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1.  Introduction
Fine particulate matter (PM2.5) has a serious threat to public health. PM2.5 concentrations have increased in most 
developing countries in recent decades (C. H. Lim et al., 2020). PM2.5 sources include energy production, indus-
try, transport, agriculture, desert dust, and residential solid fuel use (Kodros et al., 2018; Sarkar et al., 2018, 2019; 
Shaddick et al., 2020; Yun et al., 2020; Zhao et al., 2018). The increasing air pollution impacts visibility and con-
tributes to long-term climate change, besides, threats to human health. The correlation between health issues and 

Abstract  PM2.5 is a major component of air pollution in China and has a serious threat to public health. 
It is very important to quantify spatial characteristics of the health effects caused by outdoor PM2.5 exposure. 
This study analyzed the spatial distribution of PM2.5 concentration (45.9 μg/m3 national average in 2016) and 
premature mortality attributed to PM2.5 in cities at the prefectural level and above in China in 2016. Using 
the Global Exposure Mortality Model (GEMM), the total premature mortality in China was estimated to be 
1.55 million persons, and the per capita mortality was 11.2 per 10,000 persons in the year 2016, resulting in 
higher estimates compared to the integrated exposure-response model. We assessed the premature mortality 
attributed to PM2.5 through common diseases, including ischemic heart disease (IHD), cerebrovascular disease 
(CEV), chronic obstructive pulmonary disease (COPD), lung cancer (LC), and lower respiratory infections 
(LRI). The premature mortality due to IHD and CEV accounted for 68.5% of the total mortality, and the per 
capita mortality (per 10,000 persons) for all ages due to IHD was 3.86, the highest among diseases. For the 
spatial distribution of disease-specific premature mortality, the top two highest absolute numbers of premature 
mortality associated with IHD, CEV, LC, and LRI, respectively, were found in Chongqing and Beijing. In 338 
cities of China, we have found a significant positive spatial autocorrelation of per capita premature mortality, 
indicating the necessity of coordinated regional governance for an efficient control of PM2.5.

Plain Language Summary  Fine particulate matter (PM2.5) concentrations have increased in general, 
in most developing countries in recent decades. In China, PM2.5 pollution has become a major component of 
air pollution and has serious health impacts. To obtain a comprehensive understanding of the national health 
impacts of PM2.5 in China, we have used the Global Exposure Mortality Model (GEMM) to estimate the 
premature mortality associated with PM2.5 exposure in 338 cities in China at the prefectural level and above. 
In addition, we analyzed the spatial distribution of premature mortality attributed to PM2.5 for five diseases, 
including ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease 
(COPD), lung cancer (LC), and lower respiratory infections (LRI). Our study finds that the total premature 
mortality associated with PM2.5 exposure in China for 2016 was 1.55 million persons. The top two highest 
absolute numbers of premature mortality associated with IHD, CEV, LC, and LRI, respectively were found 
in Chongqing and Beijing. Furthermore, cities with high per capita premature mortality tended to be spatially 
connected with other cities with high per capita premature mortality, indicating the coordinated regional 
governance should be adopted to reduce the impact of PM2.5 on human health.
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PM2.5 has been pointed out by many studies (Balakrishnan et al., 2019; Burnett et al., 2018; Cropper et al., 2021; 
Dandona et al., 2017; Li et al., 2018; Liang et al., 2020; Mehta et al., 2021; Wu et al., 2019; X. Yang et al., 2020; 
Y. Yang et al., 2018). According to the comparative risk assessment of the global burden of disease (GBD) 2019 
project of the Institute for Health Metrics and Evaluation (IHME), globally, about 6.67 million premature deaths 
are due to air pollution in the year 2019 (GBD 2019 Risk Factors Collaborators, 2020). The premature mortality 
caused by outdoor air pollution will be 6.6 million by 2050 if we do not take any step to curb the air pollution 
(Lelieveld et al., 2015), especially in Asia.

Efforts have been made in China to improve air quality, but the impact of PM2.5 on human health must be taken 
seriously. In 2013, China issued the Air Pollution Prevention and Control Action Plan (APPCAP) that improved 
PM2.5 concentration in China (Zhao et al., 2018; B. Zheng et al., 2018). In addition, due to the rapid urbanization 
and improved economic conditions, rural-to-urban migrants switched to cleaner fuel types, making a great con-
tribution to the decline of PM2.5 concentration in China. However, serving as the destinations of massive migra-
tions, megacities such as Beijing and Shanghai experienced increases in PM2.5 concentrations (Shen et al., 2017). 
Moreover, the population of Chinese mainland was 1.412 billion in 2020, increasing by 5.38% from 2010 to 2020. 
The GBD analysis found that ambient PM2.5 pollution resulted in approximately 1.4 million premature deaths in 
the year 2019 in China (GBD 2019 Risk Factors Collaborators, 2020).

As cohort and time-series analysis has been extensively used in air pollution and human health research, several 
quantitative epidemiological studies were conducted in China and other countries showing a correlation between 
air particulate pollution and human health. Burnett et  al.  (2014) found that long-term exposure to PM2.5 was 
closely related to premature deaths caused by ischemic heart disease (IHD), cerebrovascular disease (stroke, 
CEV), chronic obstructive pulmonary disease (COPD), lung cancer (LC), and lower respiratory infections (LRI). 
The GBD 2010 evaluated the health of people in severely polluted regions using an improved exposure-response 
relationship and quantified health loss caused by diseases, and risk factors (S. S. Lim et al., 2013). Epidemio-
logical studies of chronic PM2.5 exposure and cardiopulmonary disease in Asia have been carried out, and strong 
evidence for the adverse effect of PM2.5 on mortality was provided (Ebenstein et al., 2017; Guan et al., 2016; Li 
et al., 2018; Vodonos et al., 2018). In China, efforts were made to analyze the quantitative relationship between 
exposure to PM2.5 and human mortality rates (Cao et al., 2011; Huang et al., 2012; J. Liu et al., 2016), but these 
studies lack a detailed spatial analysis and concentration-response function analysis. Hu et al. (2017) found 1.30 
million premature deaths attributed to PM2.5 in China in 2013, which coincided with the estimation of 1.37 mil-
lion by J. Liu et al. (2016) and 1.36 million by Lelieveld et al. (2015). According to the unchanged population 
scenario, Wang et al. (2019) estimated about 0.83 million premature deaths related to PM2.5 exposure in 2020, 
and 0.74 million premature deaths in 2030. However, considering the increasing and aging population, about 1.04 
million premature deaths in 2020, and 1.2 million premature deaths in 2030 were predicted. Air pollution and its 
health impacts show strong spatiotemporal variations. Although PM2.5-related human health impacts have been 
evaluated in few cities and the whole country in China (Fang et al., 2016; Hu et al., 2017; Madaniyazi et al., 2015; 
Maji et al., 2018; S. Zheng et al., 2015), the spatial distribution analysis including spatial autocorrelation of health 
effects associated with PM2.5 exposure in China is still lacking, in view of the large area and population distri-
bution. In addition, for the estimation of premature deaths in China, the current studies (Hu et al., 2017; M. Liu 
et al., 2017; Tian et al., 2017; Yin et al., 2020) are mainly using the Integrated Exposure-Response (IER) (Burnett 
et al., 2014), and Log-linear (LL) models (Chen et al., 2017; Fang et al., 2016). The IER model is mainly based on 
cohort studies in Western Europe and North America, where the PM2.5 exposure level is usually lower compared 
to China and other Asian countries. The Limitation of the IER model is the lack of cohort studies with high PM2.5 
exposure levels. Burnett et al. (2018) proposed an innovative Global Exposure Mortality Model (GEMM), which 
was initially applied globally (Bayat et al., 2019; Chowdhury et al., 2020; Lelieveld, Klingmüller, Pozzer, Bur-
nett, et al., 2019; Lelieveld, Klingmüller, Pozzer, Pöschl, et al., 2019). Compared with the IER model, the GEMM 
assumes a logarithmic relationship between exposure and baseline hazard ratio and incorporates the results of the 
Chinese cohort study (Yin et al., 2017). Based on huge data from 41 cohorts in 16 countries, the GEMM takes 
higher air pollution into account. At present, there is a lack of detailed analysis on PM2.5 exposure associated 
premature mortality in China using the GEMM method.

To obtain a comprehensive understanding of the national health impacts of PM2.5 in China, we have computed 
PM2.5 concentrations in 338 cities in China at the prefectural level and above based on an extended observational 
network, and estimated the premature mortality for different diseases (IHD, CEV, COPD, LC, and LRI) due 
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to PM2.5 using the GEMM, and analyzed the spatial characteristics of premature mortality in China at the city 
levels. Here we hypothesize that there is a significant spatial autocorrelation of premature mortality in 338 cities 
of China. Inadequate exposure-hazard relationships and spatial autocorrelation might have biased previous study 
results. The present spatially explicite analyses aims to improve these aspects.

2.  Data and Methods
2.1.  Data Sources

China announced the ambient air quality standards (GB 3095-2012) in 2012 which improved the validity of 
data statistics, and this regulation has been implemented nationwide since January 2016. Therefore, our study is 
focused on the year 2016.

Hourly concentrations of PM2.5 data for the periods 1 January to 31 December 2016 were collected from 1,497 
monitoring sites (Figure 1a) located in 338 cities at prefectural level and above in China, and data were taken from 
the China National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn/). A prefectural level city 
is the second level of the administrative structure in China, which comprises both urban areas and surrounding 
rural areas (e.g., countries, towns, and villages).

The monitoring sites are concentrated in areas with a stronger socio-economic background, namely Beijing-Tian-
jin-Hebei (BTH) region and the eastern coastal provinces. Among the eastern coastal provinces, Shandong, 
Jiangsu, and Guangdong Provinces have the densest monitoring sites, accounting for 20% of the total number 
of stations, while monitoring stations are sparse in the western provinces such as Qinghai, Tibet Autonomous 
Region, and Ningxia Hui Autonomous Region, accounting for only 3% (Figure 1a).

Population data were obtained from the National Bureau of Statistics of China (http://www.stats.gov.cn/), and 
provincial statistical yearbooks (Figure 1b). Population numbers are highest in Chongqing (30.48 million), fol-
lowed by Shanghai (24.20 million), and Beijing (21.73 million).

Figure 1.  Spatial distribution of ground PM2.5 monitoring sites and population in 2016, (a) refers to the PM2.5 monitoring sites, (b) refers to the population in cities at 
the prefectural level and above in China.

http://www.cnemc.cn/
http://www.stats.gov.cn/


GeoHealth

ZHENG ET AL.

10.1029/2021GH000532

4 of 13

2.2.  Methods

2.2.1.  Concentration-Response Functions

The Log-Linear (LL) model is commonly used to estimate premature deaths 
due to PM2.5 exposure (US Environmental Protection Agency, 2015). Moti-
vated by the LL model, Burnett et al. (2018) developed the GEMM for the as-
sociation between PM2.5 and premature mortality, and constructed GEMMs 
for five specific diseases (IHD, CEV, COPD, LC, and LRI). The relationship 
between PM2.5 concentrations and mortality is described by the following 
hazard ratio (HR) function:

��(�) = exp{�� (�)}� (1)

where 𝐴𝐴 𝐴𝐴 is the concentration-response model coefficient, z = max (0, PM2.5–2.4 μg/m3), 𝐴𝐴 𝐴𝐴 (𝑧𝑧) = 𝑓𝑓 (𝑧𝑧)𝜔𝜔(𝑧𝑧) , with 
𝐴𝐴 𝐴𝐴 (𝑧𝑧) = log(1 + 𝑧𝑧∕𝛼𝛼) , �(�) = 1∕(1 + exp{−(� − �)∕(�)}) . 𝐴𝐴 𝐴𝐴 , μ, and ν determine the curved form of the hazard 

ratio function. Overall, through specifying the parameters (α, μ, ν) in Table 1, we can calculate 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑧𝑧) (Burnett 
et al., 2018).

2.3.  Mortality Estimation

The premature mortality for five different diseases (IHD, CEV, COPD, LC, and LRI) associated with PM2.5 was 
calculated and analyzed using the health impact function (Lelieveld et al., 2013, 2015; Pozzer et al., 2019; S. 
Zheng et al., 2015) based on the annual average PM2.5 concentration in each city.

ΔMort = �0 × Pop ×
(HR − 1

HR

)

� (2)

where 𝐴𝐴 ΔMort is the change in annual mortality due to PM2.5. 𝐴𝐴 𝐴𝐴0 refers to the baseline mortality rate (BMR) for 
a given population and a specific disease. The BMR attributed to each disease in China was obtained at the pro-
vincial scale available by Zhou et al. (2016). However, Zhou et al. (2016) only provided BMR data for the year 
2013. We have estimated the premature mortality based on the hypothesis of unchanged BMR values for each 
province for the years 2013 and 2016. In this study, we have considered GEMM parameters for the population 
above 25 years and below 5 years of age. Pop represents the adult population (above 25 years of age) and infants 
(below 5 years of age) exposed to PM2.5 in a certain area.

Based on the population data and baseline mortality rate, the number of premature deaths from the five diseases 
attributable to PM2.5 at the city levels was calculated using the health impact function. For the population above 
25 years, we used the corresponding population data and GEMM parameters (Table 1) to calculate the premature 
mortality due to the five diseases. For the infants below 5 years, we used the corresponding population data (be-
low 5 years) and GEMM parameters to calculate the premature mortality due to LRI. Finally, the total premature 
mortality was the sum of the premature mortality at these two age groups. Uncertainty ranges were expressed as 
the 95% confidence interval (95% CI) (Burnett et al., 2018).

2.3.1.  Spatial Autocorrelation Analysis

We considered the spatial autocorrelation analysis to determine whether there is a spatial correlation pattern 
(convergence or heterogeneity) between premature deaths attributed to PM2.5 in each city of neighboring cities. 
A global spatial autocorrelation analysis is performed to determine the spatial characteristics of the premature 
deaths in the entire region. A local spatial autocorrelation analysis is conducted to determine the spatial hetero-
geneity of the premature deaths.

The indicators and methods for measuring global spatial autocorrelation mainly include global Moran's I and 
Geary's C. Since Moran's I is the most widely used, this study used this indicator to test the spatial agglomeration, 
and it is calculated as follows.

Cause of death θ Standard error θ α μ ν

IHD 0.2969 0.01787 1.9 12 40.2

CEV 0.2720 0.07697 6.2 16.7 23.7

COPD 0.2510 0.06762 6.5 2.5 32

LC 0.2942 0.06147 6.2 9.3 29.8

LRI 0.4468 0.11735 6.4 5.7 8.4

Table 1 
GEMM Parameter Estimates for the Population Above 25 years by Cause of 
Death (Burnett et al., 2018)
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𝐼𝐼 =
𝑛𝑛
∑𝑛𝑛

𝑖𝑖=1
∑𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̄𝑥)(𝑥𝑥𝑗𝑗 − 𝑥̄𝑥)
∑𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝑥̄𝑥)2
∑𝑛𝑛

𝑖𝑖=1
∑𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖
� (3)

where I means the Moran's I index. n refers to the number of spatial units. xi and xj represent the premature 
deaths of adjacent spatial units. 𝐴𝐴 𝐴𝐴𝐴 is the average of the total premature mortality in all spatial units. Wij means the 
spatial weight matrix (determined by queen contiguity in this study) and is used to express the proximity of the 
spatial units. The value of Moran's I ranges from −1 to 1. Positive values of Moran's I suggest a positive spatial 
autocorrelation among premature mortality of different spatial units, and negative values represent a negative 
spatial autocorrelation among premature mortality of different spatial units. A zero value of Moran's I indicates 
the random spatial pattern among premature mortality of different spatial units.

The local spatial correlation and difference between each spatial unit (city in this study) and its surrounding 
spatial unit can be assessed by the local spatial autocorrelation analysis. The methods for measuring local spatial 
autocorrelation mainly include Gi statistics, Moran scatter plot, and local indicator spatial autocorrelation (LISA) 
(Anselin, 2019; Anselin & Li, 2019). LISA maps could provide a statistic for each spatial unit with an assessment 
of significance. The degree of concentration of similar values around a spatial unit could be well presented in 
LISA maps. This study used the indicator of LISA to analyze the local spatial correlation, and it is calculated as:

�� = ��
∑�

�≠�
������

(4)

where zi and zj are the standardized form of the premature mortality in the corresponding spatial unit. Wij is the 
spatial weight matrix (determined by queen contiguity in this study).

3.  Results and Discussion
3.1.  Spatiotemporal Characteristics of PM2.5

The average PM2.5 concentration of all stations in 338 cities in the year 2016 was 45.9 μg/m3. It was highest 
during winter (December-February, 70.7 μg/m3), followed by spring (March–May, 47.1 μg/m3), autumn (Sep-
tember–November, 45.4 μg/m3), and summer (June–August, 30.2 μg/m3) seasons. The mean of monthly PM2.5 
(shown in Figure 2) shows low PM2.5 pollution during summer and high PM2.5 pollution during winter season. 
In summer, late spring, and early autumn seasons, PM2.5 pollution was low, 38.9, 31.3, 30.3, 29.2, 37.9, 38.0 μg/
m3 in the months of May, June, July, August, September, and October, respectively. In winter season, the PM2.5 

Figure 2.  Boxplot (median and interquartile range) of monthly PM2.5 concentrations in China in the year 2016. The black 
line represents the mean of monthly PM2.5 concentrations.
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pollution was very high, highest in the month of December. The monthly average of PM2.5 concentration was 
82.8 μg/m3 in the month of December, 2.8 times compared to the month of August, which had the lowest monthly 
average of PM2.5 concentration.

The annual average of PM2.5 is the average of PM2.5 concentration in all stations in each city. Figure 3 shows 
the spatial distribution of the annual average of PM2.5 concentration in 338 cities in 2016, ranging 10–157 μg/
m3. China announced the ambient air quality standards (GB 3095-2012) in the month of February 2012. The 
threshold values of the annual average of PM2.5 concentration were set in this standard, with 15 μg/m3 as the first 
concentration threshold (i.e., annual Grade I standard), and 35 μg/m3 as the second concentration threshold (i.e., 
annual Grade II standard). Among the 338 cities, there were 70% cities with the annual mean concentration of 
PM2.5 above 35 μg/m3, namely exceeded the second concentration threshold. The annual mean PM2.5 in each city 
was mainly in the range of 35–70 μg/m3, accounting for 59%. The cities where annual PM2.5 concentration above 
70 μg/m3 accounting for 11%, were mainly located in the southwest of BTH region, north of Henan Province, 
west of Shandong Province, Hetian, Kashgar, Aksu, and Kizilsu Kirghiz Autonomous Prefecture in west of Xin-
jiang Uygur Autonomous Region.

3.2.  Premature Mortality Associated With the PM2.5 Exposure

3.2.1.  Total Premature Mortality Analysis

With the health impact function of Equation 2, the PM2.5 exposure associated premature mortality was estimat-
ed. In 2016, the total premature mortality due to the five diseases was 1,546,492 persons (95% CI: 1,036,657–
1,944,566) in 338 cities of China, and the per capita mortality for all ages was 11.2 per 10,000 persons (95% CI: 
7.5–14.1). We found that our assessment of 1.55 million premature deaths due to PM2.5 in 2016 was higher than 
the results of earlier studies (Table 2). From Equations 1 and 2, the premature mortality due to PM2.5 is influenced 
by the hazard ratio function, population, and baseline mortality rate. We considered the year 2016 and obtained 
the hourly concentrations of PM2.5 data from the CNEMC and population from the National Bureau of Statistics 
of China as the study carried out by Maji et al. (2018). The main difference is the hazard ratio function. Our esti-
mation was 60% higher compared to the estimation (0.964 million) by Maji et al. (2018) for the year 2016. This 
was because we considered the GEMM developed by Burnett et al. (2018) to estimate premature mortality associ-
ated with long-term exposure to PM2.5, while earlier studies (Hu et al., 2017; J. Liu et al., 2016; Maji et al., 2018) 

Figure 3.  Spatial distribution of the annual PM2.5 concentration across China in 2016.
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used the IER model. Comparing with the IER model, the GEMM provides the hazard ratio based on a larger data 
set from 41 cohort studies in 16 countries, which includes the cohort study in China with exposure to much larger 
PM2.5 concentrations (Yin et al., 2017), thus, greatly extending the range of experimentally derived PM2.5 expo-
sure. For the GBD 2015 version of the IER model, the available PM2.5 observations from outdoor air pollution 
were limited to about 35 μg/m3. The epidemiological studies were augmented by using data from second-hand 
and active smoking studies, although it is not fully clear if this would lead to a correct estimation of the hazard 
ratios at high concentrations (Burnett & Cohen, 2020). The PM2.5 exposure observations in the GEMM can be 
as high as 84 μg/m3 by including cohort data from China (Burnett et al., 2018). Furthermore, Xue et al. (2019) 
found that the PM2.5-related deaths from census-based epidemiology were in better agreement with the GEMM 
estimates compared to the IER model estimates. Globally, The GEMM estimated 6.9 million premature deaths 
in 2015 due to specific causes (LRI, CEV, COPD, LC, and IHD), 73% higher than the estimation by IER (4.0 
million premature deaths). In China, GEMM estimated 1.946 million premature deaths in 2015, 75% higher 
than the estimation by IER (1.110 million premature deaths) (Burnett et al., 2018). In addition, Lelieveld, Kling-
müller, Pozzer, Burnett, et al. (2019) estimated 2.201 million premature deaths due to the five specific causes in 
China in 2015. Comparing with the results of Burnett et al. (2018) and Lelieveld, Klingmüller, Pozzer, Burnett, 
et al. (2019), our assessment of 1.55 million premature deaths in 2016 is lower. This is caused by different study 
years, different population and PM2.5 data sources, and different statistical units (the population and PM2.5 data 
are statistically analyzed at the city levels in this study). The present study estimated premature deaths in China 
using the GEMM, suggesting that PM2.5 exposure has much more serious health effects compared to earlier stud-
ies using the IER model.

High absolute numbers of premature mortality were found in the north, east, and southwest of China. The cities 
with the top 10 numbers of premature mortality were given in Table 3. The five cities with the highest num-
bers of total premature mortality were Chongqing (36,593 persons), Beijing (26,945 persons), Chengdu (21,231 

Studies Year Disease-specific premature mortality

Lelieveld et al. (2015) 2010 1,357,000 persons due to CEV, COPD, IHD, LC, and acute LRI

Xie et al. (2016) 2010 1,255,400 persons due to CEV, COPD, IHD, and LC

Hu et al. (2017) 2013 1,300,000 persons due to CEV, COPD, IHD, and LC

J. Liu et al. (2016) 2013 1,367,300 persons due to CEV, COPD, IHD, and LC

Maji et al. (2018) 2016 964,000 persons due to CEV, COPD, IHD, and LC

Table 2 
Earlier Estimations of Premature Mortality Due to PM2.5 by the IER Model in China

City
PM2.5 concentration 

(μg/m3)
Premature 
mortality

Uncertainty ranges of the 
premature mortality (95% CI)

Population 
(10,000 
persons)

Per capita 
mortality for 
all ages (per 

10,000 persons)
Lower 
bound Upper bound

Chongqing 53.0 36,593 23,234 46,980 3048.43 12

Beijing 72.0 26,945 19,357 32,508 2172.9 12.4

Chengdu 61.9 21,231 13,344 27,144 1591.76 13.34

Tianjin 70.1 20,040 14,470 24,127 1562.12 12.83

Baoding 92.3 19,260 13,519 23,264 1163.45 16.55

Shijiazhuang 95.0 18,023 12,667 21,738 1078.46 16.71

Harbin 50.3 16,583 11,777 20,391 1066.5 15.55

Shanghai 45.6 16,153 10,418 20,762 2419.7 6.68

Linyi 67.5 15,278 10,628 18,751 1044.3 14.63

Handan 81.5 15,024 10,484 18,267 949.28 15.83

Table 3 
The Ten Cites With the Highest Number of Total Premature Mortality
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persons), Tianjin (20,040 persons), and Baoding (19,260 persons). The cor-
responding per capita mortality (per 10,000 persons) for all ages was 12 in 
Chongqing, 12.4 in Beijing, 13.34 in Chengdu, 12.83 in Tianjin, and 16.55 in 
Baoding. Considering the population differences among cities, the five cities 
with the highest per capita mortality were Kashi (20.28 per 10,000 persons), 
Hetian (18.65 per 10,000 persons), Aksu (17.66 per 10,000 persons), Shiji-
azhuang (16.71 per 10,000 persons), and Urumqi (16.64 per 10,000 persons).

3.2.2.  Disease-Specific Premature Mortality Analysis

Table 4 shows the disease-specific premature mortality in 2016 in China. 
The premature mortality due to IHD was highest (0.534 million persons), 
and accounted for 34.5% of the total premature mortality, followed by CEV, 
of 0.525 million persons, and the corresponding ratio was 34%. The pre-
mature mortality due to LRI was the lowest (0.103 million) and accounted 
for only 6.7% of the total premature mortality. The per capita mortality (per 
10,000 persons) for all ages due to IHD, CEV, COPD, LC, and LRI was 3.86, 
3.8, 1.75, 1.03, and 0.75, respectively. Our findings show that in China, the 
premature mortality due to PM2.5 was mainly from IHD and CEV, accounting 
for 68.5% in total, while LRI had the lowest portion.

The spatial distribution of premature mortality due to the five diseases associated with PM2.5 in 338 cities of 
China is shown in Figure 4. The five cities with the highest premature mortality due to IHD were Beijing (11,671 
persons), Chongqing (8,959 persons), Tianjin (8,782 persons), Harbin (7,508 persons), and Baoding (7,373 per-
sons). The five cities with the highest premature mortality due to CEV were Chongqing (11,037 persons), Beijing 
(8,600 persons), Baoding (8,104 persons), Shijiazhuang (7,588 persons), and Chengdu (6,610 persons). The five 
cities with the highest premature mortality due to COPD were Chongqing (10,248 persons), Chengdu (6,190 
persons), Shanghai (3,015 persons), Nanchong (2,327 persons), and Wuhan (2,186 persons). The five cities with 
the highest premature mortality due to LC were Chongqing (4,213 persons), Beijing (2,851 persons), Shanghai 
(2,390 persons), Chengdu (2,285 persons), and Tianjin (2,224 persons). Regarding the premature mortality due 
to LRI, Chongqing, Beijing, Tianjin, Chengdu, and Zunyi had the highest premature mortality, and they were 
2,135, 1,764, 1,718, 1,681, and 1,099 persons, respectively. Overall, the top two highest premature mortality due 
to IHD, CEV, LC, and LRI, respectively were found in Chongqing and Beijing. Chengdu had the top five highest 
premature mortality due to CEV, COPD, LC, and LRI, respectively.

For the per capita mortality due to each disease, the top five cities with the highest per capita mortality due to 
IHD were Kashi (8.21 per 10,000 persons), Hetian (7.6 per 10,000 persons), Aksu (7.21 per 10,000 persons), 
Harbin (7.04 per 10,000 persons), and Urumqi (6.82 per 10,000 persons). Table 5 presents the top five cities with 
the highest per capita mortality due to each disease. Shijiazhuang (7.04 per 10,000 persons) in Hebei Province 
has the highest per capita mortality due to CEV. Zigong (4.24 per 10,000 persons) in Sichuan Province has the 
highest per capita mortality due to COPD.

3.2.3.  Spatial Autocorrelation of Per Capita Mortality

A spatial autocorrelation analysis was applied to find spatial correlation patterns between the per capita mortality 
due to the five diseases in each city. Using Equation 3, the value of global spatial autocorrelation coefficient, that 
is, global Moran's I of the per capita premature mortality caused by PM2.5 in 338 cities was estimated to be 0.74 
(p < 0.01). This means that the per capita premature mortality caused by PM2.5 in 338 cities in China is not ran-
domly distributed, but there is a significant positive spatial autocorrelation, that is, a clustering of similar values.

In order to identify the cluster pattern of per capita premature mortality due to PM2.5 in local space, this study used 
Equation 4 to calculate the local spatial autocorrelation coefficient, that is, LISA of each city in China, and further 
used the local Moran's I scatter plot (Figure 5) and LISA map (Figure 6) to characterize the local spatial corre-
lation. In the Moran's I scatter plot (Figure 5), the first and third quadrant represents High-High and Low-Low 
areas, respectively, indicating that one high value (high per capita premature mortality in this study) is surrounded 
by another high value, or that one low value (low per capita premature mortality in this study) is surrounded by 
another low value, meaning that there is a strong positive spatial autocorrelation, that is, spatial homogeneity. In 

Disease

Premature 
mortality 
(million)

Percent 
(%)

Per capita 
mortality for all 
ages (per 10,000 

persons)

Uncertainty ranges of 
the premature mortality 

(95% CI, million)

Lower 
bound Upper bound

IHD 0.534 34.5 3.86 0.489 0.575

CEV 0.525 34 3.8 0.266 0.724

COPD 0.242 15.6 1.75 0.127 0.333

LC 0.142 9.2 1.03 0.093 0.182

LRI 0.103 6.7 0.75 0.062 0.13

Table 4 
The Premature Mortality Attributed to PM2.5 by Disease Category and the 
Corresponding Per Capita Mortality (IHD, CEV, COPD, and LC for People 
>25 years and LRI for People >25 years and Infants <5 years) in China in 
the Year 2016
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Figure 4.  Spatial distribution of the premature mortality associated with (a) IHD, (b) CEV, (c) COPD, (d) LC, (e) LRI across China in the year 2016.
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addition, the second and fourth quadrants represent Low-High and High-Low areas, respectively, where a strong 
spatial negative autocorrelation exists, that is, the spatial unit (cities in this study) is heterogeneous.

The number of cities in the High-High and Low-Low quadrants accounted for 142/338 and 142/338 of the total, 
respectively. This means that the per capita premature mortality was spatially related, and cities with high per 
capita premature mortality tended to have a spatially connected and neighboring relationship with other cities 
with high per capita premature mortality.

Figure 6 shows the LISA cluster map and LISA significance map of the per capita premature mortality in 338 
cities. The High-High agglomeration cities were mainly distributed in the west of Xinjiang Uygur Autonomous 
Region, southeast of Shanxi Province, south of Hebei Province, Shandong Province, Henan Province, Liaoning 
Province, and Jilin Province. According to the hazard ratio function and mortality estimation equation, the per 
capita premature mortality is largely influenced by PM2.5 concentrations. In the High-High agglomeration cities 
(66 cities in total), the spearman's rank correlation coefficient between PM2.5 concentration and per capita pre-
mature mortality is 0.829, with statistical significance p-value <0.0001. Industrial emissions have a significant 
impact on the PM2.5 concentration, and influence the cluster pattern of per capita premature mortality. For exam-
ple, Shanxi is the main production and consumption area of raw coal in China (He et al., 2017). Hebei, Shandong, 
and Henan are the main concentration areas of coal-based industries in China (Luo et al., 2017). Therefore, high 
PM2.5 concentrations led to the formation of High-High agglomeration areas. In addition, meteorological con-

ditions are also key factors affecting the regional PM2.5 concentrations. In 
Xinjiang Uygur Autonomous Region, high PM2.5 concentrations also occur 
due to the prevalence of sandy and dusty weather (J. Liu et  al.,  2021). A 
consequence of High-High agglomeration cities is that PM2.5 pollution de-
mands for regional control and governance. The Low-Low agglomeration 
cities were mainly distributed in Zhejiang, Fujian, Guangdong, Hainan, Yun-
nan Provinces. The Low-High agglomeration cities of statistical significance 
was in Xuzhou city of Jiangsu Province, and Yanbian Korean Autonomous 
Prefecture in Jilin Province. The per capita premature mortality in Xuzhou 
was 10.1 per 10,000 persons, much lower than that in its surrounding areas 
of Zaozhuang (15.54 per 10,000 persons), Linyi (14.63 per 10,000 persons), 
Jining (14.88 per 10,000 persons), and Heze (15.84 per 10,000 persons). The 
per capita premature mortality in Yanbian Korean Autonomous Prefecture 
was 10.86 per 10,000 persons, much lower than that in its surrounding areas 
of Jilin (12.77 per 10,000 persons), Mudanjiang (12.9 per 10,000 persons), 
and Baishan (14.39 per 10,000 persons).

4.  Conclusion
We have studied the spatiotemporal characteristics of PM2.5, and the spatial 
distribution of premature mortality associated with PM2.5 in 338 cities of 
China in the year 2016. High PM2.5 concentrations (poor air quality) were ob-
served during winter season, while low PM2.5 concentrations during summer. 

IHD CEV COPD LC LRI

City
Per capita 
mortality City

Per capita 
mortality City

Per capita 
mortality City

Per capita 
mortality City

Per capita 
mortality

Kashi 8.21 Shijiazhuang 7.04 Zigong 4.24 Jinzhou 1.77 Naqu 1.87

Hetian 7.6 Baoding 6.97 Luzhou 3.98 Liaocheng 1.75 Zunyi 1.76

Aksu 7.21 Hengshui 6.83 Chengdu 3.89 Shenyang 1.74 Liupanshui 1.70

Harbin 7.04 Xingtai 6.82 Meishan 3.78 Anshan 1.73 Guiyang 1.63

Urumqi 6.82 Handan 6.64 Kashi 3.73 Dezhou 1.73 Qiandongnan 1.54

Table 5 
The Top Five Cities With the Highest Per Capita Mortality (Per 10,000 Persons) Due to Each Disease

Figure 5.  Moran's I scatter plot of the per capita premature mortality in 338 
cities.
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The cities where annual PM2.5 concentration above 70 μg/m3 were mainly located in BTH region, Henan, Shan-
dong, and Xinjiang Uygur Autonomous Region. In 2016, the total premature mortality due to the five diseases 
was around 1.55 million persons, and the per capita mortality for all ages was 11.2 per 10,000 persons. The 
estimated premature deaths were higher than other earlier studies due to the application of GEMM which extends 
the range of PM2.5 exposure. High absolute numbers of premature mortality were found in the north, east, and 
southwest of China. For the disease-specific premature mortality in 2016 in China, the premature mortality due 
to IHD was highest, accounting for 34.5% of the total premature mortality, while the premature mortality due 
to LRI was lowest, accounting for only 6.7%. The per capita mortality (per 10,000 persons) for all ages due to 
IHD, CEV, COPD, LC, and LRI was 3.86, 3.8, 1.75, 1.03, and 0.75, respectively. For the spatial distribution of 
disease-specific premature mortality, Chongqing and Beijing were the top two cities with the highest premature 
mortality due to IHD, CEV, LC, and LRI, respectively. Through the spatial autocorrelation analysis, we found 
a significant positive spatial autocorrelation between the per capita premature mortality caused by PM2.5 in 338 
cities of China. Cities with high per capita premature mortality tended to be spatially connected with other cities 
with high per capita premature mortality. The High-High agglomeration cities were mainly distributed in the 
west of Xinjiang Uygur Autonomous Region, southeast of Shanxi Province, south of Hebei Province, Shandong 
Province, Henan Province, Liaoning Province, and Jilin Province, indicating the coordinated regional governance 
should be adopted to reduce PM2.5 concentration and its health impacts. The finding of this study is crucial for 
quantitative analysis and evaluation of China's air pollution impacts on human health, and helpful to make strat-
egies to reduce the health hazards due to PM2.5.
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