5 in Ref. 28 in order
to obtain the following lemma.

Lemma 2.9. The operator Up,q

(
z, ∂
∂z

)
given by (14) is applicable to Aρ,σ if and only if

(i) in the case 0 < ρ,σ <∞, we have

lim sup
n→∞

pn
√

((pn)!)1−1/ρ |an,j | < (ρσ)−1/ρ for j ∈ {0, . . . , q},

(ii) in the case 0 < ρ<∞ and σ = 0, the operator Up,q

(
z, ∂
∂z

)
is applicable to some class Aρ,σ′

with σ′ > 0,
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(iii) in the case 0 ≤ ρ <∞ and σ =∞, the operator Up,q

(
z, ∂
∂z

)
is applicable to some class Aρ′,σ

with ρ′ > ρ.

Finally, the next result, which corresponds to Theorem 3.4 and Corollary 3.4 in Ref. 28, gives
information about the range and some continuity properties of the considered operators.

Theorem 2.10. Let the operator Up,q(Dz) defined in (14) be applicable to the class Aρ,σ .

(i) If ρ ∈ (0, 1] and σ ∈ (0,∞), then Up,q

(
z, ∂
∂z

)
maps Aρ,σ continuously into itself.

(ii) If ρ ∈ (1,∞) and σ ∈ (0,∞), then Up,q

(
z, ∂
∂z

)
maps Aρ,σ continuously into Aρ,θ with

θBσ
(
1 − dρ/(ρ−1)

)1−ρ
,

where

dB γ(σρ)1/ρ and γB max
j∈{0,...,q }

lim sup
n→+∞

pn
√

(pn!)1−1/ρ |an,j |.

(iii) If ρ ∈ (0,∞) and σ = 0 or σ =∞, then Up,q

(
z, ∂
∂z

)
maps Aρ,σ continuously into itself.

III. PRELIMINARIES ON SUPEROSCILLATIONS IN UNIFORM MAGNETIC FIELD

We recall the fundamental solution of the Schrödinger equation in a uniform magnetic field from
the paper of Sondheimer and Wilson.26 The Hamiltonian H of a free electron in a constant magnetic
field H is given by

H=− h2

8π2m
∆ +

qh
2πimc

A · ∇ +
q2A2

2mc2
,

where A= 1
2 H × r is the vector potential, �q is the charge, and m is the mass of the electron and the

remaining symbols have the usual meaning. The Schrödinger equation studied in Ref. 26 is

−
∂

∂γ
ψ(r, γ)=Hψ(r, γ),

where r= (x, y, z) are the coordinates of the space. If the magnetic field is taken along the z direction,
then the vector potential is (− 1

2 Hy, 1
2 Hx, 0) and the equation for the wave function ψ(r, γ) turns into

∂γψ(r, γ)=

[
h2

8π2m
∆ −

qhH
4πimc

(x∂y − y∂x) −
q2H2

8mc2
(x2 + y2)

]
ψ(r, γ),

which has the fundamental solution

K(r, r′, γ)=

(
2πm

h2γ

) 3
2 µ0Hγ

sinh(µ0Hγ)
exp

[
−

2π2m

h2γ
·

(
2iµ0Hγ(x′y − y′x) + µ0Hγ coth(µ0Hγ)

[
(x − x′)2 + (y − y′)2

]
+ (z − z′)2

) ]
,

where µ0 is the Bohr magneton,

µ0 =
qh

4πmc
.

With the position

γ =
t
−i~

with ~=
h

2π
,

we have
∂

∂γ
=−i~

∂

∂t
.

The Schrödinger equation

i~
∂

∂t
ψ(r, t)=Hψ(r, T )
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has therefore the fundamental solution

K(r, r′, t)=
( m

2πi~t

) 3
2 µ0Hit

~ sinh
(
µ0Hi t

~

) exp

[
−

m
2~it

·

(
−2µ0H

t
~

(x′y − y′x) + µ0H
it
~

coth

(
µ0H

it
~

) (
(x − x′)2 + (y − y′)2

)
+ (z − z′)2

) ]
.

For the sake of simplicity, we set
c= ~=m=H = q= 1

and obtain the following theorem.

Theorem 3.1. The fundamental solution of the Schrödinger equation

i
∂

∂t
ψ(r, t)=

[
−

1
2
∆ −

i
2

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(x2 + y2)

]
ψ(r, t)

when the magnetic field is taken along the z direction and the vector potential is (− 1
2 y, 1

2 x, 0) is given
by

K(r, r′, t)=

(
1

2πit

) 3
2 t

2 sin
(

t
2

) ·
exp

[
i

2t

(
−t(x′y − y′x) +

t
2

cot
( t

2

) [
(x − x′)2 + (y − y′)2

]
+ (z − z′)2

)]
.

We now use Theorem 3.1 to find the solution of the following Cauchy problem.

Theorem 3.2. Let b= (b1, b2, b3) ∈R3 and write r= (x, y, z). Then the solution of the Cauchy
problem

i
∂

∂t
φb(r, t)=

[
−

1
2
∆ − i

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(
x2 + y2

)]
φb(r, t),

φb(r, 0)= ei(b1x+b2y+b3z)

is given by

φb(r, t)=
1

cos( t
2 )

e−
i
4 tan( t

2 )(x2+y2)eEb(t,x) (15)

with

Eb(t, x)B ib1x + ib2y + ib3z − i tan
( t

2

)
(b2

1 + b2
2) − i

t
2

b2
3 − i tan

( t
2

)
(b2x − b1y).

Proof. We represent the solution using the fundamental solution from Theorem 3.1 and obtain

φb(r, t)=

(
1

2πit

)3/2
t

2 sin
(

t
2

)
×

∫
R3

e
i

2t (−t(x′y−y′x)+ t
2 cot( t

2 )((x−x′)2+(y−y′)2)+(z−z′)2)ei(b1x′+b2y′+b3z′)dr′.

For the sake of simplicity, we set

M(t)B

(
1

2πit

)3/2
t

2 sin( t
2 )

so that we obtain

φb(r, t)=M(t)
∫
R3

eE(r,r′,t)dr′
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with

E(r, r′, t)B

i
2t

(
−t(x′y − y′x) + χ(t)

[
(x − x′)2 + (y − y′)2

]
+ (z − z′)2

)
+ i(b1x′ + b2y′ + b3z′),

where χ(t)B t
2 cot

(
t
2

)
. The exponent can be rewritten as

E(r, r′, t)=
i

2t

[
χ(t)[x2 + y2] + z2

]

+
i

2t

[
(z′ + (tb3 − z))2 − (tb3 − z)2

]

+
i

2t
χ(t)



(
x′ +

1
χ(t)

(
tb1 − x χ(t) −

ty
2

))2

−
1

χ(t)2

(
tb1 − x χ(t) −

ty
2

)2

+
i

2t
χ(t)



(
y′ +

1
χ(t)

(
tb2 − yχ(t) +

tx
2

))2

−
1

χ(t)2

(
tb2 − yχ(t) +

tx
2

)2
.

Some simple manipulations yield

E(r, r′, t)=
i

2t

[
χ(t)[x2 + y2] + z2 − (tb3 − z)2

]

+
i

2t
χ(t)

[
−

1

χ(t)2

(
tb1 − x χ(t) −

ty
2

)2
−

1

χ(t)2

(
tb2 − yχ(t) +

tx
2

)2
]

+
i

2t
(z′ + (tb3 − z))2

+
i

2t
χ(t)

(
x′ +

1
χ(t)

(
tb1 − x χ(t) −

ty
2

))2

+
i

2t
χ(t)

(
y′ +

1
χ(t)

(
tb2 − yχ(t) +

tx
2

))2

.

Introducing the notations

E0(r, t)B
i

2t

[
χ(t)[x2 + y2] + z2 − (tb3 − z)2

]

−
i

2t χ(t)

[(
tb1 − x χ(t) −

ty
2

)2
+

(
tb2 − yχ(t) +

tx
2

)2
]

and

E1(r, r′, t)B
i

2t
(z′ + (tb3 − z))2

+
i

2t
χ(t)

(
x′ +

1
χ(t)

(
tb1 − x χ(t) −

ty
2

))2

+
i

2t
χ(t)

(
y′ +

1
χ(t)

(
tb2 − yχ(t) +

tx
2

))2

,

we therefore have

E(r, r′, t)= E0(r, t) + E1(r, r′, t).

Applying Ref. 21, Eq. (3.323-2), we compute the regularized integral

∫
R

eiαx2
dx = lim

β→0+

∫
R

e−x2(β−iα) dx =

(
iπ
α

)1/2

.
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For a, b, c ∈R and α, β, γ ∈R, we therefore obtain∫
R3

eiα(x′+a)2
eiβ(y′+b)2

eiγ(z′+c)2
dx′dy′dz′

=

∫
R3

eiα(x′)2
eiβ(y′)2

eiγ(z′)2
dx′dy′dz′ =

(iπ)3/2

(αβγ)1/2

and thus ∫
R3

eE1(r,r′,t)dr′ =
(iπ)3/2

χ(t)
2t ( 1

2t )
1/2
=

(2tπi)3/2

χ(t)
.

Altogether we have

φ(r, t)=M(t)eE0(r,t)
∫
R3

eE1(r,r′,t)dr′ =M(t)
(2tπi)3/2

χ(t)
eE0(r,t) =

1

cos
(

t
2

) eE0(r,t)

and some simple calculations show that

E0(r, t)=−
i
4

tan
( t

2

)
(x2 + y2) + Eb(t, x).

So we get the statement. �

We will use Theorem 3.2 to study the evolution of superoscillations for two different initial data.
In the homogeneous case, we consider the evolution of superoscillations of the form

ψn(r, 0)=
n∑

j=0

Cj(n, a)ei(1− 2j
n )(x+y+z).

This case can be treated using the theory of superoscillations in one variable and it is the case of weak
values. Since all space variables have the same exponential coefficient, namely, i

(
1 − 2j

n

)
, we can see

the effect of the magnetic field on the evolution of the initial datum better than in the nonhomogeneous
case. For the nonhomogeneous case, we consider the initial datum

ψn (r, 0)=
n∑

j=0

Cj (n, a) ei
(
x
(
1− 2j

n

)q1 +y
(
1− 2j

n

)q2 +z
(
1− 2j

n

)q3
)
,

where q1, q2, and q3 are suitable real numbers. In this case, we need the theory of superoscillations
in several variables recently introduced in Ref. 5.

IV. SUPEROSCILLATIONS IN THE HOMOGENEOUS CASE

In this section and also in Sec. V, we are working with the space variable (x, y, z). When we
consider convolution operators such as

∞∑
m=0

am(t)
∂pm

∂xpm ,
∞∑

m=0

bm(t)
∂pm

∂ypm ,
∞∑

m=0

cm(t)
∂pm

∂zpm , for p ∈N,

with an abuse of notation we use the same notation also when (x, y, z) become complex variables.
We now use the results of Sec. III to study the homogeneous case, that is, the case in which the
coefficients in the exponential function of the initial datum satisfy bj = a > 1 for j = 1, 2, 3. We shall
therefore write φa instead of φb = φ(a,a,a) in this section for the sake of simplicity.

Lemma 4.1. Let bj = a for j = 1, 2, 3. The solution φa(r, t) given by (15) can be written as

φa(r, t)=
1

cos( t
2 )

e−
i
4 (x2+y2) tan( t

2 )

·

∞∑
m=0

im

m!

( t
2

+ 2 tan
( t

2

))m ∂2m

∂z2m
eia(x+y+z−(x−y) tan( t

2 )).
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Proof. Since bj = a for j = 1, 2, 3, the exponent Eb(r, t) in (15) is

Eb(r, t)= ia
(
x + y + z − (x − y) tan

( t
2

))
− ia2

( t
2

+ 2 tan
( t

2

))
. (16)

Now observe that

eia(x+y+z−(x−y) tan( t
2 ))−ia2( t

2 +2 tan( t
2 ))

=

∞∑
m=0

1
m!

(
−ia2

( t
2

+ 2 tan
( t

2

)))m
eia(x+y+z−(x−y) tan( t

2 ))

=

∞∑
m=0

im

m!

( t
2

+ 2 tan
( t

2

))m
(ia)2m eia(x+y+z−(x−y) tan( t

2 ))

=

∞∑
m=0

im

m!

( t
2

+ 2 tan
( t

2

))m ∂2m

∂z2m
eia(x+y+z−(x−y) tan( t

2 )).

Putting these pieces together, we get the statement. �

Theorem 4.2. Let a > 1 and set r= (x, y, z). Then the solution of the Cauchy problem

i
∂

∂t
ψn(r, t) =

[
−

1
2
∆ − i

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(
x2 + y2

)]
ψn(r, t),

ψn(r, 0) =
n∑

j=0

Cj(n, a)ei
(
1− 2j

n

)
(x+y+z),

(17)

where the coefficients Cj(n, a) are as in (2), is given by

ψn(r, t) =
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )

·

n∑
j=0

Cj(n, a)ei
(
1− 2j

n

)
(x+y+z−(x−y) tan( t

2 ))−i
(
1− 2j

n

)2
( t

2 +2 tan( t
2 )).

(18)

Moreover, limn→∞ ψn(r, t)= φa(r, t) uniformly on compact sets in R3 for any t ∈ (0, π), i.e.,

lim
n→∞

ψn(r, t)=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )−ia2( t
2 +2 tan( t

2 ))+ia(x+y+z−(x−y) tan( t
2 )) = φa(r, t). (19)

Proof. First of all we observe that, because of the linearity of the problem, the solution of (17)
is given by the superposition

ψn(r, t)=
n∑

j=0

Cj(n, a)φ1−2j/n(r, t).

Writing the above identity explicitly using Theorem 3.2 and (16), we get (18).
To prove (19), we apply Lemma 4.1. We define the operator

U
(
t,
∂

∂z

)
B

+∞∑
m=0

im

m!

( t
2

+ 2 tan
( t

2

))m ∂2m

∂z2m

and have

ψn(r, t)=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )U
(
t,
∂

∂z

) n∑
j=0

Cj(n, a)ei
(
1− 2j

n

)
(x+y+z−(x−y)(tan ( t

2 ))

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )U
(
t,
∂

∂g

) n∑
j=0

Cj(n, a)ei
(
1− 2j

n

)
g(r,t)

with
g(r, t)= x + y + z − (x − y) tan(t/2).
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By Ref. 8, the sequence
∑n

j=0 Cj(n, a)ei
(
1− 2j

n

)
g converges to eiag in A2,0 and the operator U(t, ∂/∂g)

acts continuously on this space. Indeed, denoting C(t)B t
2 + 2 tan

(
t
2

)
, we have

U(t, ∂/∂g)=
+∞∑
m=0

imC(t)m

m!
∂2m

∂g2m
,

and using Stirling’s approximation formula n!∼
√

2πn(n/e)n, we obtain

lim sup
m→+∞

2m

√
((2m)!)

1
2

C(t)m

m!
=

√
C(t) lim sup

m→+∞

(√
4πm( 2m

e )2m
) 1

4m(√
2πm( m

e )m
) 1

2m

=
√

C(t) lim sup
m→+∞

2
1
2 + 1

8m (2πm)−
1

8m

=
√

2C(t)< +∞.

The continuity of the operator U(t, ∂/∂z) on A2,0 therefore follows from Lemma 2.6 and Theorem
2.10. We can thus exchange the limit and the operator such that

lim
n→+∞

ψn(r, t)

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )U
(
t,
∂

∂g

)
eiag(t,r)

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )
+∞∑
m=0

im

m!

( t
2

+ 2 tan
( t

2

))m ∂2m

∂z2m
eia(x+y+z−(x−y) tan( t

2 ))

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )−ia2( t
2 +2 tan( t

2 ))+ia(x+y+z−(x−y) tan( t
2 ))

= φa(t, x).

Finally, observe that r 7→ g(r, t) is uniformly continuous and maps bounded sets to bounded sets. Thus,
for any subset K ⊂R3, there exists a compact subset K ′ ⊂C3 such that g(K) ⊂K ′. Since convergence
in A2,0 implies uniform convergence on compact sets, the sequence ψn converges uniformly to φa

on K. �

V. SUPEROSCILLATIONS IN THE NON HOMOGENEOUS CASE

Denote by z the m-tuple of complex numbers zB (z1, . . . , zm), let α = (α1, . . . , αm) ∈Nm be a
multi-index of length |α | =

∑m
j=1 αj, and set zα = zα1

1 . . . zαm
m . The space H(Cm) of entire functions in

the variable z is equipped with the topology of uniform convergence on compact subsets of Cm.
For the continuity of the convolution operators in several variables, we apply Ehrenpreis’ theory

of Analytically Uniform spaces (AU-spaces, for short), see Ref. 18. The theory is quite involved.
We recall that a topological vector space (usually containing generalized functions) X is said to be
an AU-space if its dual X′ is isomorphic (usually via some variation of the Fourier-Borel transform)
to a space A of entire functions with suitable growth at infinity. The general theory of AU-spaces
assures that a continuous multiplier on A, i.e., an entire function F such that the product by F acts
continuously on A, can be interpreted as the symbol of a convolution operator on X.

The spaces we are interested in are of two types, see Refs. 18, 24, and 27.

Definition 5.1. Let p be any positive real number. The space

Ap(Cm)B { f ∈H(Cm) :∃ A, B > 0 : �� f (z)�� ≤ A exp(B��z��p)}

is said to be the space of functions of order p and finite type.

Definition 5.2. The space

Ap,0(Cm)B { f ∈H(Cm) : ∀ ε > 0, ∃ Aε > 0 : | f (z)| ≤ Aε exp(ε |z |p)}
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is said to be the space of functions of order p and minimal type.

We also consider on these spaces the topology of relatively uniform convergence, cf.
Definition 2.1.

The following theorem, which can be found in Ref. 27, is of crucial importance to show the
persistence of superoscillations.

Theorem 5.3. For p> 1, there exists a topological isomorphism between the space Ap(Cm) and
the dual space of the space Ap′,0(Cm) with

1
p

+
1
p′
= 1.

Conversely, there exists a topological isomorphism between the space Ap,0(Cm) and the dual space
of Ap′(Cm).

To investigate the nonhomogeneous case, we need to recall some results from the theory of
superoscillating sequences in several variables. We limit ourselves to the physical case of three
variables. For further details, we refer to the recent paper.6

Definition 5.4 (Generalized Fourier sequence). Let α = (α1, α2, α3) ∈N3 be a multi-index of
length |α | = α1 + α2 + α3, and let

P(u1, u2, u3)=
∑
|α | ≤h

aαuα1
1 uα2

1 uα3
3 , with aα ∈C,

be a polynomial of degree h. Let k`,j(n) for ` = 1, 2, 3, n ∈N, and 0 ≤ j ≤ n be real numbers and set

Z`,j(x`)B eix`k` ,j(n), ` = 1, 2, 3.

We call the generalized Fourier sequence in three variables a sequence of the form

fn(x1, x2, x3)=
n∑

j=0

Kj(n, a)P(Z1,j(x1), Z2,j(x2), Z3,j(x3)), (20)

where a ∈R and Kj(n, a) ∈R for j = 0, . . . , n and n ∈N.

An important example of functions Z`,j(x`)= eixjk` ,j(n) is given when k`,j(n)= (1 − 2j/n)p` with
p` ∈N. To emphasize the dependence on j and p` , we write

zj,p` (x`)B eix` (1− 2j
n )p` , j = 1, . . . , m, p` ∈N.

Definition 5.5 (Superoscillating sequence). A generalized Fourier sequence f n(x1, x2, x3) is said
to be a superoscillating sequence if

lim
n→∞

fn(x1, x2, x3)=Q
(
eig1(a)x1 , eig2(a)x2 , eig3(a)x3

)
,

where Q(u1, u1, u3) is a polynomial and

� |kj(n)| ≤ 1 for j = 1, 2, 3,
� a ∈R,
� there exists a compact subset of R3, which will be called a superoscillation set, on which

f n converges uniformly to Q(eig1(a)x1 , eig2(a)x2 , eig3(a)x3 ), where the functions gj are continuous,
real valued and satisfy |gj(a)| > 1 for j = 1, 2, 3.

We recall the following important result that will be used in the sequel.

Theorem 5.6. Let qj ∈N for j = 1, . . . , m be even numbers and let

zk,qj (xj)B eixj(1− 2k
n )qj

, j = 1, 2, 3.
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Assume that there exist r` ∈N, ` = 2, 3, such that

q1 = r2q2 + r3q3

and consider the polynomial of degree h in 3 variables that is given by

P(u1, . . . , um)=
∑
|α | ≤h

aαuα1
1 uα2

2 uα3
3 ,

where aα ∈C and α is a multi-index. We define

fn(x1, . . . , xm)=
n∑

j=0

Cj(n, a)P(zk,q1 (x1), zk,q2 (x2), zk,q3 (x3)).

Then f n(x1, x2, x3) is superoscillating, that is,

lim
n→∞

fn(x1, x2, x3)=P
(
eix1(−ia)q1 , eix2(−ia)q2 , eix3(−ia)q3

)
.

Definition 5.7. Let a > 1 and let qj ∈N, j = 1, 2, 3, be even numbers and assume that there exist
r` ∈N, ` = 2, 3, such that

q1 = r2q2 + r3mq3.

We define the sequence

Yn (x1, x2, x3)=
n∑

j=0

Ck (n, a) eix1

(
1− 2k

n

)q1

eix2

(
1− 2k

n

)q2

eix3

(
1− 2k

n

)q3

.

As a consequence, we have the following particular case of Theorem 5.6.

Corollary 5.8. Let Yn(x1, x2, x3) and qj, j = 1, 2, 3, be as in Definition 5.7. Then Yn(x1, x2, x3) is
superoscillating and

lim
n→∞

Yn(x1, x2, x3)= eix1(−ia)q1 eix2(−ia)q2 eix3(−ia)q3 .

Theorem 5.9. Let bB (b1, b2, b3) ∈R3 and r= (x, y, z) and define the differential operators

A
(
t,
∂

∂z

)
B

∑
m≥0

1
m!

(
it
2

)m
∂2m

∂z2m
and B

(
t,
∂

∂x

)
B

∑
n≥0

1
n!

(i tan (t/2))n ∂2n

∂x2n
.

Then the solution of the Cauchy problem

i
∂

∂t
tφ(r, t)=

[
−

1
2
∆ − i

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(x2 + y2)

]
φ(r, t),

φ(r, 0)= ei(b1x+b2y+b3z),

can be written as

φb (r, t)=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
eib1ξ(x,y,t)+ib2η(xy,t)+ib3z

with ξ(x, y, t)= x + tan(t/2)y and η(x, y, t)= y − tan(t/2)x.

Proof. We recall that the solution is given by (15) and we rewrite the exponent Eb(r, t) as

Eb(r, t)= ib1

(
x + tan

( t
2

)
y
)
− i tan

( t
2

)
b2

1

+ ib2

(
y − tan

( t
2

)
x
)
− i tan

( t
2

)
b2

2 + ib3z − i
t
2

b2
3.

Now observe that

eib3z− it
2 b2

3 =
∑
m≥0

1
m!

(
it
2

)m
∂2m

∂z2m
eib3z =A

(
t,
∂

∂z

)
eib3z.
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Moreover, we have

eib2(y−tan( t
2 )x)−i tan( t

2 )b2
2 =

+∞∑
n=0

1
n!

(i tan (t/2))n (ib2)2neib2(y−tan( t
2 )x)

=
∑
n≥0

1
n!

(i tan (t/2))n ∂2n

∂ξ2n
eib1ξ(x,y,t) =B

(
t,
∂

∂ξ

)
eib1ξ(x,y,t)

and with similar computations we get

eib1(x+tan( t
2 )y)−i tan( t

2 )b2
1 =B

(
t,
∂

∂η

)
eib2η(x,y,t).

We thus have

eEb(r,t) =

(
B

(
t,
∂

∂ξ

)
eib1ξ(x,y,t)

) (
B

(
t,
∂

∂η

)
eib2η(x,y,t)

) (
A

(
t,
∂

∂z

)
eib3z

)
=A

(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
eib1ξ(x,y,t)+ib2η(xy,t)+ib3z

and obtain the statement. �

Theorem 5.10. Let |a| > 1 and r= (x, y, z) and let qi ∈N for j = 1, 2, 3 be even numbers such
that q1 = r2q2 + r3q3 for some r2, r3 ∈N as in Definition 5.7. Then the solution of the Cauchy problem

i
∂

∂t
Yn(r, t)=

[
−

1
2
∆ − i

(
x
∂

∂y
− y

∂

∂x

)
+

1
8

(
x2 + y2

)]
Yn(r, t), (21)

Yn(r, 0)=
n∑

j=0

Cj(n, a)ei
(
x
(
1− 2k

n

)q1 +y
(
1− 2k

n

)q2 +z
(
1− 2k

n

)q3
)

is given by

Yn(r, t) =
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )
n∑

j=0

Cj(n, a)ei
(
1− 2k

n

)q1 x+i
(
1− 2k

n

)q2 y+i
(
1− 2k

n

)q3 z

·e
−i tan( t

2 )
((

1− 2k
n

)2q1 +
(
1− 2k

n

)2q2
)
−i t

2

(
1− 2k

n

)2q3
−i tan( t

2 )
((

1− 2k
n

)q2 x−
(
1− 2k

n

)q1 y
)
,

(22)

whereF(r, t) is defined as in Theorem 5.9. Moreover Yn(·, t) converges for any t ∈ [0, π) locally
uniformly to φaq (r, t) with aq = ((ia)q1 , (ia)q2 , (ia)q3 ), i.e.,

lim
n→+∞

Yn(r, t)=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )

·eix(ia)q1 +iy(ia)q2 +iz(ia)q3−i tan( t
2 )((ia)2q1 +(ia)2q2 )−i t

2 (ia)2q3−i tan( t
2 )((ia)q2 x−(ia)q3 y).

Proof. The identity (22) follows from Theorem 3.2 and the linearity of Eq. (21). In order to show
the convergence of the sequence Yn(·, t) for t ∈ [0, π), we apply Theorem 5.9 and write Yn(r, t) with
the position

bj, n = ((1 − 2j/n)q1 , (1 − 2j/n)q2 , (1 − 2j/n)q3 )

as

Yn(r, t)=
n∑

j=0

Cj(n, a)φbj,n (r, t)

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
Gn(ξ(x, y, t), µ(x, y, t), z)

with ξ(x, y, t) and µ(x, y, t) defined as in Theorem 5.9 and

Gn(ξ, µ, z)B
n∑

j=0

Cj(n, a)ei(1−2j/n)q1 ξ+i(1−2j/n)q2η+i(1−2j/n)q3 z.
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By Corollary 5.8, the sequence Gn(ξ, η, z) tends to G(ξ, η, z)B ei(ia)q1 ξ+i(ia)q2η+i(ia)q3 z in A2,0(C3), and
the theory of AU-spaces and Theorem 5.3 imply that the operators A

(
t, ∂
∂z

)
, B

(
t, ∂
∂ξ

)
, and B

(
t, ∂
∂η

)
act continuously on this space. We thus have for

Rn(ξ, µ, z)=A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
Gn(ξ, η, z)

that

lim
n→+∞

Rn (ξ, η, z) = lim
n→+∞

A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
Gn (ξ, µ, z)

= A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
G (ξ, µ, z)

=: R (ξ, η, z)

in Ap,0(C3). Convergence in this space however implies uniform convergence on compact subsets of
C3. Now observe that µ(·, ·, t) and η(·, ·, t) map bounded sets to bounded sets. Thus, for any compact
subset K ⊂R3, there exists a compact subset K ′ ⊂C3 such that

{(ξ(x, y, t), η(x, y, t), z) : (x, y, z) ∈K } ⊂K ′.

The uniform convergence of Rn to R on K ′ implies that the functions

(x, y, z) 7→Rn(ξ(x, y, t), η(x, y, t), z)

converge uniformly to (x, y, z)→R(ξ(x, y, t), η(x, y, t), z) on K because

sup
(x,y,z)∈K

|Rn(ξ(x, y, t), η(x, y, t), z) −R(ξ(x, y, t), η(x, y, t), z)|

≤ sup
(ξ ,η,z)∈K′

|Rn(ξ, η, z) −R(ξ, η, z)|
n→+∞
−→ 0.

Thus we also have

lim
n→+∞

Yn(r, t)= lim
n→+∞

1

cos
(

t
2

) eF(r,t)Rn(ξ(x, y, t), η(x, y, t), z)

=
1

cos
(

t
2

) e−
i
4 (x2+y2) tan( t

2 )A
(
t,
∂

∂z

)
B

(
t,
∂

∂ξ

)
B

(
t,
∂

∂η

)
ei(ia)q1 ξ(x,y,t)+i(ia)q2η(x,y,t)+i(ia)q3 z

= φaq (r, t).
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