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RESEARCH ARTICLE Open Access

Cost-effectiveness analysis of metformin
+dipeptidyl peptidase-4 inhibitors
compared to metformin+sulfonylureas for
treatment of type 2 diabetes
Christina S. Kwon1, Enrique Seoane-Vazquez2 and Rosa Rodriguez-Monguio3*

Abstract

Background: Patients with type 2 diabetes (T2D) typically use several drug treatments during their lifetime. There is
a debate about the best second-line therapy after metformin monotherapy failure due to the increasing number of
available antidiabetic drugs and the lack of comparative clinical trials of secondary treatment regimens. While prior
research compared the cost-effectiveness of two alternative drugs, the literature assessing T2D treatment pathways
is scarce. The purpose of this study was to evaluate the long-term cost-effectiveness of dipeptidyl peptidase-4 inhibitors
(DPP-4i) compared to sulfonylureas (SU) as second-line therapy in combination with metformin in patients with T2D.

Methods: A Markov model was developed with four health states, 1 year cycle, and a 25-year time horizon.
Clinical and cost data were collected from previous studies and other readily available secondary data sources.
The incremental cost-effectiveness ratio (ICER) was estimated from the US third party payer perspective. Both,
costs and outcomes, were discounted at a 3% annual discount rate. One way and probabilistic sensitivity analyses
were performed to evaluate the impact of uncertainty on the base-case results.

Results: The discounted incremental cost of metformin+DPP-4i compared to metformin+SU was $11,849 and the
incremental life-years gained were 0.61, resulting in an ICER of $19,420 per life-year gained for patients in the
metformin+DPP-4i treatment pathway. The ICER estimated in the probabilistic sensitivity analysis was $19,980 per
life-year gained. Sensitivity analyses showed that the results of the study were not sensitive to changes in the
parameters used in base-case.

Conclusions: The metformin+DPP-4i treatment pathway was cost-effective compared to metformin+SU as a
long-term second-line therapy in the treatment of T2D from the US health care payer perspective. Study findings
have the potential to provide clinicians and third party payers valuable evidence for the prescription and
utilization of cost-effective second-line therapy after metformin monotherapy failure in the treatment of T2D.

Keywords: Cost-effectiveness analysis, Type 2 diabetes, Costs, Outcomes, Life years gained, Metformin, Sulfonylureas,
Dipeptidyl peptidase-4 inhibitors
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Background
Diabetes mellitus is one of the most prevalent and costly
chronic diseases in the United States (US). In 2012, 9.3%
of the US population had diabetes mellitus [1]. In that year
2012, the health care cost of diagnosed diabetes in the US
totaled $245 billion [2]. The US market of antidiabetic
products reached $43.9 billion in 2015 (a 109.0% increase
from $21.0 billion in 2011) [3]. The number of prescrip-
tions for antidiabetic drugs totaled 211 million in 2015
(compared to 174 million in 2011) [3]. In 2015, insulin
glargine recombinant was the top fifth drug by sales in the
US totaling $5.8 billion (241.2% increase compared to
2011) [3]. Sitagliptin was the top tenth prescription drug
by sales reaching $4.2 billion in 2015 (a 90.9% increase
compared to 2011) [3]. As of December 31, 2015, there
were 27 unique non-insulin antidiabetic drugs, belonging
to 12 therapeutic classes, including 5 modified formula-
tions and 18 fixed-dose combinations of active ingredi-
ents, available in the US market [4].
Metformin has a well-established long-term post-

marketing evidence of effectiveness and safety [5–7]. While
there is a general consensus about the use of metformin as
first-line therapy for type 2 diabetes (T2D) [5–7]; there is a
vigorous debate about best second-line treatment regimen
[8]. Sulfonylureas (SU) are a common second-line therapy
due to their fast onset on blood glucose lowering [9, 10].
However, safety related concerns, including risk of
hypoglycemia and weight gain, have been raised [9, 10].
Dipeptidyl peptidase-4 inhibitors (DPP-4i) are newer drugs
with lower risk of hypoglycemia and weight gain but lower
glycemic lowering effect than SU [10, 11]. In addition,
DPP-4i are costlier than SU.
Two previous studies explored the cost-effectiveness

of SU compared to DPP-4i as second-line therapy after
metformin failure in the US. Study findings were incon-
clusive. Bergenheim et al. (2012) [12] assessed the life-
time cost-effectiveness of metformin+SU and metformin
+DPP-4i in T2D using data from 52-week randomized
controlled trial [9]. The authors concluded that DPP-4i
was a cost-effective second-line therapy after metformin
failure in the US. Zhang et al. (2014) [8] compared the
medication cost and effectiveness of metformin+SU,
DPP-4i, and glucagon-like peptide-1(GLP-1) receptor ag-
onists as the second-line therapy until first diabetes-
related complication or death. The authors found that
metformin+SU resulted in similar outcomes but lower
drug costs compared to other two comparators.
Bergenheim et al., (2012) did not consider insulin

treatment after second-line failure; whereas, Zhang
et al., (2014) included insulin treatment as third-line in
their analyses. Furthermore, Bergenheim et al., (2012)
included drug cost and diabetes related health care costs
in their economic evaluation; whereas, Zhang et al.,
(2014) did not assess health care costs associated with

diabetic complications, which often pose a significant
economic burden on patients with T2D [1].
Additionally, a study conducted by Langer et al., (2013)

[13] assessed the short-term cost-effectiveness of metfor-
min+sitagliptin (i.e., DPP-4i inhibitor class) compared to
metformin+liraglutide (i.e., GLP-1 receptor agonists) based
on data derived from a 26-week randomized, controlled
trial conducted by Pratley et al., (2010) [14]. The study time
horizon was only 1 year. Authors found that mean cost per
patient reaching target glycated hemoglobin (A1c) was
lower for liraglutide than sitagliptin. Langer et al., (2013)
included only drug costs in their analyses.
Prior research compared short-term cost-effectiveness

of two alternative drugs for treatment of T2D. To the
best of authors’ knowledge, no previous US studies
assessed the cost-effectiveness of alternative T2D treat-
ment pathways over a patient’s lifetime. Thus, this study
assessed the long-term cost-effectiveness of dipeptidyl
peptidase-4 inhibitors compared to sulfonylureas as
second-line therapy for the treatment of T2D. This study
has the potential to provide clinicians and third party
payers with new perspectives on the cost-effectiveness of
long-term treatment pathways for T2D.

Methods
Therapeutic alternatives
Most patients with T2D take one or more drugs in
addition to metformin monotherapy to control their blood
glucose levels and eventually, will initiate insulin therapy
alone or in combination with other non-insulin antidia-
betic drugs when previous alternatives fail. In the scenario
analysis, there were two different treatments pathways.
Both pathways started with metformin monotherapy, the
most common treatment. Patient used metformin+DPP-4i
or metformin+SU as second-line therapy when metformin
monotherapy failed. In addition, both treatment pathways
added basal insulin therapy in patients with T2D when
combination therapy failed.

Markov model
A Markov model constructed in Microsoft Excel 2013
software was based on current T2D treatment guide-
lines [5, 6]. The Markov model had four states (Fig. 1).
In the first state, patients used metformin monother-
apy. Patients could remain in the first state or transi-
tion to the second state. In the second state, either
DPP-4i or SU was added to metformin as second-line
therapy. Likewise, patients could remain in the second
state or transition to the third state where basal insu-
lin was added to their current therapy as third-line
therapy. Patients in those three states could transition
anytime to death (i.e., absorbing state). We assumed
that patients initiated metformin monotherapy at age
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60 years with a time horizon of 25 years (i.e., 60–
85 years old). The cycle duration was 1 year [15].

Health outcomes and cost
Health outcomes data were collected from the literature
(Table 1). Treatment failure rates obtained from previ-
ous studies were used to determine the annual probabil-
ity of transitioning from metformin monotherapy to oral
antidiabetic drug (OAD) dual therapy and from OAD
dual therapy to OAD dual therapy+basal insulin states.
Kahn et al., (2006) found that 21% of patients failed to
achieve their therapeutic goals after 5 years in metfor-
min monotherapy [16]. In addition, Rascati et al., (2013)
estimated that 23.6% of patients using metformin+SU
dual therapy progressed to OAD dual therapy+basal in-
sulin after 59 months in treatment [17].
Parchman and Wang, (2012) found that the rate of

insulin initiation had a statistically significant and posi-
tive association with the A1c increasing rate [18]. More
specifically, Bergenheim et al., (2012) [12] found that
patients using metformin+DPP-4i had four times lower
A1c increasing rates than those using metformin+SU.
Thus, we assumed that the annual treatment failure rate
of metformin+DPP-4i was four times lower than metfor-
min+SU.
Death rates for 60 to 70 years old, 71 to 80 years, and

81 to 85 years old groups were derived from the litera-
ture [19]. The hazard ratios of death in patients using
metformin+SU and metformin+DPP-4i were also drawn
from the literature [20]. Hypoglycemia probabilities in
patients using metformin+SU and metformin+DPP-4i
were extracted from the results of a 52-week random-
ized clinical trial [9]. We considered only severe
hypoglycemia and hypoglycemia events requiring med-
ical assistance to estimate direct health care costs. The
probability of severe hypoglycemia for a patient using
OAD + basal insulin was collected from the ORIGIN
trial [21]. Weight gain data in patients using SU were
derived from a previous study [12]. We assumed that

use of metformin, DPP-4i and basal insulin were not as-
sociated with a significant weight gain [10].
Likewise, annual cardiovascular complication rates (i.e.,

myocardial infarction, heart failure and stroke) in patients
using metformin monotherapy, OAD dual therapy, and
OAD-basal insulin therapy for each health state described
in the Markov model were derived from previous pub-
lished clinical trial studies [11, 16, 21]. We assumed that
the probability of treatment failure, hypoglycemia and car-
diovascular complications remained constant through the
study period with the exception of death rates which grad-
ually increase with age. The proportion of patients in each
state and cycle was calculated using the transition matrix
(Tables 2 and 3).
The main study outcome was the number of life-years

gained over the study time horizon. In order to estimate
life-years gained, all life-years for patients in every state,
with the exception of death, were aggregated by year and
discounted. The incremental life-years gained were esti-
mated as the difference in life-years gained between the
two interest therapeutic alternatives metformin+DPP-4i
and metformin+SU.
Direct health-care costs related to T2D, which in-

cluded drug costs and treatment costs for diabetes re-
lated medical events such as hypoglycemia, weight gain
and cardiovascular events were obtained from the US
health care payer perspective. Direct health care cost in-
put data were derived from the literature (Table 4).
Indirect and intangible costs related to the disease were
not included in the study model.
Antidiabetic drug costs data were collected from the

National Average Drug Acquisition Cost (NADAC) data-
set [22]. We used generic NADAC for metformin and
SU (glipizide). The cost of DPP-4i was estimated as the
average NADAC of sitagliptin, saxagliptin, linagliptin,
and alogliptin. We also used the NADAC for basal insu-
lin glargine pen type. Needle cost for insulin glargine
pen was estimated at 80% of the average wholesale price
(AWP). AWP data were derived from the online version

Fig. 1 Markov Model Diagram, Acronyms: DPP-4i-dipeptidyl peptidase-4 inhibitors, SU-sulfonylureas
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of the RedBook [23]. Annual prescription drug cost was
calculated based on the defined daily dose (DDD) from
WHO Collaborating Centre for Drug Statistics Method-
ology [24]. The direct health care cost in each state, with
the exception of death, was estimated for each year

through the study time horizon. Base-case health care
costs in each state was calculated multiplying the prob-
ability of each episode and unit cost (Table 5). All costs
were adjusted to 2015 US dollars using the all urban
consumers, not seasonally adjusted, US city average, all
items, consumer price index (CPI) [25]. Both costs and
outcomes were discounted at a 3% annual discount rate.

Cost-effectiveness analysis
The cost-effectiveness analysis (CEA) of metformin
+DPP-4i vs. metformin+SU in patients with T2D was
conducted from the US health care payer perspective.
The cost and life-years gained over the 25-year time
horizon were estimated for each treatment pathway. A
cost-effectiveness ratio (CER) was employed to calculate
the cost per life-year gained for each treatment strategy.
The lowest cost per life-year treatment was considered
as the reference therapy. When a treatment had a
greater cost and effectiveness in relation to the reference
an incremental cost-effectiveness ratio was performed to
determine the additional cost to obtain one life-year. In-
cremental cost-effectiveness ratio (ICER) was estimated
for metformin+DPP-4i compared to metformin+SU.

One-way and probabilistic sensitivity analyses
The impact of parameter uncertainty was explored by
one-way sensitivity analysis on each model parameter.
Results of the one-way sensitivity analysis were
expressed as tornado charts. Values for treatment failure
rates, hypoglycemia events probabilities, weight gain
rates, cardiovascular events rates, and costs were chan-
ged by ±25% from the base-case. The cost of insulin
glargine was changed by ±20%. Death rates and the
death hazard ratios were changed by ±10%. The one-way
sensitivity analysis was also conducted to compare differ-
ences in study results using 20 and 30 year time hori-
zons. The sensitivity analyses also included a scenario in
which there was no difference in cardiovascular event
rates after 2 years from initiation of metformin+DPP-4i
and metformin+SU [26, 27].
Inzucchi et al., (2015) found that the mean (standard

deviation) age at the start of the antidiabetic treatment
was 57.4 (11.7) years [28]. The average time to insulin
initiation was 1.94–20.7 years depending on basal treat-
ment. Machado-Alba et al., (2015) found that mean age
at the start of oral antidiabetic therapy in patients with
type 2 diabetes mellitus was 63.4 years [29]. After 5 years,
26.1% initiated insulin therapy. Roussel et al., (2016)
found that the average age (standard deviation) of insu-
lin therapy initiation in patients with type 2 diabetes
mellitus (T2DM) was 67.5 (14.2) years [30]. In one-way
sensitivity analyses, we changed the patient age at start
of the antidiabetic treatment metformin monotherapy
from 60 years in the base case to 55 and 65 years.

Table 1 Health outcomes used in study model

Variables (Annual Rate) Valuea References

Treatment failure

Metformin monotherapy 0.046 Kahn et al., 2006 [16]

Metformin+dipeptidyl
peptidase-4 inhibitor

0.013 Rascati et al., 2013 [17] and
Bergenheim et al., 2012 [12]

Metformin+sulfonylurea 0.053 Rascati et al., 2013 [17]

Death rate

60–70 years 0.021 Zhuo et al., 2014 [19]

71–80 years 0.051 Zhuo et al., 2014 [19]

Over 81 years 0.107 Zhuo et al., 2014 [19]

Death hazard ratio of Metformin
+SU to Metformin+DPP-4i

1.850 Morgan et al., 2014 [20]

Hypoglycemia

Severe hypoglycemia among
patients with Metformin+SU

0.016 Goke et al., 2010 [9]

Hypoglycemia with medical
assistance among patients
with Metformin+SU

0.009 Goke et al., 2010 [9]

Severe hypoglycemia among
patients with insulin glargine

0.010 The Origin Trial Investigators,
2012 [21]

Weight gain in the first year after
starting SU

0.510 Bergenheim et al., 2012 [12]

Myocardial infarction

Metformin monotherapy 0.004 Kahn et al., 2006 [16]

Metformin+dipeptidyl
peptidase-4 inhibitor

0.004 Gitt et al., 2013 [11]

Metformin+sulfonylurea 0.000 Gitt et al., 2013 [11]

Insulin glargine 0.009 The Origin Trial Investigators,
2012 [21]

Heart failure

Metformin monotherapy 0.003 Kahn et al., 2006 [16]

Metformin+dipeptidyl
peptidase-4 inhibitor

0.017 Gitt et al., 2013 [11]

Metformin+sulfonylurea 0.020 Gitt et al., 2013 [11]

Insulin glargine 0.009 The Origin Trial Investigators,
2012 [21]

Stroke

Metformin monotherapy 0.003 Kahn et al., 2006 [16]

Metformin+dipeptidyl
peptidase-4 inhibitor

0.002 Gitt et al., 2013 [11]

Metformin+sulfonylurea 0.020 Gitt et al., 2013 [11]

Insulin glargine 0.009 The Origin Trial Investigators,
2012 [21]

a Probability during certain period was converted to the rate per 1 year using
following equation. (The rate was assumed to be constant over that
period) Rate ¼ 1−ðinitial probability−probability change

initial probability Þ
1

years
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A probabilistic sensitivity analysis was conducted to
investigate the combined impact of uncertainty of the
variables included in the analysis. Random values were
drawn from the chosen distributions as a second-order
Monte-Carlo simulation of 1000 patients to estimate the
mean and 95% confidential intervals (CI) of costs and
life-years gained. All parameters in the model had
correspondingly appropriate distributions. Costs were
randomly drawn from a gamma distribution; hazard
ratio were randomly sampled from a lognormal distribu-
tion. Likewise, binominal data, such as hypoglycemia
probabilities and cardiovascular event rates were ran-
domly drawn from a beta distribution. Multinomial data,
such as transition probabilities in the metformin mono-
therapy and the OAD dual therapy states, were ran-
domly sampled from a Dirichlet distribution [31].
The ICER was recalculated based on the patient age at

start of the antidiabetic treatment, the average incremen-
tal costs and life-years gained derived from the probabil-
istic sensitivity analysis. The simulation output was
presented using a cost-effectiveness plane. A cost-
effectiveness acceptability curve (CEAC) was also plotted
to summarize the uncertainty in the cost-effectiveness
estimates.

Results
Base-case analysis
Diabetic-related annual average costs and life-years
gained after discounting were $18,853 and 12.42 years,
respectively for patients in the metformin+DPP-4i treat-
ment pathway. Patients in the metformin+SU treatment
pathway incurred in a lower annual average costs per
patient ($7004) and gained on average a lower number
of life-years (11.81 years) (Table 6). The incremental
costs and life-years gained for metformin+DPP-4i com-
pared to metformin+SU treatment pathways were
$11,849 and 0.61 years, respectively. Thus, the ICER was
$19,420 per life-year gained for patients in the metfor-
min+DPP-4i treatment pathway.

One-way and probabilistic sensitivity analyses
One-way sensitivity analysis was conducted by varying
the range of values in the base-case to determine poten-
tial impacts on the results. The percentage changes in
ICER from base-case are presented in the tornado graph
(Fig. 2). Time horizon, death hazard ratio and age at
start of metformin monotherapy, and death rate parame-
ters in the model had largest impact on the model re-
sults. The results of the analysis did not change

Table 3 Transition matrix for the treatment pathway metformin+sulfonylureas

To t+1

Metformin monotherapy Metformin +SU Metformin +SU + Basal insulin Death

From t Metformin monotherapy # 0.046 0 60–70 years; 0.021
71–80 years; 0.051
81–85 years; 0.107

Metformin +SU 0 # 0.053 60–70 years; 0.021 × 1.85 (HR)
71–80 years; 0.051 × 1.85 (HR)
81–85 years; 0.107 × 1.85 (HR)

Metformin +SU + Basal insulin 0 0 # 60–70 years; 0.021
71–80 years; 0.051
81–85 years; 0.107

Death 0 0 0 1

Acronyms: SU-sulfonylureas, HR-hazard ratio

Table 2 Transition matrix for the treatment pathway metformin+dipeptidyl peptidase-4 inhibitor

To t + 1

Metformin
monotherapy

Metformin
+DPP-4i

Metformin +DPP-4i
+ Basal insulin

Death

From t Metformin
monotherapy

# 0.046 0 60–
70 years; 0.021
71–80 years; 0.051
81–85 years; 0.107

Metformin
+DPP-4i

0 # 0.013 60–70 years; 0.021
71–80 years; 0.051
81–85 years; 0.107

Metformin +DPP-4i + Basal insulin 0 0 # 60–70 years; 0.021
71–80 years; 0.051
81–85 years; 0.107

Death 0 0 0 1

Acronyms: DPP-4i-dipeptidyl peptidase-4 inhibitors
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significantly when varying estimates used in the base-
case scenario (Table 7). Results for the base-case sce-
nario were not sensitive to changes in the costs of insu-
lin glargine, treatment failure rates, costs and rates of
cardiovascular events, or the costs and probabilities of
severe hypoglycemia, and weight gain. Results for the
base-case scenario were not sensitive either to changes
in the cardiovascular event rates of metformin+DPP-4i
and metformin+SU.
The ICER increased to $24,250 per life-year gained

(+ 24.3%) when the time horizon decreased to
20 years. Conversely, the ICER decreased to $17,580
per life-year gained (− 9.8%) when the time horizon
increased to 30 years. In addition, a 10% decrease in
the death hazard ratio resulted in a 21.9% increase in

the ICER ($23,760). A 10% increase in the death haz-
ard ratio resulted in a 14.0% decrease in the ICER
($16,760). Assuming that patients start metformin
monotherapy at age of 55 increased ICER to $21,360
(9.6%); whereas, starting antidiabetic treatment at age
of 65 decreased ICER to $18,120 (− 7.1%).
The average results of the probabilistic sensitivity ana-

lysis yielded $11,786 incremental costs and 0.59 incre-
mental life-year gained for patients using metformin
+DPP-4i compared to alternative metformin+SU treat-
ment pathway (Table 8). The ICER in the probabilistic
sensitivity analysis was $19,980 per life-year gained. The
difference between the probabilistic sensitivity analysis
and the base-case strategy was $63 in incremental costs
and 0.02 additional life-years gained.
The uncertainty surrounding the expected costs and

outcomes associated with metformin+DPP-4i compared
with metformin+SU is illustrated in Fig. 3. The incre-
mental cost-effectiveness plane shows the trade-offs in
the northeast (i.e., positive costs and positive effects)
and southeast quadrants (i.e., negative costs and positive
effects).
The CEAC indicates that metformin+DPP-4i and met-

formin+SU would have the same probability of being the
most cost-effective treatment for a WTP threshold of
$12,500 per life-year gained; after exceeding this thresh-
old the probability of metformin+DPP-4i being the most
cost-effective treatment pathway approaches to 1
(Fig. 4).

Discussion
This study assessed the long-term cost-effectiveness of
metformin+DPP-4i compared with metformin+ SU
treatment pathways as second-line therapy from the US
health care payer perspective. In the base-case results,
the total costs and life-years gained were higher for met-
formin+DPP-4i than for the metformin+SU treatment
pathway.
The results from the probabilistic sensitivity analyses

were similar to those of the base-case results. The re-
sults of the one-way sensitivity analysis showed that the
main factors impacting on the ICER were time horizon

Table 5 Base-case direct health care cost results of five treatment strategies

Medical
Costs

Costs per
Hypoglycemia Event

Costs per
Cardiovascular Events

Weight Gain Costs
(transition costsa)

Total Costs
(without transition costsa)

Metformin monotherapy $24 $0 $141 $0 $165

Metformin+DPP-4i $3524 $0 $330 $0 $3854

Metformin+DPP-4i + Basal insulin $7170 $1 $366 $0 $7537

Metformin+SU $40 $4 $441 $148 $486

Metformin+SU + Basal insulin $3686 $1 $366 $0 $4054

Acronyms: DPP-4i-dipeptidyl peptidase-4 inhibitors, SU-sulfonylureas
a Transition cost was added only one time when patients transitioned from the metformin monotherapy state to the metformin+SU state

Table 4 Direct health care annual costs (2015 USD)

Average
annual costs

References

Health care costs (per episode/year)

Myocardial infarction $18627 Bergenheim et al.,
2012 [12]

Heart failure $14118 Bergenheim et al.,
2012 [12]

Stroke $7939 Bergenheim et al.,
2012 [12]

Hypoglycemia events requiring
medical assistance

$199 Bergenheim et al.,
2012 [12]

Severe hypoglycemia event $146 Bergenheim et al.,
2012 [12]

Weight gain $289 Bergenheim et al.,
2012 [12]

Drug cost (per patient/year)

Metformin, generic drug $24 NADAC (January
2015) [22]

Dipeptidyl peptidase-4 inhibitor,
brand

$3500
($3401; $3599)

NADAC (January
2015) [22]

Sulfonylurea (glipizide), generic $16 NADAC (January
2015) [22]

Insulin glargine, brand $3646 NADAC (January
2015) [22]

All drug costs and direct health-state costs were expressed in 2015 US dollars
($) per patient/year
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and death hazard ratio from metformin+SU to metfor-
min+DPP-4i. The probability that the DPP-4i treatment
pathway would become the cost-effective alternative
compared to metformin+SU increases as the WTP per
life-year threshold increases. When the WTP per life-
year equals $12,500 per life-year, the probability of the
DPP-4i treatment pathway to be the most cost-effective
alternative become 0.5.
The results of this study differ from two previous cost-

effectiveness studies conducted in the US that compared
metformin+DPP-4i and metformin+SU as a second line

therapy. Bergenheim et al., (2012) compared metformin
+saxagliptin with metformin+glipizide for the treatment
of T2D [12]. The authors concluded that metformin
+DPP-4i was a cost-effective second-line therapy in the
US. Some methodological differences between Bergen-
heim et al., (2012) and this study are worth mentioning.
Unlike this study, Bergenheim et al., (2012) did not in-
clude metformin monotherapy as the base-case therapy
in T2D treatment. They did not consider either the
treatment alternative OAD + insulin after metformin+SU
and metformin+DPP-4i treatment failure. Bergenheim
et al., (2012) considered the use of insulin as the rescue
therapy when the A1c level was higher than 7.5%. They
set up the patient lifetime as the study time horizon and
used a Cardiff Long-term Cost Utility Model for the
cost-effectiveness estimation. Bergenheim et al., (2012)
estimated metformin+saxagliptin treatment pathway had
a $2772 higher costs (2009 USD) and 2.65 greater
QALYs (ICER was $1047 per QALY) compared to met-
formin+glipizide alternative. A life-time horizon allows
to better understand the burden of the disease on
patients with T2D inclusive of all treatment alternatives
and related costs.
In addition, the difference in costs between Bergenheim

et al., (2012) and this study is driven by the difference in
the generic DPP-4i prices estimation. In this study we used
NADAC prices of branded DPP-4i. Conversely,
Bergenheim et al., (2012) assumed that generic DPP-4i

Fig. 2 Tornado diagram of one-way sensitivity analysis (percentage changes in the ICER from base-case), Acronyms; Met-metformin, DPP-4i-dipeptidyl
peptidase-4 inhibitor, SU-sulfonylurea

Table 6 Base-case cost and effectiveness results of treatment
strategies (per patient)

Discounted (3% annual discount rate)

Second-line agent
add-on to Metformin

Total Incremental

Costs LYs
gained

Costs LYs
gained

ICER

Sulfonylurea $7004 11.81

Dipeptidyl peptidase-4
inhibitor

$18853 12.42 $11849 0.61 $19420

Undiscounted

Sulfonylurea $10501 15.68

Dipeptidyl peptidase-4
inhibitor

$28013 16.70 $17512 1.02 $17170

All costs were expressed in 2015 US dollars ($)
Acronyms: LY-Life-year, CER-cost-effectiveness ratio (equal to cost/LY), ICER-
incremental cost-effectiveness ratio (equal to incremental
cost/incremental LYs)
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would enter the market in a 10 year-time frame and that
generic DPP-4i prices would be 16% of the corresponding
brand name drug price. Nevertheless, prices of generic
drugs are set up as 94% of brand name drug prices when
there is only one generic competitor in the market [32]. A
decrease in the price of generic drugs to 16% of the price of
brand name drugs is observed only when there are
several generic competitors in the market. Therefore,
Bergenheim et al., (2012) may underestimate DPP-4i
generic drug prices.
Zhang et al., (2014) compared metformin+SU, metfor-

min+DPP-4i, metformin+GLP-1 receptor agonists, and
insulin as the second-line therapy using a Markov model
with 10 A1c states [8]. Zhang et al., (2014) only assessed
the medication cost; Authors did not include the costs
of medical events related with diabetic complications.
Zhang et al., (2014) did not include either in the analysis
the costs associated with severe hypoglycemia. Further-
more, they assumed that the termination state was either
the first diabetes-related complication or death.

Table 7 Results of one-way sensitivity analyses for base-case
scenario

Values Estimated
ICER

Base Case $19420

Death hazard ratio of Met+SU to
Met+DPP-4i

1.67 (−10%) $23760

Death hazard ratio of Met+SU to
Met+DPP-4i

2.04 (+ 10%) $16760

Metformin treatment failure 0.035 (−25%) $19440

Metformin treatment failure 0.058 (+ 25%) $19560

Met+DPP-4i treatment failure 0.010 (−25%) $18970

Met+DPP-4i treatment failure 0.017 (+ 25%) $20010

Met+SU treatment failure 0.040 (−25%) $19410

Met+SU treatment failure 0.067 (+ 25%) $19590

Severe hypoglycemia in
Met+SU

0.012 (−25%) $19500

Severe hypoglycemia in
Met+SU

0.020 (+ 25%) $19500

Severe hypoglycemia in
insulin glargine triple
therapy

0.008 (−25%) $19500

Severe hypoglycemia in
insulin glargine triple
therapy

0.013 (+ 25%) $19500

Weight gain in the first
year of Met+SU

0.383 (−25%) $19520

Weight gain in the first
year of Met+SU

0.638(+ 25%) $19470

Myocardial infarction in
Met+DPP-4i

0.003(−25%) $19380

Myocardial infarction in
Met+DPP-4i

0.005(+ 25%) $19620

Heart failure in Met+DPP-4i 0.013(−25%) $19120

Heart failure in Met+DPP-4i 0.021(+ 25%) $19880

Stroke in Met+DPP-4i 0.002(−25%) $19470

Stroke in Met+DPP-4i 0.003(+ 25%) $19520

Heart failure in Met+SU 0.015(−25%) $19790

Heart failure in Met+SU 0.025(+ 25%) $19210

Stroke in Met+SU 0.015(−25%) $19660

Stroke in Met+SU 0.025(+ 25%) $19340

Costs of myocardial infarction $13970(−25%) $19430

Costs of myocardial infarction $23284(+ 25%) $19570

Costs of heart failure $10589(−25%) $19450

Costs of heart failure $17648(+ 25%) $19550

Costs of stroke $5954(−25%) $19660

Costs of stroke $9924(+ 25%) $19340

Costs of severe hypoglycemia $110(−25%) $19500

Costs of severe hypoglycemia $183(+ 25%) $19500

Costs of weight gain $217(−25%) $19520

Costs of weight gain $361(+ 25%) $19470

Table 7 Results of one-way sensitivity analyses for base-case
scenario (Continued)

Values Estimated
ICER

Costs of insulin glargine $2917(−20%) $20320

Costs of insulin glargine $4375(+ 20%) $18680

Death rate 0.019 (age 60–70) /
0.046 (age 71–80) /
0.096 (age 81–85) (−10%)

$20780

Death rate 0.024 (age 60–70) / 0.057
(age 71–80) / 0.118
(age 81–85) (+ 10%)

$18470

Time horizon 20 years (− 20%) $24250

Time horizon 30 years (+ 20%) $17580

Same cardiovascular event
rates from 2 years after dual
therapy

MI; 0.004 / HF; 0.02 /
Stroke; 0.02

$20420

Age at start of metformin
monotherapy

55 (−8%) $21360

Age at start of metformin
monotherapy

65 (+ 8%) $18120

Acronyms: SU-sulfonylurea, DPP-4i-dipeptidyl peptidase-4 inhibitor, Met;
metformin, MI-myocardial infarction, HF-heart failure

Table 8 Probabilistic Sensitivity Analysis

Second-line
agent add-on
to Metformin

Average Total Average Incremental

Costs Life
Years
Gained

Costs Life Years
Gained

ICER

Sulfonylurea $7004
(±316.52)

11.93
(±0.07)

Dipeptidyl
peptidase-4
inhibitor

$18790
(±1008.70)

12.52
(±0.07)

$ 11786
(±976.92)

0.59 (±0.02) $19980
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Fig. 3 Cost-Effectiveness Plane, Scatter plots showing the 1000 cases of differences in costs and in the life-year gained from the trial data using
1000 bootstrap replicates

Fig. 4 Cost-effectiveness Acceptability Curve
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Zhang et al., (2014) set up three different A1c
goals (i.e., 6.5, 7, and 8%) to evaluate the impact of
glycemic control goals on patients with diabetes.
Like in our study, they considered insulin triple ther-
apy after dual therapy failure, but they assumed that
patients initiated insulin therapy only after exceeding
the A1c goals. This assumption lead to the initiation
of insulin therapy only after 1.59 to 2.76 years after
onset T2D diagnosis. Nevertheless, assuming that in-
sulin initiation is based on patients’ A1c levels may
lead to overestimate insulin initiating rate due to
well document barriers for the patient’s and pro-
vider’s to start insulin therapy [33–35]. In addition,
the timeline for second line therapy before insulin
therapy may not be long enough to show clinically
meaningful differences in outcomes associated with
the use of alternative second line therapies. Last,
Zhang et al., (2014) assumed that the first diabetes-
related complication and death were termination
states, resulting in lower rates of diabetic complica-
tions and costs than this study estimations. Zhang et
al., (2014) concluded that the life-years and QALYs
until the first event were similar in the four treat-
ment pathways and that metformin+SU had similar
outcomes and lower drug costs compared to the
assessed treatment alternatives.

Limitations
The Markov model used in this study does not intent to
represent the actual clinical progression of patients with
diabetes but to assess differences in two alternative ther-
apy pathways under a defined set of assumptions. Thus,
study results should be interpreted taking into consider-
ation some limitations. Adult patients may develop T2D
at any time during their life. This study assumed patients
entered the model at age 60 years old. Study results are
not generalizable to other T2D therapy initiation ages.
The Markov model employed in this study, assessed

alternative pharmacological treatment pathways for
T2D. To define the Markov states, this study model in-
cluded most common drug therapies for the treatment
of T2D instead of conventional health states, such as pa-
tient’A1c level or disease progress status [36, 37]. There-
fore, in this study transition probabilities did not depend
on changes in A1c or disease progressions but on treat-
ment failure rates observed in prior studies in patients
with T2D.
We set the study time horizon at 25 years for the

base-case because the survival data were available only
until patients reach 85-years old. The death hazard ratio
was estimated based on data drawn from a two-year trial
results. Therefore, a more robust model would include
death rates data for patients with diabetes for a longer
time horizon [38].

Due to scarcity of studies some clinical input data
were derived from trials outside of the US. Treatment
failure rates for metformin were derived from studies
conducted in the US, Canada, and the European Union
(EU). Death hazard ratio for metformin+SU was derived
from a study conducted in the United Kingdom and car-
diovascular complication rates for dual therapy were
derived from the studies conducted in the EU.
Hypoglycemia data were derived from an international
randomized clinical trial. Hypoglycemic events might
lead to changes in medication. Future studies may in-
clude more treatment alternatives to account for
changes in medication. Representativeness of study re-
sults may improve in the future using ongoing long-
term comparative effectiveness studies conducted in the
US in patients with T2D as model inputs [39]. Addition-
ally, the study did not account for changes in clinical
practice that have occurred after the publication of some
of the studies used to derive the clinical input data.
Probabilities of treatment failure, hypoglycemia and

cardiovascular complications were derived from studies
with a limited time horizon. In addition, we assumed
that the rates of cardiovascular events and treatment
failure, and insulin dose remained constant through the
study time horizon. Hypoglycemia rate data were derived
from a trial which included patients with prediabetes.
Thus, the hypoglycemia rate may be overestimated.
Cost-effectiveness estimations included only

hypoglycemia, weight gain and cardiovascular events-
related costs. While these outcomes have been docu-
mented as the main outcomes differences between
DPP-4i and SU other differences in outcomes be-
tween these treatment alternatives may exist [9, 40].
Weight gain caused by insulin glargine was not con-
sidered in this study. Including different weight gain
rates for each treatment pathway would yield more
robust estimations but it would significantly increase
the complexity of the Markov model. We conducted
a sensitivity analysis for several key study measures
including weight gain rates and study results did not
change significantly. Microvascular complications,
such as amputation, blindness or end state renal dis-
ease were not included either in the study because
these outcomes are associated with uncontrolled
blood glucose level and not with the use of specific
drugs. Acute treatment costs for cardiovascular events
were included in the CEA. Thus, medical costs for T2D
related cardiovascular events could be underestimated.
We assumed that patients were adherent to antidiabetic

medications when estimating the outcomes and drug
costs. High medication costs may impact on the DPP-4i
treatment adherence. Likewise, the risk of hypoglycemia
may impact on the adherence of SU and insulin. Fixed-
dose combination drugs were not considered when
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estimating medication costs. Self-monitoring of blood
glucose related costs were not included in the CEA.
This study assessed metformin+SU and metformin

+DPP-4i treatment pathways; other treatment alterna-
tives are marketed in the US such as newly FDA ap-
proved sodium glucose cotransporter-2 inhibitors and
GLP-1 receptor agonists. Last, study model did not
include triple oral or dual oral plus non-insulin inject-
able treatment alternatives before initiating insulin and
prandial insulin option. Future studies may include more
complex Markov models to compare the cost-
effectiveness of all currently available T2D treatment
pathways. Future studies might consider the use of qual-
ity of life adjusted years as the study outcomes.
In spite of these limitations, this study has important

strengths. Our study assessed three alternative treatment
pathways during a long-term time horizon to better cap-
ture progression of the disease overtime. In addition, this
study comprehensively assessed all prescription drug
and health care costs related with diabetes complica-
tions. Furthermore, this study used insulin initiating rate
to reflect both patients and providers decision making
process to start insulin therapy.

Conclusions
This study assessed the cost-effectiveness of most com-
monly recommended in clinical guidelines T2D alterna-
tive long-term treatment pathways. The treatment
pathway with DPP-4i as the second-line therapy was
cost-effective compared to SU from the US health care
payer perspective. The results of the one way and prob-
abilistic sensitive analyses indicate that study findings
are not sensitive to changes in the parameters used in
the model. More studies assessing the cost-effectiveness
of all long-term alternative T2D treatment pathways
marketed in the US are needed.
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