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ABSTRACT 

Introduction:  Immunosuppression has been the mainstay therapy in organ transplantation and 

autoimmune diseases. Different classes of drugs have been used in such disease conditions, but 

their effective clinical application has been limited by the emergence of systemic 

immunosuppression and/or individual drug side effects. Nanotechnology approaches may be 

used to modify the mentioned shortcomings of immunosuppressive therapy by either enhancing 

the delivery of immunosuppressant to their target cells of the immune system, and/or reducing 

their distribution to normal tissues, thus decreasing drug toxicity. 

Areas Covered: In this manuscript, we will provide an overview on the development of 

nanotechnology products for the delivery of most commonly used immunosuppressive agents. 

At first, the rationale for the use of nanoparticles as means for immunosuppressive therapy in 

different disease condition will be discussed. This will be followed by a review of the major 

accomplishments in this area, particularly in preclinical in vivo studies. 

Expert Opinion: The results of research conducted in this area to date, points to a great promise 

for nano-medicine in increasing the bioavailability, reducing the toxicity, and/or potentiating the 

activity of immunosuppressive agents. It is; therefore, safe to speculate the more rapid 

translation of nanotechnology in clinical immunosuppressive therapy in near future.  

Keywords:  Immunosuppression; Drug delivery; Nanoparticles; Cyclosporine A; Tacrolimus; 

Corticosteroids; Methotrexate; Sirolimus; mycophenolic acid; mycophenolate mofetil;   
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List of Abbreviations 

AD Atopic dermatitis 

AUC Area under the concentration-time curve 

BSA Bovine serum albumin 

BUD Budesonide 

Cmax Maximum concentration 

COPD Chronic obstructive pulmonary disease 

CyA Cyclosporin A 

CyD Cyclodextrin 

CYP3A Cytochrome P-450 III-A enzyme subfamily 

DMAB Didodecylmethylammonium bromide 

DMARD Disease modifying anti-rheumatic drugs 

DSP DEX sodium phosphate 

EPR Enhanced permeation and retention 

GC Glucocorticoid; 

GI Gastrointestinal 

GVHD Graft-versus-host disease 

HAS Human serum albumin 

HC Hydrocortisone 

IBD Inflammatory bowel disease 

IH Intimal hyperplasia 

IL-2, 4, 5, 10 Interleukin-2, 4, 5, 10 

INF- Interferon- 

KCS Keratoconjunctivitis sicca, or dry eye 

MHC Major histocompatibility complex 

MiHA Minor histocompatibility antigen 

NMF Mycophenolate mofetil 

MPA Mycophenolate acid 

MPS Methylprednisolone hemisuccinate 

MRT Mean residence time 

MTX Methotrexate  

NP Nanoparticle 

NSAID Non-steroidal anti-inflammatory drug 

PBA Phenylboronic acid 

PCL Poly--caprolactone 

PEG Poly(ethylene glycol)  

P-gp P-glycoprotein  
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PK Pharmacokinetics 

PLA Polylactide 

PLGA Poly(lactide-co-glycolide) 

PVA Polyvinyl alcohol 

RA Rheumatoid arthritis 

RES Reticuloendothelial system 

SiRNA Short interfering RNA 

SLE Systemic lupus erythematosus 

SR Sirolimus (rapamycin) 

SLN Solid lipid nanoparticle 

SMEDDS Self-microemulsifying drug-delivery system 

TAC Tacrolimus 

Th1, 2 T-helper lymphocytes 1, 2 

tmax Time of maximum concentration 

TPGS D-alpha-tocopheryl poly-ethylene glycol succinate 
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1 Introduction 

In early 20th century, Paul Ehrlich, the director of the Royal Institute for Experimental Therapy at 

Frankfort-on-Main, coined the phrase “magische Kugel” or “magic bullet” to explain his ideal drug 

that can specifically and exclusively target the diseased tissue without affecting the healthy 

organs of the body [1]. His vision has been inspirational and led to numerous research efforts in 

creating novel drug delivery systems at nanoscopic dimensions. In practice, many of the 

developed nano-delivery systems were capable of improving the performance of encapsulated 

drugs when compared to their conventional dosage forms, but did not completely fit the 

definition of a “magic bullet”.  

One of the challenges with traditional dosage forms is the high proportion of the drug that is 

“lost” enroute to the systemic circulation. Different factors that contribute to this loss include 

poor drug solubility, incomplete drug permeability, or both. Nano-delivery systems have been 

used as effective solubilizing agents because of their nano-dimensions, or as tools to enhance 

drug permeability through different routes of administration. Another  obstacle in obtaining the 

required drug concentration for therapeutic effect, is the early enzymatic degradation or 

elimination of the drug through kidneys [2]. For these drugs, the necessity for a substantial 

increase in the required doses of medication due to drug loss in body possesses direct risks. The 

emergence of potentially toxic metabolite(s) of the active ingredient can pose additional risks [3, 

4]. Such risks can be mitigated by entrapment and protection of the drug in nano-drug 

formulations. Uncontrolled distribution of the drug to non-target organs is a main reason for 

unwanted side-effects [5].  
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Reducing the non-specific distribution of drugs to healthy organs and reduce their side effects by 

doing so has been the major focus of nanotechnology research in the past few decades. To this 

effect, several successful examples of nano-formulations of different anti-cancer drugs and 

antifungals achieving reduced drug toxicity are currently in use in clinic. Enhanced distribution of 

a drug to the site of the drug action can potentiate its therapeutic activity and fulfil an important 

part of Ehrlich’s vision. In this context, passive targeting of anti-cancer agents to the tumor tissue 

based on enhanced permeation and retention (EPR) effect through the use of nano particulate 

delivery systems has attracted the most attention [6].  

Research on the use of nanoparticuate delivery systems for modifying the therapeutic index of 

drugs in cancer has been the subject of intensive research. The potential benefits of 

nanotechnology approaches for the delivery of therapeutic agents in diseases other than cancer 

are explored to a lesser extent and deserve more attention.  

This manuscript will focus on the use of nanotechnology in the delivery of immunosuppressive 

agents and the effect of this strategy on the pharmacokinetic profile as well as 

pharmacodynamics of the encapsulated drugs. Nanoparticles (NP)s have been used to increase 

the solubility, enhance the oral absorption [7] or modify the skin permeation profile of 

immunosuppressant drugs for local or systemic effects.  The use of nanoparticulate delivery 

systems with a capability of reducing drug exposure and undesired effects to other tissues has 

attracted significant attention in the field of immunosuppressive therapy.  The nanoparticulate 

delivery systems may also permit the administration of higher than currently used doses of the 

immunosuppressant drugs leading to better ultimate therapeutic outcome.  
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2 Rationale for the use of NPs in the delivery of immunosuppressive agents in clinic 

The immune system is a crucial defense mechanism in the body. Random non-specific systemic 

suppression of the immune system throughout the body can significantly increase the risk of 

infection. Non-targeted immunosuppression could particularly be risky in patients with 

compromised immune system such as HIV or cancer patients. Nanoparticulate delivery of 

immunosuppressants can potentially elucidate specificity for these agents to the diseased organs 

(Figure 1).  

Systemic immunosuppression is extensively used in organ transplantation. Transplantation was 

introduced into medical practice in 1953 as a strategy for end stage organ disease [8]. However, 

graft rejection from mismatched donors limited the potential benefits of this strategy. This type 

of rejection is the result of a complex immune response to alloantigens expressed on the grafted 

cells which include the major histocompatibility complex (MHC) and the minor histocompatibility 

antigens (miHAs) [9]. In addition to T cells activation, many reports indicate a role for B-cells in 

acute cellular and chronic humoral rejection [10]. Immunosuppressive agents have played an 

essential role in moderating the immune response to help prevent the rejection and loss of the 

allograft and in increasing the survival of transplanted patients. However, severe side-effects is 

usually associated with the long-term use of immunosuppressants. Graft-versus-host disease 

(GVHD) is a specific case in which donor cells attack the immunocompromised host, and is a major 

cause of mortality in hematopoietic stem-cell transplantation [11].  Even though the exact 

mechanism of this reaction is not fully understood, activation of donor T cells against host 

antigens and release of inflammatory cytokines seem to be involved [12].  Infection by 

opportunistic organisms and primary pathogens, which also get a chance for growth due to 
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general immunosuppression, are among the most common causes of death in transplant 

patients. In this context, the use of NPs to achieve targeted immunosuppression can play a 

positive and crucial role in reducing the above-mentioned complications.  

Another clinical setting in which targeted immunosuppression might be of potential benefit is in 

the management of organ specific autoimmune disorders. Autoimmune disorders could be 

categorized as local conditions that affect a specific organ in the body or systemic disorders which 

affect multiple organs and systems. It has been shown that local disorders are usually caused by 

cell-mediated mechanisms for attacking intracellular pathogens, and therefore, develop with T-

helper lymphocyte-1 (Th1) cytokines (e.g., interleukin-2 (IL-2) and interferon- (INF-)) 

predominance [13]. On the other hand, systemic immunosuppression is usually associated with 

robust humoral responses (antibody-based reactions) that are accompanied with an increase in 

the levels of Th2 cytokines (e.g., IL-4, IL-5, and IL-10), complement-mediated cell targeting, and 

over-production of autoantibodies [14, 15]. Rheumatoid arthritis (RA) is the most common 

autoimmune disease affecting an estimated 0.5–2 % of the world population, and is characterized 

by a chronic and systemic inflammation that is mainly destructive to the joints, due to 

inflammation of synovial tissue [16].  The contribution of genetic and environmental factors to 

RA has been reported [17] [18].  RA treatment usually relies on anti-inflammatory strategies (e.g., 

non-steroidal anti-inflammatory drugs (NSAID)s or corticosteroids) and/or on disease modifying 

anti-rheumatic drugs (DMARDs) including traditional agents such as methotrexate and 

cyclosporine as well as biologic agents such as etanercept and infliximab.  Factors including fast 

systemic clearance and/or low affinity and non-specificity to the target inflamed joints, demand 

that these agents be given at relatively high and frequent dose to achieve therapeutic level. This 

Page 9 of 64

URL: http://mc.manuscriptcentral.com/eodd  Email:Jaya.Venkitachalam@tandf.co.uk

Expert Opinion on Drug Delivery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 
 

comes at the expense of exposing the patients to serious side effects.   Intra-articular injection of 

glucocorticoids has been shown to produce clinically meaningful pain relief in RA [19], which 

shows the importance of direct drug delivery to the site of action in the management of RA. The 

same rationale would apply to DMARDs. Nanoparticulate delivery systems are found to naturally 

accumulate in the organs that comprise the reticuloendothelial system (RES), including the 

spleen and liver, and passively target residing macrophages involved in the inflammatory 

response, in these organs [20].  Enhanced permeability at the inflamed sites attributed to an 

increase in the size of the gap between endothelial cells with dilation, can lead to the accumulate 

of NPs in inflamed joints through passive diffusion or convection [21].   

Inflammatory bowel disease (IBD) is another example of a localized autoimmune disease for 

which different immunosuppressant agents are used orally [22, 23]. Macrophages and 

neutrophils present in the inflamed tissue can easily identify and uptake NPs, which allows for 

NP drug delivery systems to passively target those immune-related cells [24]. Moreover, it has 

been reported that NPs with bioadhesive properties (e.g., chitosan NPs) in the thickened mucosal 

layer in inflamed tissues can enhance the transmucosal delivery of immunosuppressant drugs 

[25, 26].  The extent of muco-adhesion is size-dependent [27].  Therefore, a NP delivery system 

can play a major role in enhancing the immunosuppressant drug exposure to the target cells and 

in prolonging the interaction of the incorporated drug with the site of drug action in IBD [28].  

Among other immune-related disorders that might benefit from nano-delivery of 

immunosuppressive agents, are immune related pulmonary disorders, such as chronic 

obstructive pulmonary disease (COPD). COPD is a progressive pulmonary disorder that could 
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cause immunogenic cell death in the airway followed by the release of damage-associated 

molecular patterns. This can activate innate and adaptive immune responses [29]. The pulmonary 

delivery of immunosuppressive agents encapsulated in NPs seems to be a safe and effective 

option for localized therapy in the lungs [30].  Success in this case following systemic 

administration of an immunosuppressive agents such as cyclosporine or tacrolimus has been 

limited due to their excessive toxicity profile, narrow therapeutic index, and a great inter-subject 

variability in the pharmacokinetics (PK), especially in the absorption phase when given orally.  The 

pulmonary delivery of NP formulations of these agents applied by inhalation through nebulizers 

or dry powder inhalers can eliminate these obstacles by providing a sustained release of the 

active molecules in the airways with minimal systemic drug exposure and toxicity as well as less 

frequent administrations [31, 32].  It is worth to note that sustained release formulations are not 

feasible for oral cyclosporine due to a narrow window of absorption in the gastrointestinal (GI) 

tract for this drug [33].    

Immunosuppressant drugs have also been used for the treatment of many ophthalmic immune-

related conditions through systemic or local administration. Corneal graft rejection [34], non-

infectious autoimmune uveitis [35], vitreous inflammation [36], and scleritis [37] are among 

these conditions. While intraocular fluids and extra-ocular organs (e.g., cornea, conjunctiva and 

lachrymal glands) can be reached and therapeutic concentrations of drugs be maintained 

through the systemic administration of these drugs, the random distribution of the administered 

dose to non-target organs, and toxic adverse effects are among drawbacks of this approach. 

Ocular administration can overcome some of these problems [34].  Preparation of ophthalmic 

dosage forms for immunosuppressant agents which can reach the intraocular space has proven 
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to be a challenge. This is due to the need for excessive amounts of surfactants and oils for the 

solubilization of these agents, which in turn adversely affects the ocular tolerance to the 

formulations.  NPs can provide viable options in this case as delivery systems that can enhance 

the retention and penetration of the medication in the eye but at the same time does not 

obstruct or significantly blur vision.      

3 Nanoparticulate delivery of major immunosuppressant drugs 

Different categories of pharmacological agents have been applied for immune suppression, 

which include calcineurin inhibitors (cyclosporin and tacrolimus) and their newer analogues 

(sirolimus and everolimus), inhibitors of nucleotide synthesis (e.g., azathioprine, mycophenolate 

mofetil, leflunomide), cytostatic agents affecting T cells and B cells division (e.g., methotrexate, 

mercaptopurine and gemcitabine), phosphodiesterase-4 (PDE4) inhibitors (mostly used as anti-

inflammatory agents in COPD and autoimmune diseases), antibodies, and other biological 

approaches. In the following subsection, the use of nanotechnology for the delivery of major 

immunosuppressive agents for different indications will be reviewed (Fig 2).  

3.1 Cyclosporine A    

Isolation of cyclosporin A (CyA)  from Tolypocladiuminflattum gams in 1971 has been one of the 

greatest discoveries in the treatment of organ transplant rejection [38]. This highly lipophilic 

cyclic undecapeptide selectively targets the proliferation of helper T-cells but not the suppressor 

T-cells [39].  Cyclosporin A is indicated for the prevention of rejection following transplantation 

of heart, lung and kidney; treatment of GVHD with bone marrow transplant; and treatment of 

various autoimmune conditions such as RA, nephrotic syndrome and psoriasis [40]. It is available 
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for intravenous (IV) infusion but the oral administration as soft gelatin capsules or solution is 

more commonly used. The original CyA product, Sandimmun® (Novartis AG, Basel, Switzerland), 

is an oil-in-water emulsion. A newer micro-emulsion formulation, Neoral® (Novartis AG, Basel, 

Switzerland) which improves the oral bioavailability of CyA is also approved for use [41]. An 

ophthalmic emulsion of CyA, Restasis® (Allergan Inc., Irvine, CA), is also approved by FDA for the 

treatment of inflammation in the dry eye syndrome.  

Cyclosporin A, being highly lipophilic, distributes widely into tissues. The primary route of its 

elimination is by metabolism in the liver and excretion of the drug and metabolites by the biliary 

system [42]. The key catalyst for the biotransformation of CyA in the liver is the cytochrome P-

450 III-A enzyme subfamily (CYP3A).  Cyclosporin A is also eliminated through urinary excretion, 

however, to a lesser extent (less than 10% in humans) and only a fraction of that being as 

unchanged drug [43].   Cyclosporin A suffers from a narrow therapeutic index and a great intra 

and inter subject variability of its pharmacokinetic (PK), especially in the absorption phase, which 

greatly complicate therapy [44]. This means that even at the same dose within the recommended 

range, CyA therapy could be sub-therapeutic for certain patients leading to therapy failure or 

toxic for other patients [45].  A number of serious side effects have been reported with the use 

of CyA, including nephrotoxicity and hypertension [46].  Because of its very low water solubility 

(23 μg/mL), various solubilizing agents, such as Cremophor EL® have been used in CyA 

formulation. The solubilizing agents themselves can cause adverse effects and add to the burden 

of CyA therapy [47].   
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Encapsulation of CyA in NPs has been investigated for different routes of administration as 

detailed below.  The results of these studies show in general, properly designed NPs can 

effectively solubilize CyA in aqueous formulations reducing the need for other excipients. The NP 

formulations of CyA have shown to be feasible for drug use via ocular or topical routes of 

administration while enhancing drug delivery to the diseased site. The sustained release of drug 

that is usually accomplished with many NP formulations can help maintaining consistent 

therapeutic CyA concentrations, while reducing the frequency of CyA dosing.  Moreover, NPs can 

limit the exposure of CyA to sites of drug toxicity, e.g., kidneys particularly when given by the IV 

route. There are a number of papers showing that the oral administration of NP formulations of 

CyA can also lead to a reduction of its nephrotoxicity, but the reason for this effect is not 

elucidated.  

Parenteral administration- Our research group have reported designing micellar structures 

based on self-assembly of poly(ethylene oxide)-block-poly(-caprolactone) (PEO-b-PCL) co-

polymers for solubilization of CyA [48]. These NPs not only increased CyA’s aqueous solubility by 

 100-folds, but also sustained the release of CyA in vitro  [49]. This formulation showed a 

significant reduction in nephrotoxicity of CyA compared to Sandimmune® in healthy Sprague 

Dawley rats, despite achieving significantly higher CyA blood concentrations [50]. 

Pharmacokinetic and biodistribution studies demonstrated a 6.1-fold increase in the area under 

the blood concentration-time curve (AUC), and 10- and 7.6-fold reduction in the volume of 

distribution and systemic clearance of CyA, respectively, in healthy rats. The NP formulation also 

restricted the distribution of CyA to liver, kidneys, and spleen [51]. Owing to reduced distribution 

in kidneys, the NP formulation of CyA was found to attenuate the nephrotoxic effects of this drug 
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as evidenced by a non-significant change in the creatinine clearance after multiple doses of the 

formulation in rats compared to control animals receiving saline injection. This was in contrast to 

the commercial formulation of CyA, i.e., Sandimmune®, which led to a significant decrease in 

creatinine clearance following identical dosing schedule [50]. The NP formulation showed a 

potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo [52]. 

Mondon et al prepared micellar formulation of CyA based on block copolymers of PEO-block-

hexyl-substituted poly(lactides)(hexPLA) (PEO-b-hexPLA) [53]. At the block copolymer 

concentration of 20 mg/mL, the prepared nano-formulation increased the CyA solubility up to 

500-fold, and as a result, was able to provide the clinically used CyA concentrations while 

requiring four times less excipients compared to Sandimmune®.  The low toxicity of this 

formulation was established using 3 different cell lines and on a chick embryo chorioallantoic 

membrane model.   

Poly(ethylene glycol) (PEG)-grafted chitosan, in combination with lecithin (as vesicle-forming 

lipid) and poloxamer, has also been investigated for the systemic delivery of CyA in vitro and in 

vivo [54]. The resulting NPs were  90 nm in size; close to neutral in charge and demonstrated a 

sustained-release pattern in vitro. Systemic administration of these NPs via IV injection 

significantly decreased the apparent volume of distribution of CyA by 3-folds and its clearance by 

33-folds, prolonged the half-life of elimination phase by 21 folds, and increased the AUC of the 

encapsulated drug by over 25 folds in comparison to a control solution of CyA dissolved in ethanol 

and Cremophor EL®. The important role of the PEG block in this approach became more apparent 
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when the same NPs but without the PEG coating were proven to be inefficient in changing the 

AUC of CyA. 

Oral administration- Poly(lactide-co-glycolide) (PLGA) NPs has been studied for the 

encapsulation and oral delivery of CyA alone or in combination with other components (Table 1). 

Italia et al. reported the formulation of PLGA NPs with an average size of  140 nm, that increased 

the CyA solubility up to  644.2 μg/mL  [55].  When orally administered to Sprague Dawley rats, 

these NPs increased the bioavailability of CyA reaching a relative bioavailability of 119.2% as 

compared to the commercially available Neoral® formulation, while decreasing the associated 

nephrotoxicity.  Similar approach has been reported by Ankola et al. who formulated CyA-loaded 

PLGA NPs with slightly smaller particle size ( 110 nm), which could match the bioavailability and 

maximum blood concentration (Cmax) of Neoral® with significantly lower nephrotoxicity [56].    

Wang et al. have also evaluated the efficacy of PLGA-based NPs for oral delivery of CyA as well as 

solid lipid nanoparticles (SLN)s composed of Precirol® ATO 5 and Captex® 100 and a self-

microemulsifying drug-delivery system (SMEDDS) made from a mixture of Labrafil® M 1944 CS, 

Cremophor EL®, and Transcutol® P in a side-by-side in vivo study in beagle dogs [57]. While each 

of the SLNs and SMEDDS formulations achieved bioavailability that was not statistically different 

from the reference Neoral®, PLGA NPs only produced a relative bioavailability of 22.7%.  These 

results for CyA loaded PLGA NPs are not in line with the reports discussed earlier. The exact 

reason for this controversy is not clear but may be attributed to the use of the polyvinyl alcohol 

(PVA) solution as a stabilizer here instead of Didodecylmethylammonium bromide (DMAB) used 

in the other studies [55].   
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The effect of varying the emulsifying agent used in the formulation of oral lipid NPs of CyA on the 

bioavailability of CyA has been recently investigated [58]. Three different formulations were 

developed, using Percirol® as a lipid phase and Tween® 80 as an emulsifier in the first formulation 

and a mixture of phosphatidylcholine or Pluronic® F127 with taurocholate in the other two.  An 

in-vivo pharmacokinetic study following a single oral dose in Balb/c mice revealed the 

formulation which used Tween® 80 achieved higher Cmax and AUC resulting in a relative CyA 

bioavailability of 149.1% and 133.5% for the freshly prepared and the lyophilized forms when 

compared to the Neoral®, respectively, while the other two formulations matched the 

bioavailability of Neoral®. This effect is suggested to be due to a higher stability of the formulation 

which used Tween® 80 in gastric and intestinal pH over time. 

The enhancement of oral absorption of CyA (along with other hydrophobic drugs, e.g., 

griseofulvin) has also been reported by using chitosan modified with hydrophobic moieties such 

as quaternary ammonium palmitoyl glycol.  The use of nanostructures increased the Cmax of CyA 

compared to Neoral® by 6-folds after oral administration in male Wistar rats [7].  An increase in 

the dissolution rate of CyA, adherence and penetration of NPs in mucus layer, and enhancement 

of the trans-cellular transport of CyA was hypothesized to be the reason behind this observation.  

Designing pH-sensitive NPs for oral delivery of CyA is another approach.  The idea is to create a 

delivery system that has a stable association with its cargo in acidic conditions of stomach, but 

readily releases CyA in the pH of the small intestine. If this is accomplished, the drug is protected 

and contained in the upper parts of the GI tract that is not the main absorption site for CyA; it is, 

however, released later when it arrives to the absorption site [59].  An in vivo study performed 
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in Sprague-Dawley rats to compare NPs prepared with Eudragit® (poly(methacrylic acid and 

methacrylate) copolymer) showed that the bioavailability of the NPs was comparable to that of 

Neoral® [60]. The same research group also reported a similar study using hydroxypropyl 

methylcellulose phthalate as the pH-sensitive component of the NPs. In this  study, using the 

same animal model, NPs increased the mean residence time (MRT) and decreased the 

elimination constant of CyA in the central compartment, when compared to Neoral® [59]. 

Ocular administration- Various NP systems have recently been developed trying to improve the 

efficacy of ocular CyA treatment. In this context, PEG-PLGA NPs of CyA  were found to have an 

equivalent activity in T-cell proliferation suppression compared to that of free CyA [61]. CyA-

loaded NPs using PLGA alone, mixed with Eudragit® RL, or coated with Carbopol® have been 

evaluated for ocular administration in dry eye syndrome and inflammation of eye surface. These 

formulations demonstrated an average particle size of  148 nm (which increased significantly 

with Carbopol® coating), extended-release profiles totaling 75-90% drug release in 24 h, and 

increased ocular retention times [62].  Similarly, hyaluronic acid-coated nanospheres formed 

from PCL/ benzalkonium chloride have shown an increase in corneal CyA concentration in rabbit 

corneas at various time points during 1-24 h, reaching 6-8 folds of the concentrations reached by 

a control solution of CyA dissolved in castor oil [63]. 

Chitosan nanocarriers were also used for ocular delivery of CyA.  It has been hypothesized that 

since mucin is negatively charged in physiologic pH, using a cationic carrier could enhance the 

bioavailability of ocular formulations [64].  CyA-loaded chitosan NPs prepared by a spray-drying 

technique have been reported to prolong the residence time of the formulation on the corneal 
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and conjunctival surfaces, which resulted in CyA detection in both aqueous and vitreous humour 

samples for 72 h in sheep [65].  Chitosan-coated PLGA NPs have also been designed for ocular 

delivery of CyA. In vitro experiments have confirmed a sustained-release profile and maintained 

efficacy [66]. Chitosan has also been used in association with SLNs. Ex vivo experiments on pig’s 

cornea showed biocompatibility of these particles and enhanced permeation and/or penetration 

of CyA via increased cellular internalization [67]. 

Liu et al reported the formulation of CyA NPs based on poly(D,L-lactide)-b-Dextran with surfaces 

functionalized with the mucoadhesive ligand, phenylboronic acid (PBA). These NPs (with an 

average diameter of ~ 36 nm and an encapsulation efficiency of ~ 30%) sustained the release of 

CyA at clinically relevant doses for up to five days [68]. In vivo studies in dry eye induced female 

C57BL/6 mice showed that a once weekly application of these NPs resulted in elimination of the 

inflammatory infiltrates and a full recovery of the ocular surface, which compared favourably to 

a 3 times daily application of Restasis®.   Prosperi-Porta et al also investigated the encapsulation 

of CyA in a series of (poly(L-lactide)-b-poly(methacrylic acid-co-PBA)) block copolymer 

mucoadhesive micelles [69]. These formulations achieved a high encapsulation efficiency of over 

99.8% and a slow release within 14 days.  

Tommaso et al developed a micellar formulation for CyA which provided a success rate of cornea 

graft transplantation of 73% in treated animals, equivalent to that achieved with systemic CyA, 

compared to 25% for the control group [70].  SLNs have also been extensively studied, for CyA 

delivery. The reports on these formulations mostly include only in vitro testing of the 

formulations, though [71-73].  
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In 2008, Gokce et al reported preparation of CyA-loaded SLNs, with average size of 225 nm and 

zeta potential of  - 17 mv, that showed significant cellular internalization of CyA in vitro and ex 

vivo (in excised pig cornea) and seemed promising for ocular delivery [74]. The same group later 

reported in vivo delivery of the same SLNs to cul-de-sac of rabbits, and showed aqueous humor 

drug levels as high as 50.53 ng/mL without the emergence of any serious ocular irritation [75].  

Topical administration- Nanoparticle delivery systems have also been used for the topical 

delivery of CyA in inflammatory conditions of the skin such as psoriasis. They can help achieve 

and maintain clinically relevant levels of CyA at affected sites, thereby eliminating the need for 

systemic administration of CyA.  Several research groups have reported skin penetration and 

absorption of CyA with similar approaches that have been studied for systemic delivery of CyA. 

SLNs prepared with ticaprin (1,2,3-tridecanoylglycerol), L-α-phosphatidylcholine, and Tween® 80 

have been evaluated for topical application using murine skin and Franz diffusion cells, as well as 

an in vivo murine model. The SLN formulation of CyA not only increased the skin penetration by 

2-folds compared to CyA/oil mixture, but also relieved the dermatitis symptoms in the murine 

model by demonstrating an inhibiting effect on cytokines IL-4 and -5 [76].  Lopes et al. reported 

a reverse hexagonal phase nano-dispersion system using monoolein, oleic acid, and poloxamer 

that solubilized CyA up to 6 mg/mL, increased skin penetration in vitro, and created 1.5- and 2.8-

fold higher concentrations in stratum corneum and epidermis/dermis, respectively, compared to 

CyA dissolved in olive oil in male hairless mice [77].   In order to increase the dermal penetration 

of CyA, Romero et al formulated an amorphous suspension of CyA NPs which was prepared by 

wet bead milling using kolliphor® tocopheryl poly-ethylene glycol succinate (TPGS) as a stabilizer 

[78]. The NPs showed a size of ~350 nm. The efficacy of the formulation was investigated using 
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fresh pig skin and the tape stripping method.  Incorporated in hydroxypropylcellulose gel as a 

vehicle, the NPs at tape 30 were able to penetrate a cumulative CyA lrvel that was 6.3-folds higher 

than that achieved with a micrometer-sized CyA powder in the same vehicle. 

NPs formed with PCL and CyA by a solvent evaporation method have also been reported [79]. In 

this in vitro study using human skin organ cultures, penetration of the fluorescently labeled NPs 

through epidermis and dermis within 2 and 24 hours, respectively, was revealed.  The NPs 

reduced the secretion of IL–1β, IL–6, IL–8, IL–20 and IL–23 in a psoriasis model.  

Topical application of CyA by NPs has also been reported on mucus membrane, and in particular, 

for inflammatory conditions such as oral mucosal ulceration. Karavana et al. have recently 

reported a bio-adhesive gel for buccal administration in the treatment of aphthous stomatitis 

[80]. In this study, CyA was first incorporated in SLNs formed with Compritol® 888 ATO in water 

using poloxamer 188 and Tween® 80. The SLNs dispersion was then converted to a gel by adding 

Carbopol® 974 P NF and hydroxypropylmethylcellulose K 100M. The in vivo studies in rats showed 

 65% of formulation to remain on the buccal mucosa 6 hours after the application, which 

confirmed the bio-adhesive properties of the formulation. Using adult male New Zealand rabbit 

models of oral ulcer on the gingiva, rapid healing of the ulcers upon use of CyA NPs was observed 

compared to control groups receiving gel alone or no treatment.   

3.2 Tacrolimus 

Tacrolimus (TAC) is a macrolide calcineurin inhibitor isolated from a strain of Streptomyces 

tsukubaensis. It is used as an effective immunosuppressant with a mechanism of action similar 

to that of CyA [81]. In fact, multiple clinical trials showed more efficacy and less severe systemic 
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side effects for TAC compared to CyA [82-85].  TAC has been widely used in transplant patients, 

ocular immunologic disorders, and atopic dermatitis (AD).  Although,  TAC is approximately 99% 

protein bound, it  widely distributes in the body [86]. TAC has a narrow therapeutic window and 

its half-life ranges from 11.7 to 34.8 h [87].  Moreover, it is a substrate of P-glycoprotein (P-gp) 

and cytochrome P450 3A4 (CYP3A4). Thus, any modulator of P-gp and CYP3A4 can change its PK 

[88].  TAC is poorly water soluble (4-12 g/mL), its oral bioavailability is poor and shows high intra 

and inter-subject variability ranging from 4-93%  (with a mean bioavailability of 17-22%)  [87, 89]. 

Low aqueous solubility, site dependent permeability, extensive first pass metabolism in the gut 

and liver, P-gp mediated drug efflux and influence of food are the most important reasons for 

low and variable oral bioavailability of TAC [89]. NPs may be used to correct some of the 

shortcomings of TAC such as poor water solubility, large volume of distribution and low GI or skin 

permeability, and as a result enhance its bioavailability and/or therapeutic activity. While TAC is 

available as an injection, Prograf® (Astellas Pharma, Tokyo, Japan), the intravenous 

administration of TAC is usually limited to early stages of organ transplantation and to cases 

where oral administration is not feasible.  

Parenteral administration- Thao et al reported incorporation of TAC with human serum albumin 

NPs (~186 nm in diameter). This approach, increased TAC water solubility by 46-folds and 

resulted in a sustained release of TAC for 24 h [90]. The NPs showed an anti-proliferative activity 

on activated T cells, but not on normal cells in-vitro, and significantly reduced the arthritis clinical 

score by 2- and 3-folds compared to TAC injected solution or orally administered suspension, 

respectively, in a mice model of collagen-induced arthritis.  
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The solubility of TAC has been reported to increase with cyclodextrin (CyD) derivatives such as 

heptakis(2,6-di-O-methyl)-β-CyD (DM-β-CyD) [91]. In male Wister rats this formulation provided 

a time to maximum concentration (tmax)  of 8 h and MRT of 9.72 h compared to tmax of 30 and 15 

min; and MRT of 8.76 and 7.65 h for TAC loaded bovine serum albumin (BSA) NPs and a reference 

TAC solution, respectively [91].  TAC loaded BSA NPs have shown favorable PK profile compared 

to Prograf®, the commercial formulation of TAC [92].  A single IV dose of TAC loaded BSA resulted 

in 1.8-fold increase in TAC AUC compared to Prograf® in Sprague Dawley rats, and a 1.2-1.8-fold 

less drug accumulation in the kidneys within 24 h. 

A nanosomal formulation of TAC for IV use has also been prepared using soy phosphatidylcholine 

and alpha-tocopherol [93]. This formulation showed similar PK profile to that of marketed 

polyoxyl 60 hydrogenated castor oil formulation in healthy human subjects following 4 h 

intravenous infusion.  

Polymeric micelles have also been applied in several studies as a delivery vehicle for TAC. Allen 

et al prepared PEO-b-PCL block copolymer micelles containing TAC for the treatment of 

peripheral nerve injury [94]. Sprague Dawley rats with lesioned sciatic nerves injected 

subcutaneously once every 6 days with the micellar TAC showed full function recovery in 16 days. 

This was achieved despite subcutaneous administration of only 20% of effective TAC daily doses.  

Wang et al also reported on the use of same TAC micellar formulations for the management of 

ulcerative colitis [95].  In-vivo results in mice with dextran sulfate sodium induced colitis showed 

that the micellar formulation administered intravenously or orally, provided effective yet safer 
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treatments than the free TAC as measured by body weight loss, colon length and pathological 

changes in colon specimens.  

Oral administration- Self-emulsifying delivery systems can enhance the oral absorption of TAC 

through its solubilization in the GI tract, inhibition of P-gp drug efflux and pre-absorptive 

metabolism, increasing lymphatic transport and permeabilization of GI membrane. Optimized 

SMEDDS formulations for TAC using Capmul® MCM C8 as the oil phase, Cremophor® EL as 

surfactant and CarbitolTM as co-surfactant were prepared and shown to significantly reduce 

lymphocyte count in peripheral blood when compared to TAC capsule, Pangraf® (Panacea Biotec 

Ltd., India) upon oral administration for 10 days in Swiss albino mice [96]. This observation was 

attributed to a more efficient drug absorption in the GI tract.  An  in-vivo study in Sprague Dawley 

rats, following administration of SMEDDS using ethyl oleate as the oily phase; Solutol HS 15 as 

the surfactant; and glycofurol as the co-surfactant, showed a 3-fold increase in TAC Cmax and a 3-

fold decrease in tmax. This formulation resulted in more TAC accumulation in RES organs including 

liver, spleen, lung and small intestine at 15 min following administration; but less TAC was 

accumulated in kidneys at 3 h post-dose when compared to Prograf® [97].  In another study, two 

kinds of SMEDDS were prepared for TAC [98], with Miglyol® 840 and Transcutol® P as oil phase 

and co-surfactant, respectively, in both formulations. The two formulations differed in the use of 

either TPGS or Cremophor® EL 40 as surfactant. These formulations increased TAC relative 

bioavailability 7-8 folds when compared to TAC solution. The authors suggested that excipients 

and not TAC solubilization play an important role in increasing drug bioavailability, perhaps 

through interfering with the P-gp efflux or CYP450 mediated drug elimination. 
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pH-sensitive microspheres have been used for the local delivery of TAC to the colon for the 

treatment of IBD [99].  To achieve this, the authors prepared TAC loaded NPs of PLGA and then 

embedded the NPs in Eudragit® P-4135F, a pH-sensitive polymer proven to release its cargo in 

the lower intestine.  In an in vitro release study in pH= 7.4, an immediate release of nearly 100 % 

of incorporated drug was observed. In contrast, at pH of 4.0 the NPs and the drug were both 

retained within the Eudragit® coating. This design led to an improvement in the therapeutic 

activity in male Wistar rats with induced colitis. The difference in therapeutic outcome became 

significant on day 9 compared to the untreated control group and TAC solution treated animals.  

Topical administration- Li et al prepared ethosomal formulations of TAC with lower particle size 

(~76-104 nm) and higher encapsulation efficiency (~77-80%) as compared with a traditional 

liposomal formulation of the drug [100]. The ethosomal carriers demonstrated superior 

penetration of TAC through the skin in vitro, with high TAC concentrations in the epidermis of 

excised rat skin, over 4-fold increase in comparison to the reference, Protopic® ointment (Astellas 

Pharma, Tokyo, Japan).  In-vivo studies on Balb C mice with 2,4-Dinitrofluorobenzene induced 

dermatitis revealed improved inhibitory action of the ethosomal formulation on mouse ear 

swelling compared to Protopic® ointment. In another study, Erdogan et al prepared a liposomal 

TAC lotion and used it in a skin graft murine model [101].   Based on radiolabeling studies, the 

TAC level in the skin was 9 times higher at 24 h following a topical administration of the liposomal 

TAC compared to the TAC IV administration. The difference persisted at 96 h. A 3-day course of 

topical TAC liposomal administration significantly prolonged skin graft survival (by 2 days when 

given alone, or by 6 days when combined with systemic administration of the liposomal 

Page 25 of 64

URL: http://mc.manuscriptcentral.com/eodd  Email:Jaya.Venkitachalam@tandf.co.uk

Expert Opinion on Drug Delivery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

26 
 

formulation), while the systemic administration of either TAC or the liposomal TAC formulation 

alone, was unable to delay skin graft rejection.  

Pulmonary administration- Seo et al formulated TAC inhalable albumin NPs for the treatment of 

pulmonary fibrosis [102].  The NPs (with a particle size of ~182 nm and a zeta potential of -34.5 

mv) showed a sustained release of TAC for ~24 h.  Histopathological evaluations of excised lung 

tissues from mice with bleomycin-induced pulmonary fibrosis revealed a markedly lower degree 

of lung inflammation for NP treated animals compared to untreated mice, and mice treated with 

intraperitoneal TAC.     

3.3 Methotrexate 

Methotrexate (MTX) is an antifolate agent that has shown anti-proliferative, anti-inflammatory 

and immunosuppressive activity. It is clinically used as an antineoplastic drug for the treatment 

of various types of cancer and as a DMARD for the treatment of many autoimmune diseases. 

MTX demonstrates low permeability (LogP of 0.94) and poor aqueous solubility (0.01 mg/mL) but 

the sodium salt of MTX is soluble in water [103]. MTX can be given orally or by injection.  Oral 

MTX is absorbed in the GI tract by an active transport mediated mechanism [104]. Its oral 

absorption is highly variable between individuals and the absolute mean oral bioavailability is 

found to range from 30-90%.  The bioavailability of subcutaneously administered MTX is 

significantly higher and less variable than oral MTX [105].  A single-dose administration of MTX 

subcutaneously has resulted in a higher relative bioavailability and fewer GI adverse effects than 

oral MTX in human [106]. MTX shows high tissue distributions; its plasma protein binding is in 

the range of 20-57% and its plasma half-life is in the range of 5-8 hours [107].  Therapeutic 
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application of MTX induces adverse effects such as acute and chronic hepatotoxicity, bone 

marrow suppression, nephrotoxicity and chronic interstitial obstructive pulmonary disease [108]. 

Moreover, GI adverse effects such as diarrhea, ulcerative stomatitis, haemoragic enteritis and 

perforation have also been reported following MTX administration.  Encapsulation of MTX in 

nano-delivery systems may be used to increase its bioavailability, reduce adverse effects and at 

the same time increase its accumulation in the diseased site [109].  

Parenteral administration- Garg et al developed SLN formulation of MTX for IV injection using 

Gelucire® 50/13, [110]. In Sprague Dawley rats, SLN formulations increased the MTX half-life by 

3-folds and its AUC by 3.6-folds compared to the marketed MTX injection. An organ distribution 

study in female Wistar rats with DMBA induced breast cancer showed less accumulation of MTX 

as part of NPs in the heart, kidneys, or liver.  Another SLN formulation for the IV administration 

of MTX was prepared by stearic acid and soya lecithin as a surfactant [111].   This formulation 

was shown to increase the half-life of MTX by 76% (from 8.2 to 14.5 h) and its MRT by 49% (from 

16.1 to 23.9 h) compared to a MTX solution.  

Chen et al. reported the formulation of MTX-loaded Pluronic® P105/F127 mixed micelles for IV 

application [112].  The micellar formulation prolonged the systemic circulation of MTX in vivo in 

Sprague Dawley rats with the MTX half-life increasing by 2.2 folds and the AUC by 4.5 folds 

compared to the free MTX injection.  In a different study, MTX was encapsulated in a micellar 

nano-network of polyethyleneimine ionomer containing redox-sensitive cross-link [113]. The 

formulation displayed a prolonged in vitro swelling-controlled release of MTX over 24 with no 

initial burst when compared with the free MTX.   
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Williams et al, reported liposomally conjugated MTX, that provided better anti-inflammatory 

effects in male Lewis rats with established adjuvant arthritis and displayed less 

haematotoxicy  compared to the free drug when administered IV [114].  Free MTX, on the other 

hand was shown to be more effective in controlling the progression of the disease in a 

preventative setting.   Gottschalk et al considered encapsulating MTX in cationic liposomes and 

have found the formulation to provide a significantly superior reduction in leucocyte- and 

platelet-endothelial cell interaction, functional capillary density, and knee joint diameter when 

given IV to arthritic female C57/BI6 mice compared to control [115]. Mice treated with Free MTX 

or empty liposomes did not achieve significant reductions in these parameters.    Hong et al. 

prepared PEGulated liposomes of MTX, and compared the PK and bio-distribution of these 

formulations to free drug and MTX formulations in conventional liposomes in Sprague Dawley 

rats following iv administration [116]. The results of their study showed stealth liposomes 

containing dipalmitoylphosphatidylcholine/cholesterol/distearoyl phosphatidylethanolamine-N-

PEG (DPPC /CH/DSPE-PEG) to decrease MTX clearance by 53.1-fold compared to free MTX,  

effectively prolong the blood circulation and reduce hepatosplenic and kidney uptake of MTX.  A 

different study by Prabhu, et.al investigated PEGylated, conventional and chitosan coated 

liposomal formulations of MTX and found a significant reduction in edema volume by these 

formulations in complete Freund’s adjuvant arthritis models in Wistar-Lewis rats compared to 

that observed for control or free drug treated animals following IV administration [117] .  

Albumin based delivery systems have also been investigated for injectable MTX. A human serum 

albumin (HSA) conjugate of MTX was shown to reduce the onset of arthritis appearance in a 

collagen induced arthritis rat model following IV injection. This was attributed to the 
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accumulation of encapsulated MTX in inflamed paws. MTX levels were reported to be 17-fold 

higher for encapsulated MTX compared to that achieved with free MTX [118].  The MTX-HSA was 

about 5-folds more potent than free MTX. The plasma half-life of HSA and MTX-HSA were shown 

to be ∼19 days in a phase I clinical trial of the formulation in cancer patients [119], which is much 

longer than the half-life of a low dose MTX given IV to patients with RA (∼6–8 h).  

MTX loaded poly(L-lactic acid) microspheres were developed by Liang et al, and shown to reduce 

the plasma concentration of MTX by 10-folds compared to free MTX in white New Zealand rabbits 

injected intra-articularly, indicating a decreased clearance of MTX from the joint cavity [120].  

Niosomal formulations of MTX have also been developed and shown to prolong MTX circulation 

in the blood and increase the MTX uptake in the liver and brain, due to increased permeability, 

following IV administration [121].  When given orally, the niosomal formulation significantly 

improved the absorption.  In both routes of administration higher levels of the drug were 

accumulated in the liver. 

Topical administration- Misra et al formulated SLNs of MTX as a topical gel to improve the 

therapeutic index of MTX and to replace or supplement oral MTX therapy [122].  Their 

formulation, which was clinically evaluated on psoriasis patients, has shown improved drug 

accumulation in human skin; average percent improvement in healing (APIH) of lesions, and 

reduction in average score of erythema and scaling in psoriasis.  Trotta et al. developed an oil in 

water (o/w) microemulsion of MTX and reported a 6-fold increase in the flux of MTX from the 

microemulsion compared to MTX solutions resulting in improved permeation from the skin of 

hairless mouse [123].  Amarji et al developed a different MTX microemulsion based hydrogel and 
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showed the formulation to possess improved penetration in different skin layers reducing drug’s 

systemic absorption [110]. A better therapeutic activity was observed in vivo in C57BL/6 mice 

with imiquimod induced psoriasis model by the MTX microemulsion hydrogel compared to its 

control cream formulation.   

Pulmonary administration- Doddoli et al administered liposomal or free MTX by pulmonary 

instillation and analyzed its distribution in male Wistar rats [124].   The liposomal formulation 

was found to significantly increase MTX accumulation in the lungs (by 4-fold at 180 min post-

dose) compared to free drug. Liposomal MTX was found to cross the lung barrier, but to a lesser 

extent than free MTX, suggesting better local action as well as a delayed systemic distribution by 

this formulation.   

3.4 Glucocorticoids 

Glucocorticoids (GCs) are a class of steroid hormones that have a wide range of physiological 

activities including inhibition of antigen presentation, cytokine production, and proliferation of 

lymphocytes [125].  These agents are frequently used as anti-inflammatory drugs for various 

conditions including asthma, dermatitis and RA. They are also used as immunosuppressants for 

autoimmune diseases such as systemic lupus erythematosus. These agents also have application 

in organ transplantation.  The most commonly used systemic GCs include budesonide, 

dexamethasone (DEX), fludrocortisone, hydrocortisone (HC), methylprednisolone (MPS), and 

prednisolone, which are usually given orally (and often as adjunctive therapy), but dosage forms 

for their IV, intramuscular, intra articular, intralesional, topical, ophthalmic, and otic applications 

are also available.  Most GCs have high apparent permeability but low aqueous solubility and 
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therefore prodrugs of established GCs are usually used in intravenous formulations to improve 

their solubility [126]. Glucocorticoids are well absorbed and show an absolute bioavailability of 

60-100% when given orally, a moderate apparent volume of distribution (27 L for HC, 26 L for 

prednisolone succinate and 3.6 L for DEX sodium phosphate, given IV), and moderate protein 

binding (~86% for oral prednisone and 75% for methylprednisone) [127].  Glucocorticoids are 

metabolized mainly in the liver and kidney. The long term use of GCs is associated with serious 

side effects  including osteoporosis, glucose intolerance, serious infections, diabetes, 

hypertriglyceridemia, gastritis, peptic ulcer disease, GI bleeding, skin thinning, purpura, cataracts, 

glaucoma, accelerated atherosclerosis, hypertension and cardiovascular diseases [128].   

Nanoparticulate delivery of GCs can improve the relatively poor biodistribution of these agents 

and help reduce the associated side effects. Moreover, nanoparticle delivery systems can 

improve MTX permeability across biological membranes  [129].   

Parenteral administration- Quan et al compared four different nano-formulations of DEX, 

namely DEX encapsulated liposomes, DEX conjugated cross-linked micelles, and two polymeric 

prodrugs of DEX, a slow releasing and a fast releasing formulation for their anti-inflammatory 

activity in an adjuvant model of arthritis in rats [130]. Their results showed that a single 

equivalent IV dose of all four formulations resulted in improvements in the signs of joint 

inflammation which were statistically significant compared to the two control groups receiving 

free DEX or saline.  However, the micellar formulation and the slow releasing polymeric prodrug 

formulations, both of which had DEX covalently conjugated to the carrier, provided prolonged 

duration of therapy and a more efficacious joint protection than the other two formulations.  
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Methylprednisolone loaded in PEGylated liposomes once weekly for 18 weeks was compared to 

a daily application of this drug for systemic lupus erythematosus in vivo in an MRL-lpr/lpr murine 

model [131].  The liposomal formulation resulted in superior suppression of anti-dsDNA antibody 

levels by  2.5 folds, reduction in spleen size by 2.7 folds and a decrease in serum urea levels by 

2.2 folds compared to free MPS.  Moreover, the liposome treated mice had a higher survival rate 

up to the duration of the study, and showed a decrease in body weight gain and renal damage.  

PEGylated liposomes encapsulating prednisolone phosphate (PLP) have also been studied in 

animals [132], and in human [133].  The PK profiling following IV administration of liposomal 

formulation in human, showed a dose-dependent prolongation of drug half-life to 45-63 h by 7-

15 folds compared to free PLP.  Moreover, when studied in a double-blinded and placebo 

controlled setting, the liposomal PEG appeared in 75% of the macrophages isolated from 

iliofemoral atherosclerotic plaques of patients. However, no evidence for anti-inflammatory 

effect for the liposomal formulation was found based on multimodal imaging. 

Kenyon et al. developed a NP formulation composed of PEG-dendritic block copolymers loaded 

with DEX, for systemic administration to treat asthma [134]. Their results showed that, unlike 

free DEX, treatment with the DEX NPs reduced the total inflammatory cells recovered by lung 

lavage by 2.12-folds and the lung lavage eosinophil counts by 2.7-folds in Balb/c mice with 

ovalbumin (OVA) induced airway inflammation compared to untreated mice. Moreover, the DEX 

nanoparticle resulted in significantly lower levels of the two inflammatory cytokines; i.e., IL-4 by 

2.5-folds and MCP-1 by 2.2-folds in the lungs compared to the control untreated group. The 

cytokine levels were not lower in the free DEX group.   
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Ocular administration- Dexamethasone has been encapsulated in mixed micelles based on 

polyoxyl 40 stearate and polysorbate 80 as a non-invasive approach of delivering the drug to the 

back of the eye in conditions such as posterior uveitis [135]. The formulation, when administered 

as single and multiple topical doses in New Zealand albino rabbits, resulted in therapeutically 

relevant DEX concentrations in the retina and choroid, which is generally not achieved with 

conventional DEX formulations. In another study, the PLGA based NP formulation of DEX sodium 

phosphate (DSP), a water soluble prodrug of DEX, was shown to provide a sustained ocular 

release of drug for at least 7 days when administered subconjunctivally to Sprague Dawley rats 

with minimal systemic exposure (1/8th of the systemic exposure of free DSP administered 

through the same route at 2 h post operation) [136].  Moreover, a once weekly application of the 

DSP NPs in corneal transplant recipient Lewis rats prevented corneal allograft rejection for 9 

weeks (duration of the study). This was not true for the DSP in solution group which 

demonstrated corneal graft rejection. In another study, Ali et al prepared two nanosuspensions 

of HC for ocular use and observed a sustained drug action from both products when tested on 

albino rats. The NP formulation resulted in a 2-fold increase in exposure as measured by AUC and 

was maintained for up to 9 h compared to 5 h from the HC solution [39]. 

Pulmonary administration- Konduri et al developed a stealth liposomal formulation of 

budesonide (BUD) and investigated its suitability as a once weekly therapy for asthma via 

nebulization [137].  The once weekly liposomal formulation was found to be as effective as a daily 

administration of a commercially available free BUD in decreasing lung inflammation and 

lowering the levels of immunologic markers of eosinophil peroxidase activity, peripheral blood 

eosinophils, and serum IgE levels.   These benefits were not obtained with a once weekly 
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application of a conventional liposomal formulation.   Beclomethasone dipropionate (BDP) has 

also been formulated in polymeric nanocapsules and a polymeric micelles [138, 139].   In the 

latter formulation, BDP was encapsulated in micelles based on a PEGylated phospholipid–

polyaminoacid conjugate.  The formulation was found to increase the solubility of the poorly 

soluble BDP by 240 folds, when compared to free BDP. It also showed high drug internalization 

(about 84 wt% of amount incubated with cells) in human bronchial epithelial (16HBE) cells 

compared to that achieved with BDP suspension. 

Nasal and aural administration- Cagno et al. reported development of HC encapsulated 

phosphatidylcholine liposomes (particle size of 179.7±18.4 nm) and TPGS micelle dispersions 

(particle size of 17.3±2.5 nm). Both formulations improved the solubility of HC and were found 

to enhance its permeability through sheep nasal mucosa compared to the free drug suspension 

[129].  

Nanoparticle formulations have been developed for the delivery of GCs to the inner ear for many 

disorders which cannot adequately be treated by systemic GC administration. This is largely due 

to the blood-cochlear barrier which limits the concentrations of drug that can reach the cells in 

the inner ear.   El Kechai formulated a GC liposomal gel by incorporating PEGylate liposomes 

loaded with DSP with hyaluronic acid gel and investigated its administration by transtympanic 

injection in a guinea pig model [140].  The liposomal gel displayed shear-thinning which made it 

suitable for injection, while the auditory brainstem response (ABR) test following injection in the 

middle ear revealed that the injection not to significantly modify the hearing threshold.   

Moreover, the formulation resulted in a sustained release of the drug in the perilymph providing 
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therapeutically relevant amounts of the parent DEX for up to 30 days which is a 2-fold increase 

over the release time attained with the free drug in hyaluronic acid gel.   In another study, the 

therapeutic and hearing protective effect of DEX encapsulated in PEG-coated Polylactide (PLA) 

stealth NPs administered by transtympanic injection against cisplatin induced hearing loss was 

investigated in a guinea pig animal model [141].    A single dose administration of the NP 

formulation provided a sustained release of the drug for up to 48 h which was quickly distributed 

in the cochlea within the first hour. The equivalent dose of free DEX was cleared within 12 h of 

administration.  Moreover, the NP formulation provided protective effect against cisplatin 

induced hearing loss. 

3.5 Sirolimus (Rapamycin)  

Sirolimus (SR), also known as rapamycin is a macrocyclic lactone-lactam, isolated from 

Streptomyces hygroscopicus as an antifungal, and later found to possess potent 

immunosuppressive and anti-tumor properties. Sirolimus is widely used for anti-rejection 

therapy in organ transplantation [142], but its mechanism of action is different from the 

calcineurin inhibitors CyA or TAC and it is less nephrotoxic than these agents. Sirolimus acts by 

interacting with the FK binding proteins to form a complex that inhibits the mammalian target of 

rapamycin (mTOR) kinase resulting in the suppression in T cell proliferation [143].  Sirolimus is 

insoluble in water and is only available commercially for oral administration.  It has poor 

bioavailability and distributes widely in tissues [142].  The bioavailability of its oral solution, 

Rapamune® (Wyeth, USA), is reported to be around 15%.  Sirolimus exhibits a long half-life of 

about 60 h and shows excessive inter subject variability in serum concentrations and systemic 

clearance.  Moreover, it has many potential adverse effects which often necessitate 
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discontinuation of therapy [144]. A tablet formulation of Rapamune®  was designed based on 

NanoCrystal® technology showing a reduction in the inter-individual variations in SR 

concentrations in comparison to the oral solution, but the improvement in the bioavailability was 

not significant [145]. 

Parenteral administration- The nanodelivery of parenteral SR has received much research 

attention with applications in various clinical settings, including cardiology as part of therapeutics 

to control restenosis following balloon angioplasty. For example, Haeri et al developed two SR 

colloidal formulations with stealth properties for its intra-arterial delivery to control restenosis, 

a micellar formulation based on PEG conjugated with phosphatidylethanolamine (DSPE-PEG) and 

a liposomal formulation based on DSPE-PEG and cholesterol, purified egg phosphatidylcholine, 

and distearoyl-sn-glycerophosphoglycerol (DSPG) [146].  Both SR formulations showed efficacy 

in a rat carotid artery balloon injury model with a reduction in stenosis by 42% and 19% and 

enlargement of the lumen by 60% and 39%, respectively, in comparison to animals receiving 

unloaded colloidal formulations. Gasper et al investigated the use of an albumin-based NP 

formulation of SR, nab-rapamycin, for the adventitial delivery of SR in a restenotic (double-injury) 

swine model.  The NP formulation resulted in  42% reduction in lumen area stenosis when 

compared to the injection of saline. Shi et al also developed PLGA NP formulations of SR in 

Pluronic® gel to control restenosis and intimal hyperplasia (IH) associated with open surgical 

interventions for cardiovascular conditions [147]. The NP formulation and solubilized SR showed 

comparable therapeutic improvements up to 14 days following treatment of rats with carotid 

artery balloon injury.  However, only the NP formulation maintained the IH inhibition and the 

improvements in the lumen size for an additional 14 days.   
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Dou et al developed acetalated β-CyD formulations for the subcutaneous delivery of SR [148].  A 

PK analysis of the formulation in C57BL/6 mice, showed a sustained release of SR extending over 

15 days with almost constant levels of SR being maintained in the blood for a period of about 13 

days. This contrasted with the free SR formulation given orally which showed high peak SR 

concentrations, but the drug was eliminated in 72 h.   Moreover, in atherosclerosis ApoE−/− mice 

model the NPs of SR resulted in a significant drop in the formation of atherosclerotic lesion area 

(from 27.3% for untreated controls to 3.9%) compared to oral free SR formulation which showed 

atherosclerotic lesion area of 17.7 %.   

A perfluorocarbon NP formulation of SR could employ the autophagy activation by SR to provide 

a potentially viable therapeutic option for duchenne muscular dystrophy [149]. In a defective 

autophagy mice model, the IV delivery of the NP formulation resulted in a significant increase of 

30% in grip strength, while an equivalent oral dose of a reference SR failed to show 

improvements.   

Matsuzaki et al prepared a gelatin hydrogel which contained SR encapsulated in L-lactic acid 

oligomers-grafted gelatin micelles and investigated its therapeutic role when given locally by 

intraarticular injection in a surgical model of OA in mice [147].  Their results show that the 

hydrogel formulation was more effective than a reference SR injection in delaying the 

progression of OA which was maintained for 16 weeks following the OA surgery.  This was 

attributed to controlled release of SR. 

The suppressive activity of SR encapsulated in PLGA NPs on dendritic cells was investigated in 

vitro by Haddadi et al [150].  The results revealed that the PLGA encapsulated SR decreased the 
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expression of various maturation markers studied in immature dendritic cells, while the free SR 

showed very little effect on the expression of these markers.  The nano-delivery of SR resulted in 

a significant increase in the inhibitory effect of SR on the maturation of the dendritic cells (with 

respect to dendritic cell phenotype) and on the cytokine production, and functional effects on 

the proliferation of T cells. 

Oral administration- Yu et al have prepared a SLNs based on Precirol® ATO-5 and oleic acid that 

achieved a high encapsulation efficiency of 99.81% for SR [151].  The formulation improved the 

oral bioavailability of SR by 1.81-folds relative to the Rapamune® tablets in beagle dogs.  An 

SMEDDS formulation based on Capryol™ Propylene glycol monocaprylate as the oil phase and 

glycofurol as the co-solvent was reported to have achieved success in SR delivery, as well [152].  

The formulation achieved a 1.6-folds increase in Cmax at an earlier tmax compared to the oral 

Rapamune® solution in a rat model, which was not statistically significant. In a different study, 

solid SMEDDS formulations were prepared by varying the composition of solubilizing agents 

including Labrafil® M1944 CS, Cremophor® EL, Transcutol® P [153].  The optimal formulation 

achieved an oral bioavailability of 136% relative to the Rapamune® tablets in beagle dogs. 

Bisht et al reported an SR NP formulations based on copolymers of N-isopropylacrylamide, acrylic 

acid and methylmethacrylate or vinylpyrrolidone [154].  The formulation, showed a 2.9-fold 

increase in the Cmax of SR which was achieved at 1.5 h post-dose compared to free SR whose peak 

concentration was attained at 6.67 h. In a different study, Solymois et al developed NP 

formulations based on polyvinyl-pyrrolidone and compared it in vivo in a rat model to a reference 

dispersion of crushed Rapamune® tablets in water [155].  The NPs improved the PK of SR resulting 
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in an increase in the AUC0-∞ and Cmax by 2- and 3.7-folds, respectively, compared to Rapamune®.  

Kim et al also reported an SR NP based on PVP K30 and  Sucroeste (as stabilizer) showing an 

increase of 15.2- and 18.3-folds in the AUC0-12 and Cmax of RS compared to free drug, respectively, 

in a rat model [156].   

Kim and his research group also formulated an SR micellar formulation based on TPGS [157].  The 

formulation achieved a 400-fold increase in solubility of SR in water. The PK profile in a Sprague 

Dawley rats showed an increase of 13.6- and 19-fold in the AUC0-12 and Cmax, respectively, 

compared to free SR following oral administration.    

Ocular administration- Yuan et al investigated a chitosan and polylactic acid based NP 

formulation of SR as a topical immunosuppressive option in corneal transplantation [158].  The 

penetration of the formulation was studied using single photon emission computed tomography 

imaging in rabbit eyes and revealed better retention at the precorneal area when compared to 

the reference SR aqueous suspension.  The NP formulation showed a significant increase in the 

survival time of the corneal allografts reaching a median of 27.2 days compared to 23.7 days for 

a reference SR suspension. In another study, Linares-Alba developed a liposomal SR formulation 

to be administered subconjunctivally for the treatment of nonresponsive keratoconjunctivitis 

sicca (KCS), or dry eye [159].  The formulation was preliminarily tested in vivo for 1.5 months in 

the spontaneous KCS dog model, not responding to conventional CyA or TAC treatment. 

Following three dosing of the NP formulation, improvements in the normal and basal lacrimal 

production, tear film stability, and control of conjunctival discharge was observed.   
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Nanodelivery systems have also attempted to improve the SR delivery to the retina and the 

choroid to treat conditions such as posterior uveitis. In this context, micellar formulation of SR 

based on methoxy PEG-PCL were developed for intravitreal injection [160].  The micelles 

improved the water solubility of SR by 1000-folds and revealed improved SR accumulation in the 

retina over 14 days, compared to a reference SR suspension, in rats. The micellar formulation 

was also more effective in treating intraocular inflammation than the free drug suspension.      

3.6 Mycophenolic acid 

Mycophenolate acid (MPA) is a potent immunosuppressive agent that acts as a non-competitive 

inhibitor of inosine monophosphate dehydrogenase selectively inhibiting T and B cell 

proliferation [161]. It is available as mycophenolate mofetil (MMF), an ester prodrug of MPA that 

improves MPA bioavailability and marketed as CellCept® (Genentech, San Francisco, CA); and 

also as mycophenolate sodium delayed release tablets, MyFortic® (Novartis Pharma AG, Basel, 

Switzerland).  MPA is indicated for the prevention of rejection in solid organ transplant patients 

and is increasingly used in various autoimmune disorders. MMF has rapid and complete 

absorption following oral administration and the MPA bioavailability is reported to be in the 

range 80.7-94% following MMF administration and 72% following the administration of sodium 

salt tablets [162]. MPA binds extensively to serum albumin and shows high inter- and intra-

subject variability in PK parameters. MPA is better tolerated than other immunosuppressants 

and the most common side effects are GI and hematological disorders [163].  The nanodelivery 

of MPA has not been studied as extensively as the other immunosuppressants.   
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Parentral administration- Look et al developed a nanogel of MPA and investigated its capabilities 

in targeting immune cells in systemic lupus erythematosus (SLE) [164].  The formulation was 

made up of a core of CyD and a lipid bilayer exterior. It achieved an MPA encapsulation efficiency 

of 3.79% and showed particles with average hydrodynamic diameter of 225 nm.   In vivo studies 

in lupus-prone NZB/W F1 mice following intraperitoneal administration of this formulation in a 

prophylactic manner, showed an improved survival by 3 months compared to the group that 

received only saline.  A 2 month increase in survival was also observed when the NPs were given 

following onset of proteinuria.  Free MPA formulation did not result in the enhancement of 

survival.  A nano-formulation with CD4 antibody surface modification for active targeting showed 

comparable results to the non-targeted formulation.  In a follow-up study, the same research 

group compared the nanogel formulation to an MPA NP based on PLGA which is known to target 

dendritic cells [165]. Using fluorescent measurements, it was found that nanogel particles 

internalized more effectively in bone marrow derived dendritic cells in vitro than the PLGA NPs. 

In vivo studies showed unlike nanogels, the PLGA NPs did not result in enhancements of survival 

in lupus-prone NZB/W F1 mice model. 

The MPA encapsulating PLGA NPs reported above was also investigated for its activity  in an 

earlier study by the same research group in a skin allograft mice model [166].  Intermittent ip 

doses of the NP formulation showed a significant enhancement of skin graft survival when 

compared to mice receiving a soluble MPA, even though the total MPA dose was 1000-fold lower 

in the NP formulation.  The superior activity of NP formulation was accompanied with their better 

safety. This was evidenced by lower incidence of  severe anemia or splenic cytopenias observed 

for free drug.    
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The nanodelivery of MMF, the ester prodrug of MPA, has also been investigated.  Teng et al 

reported  a liposomal formulation of MMF based on 1,2-Dioleoyl-sn-glycero-3-phospho-choline, 

cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(polyethylene-glycol)-

2000] [167].  The formulation was investigated in vivo in a rat model of nephrotic syndrome.  

While both the liposomal formulation and the free MMF improved blood biochemical 

parameters, liposomes resulted in an increase of 20% in plasma albumin and a decrease of 17% 

in total cholesterol and 21% in triacylglycerol levels when compared to free MMF formulation.  

Moreover, administration of the liposomal formulation resulted in an increase in body weight 

and urine volume, a decrease in urinary protein levels at 24 h and in the CXC chemokine ligand 

16 (CXCL16) levels compared to the control and the free MMF-treated groups, indicating reduced 

kidney damage. 

4 Conclusions 

Nanotechnology has shown great potential in improving the physicochemical properties, as well as 

pharmacokinetics profile and therapeutic index of several major existing immunosppressive agents in 

preclinical models. This is largely due to the large capacity of nano-delivery systems in the solubilization 

of poorly soluble immunosuppressant drugs, their ability for sustaining the rate of drug release upon 

systemic or local administration, and/or capability of nano-carriers in redirecting the encapsulated drug 

from normal tissues to sites of drug action in the RES system or inflamed tissues.  

5 Expert opinion 

Immunosuppressive therapy plays an important role in preventing the rejection of allografts, in 

improving the quality of life and increasing the survival of transplanted patients.  
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Immunosuppressive agents are also being used effectively to treat various local or systemic 

autoimmune inflammatory conditions. There is; however, still a demand for the development of 

more effective, yet tolerable immunosuppressive agents. This has usually been tackled by either 

trying to develop more potent immunosuppressants, and/or use of advanced drug delivery 

systems for the existing or emerging immunosuppressants.    

Nanotechnology approaches have proved to be promising means to modify many shortcomings 

of immunosuppressive agents as summarized in this review paper.  Nano-delivery systems have 

been shown to improve the solubility of poorly soluble immunosuppressive agents leading to 

better bioavailability while eliminating the need for excipients imposing undesired reactions in 

patients.   Moreover, these advanced delivery systems have been able to positively alter the PK 

and biodistribution of immunosuppreive drugs leading to better activity while reducing their 

dose- dependent toxicity.  A number of nano-formulations have been able to provide a sustained 

or controlled release of the immunosuppressant agent which maintains therapeutically relevant 

concentrations of the drug, either in the systemic circulation, or at the local site of action for 

prolonged periods leading to less frequent dosing regimens and/or less side effects.  The 

feasibility and advantages of nano-delivery systems for application through ocular, pulmonary, 

oral and other route of administration has enhanced their potential in effective 

immunosuppressive therapy where regional administration is desired.  Nano-delivery systems 

have also shown to target either RES system or inflammation sites increasing the chance of drug 

interaction and activity on target cells that reside in these organs. Finally, nano-formulations are 

shown to enhance drug delivery through local administration (e.g., transdermal delivery) 

providing better accumulation of the drug in areas affected by the immune system.  
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In this context, the effect of nanotechnology in potentiating the immunosuppressive activity of 

certain drugs is of particular note. It is; however, not clear whether this potentiating effect is 

merely a result of a change in the organ distribution of immunosuppressive drug in the animal 

towards organs hosting the immune cells, and/or enhanced drug activity at the cellular level by 

its nano-carrier through unexplained mechanisms. Further studies are required to elucidate the 

mechanisms behind potentiating effects of nano-carries on the encapsulated 

immunosuppressant agents.  

Nonetheless, it is clear from the literature that the development of nanomedicine for enhancing 

the performance of immunosuppressive agents in the treatment of different inflammatory 

diseases has witnessed several examples of success in preclinical stage. Based on the results of 

research conducted in this area to date, it is safe to speculate the more rapid translation of 

nanotechnology in immunosuppressive therapy in clinic in near future.  
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187. Gonzalez-Angulo, A.M., et al., Weekly nab-Rapamycin in patients with advanced nonhematologic 
malignancies: final results of a phase I trial. Clin Cancer Res, 2013. 19(19): p. 5474-84. 

188. Gasper, W.J., et al., Adventitial nab-rapamycin injection reduces porcine femoral artery luminal 
stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial 
inflammation. Circ Cardiovasc Interv, 2013. 6(6): p. 701-9. 

189. Shah, M., et al., A rapamycin-binding protein polymer nanoparticle shows potent therapeutic 
activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjogren's syndrome. J 
Control Release, 2013. 171(3): p. 269-79. 

190. Yanez, J.A., et al., Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(epsilon-
caprolactone) micelles of rapamycin. Cancer Chemother Pharmacol, 2008. 61(1): p. 133-44. 

 

 

Page 53 of 64

URL: http://mc.manuscriptcentral.com/eodd  Email:Jaya.Venkitachalam@tandf.co.uk

Expert Opinion on Drug Delivery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

54 
 

Table 1.  Selected publications on cyclosporin delivery using nanoparticles in the last decade 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 
Type of 
Study 

Results Ref. 

Micelle PEO-b-PCL  100 - In vitro   Solubility & sustained release [48, 49] 

Micelle PEO-b-PCL  100 IV Injection In vivo  Nephrotoxicity [50] 

Micelle PEO-b-PCL  100 IV Injection In vivo  AUC &  CL & Vd [51] 

Micelle PEO-b-PCL  100 IV Injection In vivo Suppressed immune response [52] 

Micelle MPEG-hexPLA  30 IV Injection In vivo  Solubility &  excipient use [53] 

NP PEG-chitosan/Lecithin  90 IV Injection In vivo  AUC & t1/2 /  CL & VD [54] 

NP PLGA  140 Oral In vivo  Solubility,  Nephrotoxicity,  Bioavailability [55] 

NP PLGA  110 Oral In vivo  Solubility,  Nephrotoxicity [56] 

LN Percirol® & Lec-TC/PL-TC/Tw 114-209 Oral In vivo  Cmax & AUC,  Bioavailability [58] 

NP GCPQ 40 – 200 Oral In vivo  Cmax [7] 

NP HPMCP 50 – 60 Oral In vivo  MRT &  Elimination constant [59] 

NP Eudragit® 35 – 110 Oral In vivo  Cmax and Oral Bioavailability [60] 

NP PEG-PLGA < 100 - In vitro in vitro therapeutic efficacy maintained [61] 

NP PLGA/Eudragit®/Carbopol® 148-393 Ocular In vivo  ocular retention and drug availability [62] 

NP HA-coated PCL/BKC 200-300 Ocular In vivo  Iris/ciliary body concentrations [63] 

NP Chitosan 300-600 Ocular In vivo  corneal and conjunctival residence time [65] 

NP Chitosan-coated PLGA 200-250 - In vitro Sustained release and maintained efficacy [66] 

SLN C888 or Precirol® ATO 5  200 Ocular Ex vivo  Corneal permeation [67] 

NP PDLLA-b-Dextran-g-PBA  36 Ocular In vivo Sustained release &  administration frequency  [68] 

Micelle PLA-b-p(MAA-PBA) 36-64 Ocular In vivo Slow release within 14 days [69] 

SLN C888 or Gelucire®  300 or > 700 - In vitro Stable particles (with Gelucire®) & Rapid release [71] 

SLN C888/Poloxamer 188/Tw  225 - Ex vivo  Corneal permeation [74] 

SLN C888/Poloxamer 188/Tw  225 Ocular In vivo  Aqueous humor level & ocular tolerance  [75] 

SLN Ticaprin/PC/Tw  75 Topical In vivo  skin penetration & IL-4 and -5 [76] 

RHPND Monoolein/oleic acid/poloxamer  180 Topical In vivo  skin penetration [77] 

NP TPGS  350 Topical In vitro  skin penetration [78] 

NP PCL  30 - In vitro  Secretion of inflammatory cytokines [79] 

Gel C888/Carbopol/HPMC  200 Topical In vivo  Wound healing rate [80] 

NP PLA-DPPE 200 -375 - In vitro Sustained release [168] 

Micelle Cholesteryl-modified polymers* 100-200 - In vitro Thermally responsive controlled release [169] 
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NP PEG-PLA  85 - In vivo Internalization into dendritic cells [170] 

NP PDLLA/MCM/MCT 150 – 250 Oral In vivo  AUC, MRT & Bioavailability [171] 

*: Cholesteryl end-capped P(NIPAAm-co-DMAAm) and cholesteryl grafted P(NIPAAm-co-NHMAAm) 

: increased; : decreased; AUC: Area under the curve; C888: Compritol® 888  ATO; CL: Systemic clearance; Cmax: maximum blood concentration; GCPQ: quaternary 
ammonium palmitoylglycol chitosan; HA: Hyaluronic acid; HPβCD: hydroxypropyl-β-cyclodextrin; HPMC: Hydroxypropyl methyl cellulose; Lec-TC: mixture of 
phosphatidylcholine and taurocholate; MCT: Medium chain triglycerides; MCM: Medium chain mono-diglyceride; MPEG-hexPLA: methoxy-poly(ethylene glycol)- 

hexyl-substituted poly(lactides); MRT: Mean Residence Time; NP: Nanoparticle; PBA:  Phenylboronic acid; PC: L-α- Phosphatidylcholine); PCL: Poly--caprolactone; 

PCL/BKC: Poly--caprolactone/ benzalkonium chloride; PDLLA: Poly-DL-lactide; PEO-b-PCL: Poly(ethylene oxide)-block-poly(-caprolactone); PLA-b-p(MAA-PBA): 
Poly(L-lactide)-b-poly(methacrylic acid-co-phenylboronic acid); PL-TC: mixture of Pluronic® F127  and taurocholate; PLA: Polylactide; PLA-DPPE: Poly(L-aspartic acid-
co-L-lactic acid)- 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; PLGA: poly(lactide-co-glycolide); P(NIPAAm-co-DMAAm): Poly(N-isopropylacrylamide-co-N,N-
dimethylacrylamide); P(NIPAAm-co-NHMAAm): poly[N-isopropylacrylamide-co-N-(hydroxymethyl) acrylamide]; RHPND: Reverse Hexagonal Phase Nano-dispersion 
system; SLN: Solid Lipid Nanoparticle;  t1/2: drug half-life;  TPGS:  Vitamin E polyethylene glycol succinate; Tw: Tween® 80; Vd: Volume of distribution 
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Table 2.  Selected publications on tacrolimus delivery using nanoparticles 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 
Type of 
Study 

Results Ref. 

NP HAS 185.8 IV injection In vivo  solubility, sustained release,  arthritis index score [90] 

NP DM-β-CyD BSA 148.4–262.9 IV injection In vivo  solubility,  tmax & MRT,  Cmax [91] 

NP BSA  190 IV injection In vivo  AUC,  accumulation in kidneys & nephrotoxicity [92] 

NP SPC / α-Tocopherol  40 IV injection In vivo  Toxicity [93] 

Micelles PEO-PCL  50 IV injection In vivo   doses &  functional recovery of injured nerves [94] 

Micelles MPEG-PCL  25 IV injection In vivo Sustained release,  body weight, colon length [95] 

Micelles PCL-PEG-PCL  20 IV injection In vitro Sustained release [98] 

SMEDDS Capmul® MCM C8, C-EL, CarbitolTM  < 25  Oral In vivo  lymphocytes in peripheral blood [96] 

SMEDDS Ethyl oleate, GF, Solutol HS 15  < 100 Oral In vivo  Cmax,   tmax,  accumulation in RES organs  [97] 

SMEDDS Miglyol® 840, Transcutol® P, TPGS/CL-E  18 Oral In vivo  Cmax, tmax, AUC, & relative bioavailability [98] 

NPMS PLGA/Eudragit®  240 Oral In vivo  Colon delivery,  side effects [99] 

Ethosomes Ethanol, Propylene glycol  76-104 Topical In vivo  skin penetration &  mouse ear swelling [100] 

Liposomes P90H, loralan-CH - Topical In vivo  skin penetration  [101] 

NP BSA  182 Pulmonary In vivo Sustained release,  degree of lung inflammation [102] 

NP or MS PLGA or Eudragit® 455 or 469 Oral In vivo  Nephrotoxicity,  Colon delivery [24] 

NP PLGA  100 Rectal In vivo  Colon delivery and tissue penetration [172] 

URF Lactose 2570 Pulmonary In vivo Significant and rapid systemic absorption [173] 

NP Euderagit®/HPMC 500 – 2000 Oral In vivo  GI degradation,  cell uptake [174] 

NP Euderagit®/HPMC 2000 – 10000 Oral In vivo  absorption and bioavailability [175] 

NP PLGA-PEG  220 IV In vivo  AUC, MRT, lymphatic accumulation,  CL [176] 

NP Glyceryltrimyristate 80 – 160 Topical In vivo  Stratumcorneum, epidermal and dermal levels [177] 

Complex Surfactant protein A  400 - In vitro  cell uptake, anti-inflammatory effect [178] 

MNLC PGMC/Glyceryltrimyristate 20 – 150 Topical In vivo  Solubility,  Skin irritation [179] 

: increased; : decreased; AUC: Area under the curve;  BSA: Bovine serum albumin; C-EL: Cremophor® EL; CL: Systemic clearance; DM-β-CyD: heptakis(2,6-di-O-methyl)-
β-cyclodextrin; GF: glycofurol; HSA: human serum albumin; HPMC: Hydroxypropylmethylcellulose;  MRT: Mean Residence Time; NPMS: Nanoparticles entrapped in pH-
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sensitive microspheres; P90H: Phospholipon® 90-H; PEG: Polyethylene glycol;  PGMC: Propylene glycol monocaprylate;  PLGA: poly(lactide-co-glycolide); TPGS: tocopheryl 
polyethylene glycol succinate; SMEDDS: self-microemulsifying drug delivery system; SPC: Soy phosphatidylcholine;  URF: Ultra-rapid Freezing. 
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Table 3.  Selected publications on methotrexate delivery using nanoparticles 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 
Type of 
Study 

Results Ref. 

SLN Gelucire, stearic acid, P90NG, fucose  163-174 IV injection In vivo  t1/2 & AUC,  accumulation in tumor site [110] 

SLN Soya lecithin, stearic acid  270-490 IV injection In vivo   t1/2 & MRT,  life-span of EAC bearing mice [111] 

Micelles Pluronic® P105/F127  23 IV injection  In vivo  systemic circulation,  cytotoxicity in MDR tumor [112] 

Micelles PEI-g-mPEG, Zn2+
, DTDPA 117 - In vitro enhanced and specific antitumor activity [113] 

Liposomes Egg lecithin, CH, PA 100 IV injection In vivo  anti-inflammatory effect,  haematotoxic activity [114] 

Liposomes Cationic liposome - IV injection In vivo   leucocyte- & platelet-endothelial cell interaction [115] 

Liposomes PC, CH w/out DSPE-PEG 105-168 IV injection In vivo  CL,  circulation,  hepatosplenic & kidney uptake [116] 

Liposomes DSPE-MPEG/chitosan 210-260 IV injection In vivo  edema,  anti-inflammatory effect  [117] 

ABDD HAS n.r. IV injection In vivo  onset of arthritis &  accumulation in inflamed paws [118] 

ABDD HAS n.r. IV injection In vivo  MTX potency &   t1/2  [119] 

microsphere Poly(L-lactic acid) 83000-18700 IA injection In vivo  plasma concentration &  clearance from joint [120] 

Niosomes NIS I, CH, dicetyl phosphate  115-124 IV injection/oral In vivo  circulation,  uptake in liver & brain,  absorption [121] 

SLN Cetyl alcohol, stearic acid, C888, Tw   123-511 Topical In vivo   accumulation in human skin and  APIH  [122] 

ME Lecithin, water/PG, decanol n.r. Topical In vitro  solubility & skin permeation [123] 

ME Phospholipid 90G, ethanol, Tw  19-48 Topical In vivo  skin penetration &  systemic absorption [110] 

Liposomes PC, PI, CH, collagen, carrageenan  138 Pulmonary In vivo  accumulation in the lungs [124] 

: increased; : decreased; 2HBC: 2-hydroxypropyI-β-cyclodextrin; ABDD:  Albumin based drug delivery; APIH: Average percent improvement in healing of psoriasis 
lesions; AUC: area under the curve; C888: Compritol® 888; CH: cholesterol; DSPE-PEG: distearoylphosphatidyl-ethanolamine-N-poly(ethyleneglycol) 2000; DTDPA:  
dithiodipropionic acid; EAC: Ehrlich Ascite Carcinoma Gelucire: Gelucire® 50/13;  IA: intraarticular; IV: intravenous; LD50: The dose lethal to 50% of the experiment 
mice; ME: Microemulsion; MRT: Mean residence time; NIS: Non-ionic surfactant; n.r.:  not reported; P90NG: Phospholipid 90 NG ;PA:  Phosphatidic acid; PC:  
Phosphatidylcholine; PEI-g-mPEG: Polyethyleneimine grafted methoxy polyethylene glycol; PG:  Propylene glycol; PI: phosphatidylinositol; t1/2: drug half-life; Tw: 
Tween® 80; SLN: Solid-lipid nanoparticle;  
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Table 4.  Selected publications on corticosteroids delivery using nanoparticles 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 
Type of 
Study 

Results Ref. 

Liposomes
/ Micelles 

HC, Phosphatidylcholine/ 
TPGS 

180/ 

 17 
- In vitro  Solubility & permeability through nasal mucosa [129] 

Liposomes
/ Micelles 

DEX, DPPC, PEG-DSPE, CH/ 
DMSL3, PEG-b-pHPMAmLacn 

96/ 

 53 
IV injection In vivo  joint inflammation, maintained longer with micelles [130] 

Liposomes MPS, HSPC, DSPE-PEG, CH 80-90 SC injection In vivo  dose frequency,  efficacy &  toxicity  [131] 

Liposomes PLP, DPPC, PEG-DSPE, CH  100 IV injection In vivo  t1/2, side effects & showed efficacy for atherosclerosis [132] 

Liposomes PLP, DPPC, PEG-DSPE, CH  100 IV injection In vivo  t1/2   & targeted atherosclerotic macrophages [133] 

NP DEX,  PEG-dendritic block telodendrime 10-20 Pulmonary In vivo  airway inflammation [134] 

Liposomes BUD, PG-PC-PEG-DSPE-CH n.r. Pulmonary In vivo Maintained efficacy while  dose frequency [137] 

nanocapsule BDP, ethyl cellulose/PCL  260 Pulmonary In vivo Sustained release & no acute pulmonary injury in rats [138] 

Micelles PHEA-PEG-DSPE  59-69 Pulmonary In vivo  solubility & drug cellular internalization [139] 

Micelles DEX, Polyoxyl 40 stearate, polysorbate 80  15 Ocular In vivo Therapeutic concentrations in the retina and choroid [135] 

NP DSP, PLGA  200 Ocular In vivo Sustained release,   systemic exposure   [136] 

liposomes DSP, EPC, DSPE-PEG, CH, HA  145 Otic In vivo Sustained release in the perilymph for up to 30 days [140] 

NP DEX, PEG-PLA  Otic In vivo 
Sustained release & protection against hearing loss at 4 

and 8 kHz 
[141] 

: increased; : decreased; BDP:  Beclomethasone dipropionate; CH: Cholesterol; DEX: Dexamethasone; DMSL3: A polymerizable prodrug of dexamethasone; DPPC:  
Colfosceril palmitate; DSP: Dexamethasone sodium phosphate; DSPE:  1,2-Distearoyl-sn-glycero-3-phosphoethanolamine; EPC:  Egg phosphatidylcholine; HA:  

hyaluronic acid; HC: Hydrocortisone; MPS:  Methylprednisolone hemisuccinate; NP: Nanoparticles; PC:  Phosphotidylcholine; PCL:  Poly(-caprolactone); 
PEG:  Poly(ethylene glycol); PEG-b-pHPMAmLacn: Poly(ethylene glycol)-b-poly(N-(2-hydroxypropyl)methacrylamide lactate); PG:  Phosphatidylglycerol;  PHEA:  α,β-
poly(N-2-hydroxyethyl)-dl-aspartamide; PLA: Polylactic acid; PLGA:  Poly(lactic-co-glycolic acid); PLP: Prednisolone phosphate; TPGS:  d-α-tocopheryl polyethylene glycol 
1000 succinate  
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Table 5.  Selected publications sirolimus (rapamycin) delivery using nanoparticles 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 
Type of 
Study 

Results Ref. 

NP PIP, PLGA ~134 Oral In vivo Sustained release,  bioavailability,  transport (P-gp efflux) [180] 

NLC Precirol® ATO 5, oleic acid, Tween® 80 108.3 Oral In vivo Sustained release,   oral bioavailability [151] 

NP PVP K90, SDS 30 Oral In vivo  Cmax, AUC, C24h &   tmax [155] 

NP PEG-b-PBLG 106 IV injection In vivo NP accumulation in the abdominal aortic aneurysm wall [181] 

NP Acetalated β-CyD material 185-250 SC injection In vivo Sustained release,  anti-atherosclerotic activity [148] 

SMEDDS Capryol™ PGMC, glycofurol, vitamin E TPGS ~108.2 Oral In vivo  absorption and oral bioavailability [152] 

Micelles TPGS 11 Oral In vivo  absorption, AUC, Cmax and oral bioavailability [157] 

SMEDDS LF, CrEL, TransP, MCC, Lactose, CMS-Na ~25 Oral In vivo  absorption and oral bioavailability [153] 

NP polyvinylpyrrolidone (PVP) K30 250 Oral In vivo  absorption, AUC, Cmax and oral bioavailability [156] 

NP NIPAAm, acrylic acid, MMA/or NVP 80 Oral In vivo  bioavailability, improved PK and efficacy profile [154] 

Liposomes soybean lecithin, cholesterol 140-211 Ocular, S/C In vivo Clinical  in tear production in dry eye [159] 

Micelles MPEG-PCL 40 Ocular, IVI In vivo  solubility and drug localization in retinal tissue [160] 

Microsphere 20[PDLA-PEG1000]-80[PLLA] 20000 
S-Cap 

injection 
In vivo  macrophage infiltration,  myofibroblasts in the kidney [182] 

NP PLGA 200 
IV & SC 

injection 
In vivo Induced antigen-specific B-cell tolerance lasted 200 days [183] 

Micelles PEGylated octadecyl lithocholate, LTTHYKL 121-130 IP injection In vivo  Targeted and  efficacy (adenoma regression),  toxicity [184] 

Micelles HG l-lactide monomers, gelatin - IA injection In vivo Delayed OA progression maintained for 16 weeks [147] 

NP HA, 3-amino-4-methoxy-benzoic acid ~10 SC injection In vivo  Cmax, t½, AUC, &   Cl,  survival in BC animal model [185] 

NP Gel PLGA, PVA, Poloxamer 407 220-350 periadventitial In vivo Sustained release, prolonged attenuation of IH  [147] 

Liposomes DPPC, DPPE, DCP, cholesterol, ganglioside ~140 IV injection In vivo Induce autophagic cell death in Burkitt’s lymphoma cells [186] 

NP PFOB, surfactant mixture including lecithin ~160-240 IV Injection In vivo  skeletal muscle strength & cardiac contractile in DMD [149] 

NP Albumin  ~100  IV injection In vivo improve delivery, safety, efficacy in various solid tumors [187] 

NP Albumin  ~100  adventitial inj. In vivo  in luminal stenosis and medial fibrosis at 28 days [188] 

NP ELPs fused with FKBP12 24 IV injection In vivo  nephrotoxicity and  CATS [189] 

Liposomes/ 
micelles 

Cholesterol, EPC, DSPG and DSPE–PEG / 

DSPE–PEG 

~90 / 
~14 

Local 
intramural 

In vivo 
 Vascular stenosis,  luminal area,  

suppressed Ki67-positive cell proliferation 
[146] 

NP chitosan/polylactic acid 300 Ocular In vivo  survival time of the corneal allografts [158] 
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Micelles PEG-b-PCL, w/ or w/o  α-tocophero 37,101 IV injection In vivo Altered drug disposition with  distribution into the brain [190] 

: increased; : decreased; 20[PDLA-PEG1000]-80[PLLA]:  20% w/w of poly(DL-lactide)-PEG1000-poly(DL-lactide) and 80% w/w of poly(L-lactide); AUC: Area under the plasma  
concentration curve; BC: Breast cancer; Cmax: The maximal plasma concentration; C24h: Total blood concentration at 24 h; CATS: Cathepsin S, a tear biomarker of Sjögren’s syndrome; CMS-

Na:  sodium carboxymethyl starch; CrEL:  Cremophor EL; CyD: Cyclodextrin; DCP: Dicetylphosphate; DMD: Duchenne muscular dystrophy; DOPE:  Dioleoylphosphatidylethanolamine; 

DPPC:  Dipalmitoylphosphatidylcholine; DPPE:  dipalmitoylphosphatidylethanolamine; DSPE-PEG:  1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-
2000]; DSPG:  distearoyl-sn-glycerophosphoglycerol; ELPs:  Elastin-like Polypeptides; EPC:  Purified egg phosphatidylcholine; HA:  Hyaluronic acid; HG: Hydrogel; IA: Intraarticular; IH:  
intimal hyperplasia; IV: Intravenous; IVI: Intravitreal injection; LF:  Labrafil® M1944CS; LTTHYKL: Targeting peptide; MMA:  methylmethacrylate; MCC:  microcrystalline cellulose; NIPAAm: 
N-isopropylacrylamide; NLC: Nanostructured lipid carrier;  NVP:  vinylpyrrolidone; P-gp: P-glycoprotein; PEG-b-PBLG: Poly(ethylene glycol)-block-poly(γ-benzylL-glutamate); PEG-b-PCL: 

Poly(ethylene glycol)-block-poly(-caprolactone); PFOB: perfluorooctylbromide; PGMC: Propylene glycol monocaprylate; PIP: Piperine , a chemosensitizer; PLGA: Poly(D,L-lactide-co-
glycolide); S/C: Subconjunctival; S-Cap: Subcapsular; SDS:  Sodium dodecyl sulfate; SMEDDS: self-microemulsifying drug delivery system; tmax: Time at which Cmax is achieved; TPGS: d-α-
tocopheryl  polyethylene  glycol succinate; TransP;  Transcutol® P;  
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Table 6.  Selected publications on mycophenolic acid or its ester prodrug mycophenolate mofetil delivery using nanoparticles 

Carrier 
Type 

Ingredients Size (nm) 
Route of 

Administration 

Type 
of 

Study 
Results Ref. 

Liposomes DOPC, Chol, DSPE-PEG-NH2 351.3 Injection In vivo Effective for nephrotic syndrome &  kidney damage   [167] 

Nanogel Phosphatidylcholine, Chol, DSPE-PEG-amine 225 IP injection In vivo  MST by 2-3 months in a lupus prone mice model [164] 

Nanogel/ 
NP 

Phosphatidylcholine, Chol, DSPE-PEG-amine  
/PLGA 

187/ 
171 

IP injection In vivo internalized by dendritic cells [165] 

NP PLGA 171 IP Injection In vivo allograft survival &  drug toxicity [166] 

: increased; : decreased;  Chol:  Cholesterol; DOPC:  1,2-Dioleoyl-sn-glycero-3-phosphocholine; DSPE-PEG(2000)-amine: 1,2-distearoyl-snglycero-3-phosphoethanolamine-N-
[amino(polyethylene glycol)-2000]; DSPE-PEG-NH2: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(polyethylene glycol)-2000]; PLGA: poly(lactic-co-glycolic acid); 
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Figure 1. Body parts and organs that benefit from immunosuppressive therapy  
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Figure 2. Nano-delivery of immunosuppressive therapy  
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