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Cells
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Abstract

We transformed JB6P+ cells with prolonged intermittent low-dose UVB radiation or prolonged 

exposure to low-dose H2O2 or CdCl2. Stable transformation was confirmed by an anchorage-

independence assay. The JB6P+ transformants formed more colonies (∼six folds) in soft agar as 

compared to their JB6P+ parent cells and were associated with increased intracellular reactive 

oxygen species (ROS) levels. Activating protein-1 (AP-1) is a family of transcription factors that 

are rapidly activated by elevated intracellular ROS levels, and their composition is important in 

the process of cellular transformation and/or tumor progression. To investigate if carcinogenesis 

induced by distinct carcinogens was via similar molecular mechanisms in these transformants, gel 

mobility shift and immunoblot analyses were utilized to determine the distinct AP-1 compositions. 

Compared to parent JB6P+ cells, the gain of JunB and Fra-1 in AP-1 DNA binding complexes was 

markedly increased in all transformed cells, which might contribute to a more proliferative 

phenotype, while loss of Fra-2 occurred in JB6P+/H2O2 and JB6P+/Cd cells. Differential AP-1 

components in the transformants suggested that their transformations might be mediated by 

distinct transcription signalings with distinct AP-1 dimer compositions. However, all three 

transformants exhibited increased activation of pathways involved in cell proliferation (ERK/

Fra-1/AP-1 and JNK/c-jun/AP-1) and anti-apoptosis (Bcl-xl). The development of the JB6P+ 

transformants (JB6P+/UVB; JB6P+/H2O2; JB6P+/Cd) provides a unique tool to study the 

mechanisms that contribute to different redox-active carcinogens in a single model.
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Introduction

The JB6 mouse epidermal cell lines were first established in the early 1980s by Nancy 

Colburn's group and consist of tumor promotion sensitive JB6P+ and tumor promotion 

resistant JB6P− cells. These cell lines have been widely utilized as a model of cellular 

malignant transformation to study mechanisms that underlie tumor promotion [1–3]. In the 

presence of the tumor promoters, JB6P+ cells undergo a response similar to second stage 

tumor promotion that is associated with anchorage-independent growth and tumorigenic 

transformation; these changes do not occur in JB6P− cells.

A growing body of evidence has shown that reactive oxygen species (ROS) at low 

concentration act as second messengers in intracellular signaling cascades, which induces 

and maintains the oncogenic phenotype of cancer cells; on the other hand, ROS at high 

concentrations produce cellular toxicity. This is a common phenomenon in cancer cells, 

resulting in redox imbalance and chronic oxidative stresses [4]. Many studies have 

demonstrated that the JB6P+ cells are sensitive to cellular transformation by various types of 

ROS [5–7].

Ultraviolet light (UV) radiation initiates carcinogenesis by direct DNA damage and 

generates ROS that act as second messengers responsible for the alteration of gene 

expressions [8,9]. As H2O2 crosses biomembranes freely [10], the exposure of cells to H2O2 

is a classical model of direct oxidative stress that not only results in lipid, protein, and DNA 

damage, but also acts as a second messenger in promoting tumor survival [11–12].

Cadmium is a well-studied carcinogenic metal, which is related to air and water pollution 

and cigarette smoking [13]. Although cadmium itself is not a transition-state metal (it cannot 

generate ROS directly), it is well documented that its carcinogenicity is mediated by the 

indirect production of various radicals such as the superoxide radical, hydroxyl radical, and 

nitric oxide [13,14], which contribute to the activation of JNK/AP-1 signal transduction 

pathways responsible for the transcription of genes involved in cell growth, as seen, for 

example, in hepatic cells [15,16].

In this study, we transformed the JB6P+ cells with low-dose intermittent UVB radiation or 

continuous exposure to low-doses of H2O2 or cadmium chloride (JB6P+/UVB, JB6P

+/H2O2, JB6P+/Cd), events which are all mediated by ROS production. The comparisons of 

subsequent alterations of transcription factors (i.e., activating protein-1, AP-1) or 

proliferation signalings that are sensitive to oxidative stresses are the major focus of this 

current study. The development of these new transformants has provided a unique 

opportunity to study the mechanisms that underlie carcinogenesis in a single model with 

different redox-active stimuli.

Materials and Methods

JB6P+ Cell Transformation

The JB6P− and the JB6P+ cells were obtained from ATCC (Manassas, Virginia). The JB6P

+ cells were seeded at low density (1.5 × 104 cells/mL) in 60 mm dishes. UVB (10 mJ/cm2) 
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treatments were performed twice a week, 24 h after the cells were re-seeded. JB6P+ cells 

were incubated with growth media containing H2O2 (10 µM) or CdCl2 (1 µg/mL) for 12 wks 

and the media were changed at least twice a week. The control JB6P+ cells were treated 

with the same volume of sterile H2O at the same time. The cells were allowed to grow to a 

60% confluence before splitting. All of the cells were cultured in EMEM medium 

supplemented with 4% bovine fetal serum, L-glutamine (2 mM), and 25 µg/mL gentamicin 

then incubated with 5% CO2 at 37°C. After 12 wks, cell transformations were confirmed by 

the anchorage-independent growth assay.

Anchorage-Independent Cell Transformation Assay

Cell transformation in the presence or absence of TPA was investigated by soft agar colony 

formation analysis. Cells (8 × 103/mL) were exposed to TPA (10 or 20 ng/mL) in 1 mL of 

0.33% basal medium Eagle agar containing 10% FBS. The cultures were incubated in a 5% 

CO2 atmosphere at 37°C for 14–18 d [2] and the colonies (containing >50 cells) were 

quantified using a light microscope at 40× magnification.

Protein Extraction and Western Blot Immunoassay

Nuclear extracts from JB6P cells were prepared as described previously with minor changes 

[17]. Whole cell lysis extracts were prepared according to the directions of the manufacturer 

(Cell Signaling Technology, Danvers, MA). Using a Bio-Rad Dc protein assay kit (Bio-Rad 

Laboratories, Hercules, CA), protein concentrations of all the samples were precisely 

measured to confirm equivalent loading. Immunoblot analysis was performed as previously 

described [17]. Specifically, equal amounts of nuclear protein (20–25 µg) or whole cell 

protein (50–100 µg) were loaded respectively per sample.

Electrophoretic Mobility Shift Assay (EMSA) of AP-1 and NF-κB DNA-Binding Activity

AP-1 binding activities were determined by Gel Shift Assay Systems (Promega, Madison, 

WI) with optimizations. Briefly, nuclear extract was incubated in a final volume of 10 μL 

containing 2 µL gel shift binding buffer (5×), 1 µL 32P-labeled AP-1 consensus oligos 

(approx., 6 × 105 cpm). Two microliters of antibodies to AP-1 members (Santa Cruz 

Biotechnology®, Inc., Santa Cruz, CA) was added to reaction mixtures for supershift. For 

oligonucleotide competition experiments, each reaction was preincubated with a 50-fold 

excess unlabeled AP-1 for 20 min before the addition of hot probes. The mixtures were 

separated on 4–5% nondenaturing polyacrylamide gels. Using autoradiography the shift 

bands were quantitated by densitometry.

Results and Discussion

JB6 cell lines are a unique model to study the molecular events and mechanisms involved in 

tumor promotion. The exposure of JB6P+ cells to TPA, EGF, or TNF-α leads to irreversible 

transformation and tumorigenicity with acquired anchorage independent growth. Many 

studies have demonstrated that early events induced by ROS stresses, such as activation of 

AP-1or NF-κB pathways, play an important role in the transformation of JB6 P+ cells [18]. 

It is well documented that UVB radiation, H2O2, or CdCl2 either directly or indirectly lead 

to elevated ROS stresses [9]. In addition, our data consistently showed that in JB6P+ cells a 
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one-time exposure of UVB (40 mJ/cm2) radiation led to a significant increase of ROS 

production in JB6P+ cells compared to that of the control [19] and that the elevation of ROS 

was measurable for at least 24 h. A similar increase in DCF density was also observed with 

CdCl2 treatment. The peak occurred shortly after 5 min of exposure, followed by a quick 

reduction to normal levels by 30 min. An anchorage-independent cell growth assay was 

performed to determine if cellular transformation had occurred by chronic repeated exposure 

of UVB or persistent H2O2 or Cd exposure. The JB6P− cells did not form colonies in soft 

agar either in the presence or absence of the tumor promoter TPA. However, a small amount 

of JB6P+ colonies were evident, and were remarkably increased by TPA stimulation. For all 

of the transformants, in the absence of TPA, colonies formed at a frequency of 5–10-folds 

that of unstimulated JB6P+ parent cells and 1–2-folds that of TPA-stimulated ones [19].

Based on these observations, we propose that although the malignant transformations were 

induced by distinct types of carcinogens (UVB, Cd, or H2O2), their effects are all mediated 

by elevated ROS production. As many cell signalings are very sensitive to oxidative 

stresses, we further delineated whether these transformations were preceded through the 

regulation of similar or different downstream targets. Specifically, AP-1 is a family of 

transcription factors that are rapidly activated by elevated intracellular ROS levels [9,20]. 

The AP-1 comprises a large family of basic-region leucine zipper (bZIP) transcription 

factors (including c-jun, JunB, JunD, c-Fos, FosB, Fra-1, and Fra-2) and forms distinct 

heterodimers or homodimers, which differentially regulate downstream target genes. The 

dynamic changes in Jun and Fos compositions depend on the initiating stresses, which play a 

key role in defining whether cells undergo apoptosis, survival, or senescence through 

subsequent downstream shift of the signaling pathways (for recent reviews see References 

[21,22]). Therefore, it is important to evaluate the AP-1 components in different JB6 cells. 

In our current study, we therefore, utilized gel mobility supershift and Western blot assays to 

identify the distinct compositions of AP-1 complexes among JB6P− cells, JB6P+ cells, and 

the new transformants.

Nuclear extracts, prepared from different JB6 cells, were incubated with 32P-AP-1 in the 

presence of antibodies to detect specific AP-1 member proteins. As shown in Figure 1A, 

additions of anti-JunD and anti-Fra-2 antibodies resulted in a strong supershift of AP-1 

bands, indicating the presence of JunD and Fra-2 in the AP-1 DNA binding complexes in 

JB6P− cells. Similar supershifts were also observed in other JB6 cells (as shown in Figure 

1B–E) and the results were summarized in Table 1. Our EMSA analysis revealed a 

remarkable gain of JunB and Fra-1 in all the transformants compared to their parent JB6P+ 

cells. Fra-2 was observed in JB6P+ and JB6P+/UVB cells but absent in JB6P+/H2O2 and 

JB6P+/Cd extracts. In contrast to promoter resistant JB6P− cells, c-jun antibody produced a 

retarded AP-1 band in JB6P+ cells as well as in all the transformants extracts. However, 

compared to c-jun, antibodies to JunB, JunD, and Fra-1 produced more pronounced super-

shift bands, indicating that they might be the major constituents in AP-1 complexes. JunD 

was detected in all JB6P cells, while c-Fos and FosB were absent in all of these cells.

Induction of Fra-1 expression was shown in all of our transformants and JB6P+ cells 

compared to JB6P− by immunoblotting assay (Figure 2A), while supershifts of AP-1 DNA 

binding by Fra-1 antibody only occurred in transformed cells (Figure 1), indicating the 
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involvement of Fra-1 in AP-1 complexes. Different from c-Fos, the prototype of the Fos 

family, Fra-1 alone does not exhibit any transformation activity [21,23]; However, Fra-1 

does contribute to tumor progression through distinct mechanisms and many of its 

downstream target genes are involved in cell survival, proliferation, and invasiveness [24]. 

Elevated Fra-1 expression has been reported in many cancer cells and has been suggested to 

serve as an important target for cancer prevention or intervention [25].

EMSA revealed that JunB binding occurred in all of our transformed JB6P+ cells. Although 

there are studies showing that JunB exhibits anti-oncogenic activities and acts as an 

antagonist of c-jun both in vitro and in vivo [21,22,26,27], elevated JunB expression levels 

have been detected in many human tumors such as lymphomas and breast cancer cells, 

which correspond to cell cycle promoter cyclin D1 [28–30]. This dramatic increase of JunB 

in AP-1 complexes suggests a possible common role of JunB in transformation.

Fra-2 has been described as a less potent trans-activator than c-Fos with a weak 

transforming efficacy [31]. Recent studies using a knock-out mice model have showed that 

Fra-2 is required for postnatal survival [32], and in breast cancer cells overexpression of 

Fra-2 was associated with a more aggressive tumor phenotype [33]. Dimerization with c-jun, 

Fra-2 rescued cells from experimentally induced growth arrest [34]. On the other hand, 

studies have also suggested a role of Fra-2 in cellular differentiation in ovarian granulose, 

osteoblasts, muscle, and melanoma [35]. The loss of Fra-2 in AP-1 complexes in H2O2- and 

CdCl2-transformed JB6P+ cells might contribute to the development to fa proliferative 

phenotype.

Interestingly, our immunoblot results were not correlated to the EMSA findings. The 

inductions of c-Fos that occurred in all of the transformants as measured by immunoblotting 

were consistent with the finding of studies in other tumor cells [30,36]. Notably, the JB6P

+/UVB transformant exhibited a similar pattern of elevated phos-c-jun, JunB, and c-Fos as 

reported with one single dose of UVB radiation, which was because of the MAPKs 

pathways (ERK, JNK, and p38) activated by UVB-generated ROS [37–39]. However, we 

failed to observe any c-Fos-specific shifted bands by EMSA. A similar inconsistency was 

seen with Fra-1 in JB6P+ cells. In contrast to immunoblotting, the EMSA gel shift assay 

mimics AP-1 DNA bindings in vitro and identifies DNA-bound proteins using specific 

antibodies in a nondenaturing condition.

We further explored the distinct gene expressions associated with proliferation and apoptosis 

among these cells. The role of MAPK signaling in proliferation is well characterized [40]. 

As shown in Table 2 and Figure 2B, our study revealed increases of phosphorylated ERK 

and JNK in all the transformants (JB6P+/UVB, 1.5- and 1.9-fold; JB6P+/ H2O2, 2.2- and 

1.5-fold; JB6P+/Cd, 1.9- and 1.5-fold respectively) as compared to JB6P+ cells (1.2- and 

0.9-fold respectively, levels in JB6P− standardized as 1.0). These findings coincided and 

supported other observations, which have suggested the critical involvement of MAPK in 

tumor promotion and carcinogenesis [18,41,42]. Notably, no significant alterations of p38 

activities were observed (data not shown); these results are in contrast to the reports 

indicating the involvement of p38 after UV exposure [43,44]. The explanation might be 

related to the differential UV exposure among studies.
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Fra-1 is regulated at both transcriptional and posttranscriptional levels. Characterized as an 

immediate early response gene, Fra-1 is activated by the MAPK and PI3K/AKT pathways. 

Additionally, ERK plays a critical role in the stabilization of Fra-1 protein upon 

phosphorylation to prevent degradation by the proteasome [45,46]. Overexpression of Fra-1 

was found in many cancer cells displaying high ERK activities [47] and TPA-induced Fra-1 

activities were ERK-dependent [48]. Therefore, the level of activated ERK is very important 

for regulating Fra-1/AP-1 activities. The remarkable activations of ERK in transformants 

identified by our study might be closely related to the enhanced Fra-1 activities.

Phosphorylated JNK is the active form of JNK, which subsequently phosphorylates c-jun 

and leads to an increase of its DNA binding activities. Increased ratios of phosphorylated 

JNK/JNK were seen in all the transformants (Table 2). Consistently, phosphorylated c-jun 

was also found elevated in the transformants (Table 2, Figure 2B), which contributed to a 

significant increase of AP-1 transcriptional activities evident in transformants compared to 

the parent cells [19]. c-jun has been shown to perform an important function in the 

proliferation of cancer cells [21]. The critical role of the activation of AP-1 transcription 

factors in carcinogenesis was recently detailed [18] and for this reason, the JB6 model is 

unique in defining molecular events in the MAPK/ AP-1 and NF-κB pathway that lead to 

tumor promotion. No remarkable differences of Cdk2, a well-known protein found 

throughout the G phase to the S phase of the cell cycle, were observed among these cell 

lines.

We also examined the expression levels of Bcl-xl and Bax. Bcl-xl was not detected in the 

JB6P− cells, but showed a substantial increase in the JB6P+ transformants as compared to 

the JB6P+ parent cells. No significant changes in Bax protein levels were observed among 

these cell lines. Bcl-xl is a target gene of the NF-κB pathway, which has been implicated 

broadly in tumorigenesis. Remarkable activation of NF-κB was evident both in basal and 

UVB-treated JB6P+ cells [18,49], as well as in H2O2- and Cd-treated cells [9,50]. This 

might lead to the induction of Bcl-xl in order to enhance survival and contribute to the 

transformation process. In JB6-derived RT-101 cells, TNF-α-induced apoptosis was because 

of a decrease in anti-apoptotic Bcl-xl [51].

The differential AP-1 protein compositions exhibited in the JB6P+ variants suggest that 

these cells were transformed by different mechanisms; however, our data also suggested that 

the JNK/c-jun/AP-1 and ERK/Fra-1/AP-1 pathways are being extensively activated in these 

JB6P+ variants even though the transformation was induced by distinct carcinogens. Based 

on our observations, it is suggested that active MAPKs inhibitors might exhibit potential 

chemopreventive activities by blocking the transformation induced by a broad range of 

carcinogens.
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Figure 1. 
EMSA and supershift analysis of AP-1 DNA-binding activities and composition in JB6 

cells. EMSA with 32P-labeled AP-1 oligonucleotide probe was performed as described in 

“Materials and Methods” and 50× excess unlabeled AP-1 was added for the competition. 

The nuclear extracts were subjected to EMSA in the absence or presence of antibodies to the 

indicated AP-1 proteins. JB6 cell lines were grown in their EMEM growth medium as 

detailed in the “Materials and Methods.” (A–E) JB6P−, JB6P+ cells, JB6P+/UVB, JB6P

+/H2O2, JB6P+/Cd cells respectively.
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Figure 2. 
The representative results of AP-1 member protein (A) and related genes (B) expressions 

detected by Western immunoblotting analysis. Cells were collected under normal culture 

condition and nuclear protein extracts were extracted as described in “Material and 

Methods.” Protein expression was determined by Western blotting with antibodies specific 

for phospho-c-jun, JunB, JunD, c-Fos, Fra-1, phospho-MAPK, MAPK, Bcl-XL, Bax, actin, 

and tubulin respectively. Arrows indicate specific bands.
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