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Abstract Hepatic encephalopathy that is associated with severe liver failure may compromise 

the blood-brain barrier (BBB) integrity. However, the effects of less severe liver diseases, in the 

absence of overt encephalopathy, on the BBB are not well understood. The goal of the current 

study was to investigate the effects of hepatic ischemia-reperfusion (IR) injury on the BBB tight 

junction permeability to small, hydrophilic molecules using the widely used [14C]sucrose and 

recently-proposed alternative [13C]sucrose as markers. Rats were subjected to 20 min of hepatic 

ischemia or sham surgery, followed by 8 h of reperfusion before administration of a single bolus 

dose of  [14C] or [13C]sucrose and collection of serial (0-30 min) blood and plasma and terminal 

brain samples. The concentrations of  [14C] and [13C]sucrose in the samples were determined by 

measurement of total radioactivity (nonspecific) and LC-MS/MS (specific), respectively. IR 

injury significantly increased the blood, plasma, and brain concentrations of both [14C] and 

[13C]sucrose. However, when the brain concentrations were corrected for their respective area 

under the blood concentration-time curve, only [14C]sucrose showed significantly higher (30%) 

BBB permeability values in the IR animals. Because [13C]sucrose is a more specific BBB 

permeability marker, these data indicate that our animal model of hepatic IR injury does not 

affect the BBB tight junction permeability to small, hydrophilic molecules. Methodological 

differences among studies of the effects of liver diseases on the BBB permeability may confound 

the conclusions of such studies. 

 

Keywords Blood-brain barrier permeability . [14C]Sucrose . [13C]Sucrose . Apparent brain 

uptake clearance .  Hepatic ischemia-reperfusion injury  
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Introduction 

Acute liver failure is a serious, life-threatening condition that may result in hepatic 

encephalopathy, coma, and death (Bernal and Wendon 2013). Although somewhat debatable 

(Butterworth 2013), several investigators have reported an increased BBB permeability in 

hepatic encephalopathy and coma (Butterworth 2016; Cauli et al. 2011; Chastre et al. 2013; Chen 

et al. 2009; Chen et al. 2013; McMillin et al. 2015). However, the effects of less severe hepatic 

diseases in the absence of overt encephalopathy or coma, such as hepatic ischemia-reperfusion 

(IR) injury, on the BBB permeability have not been well understood.  

Our recent studies (Miah et al. 2014) demonstrated that hepatic IR injury increased the 

expression of P-glycoprotein (P-gp) at the BBB, resulting in a decrease in the apparent in vivo 

brain uptake clearance of the P-gp marker rhodamine 123. Additionally, an in vivo study using 

sodium fluorescein (FL) (Miah et al. 2015), as a BBB tight junction permeability marker to small 

hydrophilic molecules, indicated that IR significantly increased the brain concentrations of the 

marker. However, the brain concentrations corrected for the free drug concentration in plasma 

was similar in both groups, suggesting no change in the permeability through the BBB tight 

junctions as a result of IR.  Because FL might also pass the BBB through some transporters 

(Hawkins et al. 2007; Huai-Yun et al. 1998; Loscher and Potschka 2005), the true effects of 

hepatic IR on the integrity of BBB tight junctions remain to be determined by using a marker 

that is not subject to BBB transporters and is devoid of confounding factors such as binding to 

plasma proteins and hepatic metabolism.  

Radiolabeled [14C]sucrose is a small (342 Da), hydrophilic molecule with a very low 

permeability across the intact BBB, which has no known binding to blood or plasma proteins and 

no significant systemic metabolism. Further, no significant facilitative or active transport of 
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sucrose in vivo has been demonstrated in mammals to date. Therefore, it has been one of the 

most widely used small molecules for quantitative determination of blood-brain barrier (BBB) 

integrity in many in vitro (Behrens et al. 2015; Kochi et al. 1999; Oppenheim et al. 2013; 

Paulson et al. 2006), in situ brain perfusion (Bickel et al. 1996; Cannon et al. 2012; Hawkins et 

al. 2010; Huber et al. 2002; Lochhead et al. 2012; Ronaldson et al. 2009), and in vivo (Bickel et 

al. 1998; Chavarria et al. 2010; Ferguson and Woodbury 1969; Jin et al. 2013; Lo et al. 1987; 

Ohno et al. 1978; Preston et al. 1984; Preston and Haas 1986; Preston and Webster 2002; Smith 

et al. 1988; Stolp et al. 2005; Yin et al. 2008; Ziylan et al. 1983; Ziylan et al. 1984; Ziylan et al. 

1988) studies. Very recently (Miah et al. 2017), we demonstrated that the apparent brain uptake 

clearance (Kin) of [14C]sucrose in normal rats, estimated by quantitation of total radioactivity in 

the brain, was around 6-7 fold higher than that of stable isotope labeled [13C]sucrose, which was 

quantitated using a specific LC-MS/MS method. Upon chromatographic fractionation of the 

brain samples of rats injected in vivo with [14C]sucrose, several peaks, in addition to the intact 

sucrose, were identified. Although the possibility of a minor systemic metabolism could not be 

ruled out, the higher Kin values for [14C]sucrose were attributed, at least in part, to presence of 

small lipophilic impurities in the stock solution of [14C]sucrose, which could easily penetrate 

BBB. Therefore, it was suggested that specific quantitation of the stable isotope (13C) of sucrose 

is a more accurate alternative to the current widespread use of the radioactive sucrose as a BBB 

permeability marker. 

 The main objective of the current study was to investigate the effects of hepatic IR on the 

BBB permeability to sucrose using the specific [13C]sucrose marker. Although [14C]sucrose 

substantially overestimates the absolute permeability of BBB to sucrose, it may still be a valid 

marker in studies of the effects of a disease state on the BBB permeability when its brain uptake 
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clearance is compared in healthy and diseased conditions. Therefore, a secondary objective of 

the study was to test whether the use of [14C]sucrose would affect the conclusion of such studies.  

Materials and methods 

Chemicals and reagents 

We purchased [UL-13C12]sucrose (all the carbons in both glucose and fructose molecules are 

labeled with 13C isotope; denoted [13C]sucrose) and the internal standard (IS), which was [UL-

13C6
fru]sucrose (all the carbons in the fructose molecule are labeled with 13C isotope), from 

Omicron Biochemicals (South Bend, IN, USA). [14C]Sucrose, Solvable, and Hionic-Fluor 

solution were purchased from PerkinElmer (Boston, Massachusetts, USA). Specific activity of 

the [14C]sucrose stock solution was 400-700 mCi/mmol. 3H-Labelled rat serum albumin (RSA) 

was prepared and chromatographically purified as described before (Bickel et al. 1998). The 

precipitability by trichloroacetic acid of the purified 3H-RSA peak was greater than 98%. LC-MS 

grade water (J.T. Baker) was purchased from Avantor Performance Materials, Inc. (Center 

Valley, PA, USA). Analytical grade ammonium hydroxide and LC-MS grade acetonitrile (ACN) 

were purchased from Fisher Scientific (Fair Lawn, NJ, USA). For anesthesia, ketamine and 

xylazine solutions were purchased from Lloyd Laboratories (Shenandoah, IA, USA). Heparin 

solution was purchased from APP Pharmaceuticals (Schaumburg, IL, USA). All other chemicals 

were analytical grade and obtained from commercial sources.  

Animals 

Adult, male Sprague-Dawley rats were purchased from Charles River laboratory (Wilmington, 

MA) and acclimated in single, ventilated cages with 12-h dark-light cycles in a temperature- and 

humidity-controlled room with free access to the food and water. All the animal procedures used 

in this study were approved by Texas Tech University Health Sciences Center’s Institutional 
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Animal Care and Use Committee and were consistent with the guidelines set by the Guide for the 

Care and Use of Laboratory Animals (National Research Council, 2011). Animals were 

randomly assigned to two experimental groups of [14C] and [13C]sucrose, which were further 

divided into two groups of sham surgery (Sham) and IR, resulting in a total of 4 groups (n = 5-

7/group).  The average ± SD of body weights (g) of animals were 306 ± 12 (Sham) and 298 ± 14 

(IR) for the [13C]sucrose groups and 287 ± 3 (Sham) and 276 ± 13 (IR) for the [14C]sucrose 

groups. 

Hepatic ischemia-reperfusion (IR) injury model 

To determine whether the use of [13C]sucrose or [14C]sucrose would affect the outcome of BBB 

permeability studies in a disease model, the BBB permeability to [13C] and [14C]sucrose was 

determined in different groups of rats subjected to hepatic IR or sham surgery (Sham), as 

described before (Miah et al. 2015). Briefly, after an overnight fast, rats were anesthetized with 

ketamine: xylazine (80:8 mg/kg) via intramuscular injection. For the IR group, after opening the 

abdomen, the blood supply to the entire liver was occluded by placing a microvascular clamp on 

the portal triad. Complete obstruction of blood flow to the liver was confirmed by visual 

inspection of the liver color. After 20 min of total hepatic ischemia (Pringle maneuver), the liver 

was reperfused with blood by removing the clamp. Finally, 5 ml of normal saline (37ᴼC) was 

added to the abdominal cavity to compensate for the loss of fluids during the surgery, and the 

muscle and skin layers were closed. During the entire procedure, the rat body temperature was 

maintained at 37ᴼC by using a heating lamp and a heating plate attached to a rectal temperature 

control probe. Sham animals underwent only laparotomy under identical experimental conditions 

but without any interruption of the blood supply to the liver. Rats were allowed to recover for 8 h 

before dosing with the markers. 
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Dosing and sampling 

After 8 h of reperfusion, rats were anesthetized with ketamine: xylazine at a dose of 80:4 mg/kg. 

Subsequently, a catheter was placed into the femoral artery for the collection of blood samples. 

For the [13C]sucrose study, a single 10-mg/kg dose of the marker was administered as a bolus 

dose (via penile vein). For the [14C]sucrose study, the bolus dosing solution contained 3 µCi (~ 

6.5 µg/kg) of the marker plus 10 µCi of 3H-RSA, as the vascular marker. Our recent report (Miah 

et al. 2017) indicated that the dose-corrected plasma/blood disposition of both markers were 

similar despite significant differences between the absolute doses of the two markers. Serial 

blood samples (~0.2 ml) were then collected for 30 min, a portion was centrifuged for collection 

of plasma and another portion was used for measurement of blood concentrations. Each time 

after collection of blood samples, the catheter was filled with heparin (10 U/ml) to prevent blood 

clotting. To remove the residual blood from the brains of animals injected with [13C]sucrose, at 

the end of sampling a catheter was placed in the left ventricle, and the whole body was perfused 

with ice-cold saline at a rate of 25 ml/min for 5 min. Finally, brain was collected from both 

groups and snap frozen in cold iso-pentane. All samples were kept at     -80ᴼC until analysis.  

LC-MS/MS analysis of [13C]sucrose 

Before analysis of [13C]sucrose by LC-MS/MS, plasma and blood samples were diluted 100- and 

50-fold, respectively, and brain samples were homogenized in water (1:9). The LC-MS/MS 

method is described in a recent publication (Miah et al. 2016). In brief, brain homogenates and 

diluted plasma and blood samples (20 µl) were subjected to protein precipitation by the addition 

of 180 µl of acetonitrile: water (80:20), which also contained IS.  Chromatographic separation 

was then performed using an Acquity BEH amide column (50 mm х 3 mm, 1.7 µm) and an 

isocratic mobile phase of acetonitrile: water: ammonium hydroxide (72:28:0.1, v/v), run a flow 
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rate 0.2 ml/min. Column temperature was maintained at 45oC, and autosampler was at room 

temperature. The retention time of sucrose was ~2.5 min, and the total run time was 6 min. The 

MRM was monitored in negative mode, and the transitions for [13C]sucrose and IS were 353à92 

m/z and 347à89 m/z, respectively. 

Liquid scintillation analysis of [14C]sucrose and [3H]-RSA 

For [14C] and [3H] analysis, one hemisphere of the brain was cut into small pieces, and 0.2-0.3 g 

of the brain tissue was added to 2 ml of Solvable to digest the tissue. Additionally, 20 µl of blood 

and plasma samples were added to 2 ml of solvable. After 24 h at room temperature, 100 µl of 

hydrogen peroxide was added to each sample to remove any possible color quenching, 12 ml of 

scintillation fluid was added, and the samples were subjected to the scintillation counter. 

Analysis of AST and ALT 

Plasma AST and ALT levels were measured to confirm the IR-induced hepatic damage by a kit 

from TECO diagnostics (Anaheim, CA), according to the manufacturer’s protocol. 

Pharmacokinetic analysis 

Apparent brain uptake clearance (Kin) values were estimated after a 30-min sampling period for 

both plasma (Kin-plasma) and blood (Kin-blood) AUC data (Gjedde 1981): 

𝐾"#$%&''( =
*+,-.

/0*,1+,-2334 (1) 

𝐾"#$5&6786 =
*+,-.

/0*,1+,
92:;<: (2) 

where 𝐶>?%@ , 𝐴𝑈𝐶?$>?%&''( , and 𝐴𝑈𝐶?$>?
5&6786are the amount of the marker in the terminal (30 min) 

brain sample (in units of mass/g of brain) and the areas under the blood or plasma concentration-

time curve from time zero to the last sampling time (30 min), respectively. The  𝐴𝑈𝐶?$>?%&''( and 

𝐴𝑈𝐶?$>?
5&6786were estimated by non-compartmental analysis of the concentration-time data during 
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the sampling period (5-30 min) using the log-linear trapezoidal method in Phoenix® 

WinNonlin® software (Certara, Princeton, NJ). The method back extrapolates the concentration 

at time zero for AUC calculations (AUC0-30). For [13C]sucrose, 𝐶>?%@ was the brain concentration 

of the marker after the in situ removal of the residual blood in the brain. For [14C]sucrose, 𝐶>?%@ 

was the brain concentration of the marker after correction for the residual contents of the 

radioactivity in the brain vasculature estimated using the following equations: 

𝐶>?%@ = 𝐶>?%@CD67E − 𝑉%&''(×𝐶>?%&''( (3) 

𝐶>?%@ = 𝐶>?%@CD67E − 𝑉5&6786×𝐶>?
5&6786 (4) 

where 𝐶>?%@CD67E , 𝑉%&''(/5&6786 , and 𝐶>?
%&''(/5&6786  are the total (brain tissue plus vasculature) 

brain amount of [14C]sucrose per g of tissue, volume of blood or plasma within the brain 

vasculature, and blood or plasma concentrations of [14C]sucrose at 30 min, respectively. 𝑉%&''( 

and 𝑉5&6786 were estimated from the 3H-RSA data: 

𝑉%&''( =
*+,
-.,KLM

*+,
-2334,KLM (7) 

𝑉5&6786 =
*+,
-.,KLM

*+,
92:;<:,KLM  (8) 

where 𝐶>?
%@,NO/ , 𝐶>?

%&''(,NO/  , and 𝐶>?
5&6786,NO/ are the terminal brain, blood, and plasma 

concentrations of 3H-RSA. Similar to the sucrose data, the 𝐴𝑈𝐶?$>?%&''( and 𝐴𝑈𝐶?$>?
5&6786 values for 

RSA were also estimated using the log-linear trapezoidal method in Phoenix® WinNonlin® 

software. 

 To allow comparison of data between the [13C] and [14C]sucrose, the mass of the markers 

in the blood and brain were corrected for the injected dose and expressed as percentage of 

injected dose (%ID).   



	 10 

Statistical analysis 

Comparison of two means for the IR and Sham groups was carried out by an unpaired, two-tailed 

Student’s t-test. For ALT and AST measurements, two-way ANOVA, followed by Bonferroni 

post-hoc analysis was used. A p value of < 0.05 was considered significant. Data are presented as 

mean ± SD or individual values. 

Results 

Plasma concentrations of the hepatic IR injury markers are presented in Fig. 1. As demonstrated 

in this figure, hepatic IR injury significantly increased the plasma levels of ALT (Fig. 1a) and 

AST (Fig. 1b) in the IR animals, as compared with their respective Sham groups. Comparison of 

ALT or AST values across the two sucrose marker groups showed no significant differences 

between the two marker groups for AST (Fig. 1b). However, the ALT levels in the [14C]sucrose-

IR group were significantly (p < 0.01) lower than those for the [13C]sucrose-IR group (Fig. 1a).    

The plasma and blood concentration-time courses of the vascular marker 3H-labeled rat 

serum albumin (3H-RSA) in the Sham and IR groups are presented in Fig. 2, and the 

corresponding zero to 30 min AUC (AUC0-30) values and vascular volumes are presented in 

Table 1. IR caused a significant increase in the blood and plasma concentrations (Fig. 2) and 

AUC0-30 values (Table 1) of 3H-RSA. However, there were no changes in the blood or plasma 

vasculature volume of the brain because of the IR injury (Table 1). On average, the brain plasma: 

blood volume ratios were 0.54 and 0.51 (Table 1) for the Sham and IR groups, suggesting 

hematocrit values of 0.46 and 0.49, respectively. 

The plasma and blood concentrations-time profiles of [14C] and [13C]sucrose in the IR 

and Sham animals are depicted in Figure 3, and their corresponding AUC0-30 values are 

presented in Figure 4. The plasma and blood concentrations of [13C]sucrose (Figs. 3a and 3b) and 
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[14C]sucrose (Figs. 3c and 3d) followed similar patterns, suggestive of multicompartment 

disposition. Additionally, for both markers, the plasma concentrations (Figs. 3a and 3c) were 

higher than the corresponding concentrations in blood (Figs. 3b and 3d), which is in agreement 

with the lack of penetration of sucrose to the red blood cells. Further, the blood and plasma 

concentrations (Fig. 3) and AUC0-30 values (Fig. 4) of both markers in the IR animals were 

significantly higher than those in the Sham animals. 

The terminal brain concentrations of [13C] and [14C]sucrose in the IR and Sham animals 

are presented in Fig. 5. Although the brain concentrations of both markers were higher in the IR 

animals, only for [14C]sucrose did the difference between the Sham and IR groups reach 

statistical significance (p = 0.0026, Fig. 5b); the p value for the difference between the Sham and 

IR groups for the brain concentrations of [13C]sucrose was 0.0502. Apparent brain uptake 

clearance (Kin) of [13C] (Figs. 6a and 6b) and [14C]sucrose (Figs. 6c and 6d), based on the plasma 

(Figs. 6a and 6c) or blood (Figs. 6b and 6d) AUC0-30 values, are presented in Fig. 6. There were 

no significant differences in the plasma or blood Kin values between the Sham and IR groups for 

[13C]sucrose (Figs. 6a and 6b). However, blood Kin values for [14C]sucrose were significantly (p 

= 0.0163 ) higher in the IR animals, compared with the Sham group (Fig. 6d). 

Discussion 

In this study, we examined the effects of hepatic IR injury on the permeability of BBB tight 

junctions to sucrose using an animal model of Pringle maneuver (total hepatic ischemia) that is 

used clinically during liver surgery for trauma, resection of cancerous tissue, or liver 

transplantation. A significant increase in the plasma concentrations of the liver injury markers, 

ALT and AST, in both [13C] and [14C]sucrose groups (Fig. 1) confirmed the IR injury.   
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IR injury increased the plasma and blood concentrations and AUC0-30 values of the 

vascular marker RSA (Fig. 2 and Table 1) and those of both [13C] and [14C]sucrose (Figs. 3 and 

4).  The higher blood or plasma concentrations of [13C] and [14C]sucrose in the IR animals were 

also reflected in higher brain concentrations for both markers (Fig. 5), although the IR-induced 

increase in the brain concentrations of [13C]sucrose barely missed the significance level (p = 

0.0502). When the terminal brain concentrations of the markers were corrected for their 

corresponding blood or plasma AUC0-30 values, the Kin-blood values were significantly increased 

by 30% only in the case of [14C]sucrose (Fig. 6). Therefore, whereas the [13C]sucrose data do not 

suggest any changes in the BBB permeability to sucrose as a result of hepatic IR, the opposite is 

true based on the Kin-blood values of [14C]sucrose (Fig. 6).  

Accurate measurement of brain concentrations of BBB markers with low permeability 

requires removal of the blood content of brain by perfusion or the use of a vascular marker to 

eliminate the contribution of brain blood to the total brain concentrations of the marker. 

Consequently, [14C]sucrose is frequently used along with radioactive albumin as a vascular 

marker, a method that was also used in our studies. For the [13C]sucrose, we chose to remove the 

brain blood by perfusion before collection of brain, in order to avoid the use of radioactive 

vascular markers. It may be argued that the differences between the two methods might be due to 

residual blood after the brain perfusion in the [13C]sucrose group. However, any residual blood in 

the brain of rats injected with [13C]sucrose is expected to cause an increase in the Kin value of 

[13C]sucrose, compared with that in the [14C]sucrose group, which is opposite of our 

observations (Fig. 6).  

The injection of RSA in the [14C]sucrose group allowed us to estimate the volumes of 

brain plasma and blood, which were 8.99 and 16.6 µl/g, respectively, in the Sham animals (Table 
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1), predicting a cerebral hematocrit of 0.46 in this group. These values are in agreement with the 

cerebral blood volume of 25.1 µl/g, measured by the summation of red blood cell volume (99mTc-

labelled red blood cells) and plasma volume ([14C]dextran), and a hematocrit of 0.43 in control 

rats (Todd et al. 1992). The estimated hematocrit in the brain blood (0.46) of our Sham animals 

is also close to the estimated hematocrit in the systemic blood (0.47) in the same group, with the 

latter obtained from the RSA blood and plasma AUC0-30 values (Table 1). The Vblood and Vplasma 

values for the IR animals were not significantly different from those in the Sham animals (Table 

1), suggesting that our IR model does not affect the cerebral blood or plasma volumes.  

The lack of a significant effect of a 20-min Pringle maneuver plus 8 h of reperfusion on 

the [13C]sucrose Kin (Figs. 6a and 6b) is in agreement with our recent study using sodium 

fluorescein (FL) as a BBB permeability marker in the same disease model (Miah et al. 2015). 

Similar to sucrose, FL is a small, hydrophilic, low MW (374 Da) marker, which minimally 

crosses the intact BBB. However, the use of FL is subject to some inherent confounding 

problems, including disease state-induced potential changes in the protein binding of the marker. 

For example, when the Kin value of FL was estimated based on Eq. 2 using the total (free plus 

unbound) AUC0-30 of FL, hepatic IR significantly increased the marker’s Kin. However, 

correcting for the free fraction of the marker in the plasma, the Kin values in the Sham and IR rats 

were similar (Miah et al. 2015). In addition to the problem of binding to plasma proteins, some 

investigators have suggested that FL might pass the BBB through some transporters (Hawkins et 

al. 2007; Huai-Yun et al. 1998; Loscher and Potschka 2005). Therefore, [14C]sucrose, because of 

its lack of binding to plasma proteins and lack of any known transporters for its passage through 

the mammalian BBB, has so far been considered a more advantageous low MW marker for the 

BBB permeability. However, our current study indicates that the use of [14C]sucrose might also 
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result in inaccurate conclusions regarding the changes in the BBB permeability in pathological 

conditions.  

Previous studies and our own recent investigation (Miah et al. 2017) suggest presence of 

minor (a few percentages) lipophilic impurities in the stock solutions of [14C]sucrose. Although 

these impurities do not significantly affect the plasma or blood AUC of the total radioactivity, 

they can account for a significant portion of the total radioactivity count in the brain. This is 

because these lipophilic impurities can penetrate BBB to a much greater magnitude, compared 

with the almost impenetrable intact [14C]sucrose. Consequently, the Kin values of [14C]sucrose in 

control animals were, on average, ~7 fold higher than that of [13C]sucrose, which was quantitated 

by a specific LC-MS/MS method that only measures the intact marker (Miah et al. 2017).  Our 

current observation that the Kin values were significantly increased in the IR animals only in the 

case of [14C]sucrose suggests that the IR injury differentially affects the pharmacokinetics of the 

impurities in the [14C]sucrose and the intact [14C]sucrose itself. For example, if IR injury 

increases the AUC of the impurities more than the AUC of the intact [14C]sucrose, the more than 

proportionate increase in the AUC of the impurities, relative to that of the intact [14C]sucrose, 

significantly increases the brain concentration of the total radioactivity without a significant 

effect on the total AUC itself, resulting in a higher Kin value for [14C]sucrose.  

The increase in the plasma and blood concentrations (Fig. 3) and AUC0-30 values (Fig. 4) 

of both [13C] and [14C]sucrose in IR animals suggest a decrease in the clearance of sucrose as a 

result of IR injury. Sucrose is almost completely eliminated by excretion of the unchanged drug 

in the urine through glomerular filtration (Winkler and Parra 1937). Because hepatic IR injury is 

known to decrease the renal function (Behrends et al. 2008; Lee et al. 2009; Lee et al. 2011), the 
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apparent decrease in the clearance of sucrose in the IR animals is most likely due to a reduced 

renal function in these animals.    

Conclusions 

Hepatic IR injury increased the plasma, blood, and brain concentrations of BBB permeability 

markers [13C] and [14C]sucrose in rats. However, the apparent brain uptake clearance, which is 

estimated from the brain concentrations corrected for blood AUC, was increased significantly 

after IR only in the case of [14C]sucrose. Therefore, although [14C]sucrose data indicated that 

hepatic IR injury significantly increases the BBB permeability, this conclusion was not 

supported by the [13C]sucrose data. Because [13C]sucrose is a more specific BBB permeability 

marker (Miah et al. 2016; Miah et al. 2017), these data indicate that our model of hepatic IR 

injury does not affect the BBB tight junction permeability to small, hydrophilic molecules. 

Further, nonspecific measurement of [14C]sucrose by total radioactivity may result in an 

erroneous conclusion regarding disease state-induced alterations in the BBB permeability to 

small molecules. 
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Figure Legends 

Fig. 1 Plasma concentrations of ALT (a) and AST (b) in [13C] and [14C]sucrose groups. Different 

groups of animals (n = 5-7/group) were subjected to 20 min of Pringle maneuver (total hepatic 

IR) or sham surgery, and plasma concentrations of ALT and AST were measured 8 h after 

reperfusion. Columns and bars represent mean and SD values, respectively. Statistical 

significance (p value) is based on two-way ANOVA, followed by Bonferroni post-hoc analysis. 

Fig. 2 Plasma and blood concentration-time courses of [3H]-RSA in the IR and Sham animals. 

Different groups of animals (n = 5/group) were subjected to 20 min of Pringle maneuver (total 

hepatic IR) or sham surgery, followed by 8 h of reperfusion. A single intravenous dose of [3H]-

RSA (10 µCi) was administered, and serial blood and plasma samples were obtained. Symbols 

and bars represent mean and SD values, respectively. 

Fig. 3 Plasma (a and c) and blood (b and d) concentration-time courses of [13C] (a and b) and 

[14C] (c and d) sucrose in the IR and Sham animals. Different groups of animals (n = 5-7/group) 

were subjected to 20 min of Pringle maneuver (total hepatic IR) or sham surgery, followed by 8 

h of reperfusion. A single intravenous dose of [13C]sucrose (10 mg/kg) or [14C]sucrose (3 µCi) 

was administered, and serial blood and plasma samples were obtained. Symbols and bars 

represent mean and SD values, respectively. 

Fig. 4 Plasma (a and c) and blood (b and d) AUC0-30 of [13C] (a and b) and [14C] (c and d) 

sucrose in the IR and Sham animals. Different groups of animals (n = 5-7/group) were subjected 

to 20 min of Pringle maneuver (total hepatic IR) or sham surgery, followed by 8 h of reperfusion. 

A single intravenous dose of [13C]sucrose (10 mg/kg) or [14C]sucrose (3 µCi) was administered, 

and serial blood and plasma samples were obtained. Symbols and vertical lines represent 
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individual and mean values, respectively. Statistical significance (p value) is based on unpaired, 

two-tailed Student’s t-test. 

Fig. 5 Terminal brain concentrations of [13C] (a) and [14C] (b) sucrose in the IR and Sham 

animals. Different groups of animals (n = 5-7/group) were subjected to 20 min of Pringle 

maneuver (total hepatic IR) or sham surgery, followed by 8 h of reperfusion. A single 

intravenous dose of [13C]sucrose (10 mg/kg) or [14C]sucrose (3 µCi) was administered, and brain 

was collected at 30 min. Symbols and vertical lines represent individual and mean values, 

respectively. Statistical significance (p value) is based on unpaired, two-tailed Student’s t-test. 

Fig. 6 Plasma (a and c) and blood (b and d) Kin values of [13C] (a and b) and [14C] (c and d) 

sucrose in the IR and Sham animals. Different groups of animals (n = 5- 7/group) were subjected 

to 20 min of Pringle maneuver (total hepatic IR) or sham surgery, followed by 8 h of reperfusion. 

A single intravenous dose of [13C]sucrose (10 mg/kg) or [14C]sucrose (3 µCi) was administered, 

and serial blood and plasma samples and terminal brain samples were obtained. Symbols and 

vertical lines represent individual and mean values, respectively. Statistical significance (p value) 

is based on unpaired, two-tailed Student’s t-test. 
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Table 1 Plasma and blood AUC0-30 values and brain volume of distribution (V) values (mean ± 

SD) of 3H-RSA in Sham and IR rats. Animals in each group (n = 5/group) received a single 

intravenous dose of 3H-RSA (10 µCi), and serial blood samples were taken over 30 min. 

Parameter Plasma Blood 
 Sham IR Sham IR 

AUC0-30, %ID.min/ml 307 ± 32 410 ± 57** 164 ± 19 198 ± 16* 
V, µl/g 8.99 ± 1.03 8.40 ± 1.10 16.6 ± 1.1 16.6 ± 3.1 

*p < 0.05, ** p < 0.01: Significantly different from the Sham group based on unpaired, two-tailed  
Student’s t-test. 
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