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Abstract

The analogue of the Riesz-Dunford functional calculus has been introduced and studied
recently as well as the theory of semigroups and groups of linear quaternionic operators. In
this paper we suppose that T is the infinitesimal generator of a strongly continuous group
of operators (ZT (t))t∈R and we show how we can define bounded operators f(T ), where
f belongs to a class of functions which is larger than the class of slice regular functions,
using the quaternionic Laplace-Stieltjes transform. This class will include functions that are
slice regular on the S-spectrum of T but not necessarily at infinity. Moreover, we establish
the relation of f(T ) with the quaternionic functional calculus and we study the problem of
finding the inverse of f(T ).

AMS Classification: 47A10, 47A60.
Key words: Quaternionic infinitesimal generators, S-resolvent operator, S-spectrum, quater-
nionic Laplace-Stieltjes transform, quaternionic functional calculus, functions of the infinitesimal
generator.

1 Introduction

In this paper we study the quaternionic counterpart following problems that naturally arise for
groups or semigroups of operators in complex Banach spaces. With the recently introduced
notion of S-spectrum σS(T ) for a quaternionic linear operators T , it was possible to develop
the quaternionic functional calculus (also called S-functional calculus) which is the quaternionic
version of the Riesz-Dunford functional calculus, see [5, 13, 14] and the book [16] (see [17, 32] for
the classical case). Moreover, the slice continuous functional calculus for quaternionic normal
linear operators on a Hilbert space has been developed in [23] using this new notion of spectrum.
The spectral theorem (see [18] for the classical case) for quaternionic linear operators has been
recently proved in [6, 7, 24]. In the literature there were several attempts to prove the spectral
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theorem but the notion of spectrum was not made clear, see [34, 35]. In [20] the authors prove
the spectral theorem for a quaternionic matrix M using the notion of right spectrum σR(M)
which turned out to be equal to the S-spectrum σS(M).

Quaternionic operators are not just interesting from a mathematical point of view, they
are important in the formulation of quantum mechanics (Q.M.). In fact, it was proved by G.
Birkhoff and J. von Neumann [12], that there are essentially just two possible ways to formulate
Q.M.: the well known one using complex numbers and also one using quaternions. The second
description of Q.M. has been investigated by several authors, see [1, 19, 21, 27], but the correct
notion of spectrum did not seem to be known. In the past, the notion of right spectrum σR(T )
of a quaternionic linear operator T was used successfully in some cases. This is because σR(T )
coincides with S-point spectrum.

Classical results on groups and semigroups of linear operators (see [28, 29, 30, 31]) have been
extended to the quaternionic setting in recent papers: it has been shown that the Hille-Yosida
theorem holds, see [15], and it has been studied the problem of generation by perturbations of
the quaternionic infinitesimal generator in [4]. For semigroups over real alternative *-algebras
generation theorems and spherical sectorial operators have been studied in [26].

We now recall some facts in the classical case, for more details see [17]. The Riesz-Dunford
functional calculus can be extended to unbounded closed operators A : D(A) ⊂ X → X, with
non void resolvent set ρ(A), where X is a complex Banach space, see p. 599 in [17]. Precisely, for
each function f holomorphic on the spectrum σ(A) and at infinity, we define the bounded linear
operator f [A] as follows: consider the complex sphere K and the homeomorphism Φ : K → K

defined by µ = Φ(λ) = (λ− µ)−1, Φ(∞) = 0, Φ(µ) = ∞ and the relation ϕ(µ) := f(Φ−1(µ)).
Let IX be the identity operator on X, it can be shown that the bounded operator

f [A] := ϕ((A− µIX)−1), for µ ∈ ρ(A)

is well defined, since it does not depend on µ ∈ ρ(A), and can be represented as

f [A] = f(∞)IX +

∫

Γ
(λIX −A)−1f(λ)dλ

where f(∞) := limλ→∞ f(λ) and Γ is a suitable curve that surrounds the spectrum.
When A is the infinitesimal generator of a strongly continuous group UA(t) for t ∈ R, using

the bilateral Laplace-Stieltjes transform it is possible to define the bounded linear operator f(A)
on a larger class of functions. In fact if α denotes a finite complex-valued measure defined on R

so that the integral
∫

R
e(ω+ε)td|α|(t) is finite, here |α| is the total variation of the measure, we

can define the bilateral Laplace-Stieltjes transform of α as

f(λ) =

∫

R

e−tλdα(t), −(ω + ε) < Re(λ) < ω + ε.

It turns out that the operator

f(A)x :=

∫

R

UA(−t)x dα(t), x ∈ X

is well defined and it is bounded. When the function f is holomorphic also at the infinity
then the operator f(A), define by the Laplace-Stieltjes transform, and the one defined by the
Riesz-Dunford functional calculus f [A] are the same.

Under some conditions the inverse of the operator f(A) can be obtained using a suitable
sequence of polynomials. If pn(λ) is such that limn→∞ pn(λ)f(λ) = 1, then limn→∞ pn(A) defines
the inverse of f(A).
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To extend the above results to the quaternionic setting we have to face several difficulties
that are explained in the following sections. Here we point out that in the quaternionic setting
there are two resolvent operators and the notion of holomorphicity has to be replaced by the
notion of slice hyperholomorphicity (or slice regularity) which is recalled in the next section for
the sake of convenience. For more details see the books [16, 22] and the paper [25] for a different
approach.

Before we explain our results in the quaternionic setting we point out another crucial fact.
We restrict to the case of bounded operators for sake of simplicity, but what follows holds also
for unbounded operators. The relation between the resolvent operator (λIX − A)−1 of the
infinitesimal generator A : X → X of a semigroup (etA)t≥0 is given by the Laplace transform

(λIX −A)−1 =

∫ ∞

0
e−tλetA dt,

for Re(λ) sufficiently large. This important relation holds also in the quaternionic setting, but
in this case we have two resolvent operators. Precisely, we define the S-spectrum of the bounded
quaternionic linear operator T as

σS(T ) = {s ∈ H : T 2 − 2s0T + |s|2I is not invertible in B(V )}

where B(V ) denotes the space of all bounded linear operators on a bilateral quaternionic Banach
space V while s0 and |s| are the real part and the modulus of the quaternion s = s0+s1i+s2j+
s3k, respectively. The S-resolvent set ρS(T ) is defined by ρS(T ) = H \ σS(T ). For s ∈ ρS(T ) we
define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2s0T + |s|2I)−1(T − sI),

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2s0T + |s|2I)−1.

For T ∈ B(V ) and s0 > ‖T‖ we have the relations

S−1
R (s, T ) =

∫ ∞

0
e−t s et T dt, S−1

L (s, T ) =

∫ ∞

0
etT e−ts dt.

The above relations hold for right linear as well as for left linear quaternionic operators, but in
the case of unbounded operators the definitions of both resolvent operators have to be modified
in order that they are defined on the whole quaternionic Banach space V . Due to technical
reasons, explained in Remark 2.19, we will only consider the right S-resolvent operator.

To give the definition and to prove the properties of the functions of the quaternionic in-
finitesimal generator of a strongly continuous group, it is necessary to have all the preliminary
results on quaternionic measure theory that we collect in Section 3. We can now state the
main results of this paper. We suppose that T is the quaternionic infinitesimal generator of the
strongly continuous group (ZT (t))t∈R on a quaternionic Banach space V . For f in the set of
quaternionic bilateral Laplace-Stieltjes transforms of measures with

f(s) =

∫

R

dµ(t) e−st for − (ω + ε) < Re(s) ≤ ω + ε,

where µ ∈ S(T ) (see in the sequel), we define the right linear operator f(T ) on V by

f(T )v =

∫

R

dµ(t)ZT (−t)v for v ∈ V. (1)
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The operator f(T ) is bounded and under suitable conditions on f and g it has the property
(fg)(T ) = f(T )g(T ).

In Theorem 4.5 we have proved that if f ∈ V(T ) and f is right slice regular at infinity, then
the operator f(T ) defined using the Laplace transform equals the operator f [T ] obtained from
the S-functional calculus.
Finally we deduce sufficient conditions such that

lim
n→∞

Pn(T )f(T )u = u, for every u ∈ V

where Pn are suitable polynomials. We conclude by recalling that there are several applications
of the S-resolvent operators in Schur analysis, in particular in the realization of Schur functions
in the slice hyperholomorphic setting, see [8, 9, 10], and see [3, 11] for Schur analysis in the
holomorphic case.

2 Preliminary results on quaternionic operators

The skew field of quaternions is defined as the real vector space H = {x =
∑3

i=0 ξiei : ξi ∈ R}
endowed with a multiplication such that e0 = 1 is the identity, e2i = −1 and eiej = −ejei for
i, j ∈ {1, 2, 3} with i 6= j. The real and imaginary part, the conjugate and the modulus of a
quaternion are defined analogously to the case of complex numbers as

Re(x) = ξ0, Im(x) = x =

3
∑

i=1

ξiei, x = Re(x)− x and |x| =

√

√

√

√

3
∑

i=0

ξ2i .

The quaternions also possess a complex structure. In order to explain it we define the set of
imaginary units: We denote by S the set of all purely imaginary unit vectors, that is

S :=

{

3
∑

i=1

ξiei ∈ H :

3
∑

i=1

ξ2i = 1

}

.

Given an element x = Re(x) + x ∈ H, we set

Ix :=

{

x/|x| if x 6= 0

any element of S if x = 0.

Then x = x0 + Ixx1 with x0 = Re(x) = ξ0 and x1 = |x|. For any element x = x0 + Ixx1 ∈ H,
the set

[x] := {x0 + Ix1 : I ∈ S}

is a 2-sphere in H, which degenerates to a single point if x = 0.
For I ∈ S, we obviously have I2 = −1. Hence, the vector space CI = R+IR passing through

1 and I ∈ S is isomorphic to the field of complex numbers. Moreover, if I, J ∈ S with I ⊥ J ,
then the quaternions 1, I, J and IJ form an orthogonal basis of H as a real vector space and
so H = CI + CIJ . Furthermore, since IJ = −JI, zJ = Jz for any z ∈ CI . Hence, we also have
H = CI + CIJ .
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2.1 Slice regular functions

The functional calculus considered in this paper is based on the theory of slice regular functions.
We give a short introduction and state its most important results; the proofs can be found in
[16]. Let U ⊂ H be an open set and let f : U → H be a real differentiable function. For I ∈ S

denote by fI be the restriction of f to the complex plane CI = {x0 + Ix1 : x0, x1 ∈ R} and
define the differential operator ∂I as

∂I :=
1

2

(

∂

∂x0
+ I

∂

∂x1

)

.

Definition 2.1 (Slice regular functions). The function f is said to be left slice regular if, for
every I ∈ S, it satisfies

∂If(x) =
1

2

(

∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)

= 0

for all x = x0+ Ix1 ∈ U ∩CI . We denote the set of left slice regular functions on U by SRL(U).
The function f is said to be right slice regular if, for everyI ∈ S, it satisfies

(f∂I)(x) =
1

2

(

∂

∂x0
fI(x) +

∂

∂x1
fI(x)I

)

= 0

for all x = x0+Ix1 ∈ U∩CI . We denote the set of right slice regular functions on U by SRR(U).

Any power series of the form
∑∞

n=0 x
nan with an ∈ H for n ∈ N is left slice regular and any

power series of the form
∑∞

n=0 bnx
n with bn ∈ H is right slice regular. Conversely, at any real

point, any left or right slice regular function allows a power series expansion of the respective
form.

In the present paper we mainly consider right slice regular functions. For this reason we
discuss in detail only the theory of right slice regular functions, although corresponding results
also hold true for left slice regular functions.

Definition 2.2. Let U ⊂ H be open. The slice derivative of a function f ∈ SRR(U) is the
function defined by

∂sf(x) :=
1

2

(

∂

∂x0
fI(x0 + Ix1)−

∂

∂x1
fI(x)I

)

for x = x0 + Ix1 ∈ U.

Corollary 2.3. Let U ⊂ H be open. If f ∈ SRR(U), then ∂sf ∈ SRR(U).

Note that the slice derivative coincides with the partial derivative with respect to the real
part since

∂sf(x) =
1

2

(

∂

∂x0
fI(x)−

∂

∂x1
fI(x)I

)

=
1

2

(

∂

∂x0
fI(x) +

∂

∂x0
fI(x)

)

=
∂

∂x0
fI(x)

for any right slice regular function.

Lemma 2.4. Let α ∈ R and Br(α) be the open ball of radius r centered at α. A function
f : Br(α) → H is right slice regular if and only if

f(x) =

∞
∑

n=0

1

n!
∂n
s f(α) (x − α)n.
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Lemma 2.5 (Splitting Lemma). Let U ⊂ H be open. A real differentiable function f : U → H

is right slice regular if and only if for all I, J ∈ S with I ⊥ J there exist holomorphic functions
f1, f2 : U ∩ CI → CI such that

fI(x) = f1(x) + Jf2(x) for all x ∈ U ∩ CI .

Slice regular functions possess good properties when they are defined on suitable domains
which are introduced in the following definition.

Definition 2.6 (Axially symmetric slice domain). Let U be a domain in H. We say that U is
a slice domain if U ∩R is nonempty and if U ∩ CI is a domain in CI for all I ∈ S. We say that
U is axially symmetric if, for all x ∈ U , the 2-sphere [x] = x0 + Sx1 is contained in U .

Theorem 2.7 (Representation Formula). Let U ⊂ H be an axially symmetric slice domain. Let
I ∈ S and set xI = x0 + Ix1 for x = x0 + Ixx1 ∈ H. If f is a right slice regular function on U ,
then

f(x) = f(xI)(1 − IIx)
1

2
+ f(xI)(1 + IIx)

1

2

=
1

2

[

f(xI) + f(xI)
]

+
1

2

[

f(xI)− f(xI)
]

IIx

for x ∈ U . Moreover, the quantities

α(x0, x1) :=
1

2

[

f(xI) + f(xI)
]

and β(x0, x1) :=
1

2

[

f(xI)− f(xI)
]

I (2)

are independent of the imaginary unit I ∈ S.

The Representation Formula (see Theorem 2.7) for left slice regular functions reads as

f(x) =
1

2
(1− IxI)f(xI) +

1

2
(1 + IxI)f(xI). (3)

Slice regular function satisfy a version of Cauchy’s integral formula with a modified kernel.

Definition 2.8. For x /∈ [s] we define the noncommutative right Cauchy kernel as

S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1.

and the noncommutative left Cauchy kernel as

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s).

Lemma 2.9. The noncommutative Cauchy kernels have the following properties:

(i) The right Cauchy kernel S−1
R (s, x) is left slice regular in the variable s and right slice

regular in the variable x.

(ii) It holds the identity
S−1
L (s, x) = −S−1

R (x, s).
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(iii) They are the Laplace transforms of the exponential function. For Re(s) > Re(x), it is

S−1
R (s, x) =

∫ ∞

0
e−stext dt and S−1

L (s, x) =

∫ ∞

0
exte−st dt

and for Re(s) < Re(x), it is

S−1
R (s, x) = −

∫ 0

−∞
e−stext dt and S−1

L (s, x) = −

∫ 0

−∞
exte−st dt.

The right Cauchy kernel is the right slice regular inverse of the function x 7→ s − x. This
motivates the notation S−n

R (s, x) for the inverse of the n-th slice regular power of the map
x 7→ s− x. (For details on the slice regular product, we refer again to [16].)

Definition 2.10. Let n ∈ N. For x /∈ [s] we define

S−n
R (s, x) =

n
∑

k=0

(

n

k

)

sn−k(−x)k(x2 − 2Re(s)x+ |s|2)−n.

Note that, for m ∈ N, we have

∂m

∂sm0
S−1
R (s, x) = (−1)mm!S

−(m+1)
R (s, x)

and
∂m

∂xm0
S−1
R (s, x) = m!S

−(m+1)
R (s, x). (4)

The noncommutative Cauchy kernels allow us to prove the slice regular version of Cauchy’s
integral formula, which is the starting point for the definition of the S-functional calculus for
quaternionic linear operators.

Theorem 2.11 (The Cauchy formula with slice regular kernel). Let U ⊂ H be an axially
symmetric slice domain such that ∂(U ∩ CI) is a finite union of continuously differentiable
Jordan curves for every I ∈ S and set dsI = −dsI for I ∈ S. If f is right slice regular on a set
that contains U , then

f(x) =
1

2π

∫

∂(U∩CI)
f(s) dsI S

−1
R (s, x) for all x ∈ U. (5)

This integral neither depends on U nor on the imaginary unit I ∈ S.

Finally, we introduced an important subclass of slice regular functions.

Definition 2.12. Let U ⊂ H be an axially symmetric slice domain. A function f ∈ SRR(U)
is called intrinsic if f(x) = f(x) for all x ∈ U . We denote the set of all intrinsic functions by
N (U).

The class N (U) plays a privileged role within the set of slice regular functions. It contains
all power series with real coefficients and any function that belongs to it is both left and right
slice regular. We give two equivalent characterizations of intrinsic functions.

Corollary 2.13. Let U ⊂ H be an axially symmetric slice domain and let f ∈ SRR(U).
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(i) The function f belongs to N (U) if and only if f(U ∩ CI) ⊂ CI for all I ∈ S.

(ii) Write f(x) as f(x) = α(x0, x1) + β(x0, x1)Ix according to Theorem 2.7. Then f belongs
to N (U) if and only if α and β are real-valued.

Finally, observe that the product of two right slice regular functions is in general not slice
regular. The special role of intrinsic functions is therefore due to the following observation.

Lemma 2.14. Let f, g ∈ SRR(U). If g is intrinsic then fg belongs to SRR(U).

2.2 The S-resolvent operator and the S-functional calculus

We consider right linear operators on a two-sided quaternionic Banach space V . We denote
the set of all bounded right linear operators on V by B(V ) and we define the set K(V ) to be
the set of closed right linear operators whose domain is dense in V . Based on the theory of
slice regular functions it is possible to define a functional calculus for such operators. It is the
natural generalization of the Riesz-Dunford-functional calculus for complex linear operators to
the quaternionic setting; for details see again [16].

If T is a closed operator with dense domain, then T 2 − 2Re(s)T + |s|2I : D(T 2) ⊂ V → V
is closed.

Definition 2.15. Let T be a quaternionic right linear operator and let Rs(T ) : D(T 2) → V be
given by

Rs(T )x := (T 2 − 2Re(s)T + |s|2I)x, x ∈ D(T 2).

The S-resolvent set of T is defined as follows

ρS(T ) := {s ∈ V : ker(Rs(T )) = {0}, ran(Rs(T )) is dense in V and Rs(T )
−1 ∈ B(V )},

where Rs(T )
−1 : Ran(Rs(T )) → D(T 2). The S-spectrum of T is defined as

σS(T ) := H \ ρS(T ).

Lemma 2.16. The S-spectrum of an operator T ∈ K(V ) is axially symmetric. If T is bounded
then σS(T ) is a nonempty, compact set contained in the closed ball B‖T‖(0).

Definition 2.17 (The right S-resolvent operator). Let T ∈ K(V ). For s ∈ ρS(T ) we define the
right S-resolvent operator of T as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (6)

Remark 2.18. Observe that since the operator (T 2 − 2Re(s)T + |s|2I)−1 : V → D(T 2) is
bounded, the operator S−1

R (s, T ) = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1 is bounded.

Remark 2.19. The definition of the right S-resolvent operator is obviously inspired by the
right Cauchy-kernel of slice hyperholomorphic functions. Analogously it is possible to define the
left S-resolvent operator S−1

L (s, T ) which inspired by the left Cauchy-kernel. However, since we
are considering right linear operators, in this paper we need to restrict ourselves to the right
S-resolvent. The reason for this is that, for any v ∈ V , the function s 7→ S−1

R (s, T )v is left slice
regular on ρS(T ) because ∂IS

−1
R (s, T )v = (∂IS

−1
R (s, T ))v = 0. Note that although the mapping

s 7→ S−1
L (s, T ) is right slice regular on ρS(T ), the mapping s 7→ S−1

L (s, T )v is in general not
right slice regular because the vector v does not necessarily commute with the operator ∂I .
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Theorem 2.20. Let T ∈ K(V ).

(i) If α ∈ ρS(T ) is real then S−1
R (α, T ) = (αI − T )−1.

(ii) The mapping s 7→ S−1
R (s, T ) is left slice regular on ρS(T ).

(iii) The right S-resolvent operator satisfies the S-resolvent equation

sS−1
R (s, T )v − S−1

R (s, T )Tv = Iv, v ∈ D(T ). (7)

In analogy with Definition 2.10 we define

S−n
R (s, T ) =

n
∑

k=0

(

n

k

)

sn−k(−T )k(T 2 − 2Re(s)T + |s|2I)−n.

Corollary 2.21. For s ∈ ρS(T ) we have

∂m
s S−1

R (s, T ) = (−1)mm!S
−(m+1)
R (s, T ), for any n ∈ N.

The definition of the S-resolvent operator allows us to define the S-functional calculus for
bounded quaternionic right linear operators.

Definition 2.22. Let T ∈ K(V ). An axially symmetric slice domain U is called T -admissible
if σS(T ) ⊂ U and if for any I ∈ S the boundary ∂(U ∩ CI) consists of the finite union of
continuously differentiable Jordan curves.

We define SRR
σS(T ) to be the set of all functions that are right slice regular on an open set

O such that there exists a T -admissible slice domain U whose closure U is contained in O.

Definition 2.23 (S-functional calculus for bounded operators). Let T ∈ B(V ), let I ∈ S and
set dsI = −dsI. We define for any f ∈ SRR

σS(T )

f [T ] :=
1

2π

∫

∂(U∩CI )
f(s) dsI S

−1
R (s, T ), (8)

where this integral is indepentend of the choice of the imaginary unit I ∈ S and of the T -
admissible slice domain U .

We say that a function f is right slice regular at infinity if it is right slice regular on the set
{s ∈ H : r < |s|} for some r > 0 and the limit lims→∞ f(s) exists in H. In this case we define

f(∞) := lim
s→∞

f(s).

Definition 2.24. Let T ∈ K(T ). We denote by SRR
σS(T )∪{∞} the set of all functions f ∈

SRR
σS(T ) that are right slice regular at infinity.

As in the complex case the functional calculus for unbounded operators is defined using a
transformation of the unbounded operator into a bounded one. For α ∈ R we consider the
function Φα : H ∪ {∞} → H ∪ {∞} defined by Φα(s) = (s − α)−1 for s ∈ H \ {α}, φ(α) = ∞
and φ(∞) = 0.

Definition 2.25. Let T ∈ K(V ) be such that ρS(T ) ∩ R 6= ∅, let α ∈ ρS(T ) ∩ R and set
A = (T − αI)−1. For any f ∈ SRR

σS(T )∪{∞} we define

f [T ] := (f ◦Φ−1
α )(A).

9



This definition is independent of the choice of α ∈ ρs(T ) ∩ R. Moreover a integral represen-
tation corresponding to the one in (8) holds true as the next theorem shows.

Theorem 2.26. Let T ∈ K(V ) with ρs(T ) ∩ R 6= ∅ and let f ∈ SRR
σS(T )∪{∞}. If U is a

T -admissible slice domain such that f is slice regular on an open superset of U then

f [T ] = f(∞)I +
1

2π

∫

∂(U∩CI )
f(s) dsI S

−1
R (s, T ),

where dsI = −dsI and the integral does not depend on the choice of the imaginary unit I ∈ S.

The functional calculi defined above are consistent with algebraic operations such as addition
and multiplication of functions, multiplications with scalars from the left and composition as
far as they are supported by the class SRR

σS(T ). Note that we denote functions of an operator
obtained by the S-functional calculus with square brackets in order to distinguish them from
those obtained by the calculus we define in this paper.

2.3 Strongly continuous groups of quaternionic operators

The S-functional calculus is the fundamental tool to develop the theory of strongly continuous
semigroups and groups of quaternionic operators, cf. [15]. A family of bounded right-linear
operators (U(t))t≥0 on V is called a strongly continuous quaternionic semigroup if U(0) = I
and U(t1 + t2) = U(t1) + U(t2) for t1, t2 ≥ 0 and if t 7→ U(t)v is a continuous function on [0,∞)
for any v ∈ V .

Definition 2.27. Let (U(t))t≥0 be a strongly continuous quaternionic semigroup. Set

D(T ) =

{

v ∈ V : lim
h→0+

1

h
(U(h)v − v) exists

}

and

Tv = lim
h→0+

1

h
(U(h)v − v), v ∈ D(T ).

The operator T is called the quaternionic infinitesimal generator of the semigroup (U(t))t≥0.
We indicate that T is the infinitesimal generator of the semigroup (U(t))t≥0 by writing UT (t)

instead to U(t).

The set D(T ) is a right subspace that is dense in V and T : D(T ) → V is a closed quaternionic
right linear operator. Moreover

UT (t) = exp[tT ], t ≥ 0.

Theorem 2.28. Let (UT (t))t≥0 be a strongly continuous quaternionic semigroup and let T be
its quaternionic infinitesimal generator. Then

ω0 := lim
t→∞

1

t
ln ‖UT (t)‖ < ∞.

If s ∈ H with Re(s) > ω0 then s belongs ρS(T ) and

S−1
R (s, T ) =

∫ ∞

0
e−tsU(t) dt.

10



The question whether a closed linear operator is the infinitesimal generator of a strongly
continuous semigroup is answered by the Hille-Yoshida-Phillips Theorem.

Theorem 2.29. Let T be a closed linear operator with dense domain. Then T is the infinitesimal
generator of a strongly continuous semigroup if and only if there exist constants ω ∈ R and
M > 0 such that σS(T ) ⊂ {s ∈ H : Re(s) ≤ ω} and such that for any s0 ∈ R with s0 > ω

∥

∥(S−1
R (s0, T ))

n
∥

∥ ≤
M

(s0 − ω)n
for n ∈ N.

We consider the problem to characterize when a strongly continuous semigroup of operators
(UT (t))t≥0 can be extended to a group (ZT (t))t∈R of operators. This extension is unique if it
exists and if the family U−(t) = ZT (−t), t ≥ 0, is a strongly continuous semigroup. Consider
the identity

1

h
[U−(h)v − v] =

1

−h
[−ZT (−2)[ZT (2− h)v −ZT (2)v]], for h ∈ (0, 1).

By taking the limit for h → 0 we have that the infinitesimal generator of U−(t) is −T and
D(−T ) = D(T ). In this case T is called the quaternionic infinitesimal generator of the group
(ZT (t))t∈R. The next theorem gives a necessary and sufficient condition such that a semigroup
can be extended to a group.

Theorem 2.30. An operator T ∈ K(V ) is the quaternionic infinitesimal generator of a strongly
continuous group of bounded quaternionic linear operators if and only if there exist real numbers
M > 0 and ω ≥ 0 such that

‖(S−1
R (s0, T ))

n‖ ≤
M

(|s0| − ω)n
, for ω < |s0|. (9)

If T generates the group (ZT (t))t∈R, then ‖ZT (t)‖ ≤ Meω|t|.

3 The main results

The functional calculus considered in this paper is based on the quaternionic Laplace-Stieltjes-
transform. In order to define it, we recall some well-known results on complex measures in the
quaternionic setting.

3.1 Preliminary of quaternionic measure theory

Let (Ω,A) be a measurable space. A quaternionic measure is a function µ : A → H that satisfies

µ
(

⋃

n∈N
An

)

=
∑

n∈N

µ(An)

for any sequence of pairwise disjoint sets (An)n∈N ⊂ A. We denote the set of all quaternionic
measures on A by M(Ω,A,H) or simply by M(Ω,H) or M(Ω) if there is no possibility of
confusion. The set of all quaternionic measures is a two-sided quaternionic vector space with the
operations (µ+ ν)(A) = µ(A) + ν(A), (aµ)(A) = aµ(A) and (µa)(A) = µ(A)a for µ, ν ∈ M(Ω),
a ∈ H and A ∈ A.
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Remark 3.1. Let I, J ∈ S with I ⊥ J . Since H = CI + JCI , it is immediate that a mapping
µ : A → H is a quaternionic measure if and only if there exist two CI-valued complex measures
µ1, µ2 such that µ(A) = µ1(A) + Jµ2(A) for any A ∈ A.

Moreover, since also H = CI +CIJ , there exist CI-valued measures µ̃1, µ̃2 such that µ(A) =
µ̃1(A) + µ̃2(A)J for any A ∈ A.

Agrawal and Kulkarni showed in [2, Section 3] that one can define the variation of a quater-
nionic measure just as for complex measures and that the Radon-Nikodỳm theorem also holds
true in this setting.

Definition 3.2. Let µ ∈ M(Ω,A,H). For all A ∈ A denote by Π(A) the set of all countable
partitions π of A into pairwise disjoint, measurable sets Ai, i ∈ N. We call the set function

|µ|(A) = sup
{

∑

Ai∈π

|µ(Ai)|
∣

∣

∣ π ∈ Π(A)
}

for all A ∈ A,

the total variation of µ.

Corollary 3.3. The total variatation |µ| of a measure µ ∈ M(Ω,A,H) is a finite positive
measure on Ω. Moreover, |aµ| = |µa| = |µ||a| and |µ+ ν| ≤ |µ|+ |ν| for any µ, ν ∈ M(Ω,A,H)
and a ∈ H.

Recall that a measure µ is called absolutely continuous with respect to a positive measure ν,
if µ(A) = 0 for any A ∈ A with ν(A) = 0. In this case, we write µ ≪ ν.

Theorem 3.4 (Radon-Nikodỳm theorem for quaternionic measures). Let ν be a σ-finite positive
measure on (Ω,A). A quaternionic measure µ ∈ M(Ω,A,H) is absolutely continuous with
respect to ν if and only if there exists a unique function f ∈ L1(Ω,A, ν,H) such that

µ(A) =

∫

A

f dν for all A ∈ A.

Moreover, in this case

|µ|(A) =

∫

A

|f | dν for all A ∈ A. (10)

The identity (10) follows as in the classical case, cf. [32, Theorem 6.13].

Corollary 3.5. Let µ ∈ M(Ω,A,H). Then there exists an A-measurable function f : Ω → H

such that |h(x)| = 1 for any x ∈ Ω and such that µ(A) =
∫

A
hd|µ| for any A ∈ A.

Let V be a quaternionic Banach space and let ν be a positive measure. Recall that V is also
a real Banach space if we restrict the scalar multiplication to the real numbers. Moreover, recall
that H itself is a quaternionic Banach space.

Let ν be a positive measure. Recall that in Bochner’s integration theory, a function f with
values in V is called ν-measurable if there exists a sequence of functions fn(x) =

∑n
i=1 ai1Ai

(x),
where ai ∈ V and 1Ai

is the characteristic function of a measurable set Ai, such that fn(x) →
f(x) as n → ∞ for ν-almost all x ∈ Ω. Pettis measurability theorem gives an equivalent
condition to ν-measurability.

Theorem 3.6. Let V be a real Banach space and let ν be a positive measure. A function with
values in X is ν-measurable if and only if

(i) there exist a ν-zero set N and a separable subspace B of V such that f(Ω \N) ⊂ B and
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(ii) x 7→ 〈v∗, f(x)〉 is measurable for any v∗ in the topological dual space of the real Banach
space X.

Lemma 3.7. Let X be a quaternionic Banach space and let ν be a positive measure on (Ω,A).
If f : Ω → X and g : Ω → H are ν-measurable, then the functions fg and gf are ν-measurable.

Proof. Since f is ν-measurable, there exist a set N ⊂ Ω with ν(N) = 0 and a separable R-linear
subspace B of X such that f(Ω \N) ⊂ B. Let g = g0 +

∑3
i=1 giei where the gi : Ω → R are the

real-valued component functions of g. Since g is µ-measurable, its components are measurable.
For any continuous R-linear functional v∗ : X → R, we have

〈v∗, fg〉 = 〈v∗, f〉g0 + 〈v∗, fe1〉g1 + 〈v∗, fe2〉g2 + 〈v∗, fe3〉g3.

If fn is a sequence of A-simple functions such that fn(x) → f(x) for ν-almost all x ∈ Ω, then
fn(x)ei is a sequence of A-simple functions with fn(x)ei → f(x)ei for ν-almost all x ∈ Ω. There-
fore, each of the mappings x 7→ f(x)ei, i = 1, . . . , 3 is µ-measurable. The Pettis measurability
implies that the mapping x 7→ 〈v∗, f(x)〉 and the mappings x 7→ 〈v∗, f(x)ei〉 for i = 1, . . . , 3 are
measurable. Consequently, the mapping x 7→ 〈v∗, f(x)g(x)〉 is measurable, since it consists of
the products and the sum of measurable functions. Moreover, f(x)g(x) ∈ B+Be1 +Be2 +Be3
for any x ∈ Ω \N . This space is separable because B is separable. Since ν(N) = 0 and since v∗

was arbitrary, the mapping x 7→ f(x)g(x) is µ-measurable by the Pettis measurability theorem.
Similarly, we obtain that ν-measurability of gf .

Let ν be a positive measure on a (Ω,A). Recall that a ν-measurable function on Ω with
values in a real Banach space is Bochner-integrable, if and only if

∫

Ω ‖f‖dµ < ∞.

Definition 3.8. Let V be a quaternionic Banach space, let µ ∈ M(Ω,A,H) and let h : Ω → H

be the function with |h| = 1 such that µ = hd|µ|. We call two µ-measurable functions f : Ω → X
and g : Ω → H a µ-integrable pair, if

∫

Ω
‖f‖‖g‖ d|µ| < ∞.

In this case, we define
∫

Ω
f dµ g =

∫

Ω
fhg d|µ| and

∫

Ω
g dµ f =

∫

Ω
ghf d|µ|, (11)

as the integrals of a function with values in a real Banach space in the sense of Bochner.

Remark 3.9. Note that in the definition of the integral in (11), we can replace the variation of
µ by any σ-finite positive measure ν with µ ≪ ν. If hν is the density of µ with respect to ν and
ρ|µ| and ρν are the real-valued densities of |µ| and ν with respect to |µ|+ ν. Then

µ = h|µ| = hρ|µ|(|µ|+ ν) and µ = hνν = hνρν(|µ|+ ν).

Theorem 3.4 implies hρ|µ| = hνρν in L1(|µ|+ ν). Therefore

∫

Ω
fhνg dν =

∫

Ω

∫

Ω
fhνgρν d(|µ| + ν) =

∫

Ω

∫

Ω
fhνρνg d(|µ|+ ν)

=

∫

Ω
fhρ|µ|g d(|µ|+ ν) =

∫

Ω
fhgρ|µ| d(|µ| + ν) =

∫

Ω
fhg d|µ| =

∫

Ω
f dµ g.
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Hence, the integral is linear in the measure: if µ, ν ∈ M(Ω,A,H) then µ and ν are absolutely
continuous with respect to τ = |µ|+ |ν|. If ρµ and ρν are the densities of µ and ν with respect
to τ , then

∫

Ω
f d(µ + ν) g =

∫

Ω
f(ρµ + ρν)g dτ =

∫

Ω
fρµg dτ +

∫

Ω
fρνg dτ =

∫

Ω
f dµ g +

∫

Ω
f dν g.

Similarly, if a ∈ H and µ = ρ|µ| then aµ = aρ|µ| and so

∫

Ω
f d(aµ) g =

∫

Ω
f(aρ)g d|µ| =

∫

Ω
(fa)ρg d|µ| =

∫

Ω
(fa) dµ g.

In the same way, one can see that
∫

Ω f d(µa)g =
∫

Ω f dµ (ag).

As for complex measures, it is possible to define the product measure of two quaternionic
measures.

Lemma 3.10. Let µ ∈ M(Ω,A,H) and ν ∈ M(Υ,B,H). Then there exists a unique measure
µ× ν on the product measurable space (Ω × Υ,A⊗ B) such that

µ× ν(A×B) = µ(A)ν(B) (12)

for all A ∈ A, B ∈ B. We call µ× ν the product measure of µ and ν.

Proof. Let I, J ∈ S with I ⊥ J and let µ = µ1+Jµ2 with µ1, µ2 ∈ M(Ω,A,CI) and ν = ν1+ν2J
with ν1, ν2 ∈ M(Υ,B,CI). Then, there exist unique complex product measures µi × νj ∈
M(Ω1 × Ω2,A⊗ B,CI) of µi and νi, i, j = 1, 2. If we set

µ× ν = µ1 × ν1 + Jµ2 × ν1 + µ1 × ν2J + Jµ2 × ν2J,

then µ× ν is a quaternionic measure on (Ω× Υ,A⊗B) and

µ(A)ν(B) = µ1(A)ν1(B) + Jµ2(A)ν1(B) + µ1(A)ν2(B)J + Jµ2(A)ν2(B)J

= µ1 × ν1(A×B) + Jµ2 × ν1(A×B) + µ1 × ν2(A×B)J + Jµ2 × ν2(A×B)J

= µ× ν(A×B).

In order to prove the uniqueness of the product measure, assume that two quaternionic
measures ρ = ρ1+ρ2J and τ = τ1+τ2J on (Ω×Υ,A×B) satisfy ρ(A×B) = τ(A×B) whenever
A ∈ A and B ∈ B. Then ρ1(A × B) = τ1(A × B) and ρ2(A × B) = τ2(A × B) for A ∈ A
and B ∈ B. Since two complex measures on the product space (Ω × Υ,A⊗ B) are equal if and
only if they coincide on sets of the form A × B, we obtain ρ1 = τ1 and ρ2 = τ2 and, in turn,
ρ = ρ1 + ρ2J = τ1 + τ2J = τ . Therefore, µ× ν is uniquely determined by (12).

Remark 3.11. Note that it is also possible to define a commutative product measure µ ×c ν
that satisfies

µ×c ν(A×B) = ν(B)µ(A), ∀A ∈ A, B ∈ B.

This measure is different from the measure ν × µ that satisfies

ν × µ(B ×A) = ν(B)µ(A), ∀B ∈ B, A ∈ A.
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Lemma 3.12. Let (Ω,A, µ) and (Υ,B, ν) be quaternionic measure spaces. Then

|µ× ν| = |µ| × |ν|.

Moreover, if µ = f d|µ| and ν = g d|ν| as in Corollary 3.5, then for any C ∈ A× B

µ× ν(C) =

∫

C

f(s)g(t) d|µ × ν|(s, t).

Proof. Let f : Ω → H and g : Υ → H with |f | = 1 and |g| = 1 be functions as in Corollay 3.5
such that µ(A) =

∫

A
f(t) d|µ|(t) and ν(B) =

∫

B
g(s) d|ν|(s) for all A ∈ A and B ∈ B. Moreover,

let r = (t, s) and let h(r) = f(t)g(s). Then C 7→
∫

C
h(r) d|µ| × |ν|(r) defines a measure on

(Ω× Υ,A× B) and Fubini’s theorem for positive measures implies

∫

A×B

h(r) d|µ| × |ν|(r) =

∫

A

∫

B

f(t)g(s) d|µ|(t) d|ν|(s)

=

∫

A

f(t) d|µ|(t)

∫

B

g(s) d|ν|(s) = µ(A)ν(B).

The uniqueness of the product measure implies µ×ν(C) =
∫

C
h(r) d

∣

∣µ|×|ν|(r) for any C ∈ A×B.
Since |h| = |f | |g| = 1, we deduce from (10) that

|µ× ν|(C) =

∫

C

|h| d|µ| × |ν|(r) = |µ| × |ν|(C)

for all C ∈ A× B.

Lemma 3.13. Let (Ω,A, µ) be a quaternionic measure space, let (Υ,B) be a measurable space
and let φ : Ω → Υ be a measurable function. If a function f : Υ → X with values in a
quaternionic Banach space X is integrable with respect to µφ and f ◦φ is integrable with respect
to µ, then

∫

Υ

f dµφ =

∫

Ω
f ◦ φdµ. (13)

Proof. Let I, J ∈ S such that I ⊥ J and let µ1, µ2 ∈ M(Ω,A,CI) such that µ = µ1+µ2J . Then

µφ = µφ
1 + µφ

2J and |µi| ≤ |µ|, i = 1, 2, which implies
∫

Ω ‖f ◦ φ‖d|µi| ≤
∫

Ω ‖f ◦ φ‖d|µ| < ∞.
Hence, f ◦ φ is integrable with respect to µ1 and µ2 and similarly f is integrable with respect
to µφ

1 and µφ
2 . Therefore, (13) holds true for the complex measures µ1 and µ2, and hence

∫

Υ

f dµφ =

∫

Υ

f dµφ
1 +

∫

Υ

f dµφ
2J =

∫

Ω
f ◦ φdµ1 +

∫

Ω
f ◦ φdµ2J =

∫

Ω
f ◦ φdµ.

Definition 3.14. We denote the Borel sets on R by B(R).

We recall that, for any Borel set E ⊂ R, the set

P (E) := {(u, v) ∈ R
2 : u+ v ∈ E}

is a Borel subset of R2.
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Definition 3.15. Let µ, ν be quaternionic measures on B(R). The convolution µ ∗ ν of µ and
ν is the image measure of µ× ν under the mapping φ : R2 → R, (u, v) 7→ u+ v, that is,

µ ∗ ν(E) = µ× ν(P (E))

for any E ∈ B(R).

It is immediate to show the following rules.

Corollary 3.16. Let µ, ν, ρ ∈ M(R,B(R),H) and let a, b ∈ H. Then

1. (µ + ν) ∗ ρ = µ ∗ ρ+ ν ∗ ρ and µ ∗ (ν + ρ) = µ ∗ ν + µ ∗ ρ

2. (aµ) ∗ ν = a(µ ∗ ν) and µ ∗ (νa) = µ ∗ νa.

Corollary 3.17. Let µ, ν ∈ M(R,B(R),H). Then the estimate

|µ ∗ ν|(E) ≤ |µ| ∗ |ν|(E)

holds true for all E ∈ B(R).

Proof. Let E ∈ B(R) and let π ∈ Π(E) be a countable measurable partition of E. Then

∑

Ei∈π

|µ ∗ ν(Ei)| =
∑

Ei∈π

|µ × ν(P (Ei))| ≤
∑

Ei∈π

|µ × ν|(P (Ei)) = |µ × ν|(P (E)),

and taking the supremum over all possible partitions π ∈ Π(E) yields

|µ ∗ ν|(E) ≤ |µ× ν|(P (E)) = |µ| × |ν|(P (E)) = |µ| ∗ |ν|(E).

Corollary 3.18. Let µ, ν ∈ M(R,B(R),H) and let F : R → X be integrable with respect to µ∗ν
and such that

∫ +∞
−∞

∫ +∞
−∞ ‖F (s + t)‖ d|µ|(s) d|ν|(t) < ∞. Then

∫

R

F (r) d(µ ∗ ν)(r) =

∫

R

∫

R

F (s+ t) dµ(s) dν(t).

Proof. Because of our assumptions and Definition 3.15 we can apply Lemma 3.13 with φ(s, t) =
s + t. If µ(A) =

∫

A
f(t) d|µ|(t) and ν(A) =

∫

A
g(s) d|ν|(s), then the product measures satisfies

µ× ν(B) =
∫

B
f(s)g(t) d|µ| × |ν|(s, t) by Lemma 3.12. Applying Fubini’s theorem, we obtain

∫

R

F (r) d(µ ∗ ν)(r) =

∫

R

F (φ(s, t)) d(µ × ν)(s, t)

=

∫

R

F (φ(s, t))f(s)g(t) d|µ × ν|(s, t)

=

∫

R

F (s+ t)f(s)g(t) d|µ|(s) d|ν|(t) =

∫

R

∫

R

F (s+ t) dµ(s) dν(t).
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3.2 The quaternionic Laplace-Stieltjes transform and functions of the gener-

ator of a strongly continuous group

Let (ZT (t))t∈R be a strongly continuous group of operators on X. By Theorem 2.30, there exist
positive constants M > 0 and ω ≥ 0 such that ‖ZT (t)‖ ≤ Meω|t| and such that the S-spectrum
of the infinitesimal generator T lies in the strip −ω < Re(s) < ω.

Moreover,

S−1
R (s, T )v =

∫ ∞

0
e−ts ZT (t)v dt, Re(s) > ω

and

S−1
R (s, T )v = −

∫ 0

−∞
e−ts ZT (t)v dt, Re(s) < −ω.

Definition 3.19. We denote by S(T ) the family of all quaternionic measures µ on B(R) such
that

∫

R

d|µ|(t) e(ω+ε)|t| < ∞

for some ε = ε(µ) > 0. The function

L(µ)(s) =

∫

R

dµ(t) e−st, −(ω + ε) < Re(s) < (ω + ε)

is called the quaternionic bilateral (right) Laplace-Stieltjes transform of µ.
We denote by V(T ) the set of quaternionic bilateral Laplace-Stieltjes transforms of measures

in S(T ).

Lemma 3.20. Let µ, ν ∈ S(T ) and a ∈ H.

(i) The measures aµ and µ+ν belong to S(T ) and L(aµ) = aL(µ) and L(µ+ν) = L(µ)+L(ν).

(ii) The measures µ ∗ ν belongs to S(T ). If ν is real-valued, then L(µ ∗ ν) = L(µ) ∗ L(ν).

Proof. Let ε = min{ε(µ), ε(ν)}. Corollary 3.3 implies

∫

R

d|aµ| e|t|(ω+ε) = |a|

∫

R

d|µ| e|t|(ω+ε) < ∞

and
∫

R

d|µ+ ν| e|t|(ω+ε) ≤

∫

R

d|µ| e|t|(ω+ε) +

∫

R

d|ν| e|t|(ω+ε) < ∞.

Thus, aµ and µ+ ν belong to S(T ). The relations L(aµ) = aL(µ) and L(µ+ ν) = L(µ) + L(ν)
follow from the left linearity of the integral in the measure.

The variation of the convolution of µ and ν satisfies |µ ∗ ν|(E) ≤ |µ| ∗ |ν|(E) for any Borel
set E ∈ B(R), cf. Corollary 3.17. In view of Corollary 3.18, we have

∫

R

d|µ ∗ ν|(r)e(w+ε)|r| ≤

∫

R

∫

R

d|µ|(s) d|ν|(t)e(w+ε)|s+t|

≤

∫

R

d|µ|(s) e(w+ε)|s|

∫

R

d|ν|(t) e(w+ε)|t| < ∞.
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Therefore, µ ∗ ν ∈ S(T ). If ν is real-valued, then ν commutes with e−st and Fubini’s theorem
implies for s ∈ H with −(ω + ε) < Re(s) < ω + ε

L(µ ∗ ν)(s) =

∫

R

d(µ ∗ ν)(r) e−sr =

∫

R

∫

R

dµ(t) dν(u) e−s(t+u)

=

∫

R

dµ(t) e−st

∫

R

dν(u) e−su = L(µ)(s)L(ν)(s).

Theorem 3.21. Let f ∈ V(T ) with f(s) =
∫

R
dµ(t) e−st for −(ω + ε) < Re(s) < ω + ε.

(i) The function f is right slice regular on the strip {s ∈ H : −(ω + ε) < Re(s) < ω + ε}.

(ii) For any n ∈ N, the measure µn defined by

µn(E) =

∫

E

dµ(t) (−t)n for E ∈ B(R)

belongs to V(T ) and, for s with −(ω + ε) < Re(s) < ω + ε, we have

∂n
s f(s) =

∫

R

dµn(t) e−st =

∫

R

dµ(t) (−t)ne−st, (14)

where ∂sf denotes the slice derivative of f as in Definition 2.2.

Proof. For every n ∈ N and every 0 < ε1 < ε there exists a constant K such that

|t|ne(ω+ε1)|t| ≤ Ke(ω+ε)|t|, t ∈ R.

Since µ ∈ S(T ), we have
∫

R

d|µn|(t) e(ω+ε1)|t| =

∫

R

d|µ|(t) |t|ne(ω+ε1)|t| ≤ K

∫

R

d|µ|(t) e(ω+ε)|t| < ∞

and so µn ∈ S(T ).
Let I, J ∈ S with I ⊥ J and let fI = f1 + Jf2 where f1 and f2 have values in CI . Then

fI∂I = 0 if and only if f1 and f2 are holomorphic, which is equivalent to the existence of the
limit

f ′
1(s) + Jf ′

2(s) = lim
CI∋p→s

f1(p)− f1(s)

p− s
+ J

f2(p)− f2(s)

p− s
= lim

CI∋p→s

(

fI(p)− fI(s)
)

(p− s)−1.

For any s = s0 + Is1 with −(ω + ε) < Re(s) < ω + ε, we have

lim
CI∋p→s

(fI(p)− fI(s))(p − s)−1 = lim
CI∋p→s

∫

R

dµ(t)
e−pt − e−st

p− s
.

If p is sufficiently close to s such that also −(ω+ε) < Re(p) < ω+ε, then the simple calculation

|e−pt − e−st| =

∣

∣

∣

∣

∫ 1

0
e−ts−tξ(p−s)t(p− s) dξ

∣

∣

∣

∣

≤ |t|e(ω+ε)|t||p− s|,

yields the estimate
|e−pt − e−st|

|p− s|
≤ |t|e(ω+ε)|t|,
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which allows us to apply Lebesgue’s theorem of dominated convergence in order to exchange
limit and integration. We obtain

lim
p∈CI→s

(fI(p)− fI(s))(p − s)−1 =

∫

R

dµ(t) (−t)e−st =

∫

R

dµ1(t) e−st. (15)

Consequently, f is right slice regular on the strip {s ∈ H : −(ω+ε) < Re(s) < ω+ε}. Moreover,
(15) implies

∂sf(s) =

∫

R

dµ1(t) e−st

for −(ω + ε) < Re(s) < ω + ε. By induction we get (14).

Definition 3.22 (Functions of the quaternionic infinitesimal generator). Let T be the quater-
nionic infinitesimal generator of the strongly continuous group (ZT (t))t∈R on a quaternionic
Banach space V . For f ∈ V(T ) with

f(s) =

∫

R

dµ(t) e−st for − (ω + ε) < Re(s) < ω + ε,

where µ ∈ S(T ), we define the right linear operator f(T ) on V by

f(T )v =

∫

R

dµ(t)ZT (−t)v for v ∈ V. (16)

Remark 3.23. Note that in particular for p ∈ H with Re(p) < −ω the function s 7→ S−1
R (p, s)

lies in S(T ). Set µp = −1[0,∞)(t)e
tp dt, where 1A denotes the characteristic function of a set A.

If Re(p) < Re(s), then

L(µp)(s) =

∫

R

dµp(t) e
−ts = −

∫ ∞

0
etpe−ts dt = −S−1

L (s, p) = S−1
R (p, s)

and

L(µp)(T ) =

∫

R

dµp(t)Z(−t) = −

∫ ∞

0
etpZ(−t) dt = −

∫ 0

−∞
e−tp Z(t) dt = S−1

R (p, T ).

For p ∈ H with ω < Re(p) set µp = χ(−∞,0](t)e
tp dt. Similar computations show that also in

this case S−1
R (p, s) = L(µp)(s) ∈ S(T ) if Re(s) < Re(p) and L(µp)(T ) = S−1

R (p, T ).

Theorem 3.24. For any f ∈ V(T ), the operator f(T ) is bounded.

Proof. Let f(s) =
∫

R
dµ(t) e−st ∈ V(T ) with µ ∈ S(T ). Since ‖UT (t)‖ ≤ Mew|t|, we have

‖f(T )v‖ ≤

∫

R

d|µ|(t) ‖ZT (−t)‖ ‖v‖ ≤ M

∫

R

d|µ|(t) ew|t|‖v‖.

for any v ∈ V . Thus, f(T ) is bounded.

Lemma 3.25. Let f = L(µ) and g = L(ν) belong to V(T ) and let a ∈ H.

(i) (af)(T ) = af(T ) and (f + g)(T ) = f(T ) + g(T ).
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(ii) If g is an intrinsic function, then ν is real valued and (fg)(T ) = f(T )g(T ).

Proof. The statement (i) follows immediately from Lemma 3.20 and the left linearity of the
integral (16) in the measure.

Consider (ii) and write for s = s0 + Is1

g(s) =

∫

R

dν(t) e−st =

∫

R

dν(t) e−s0tcos(−s1t) +

∫

R

dν(t) e−s0t sin(−s1t)I.

If g is intrinsic, then α(s0, s1) =
∫

R
dν(t) e−s0t cos(−s1t) and β(s0, s1) =

∫

R
dν(t) e−s0t sin(−s1t)

which implies that also ν is real-valued, since the Laplace-Stieltjes transform is injective on the
set of complex measures. Lemma 3.20 gives fg = L(µ ∗ ν) ∈ V(T ) and

(fg)(T )v =

∫

R

d(µ ∗ ν)(r)ZT (−r)v =

∫

R

∫

R

dµ(s) dν(t)ZT (−(s + t))v

=

∫

R

dµ(s)ZT (−s)

∫

R

dν(t)ZT (−t)v = f(T )g(T )v,

where we use that ZT (−s) and ν commute because ν is real-valued.

4 Comparison with the S-functional calculus

A natural question that arises is the relation between the functional calculus introduced in this
paper and the S-functional calculus for unbounded operators. In this section we will show that
that in the case the function f is slice regular also at infinity the two functional calculi coincide.
In order to prove this, we need specialized versions of Cauchy’s integral theorem and the Residue
theorem that fit into our setting. The next theorem is analogue to Lemma 4.5.1 in [16].

Theorem 4.1. Let V be a two-sided quaternionic Banach space, let U ⊂ H be an axially
symmetric open set such that ∂(U ∩CI) is a finite number of continuously differentiable Jordan
curves and let O be an open set with U ⊂ O. If f : O → H is right slice regular and g : O → V
is left slice regular, then, for any I ∈ S, it holds

∫

∂(U∩CI )
f(s) dsI g(s) = 0.

Lemma 4.2. Let O ⊂ H be open, let f : O \ [p] → H be right slice regular and let g : O → V be
left slice regular such that p = p0 + Ip1 ∈ O is a pole of order nf ≥ 0 of fI . If ε > 0 is such that

Uε(p) ∩ CI ⊂ O, then

1

2π

∫

∂(Uε(p)∩CI)
f(s) dsI g(s) =

nf−1
∑

k=0

1

k!
Resp

(

fI(s)(s − p)k
)(

∂k
s g(p)

)

.

Proof. Since f is right slice regular, its restriction fI is a vector-valued holomorphic function on
CI if we consider H as a vector space over CI by restricting the multiplication with quaternions
on the right to CI . Similarly, since g is left slice regular, its restriction g is a V -valued holomor-
phic function if we consider V as a complex vector space over CI by restricting the left scalar
multiplication to CI . Consequently, if we set ρ = dist(p, ∂(O ∩CI), then

fI(s) =

∞
∑

k=−nf

ak(s− p)k and gI(s) =

∞
∑

k=0

(s− p)kbk for s ∈ (Uρ(p) ∩CI) \ {p} (17)
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with ak ∈ H and bk ∈ V . These series converge uniformly on ∂(Uε(p) ∩ CI) for any 0 < ε < ρ.
Thus,

1

2π

∫

∂(Uε(p)∩CI )
f(s) dsI g(s) =

1

2π

∫

∂(Uε(p)∩CI )

(

∞
∑

k=0

ak−nf
(s − p)k−nf

)

dsI





∞
∑

j=0

(s− p)jbj





=

∞
∑

k=0

k
∑

j=0

ak−j−nf

(

1

2π

∫

∂(Uε(p)∩CI )
(s− p)k−j−nf dsI (s− p)j

)

bj

=

∞
∑

k=0

k
∑

j=0

ak−j−nf

(

1

2πI

∫

∂(Uε(p)∩CI )
(s− p)k−nf ds

)

bj.

As 1
2πI

∫

∂(Uε(p)∩CI )
(s− p)k−nf ds equals 1 if k − nf = −1 and 0 otherwise, we obtain

1

2π

∫

∂(Uε(p)∩CI )
f(s) dsI g(s) =

nf−1
∑

j=0

a−(j+1)bj.

Finally, observe that a−k = Resp
(

fI(s)(s− p)k−1
)

and bk = 1
k!∂

k
s gI(p) by their definition in

(17).

In order to compute the integral in the S-functional calculus we denote by Wc the strip
Wc = {s ∈ H : −c < Re(s) < c} for c > 0 and we introduce the set ∂(Wc ∩ CI) for I ∈ S. It
consists of the two lines s = c+ Iτ and s = −c− Iτ , τ ∈ R, and their orientation is such that
on CI the orientation of ∂(Wc ∩ CI) is positive.

Proposition 4.3. Let α and c be a real numbers such that ω < c < |α|. Then for any u ∈ D(T 2)
we have

ZT (t)u =
1

2π

∫

∂(Wc∩CI)
ets(α − s)−2 dsI S

−1
R (s, T )(αI − T )2u. (18)

Proof. We recall that

S−1
R (s, T )u =

∫ ∞

0
e−tsZT (t)u dt, Re(s) > ω.

Since ‖ZT (t)‖ ≤ Meω|t|, we get a bound for the S-resolvent operator by

‖S−1
R (s, T )u‖ = M

∫ ∞

0
e(ω−Re(s))t‖u‖ dt, Re(s) > ω (19)

which assures that ‖S−1
R (s, T )‖ is uniformly bounded on {s ∈ H : Re(s) > ω + ε} for any ε > 0.

A similar consideration gives a uniform bound on {s ∈ H : Re(s) < −(ω + ε)}. Thanks to such
bound the integral in (18) is well defined since the (α − s)−2 goes to zero with order 1/|s|2 as
s → ∞. We set

F (t)u =
1

2π

∫

∂(Wc∩CI)
ets(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u
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for u ∈ D(T 2) and we show that F (t)u = ZT (t)u using the Laplace transform. We first assume
t > 0. If Re(p) > c then

∫ ∞

0
e−ptF (t)u dt =

1

2π

∫ ∞

0
e−pt

∫

∂(Wc∩CI )
ets(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u dt

=
1

2π

∫

∂(Wc∩CI)

(
∫ ∞

0
e−ptetsdt

)

(α− s)−2 dsI S
−1
R (s, T )(αI − T )2u.

Now observe that
∫ ∞

0
e−ptets dt = S−1

R (p, s),

so we have
∫ ∞

0
e−ptF (t)u dt =

1

2π

∫

∂(Wc∩CI)
S−1
R (p, s)(α − s)−2 dsI S

−1
R (s, T )(αI − T )2u.

We point out that the function s 7→ S−1
R (p, s)(α − s)−2 is right slice regular for s /∈ [p] ∪ {α}

and that the function s 7→ S−1
R (s, T )(αI − T )2u is left slice regular on ρS(T ). Observe that

the integrand is such that (α − s)−2 goes to zero with order 1/|s|2 as s → ∞. By applying
Theorem 4.1, the appropriate version of Cauchy’s integral theorem, we can replace the path of
integration by small negatively oriented circles of radius δ > 0 around the singularities of the
integrand in the plane CI . These singularities are α, pI = p0 + Ip1 and p if I 6= ±Ip. We obtain

∫ ∞

0
e−ptF (t)u dt =−

1

2π

∫

∂(Uδ(α)∩CI )
S−1
R (p, s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

−
1

2π

∫

∂(Uδ(pI )∩CI)
S−1
R (p, s)(α − s)−2 dsI S

−1
R (s, T )(αI − T )2u

−
1

2π

∫

∂(Uδ(pI )∩CI)
S−1
R (p, s)(α − s)−2 dsI S

−1
R (s, T )(αI − T )2u

Observe that the integrand has a pole of order 2 at α and poles of order 1 at pI and pI (except if
I = ±Ip). Applying Lemma 4.2 with f(s) = S−1

R (p, s)(α− s)−2 and g(s) = S−1
R (s, T )(αI −T )2u

yields therefore

∫ ∞

0
e−ptF (t)u dt =− Resα

(

S−1
R (p, s)(α − s)−2

)

S−1
R (α, T )(αI − T )2u

− Resα
(

S−1
R (p, s)(s − α)−1

) (

∂sS
−1
R (α, T )(αI − T )2u

)

− RespI
(

S−1
R (p, s)(α− s)−2

)

S−1
R (pI , T )(αI − T )2u

− RespI
(

S−1
R (p, s)(α− s)−2

)

S−1
R (pI , T )(αI − T )2u.

We calculate the residues of the function f(s) = S−1
R (p, s)(α− s)−2. Since it has a pole of order

two at α, we have

Resα(fI) = lim
CI∋s→α

∂

∂s
fI(s)(s− α)2 = lim

CI∋s→α

∂

∂s
S−1
R (p, s) = lim

CI∋s→α
S−2
R (p, s) = S−2

R (p, α)

and
Resα(fI(s)(s− α)) = lim

CI∋s→α
fI(s)(s − α)2 = S−1

R (p, α).
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The point pI = p0 + Ip1 is a pole of order 1. Thus, setting sIp = s0 + Ips1 ∈ CIp for s =
s0 + Is1 ∈ CI , we deduce from the Representation formula (see Theorem 2.7)

RespI (fI) = lim
CI∋s→pI

fI(s)(s − pI) = lim
CI∋s→pI

S−1
R (p, s)(α− s)−2(s− pI)

= lim
CI∋s→pI

[

S−1
R (p, sIp)(1 − IpI)

1

2
+ S−1

R (p, sIp)(1 + IpI)
1

2

]

(s− pI)(α− s)−2

=

[

lim
CI∋s→pI

(p− sIp)
−1(1− IpI)(s− pI) + lim

CI∋s→pI
(p− sIp)

−1(1 + IpI)(s− pI)

]

1

2
(α− pI)

−2

=

[

lim
CI∋s→pI

(p− sIp)
−1(1− IpI)(s− pI)

]

1

2
(α− pI)

−2.

We calculate

lim
CI∋s→pI

(p− sIp)
−1(1− IpI)(s− pI)

= lim
CI∋s→pI

(p− sIp)
−1(1− IpI)(s0 − p0) + (p − sIp)

−1(1− IpI)I(s1 − p1)

= lim
CI∋s→pI

(p− sIp)
−1(s0 − p0)(1− IpI) + (p − sIp)

−1(s1 − p1)(I + Ip)

= lim
CI∋s→pI

(p− sIp)
−1(s0 − p0)(1− IpI) + (p − sIp)

−1(s1 − p1)Ip(−IpI + 1)

= lim
CI∋s→pI

(p− sIp)
−1(s0 − p0 + Ip(s1 − p1))(1 − IpI)

= lim
CI∋s→pI

(p− sIp)
−1(sIp − p)(1− IpI) = −(1− IpI)

and finally obtain

RespI (fI) = −
1

2
(1− IpI)(α− pI)

−2.

Replacing I by −I in this formula yields

RespI (fI) = −
1

2
(1 + IpI)(α− pI)

−2.

Note that these formulas also hold true if I = ±Ip. In this case either RespI (fI) = −(α− pI)
−2

and RespI (fI) = 0 because pI is a removable singularity of fI or vice versa. Moreover,

S−1
R (α, T )(αI − T )2u = (αI − T )−1(αI − T )2u = (αI − T )u

and

∂sS
−1
R (α, T )(αI − T )2u =−S−2

R (α, T )(αI − T )2u =−(αI − T )−2(αI − T )2u = −u

because α is real. Putting these pieces together, we get
∫ ∞

0
e−ptF (t)u dt =− S−2

R (p, α)S−1
R (α, T )(αI − T )2u+ S−1

R (p, α)S−2
R (α, T )(αI − T )2u

+
1

2
(1− IpI)(α − pI)

−2S−1
R (pI , T )(αI − T )2u

+
1

2
(1 + IpI)(α − pI)

−2S−1
R (pI , T )(αI − T )2u =

=− (p− α)−2(αI − T )u+ (p − α)−1u+ (p− α)−2S−1
R (p, T )(αI − T )2u,
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where that last identity follows from the Representation Formula (see Theorem 2.7) because the
mapping

p 7→ (α− p)−2S−1
R (p, T )(αI − T )2u

is left slice regular. We factor out (p − α)−2 on the left and obtain

∫ ∞

0
e−ptF (t)u dt =(p − α)−2

(

−(αI − T )u+ (p− α)u+ S−1
R (p, T )(αI − T )2u

)

=(p − α)−2
(

pu− 2αu + Tu+ S−1
R (p, T )(αI − T )2u

)

.

Recall that we assumed that u ∈ D(T 2). Hence, Tu ∈ D(T ) and so we can apply the right
S-resolvent (7) equation twice to obtain

S−1
R (p, T )(αI − T )2u = S−1

R (p, T )(T 2u− 2αTu+ α2u)

= pS−1
R (p, T )Tu− Tu− 2αpS−1

R (p, T )u+ 2αu+ α2S−1
R (p, T )u

= p2S−1
R (p, T )u− pu− Tu− 2αpS−1

R (p, T )u+ 2αu+ α2S−1
R (p, T )u

= (p − α)2S−1
R (p, T )u− pu+ 2αu− Tu.

So finally

∫ ∞

0
e−ptF (t)u dt =(p− α)−2(p− α)2S−1

R (p, T )u = S−1
R (p, T )u.

Hence,
∫ ∞

0
e−ptF (t)u dt = S−1

R (p, T )u =

∫ ∞

0
e−ptZT (t)u dt,

for Re(p) > c, which implies F (t)u = ZT (t)u for u ∈ D(T 2) and t ≥ 0.
Applying the same reasoning to the semigroup (Z(−t))t≥0, with infinitesimal generator −T ,

we see that

Z(−t)u =
1

2π

∫

∂(Wc∩CI)
ets(α − s)−2 dsI S

−1
R (s,−T )(αI + T )2u

=
1

2π

∫

∂(Wc∩CI)
e−ts(α+ s)−2 dsI S

−1
R (s, T )(αI + T )2u,

where the second equality follows by substitution of s by−s because−S−1
R (−s,−T ) = −S−1

R (s, T ).
Replacing α by −α and −t by t, we finally find

Z(t)u =
1

2π

∫

∂(Wc∩CI)
ets(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

also for t < 0.

Proposition 4.4. Let α and c be real numbers such that ω < c < |α|. If f ∈ V(T ) is right slice
regular on Wc, then for any u ∈ D(T 2) we have

f(T )u =
1

2π

∫

∂(Wc∩CI )
f(s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u. (20)
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Proof. We recall that f can be represented as

f(s) =

∫

R

dµ(t) e−st

with µ ∈ S(T ). Using Proposition 4.3 we obtain

1

2π

∫

∂(Wc∩CI)
f(s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

=
1

2π

∫

∂(Wc∩CI)

∫

R

dµ(t) e−st(α− s)−2 dsI S
−1
R (s, T )(αI − T )2u

=

∫

R

dµ(t)

(

1

2π

∫

∂(Wc∩CI )
e−st(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

)

=

∫

R

dµ(t)ZT (−t)u = f(T )u.

Note that Fubini’s theorem allows us to exchange the order of integration as the S-resolvent
S−1
R (s, T ) is uniformly bounded on ∂(Wc ∩ CI) because of (19) and so there exists a constant

K > 0 such that

1

2π

∫

∂(Wc∩CI )

∫

R

∥

∥dµ(t) e−st(α− s)−2 dsI S
−1
R (s, T )(αI − T )2u

∥

∥

≤
1

2π

∫

∂(Wc∩CI )

∫

R

d|µ|(t) e−Re(s)t 1

|α− s|−2
‖S−1

R (s, T )‖‖(αI − T )2u‖ds

≤K

∫

∂(Wc∩CI )

∫

R

d|µ|(t) ec|t|
1

(1 + |s|)2
ds.

This integral is finite because the fact that f is right slice regular on Wc implies
∫

R

d|µ|(t) ec|t| < ∞.

Theorem 4.5. Let f ∈ V(T ) and suppose that f is right slice regular at infinity. Then the
operator f(T ) defined using the Laplace transform equals the operator f [T ] obtained from the
S-functional calculus.

Proof. Recall that we denote functions of operators obtained by the S-functional calculus with
square brackets in order to distinguish them from those obtained by the calculus of the present
paper. The S-functional calculus for unbounded operators satisfies

g[T ] = g(∞)I +

∫

∂(Wc∩CI)
g(s) dsI S

−1
R (s, T ).

Consider α ∈ R with c < |α| and observe that the function

g(s) := f(s)(α− s)−2

is right slice regular and satisfies lims→∞ g(s) = 0 since f is right slice regular at infinity. By
the theorem of the product, we get

f [T ](αI − T )−2u =
1

2π

∫

∂(Wc∩CI)
f(s)(α− s)2 dsI S

−1
R (s, T )u.
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But by Proposition 4.4, it is

f(T )u =
1

2π

∫

∂(Wc∩CI)
f(s)(α− s)2 dsI S

−1
R (s, T )(αI − T )2u.

for u ∈ D(T 2) and so
f [T ]u = f(T )u, for u ∈ D(T 2).

SinceD(T 2) is dense in V and since the operators f [T ] and f(T ) are bounded we get f [T ] = f(T ).

5 The inversion of the operator f(T )

To study the inversion of an operator we consider a sequence of quaternionic polynomials Pn(s)
such that limn→∞ Pn(s)f(s) = 1. We point out that in general the pointwise product Pn(s)f(s)
is not slice regular and therefore we must limit ourselves to the case that f is an intrinsic
function. The main goal of this section is to deduce sufficient conditions such that

lim
n→∞

Pn(T )f(T )u = u, for every u ∈ V .

Lemma 5.1. Let T ∈ K(V ) such that ρS(T ) ∩ R 6= ∅. Then D(T n) is dense in V for every
n ∈ N.

Proof. If α ∈ ρS(T )∩R, then D(T n) = D((αI −T )n) = (αI −T )−nV = S−n
R (α, T )V . Therefore

a continuous right linear functional u∗ ∈ V ∗ on V vanishes on D(T n) if and only if the functional
u∗S−n

R (α, T ) defined by
〈

u∗S−n
R (α, T ), v

〉

=
〈

u∗, S−n
R (α, T )v

〉

vanishes on the entire space V .
Now assume that u∗S−1

R (α, T ) = 0 for some u∗ ∈ V ∗. Then u∗ vanishes on D(T ) and since

D(T ) is dense in V we deduce u∗ = 0. Since u∗S−n
R (s, T ) = (u∗S

−(n−1)
R (s, T ))S−1

R (s, T ) we
obtain by induction that even the fact that u∗S−n

R (s, T ) = 0 for arbitrary n ∈ N implies u∗ = 0.
Putting together these two observations, we see that u∗D(T n) = u∗S−n

R (s, T )V = 0 implies
u∗ = 0. By the quaternionic version of the Hahn-Banach Theorem (see for example Theorem
4.10.1 in [16]) D(T n) is dense in V .

Lemma 5.2. Let P be an intrinsic polynomial of degree m and let f and Pnf both belong to
V(T ). Then f(T )V ⊆ D(Tm) and

P [T ]f(T )u = (Pf)(T )u, for all u ∈ V.

Proof. We first consider the case x ∈ D(Tm+2). Let α, c ∈ R with w < c < |α| and let I ∈ S.
The function Pf is the product of two intrinsic functions and therefore intrinsic itself. By
Proposition 4.4, Lemma 3.25 and Remark 3.23, we have

(αI − T )−m(Pf)(T )u =
1

2π

∫

∂(Wc∩CI )
(α− s)−mP (s)f(s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u.
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Write the polynomial P in the form P (s) =
∑m

k=0 ak(α− s)k with ak ∈ R. In view of Proposi-
tion 4.4, Lemma 3.25 and Remark 3.23 we obtain again

(αI − T )−m(Pf)(T )u

=

m
∑

k=0

ak
1

2π

∫

∂(Wc∩CI )
(α− s)−m+kf(s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

=

m
∑

k=0

ak(αI − T )−m+kf(T )u = (αI − T )−m
m
∑

k=0

ak(αI − T )kf(T )u

= (αI − T )−mP [T ]f(T )u.

Consequently, (Pf)(T )u = P [T ]f(T )u for u ∈ D(Tm+2).
Now let u ∈ V be arbitrary. Since D(Tm+2) is dense Lemma 5.1, there exists a sequence

un ∈ D(Tm+2) with limn→∞ un = u. Then f(T )un → f(T )u and P [T ]f(T )un = (Pf)(T )un →
(Pf)(T )u as n → ∞. Since P [T ] is closed on D(Tm), it follows that f(T )u ∈ D(Tm) and
P [T ]f(T )u = (Pf)(T )u.

Definition 5.3. A sequence of intrinsic polynomials (Pn)n∈N is called an inverting sequence for
an intrinsic function f ∈ V(T ) if

(i) Pnf ∈ V(T ),

(ii) |Pn(s)f(s)| ≤ M, n ∈ N for some constant M > 0 and limn→∞ Pn(s)f(s) = 1 in a strip
|Re(s)| ≤ ω + ε,

(iii) ‖(Pnf)(T )‖ ≤ M , n ∈ N for some constant M > 0.

Theorem 5.4. If (Pn)n∈N is an inverting sequence for an intrinsic function f ∈ V(T ), then

lim
n→∞

Pn[T ]f(T )u = u ∀u ∈ V.

Proof. First consider u ∈ D(T 2) and choose α ∈ R with ω < |α|. Then Proposition 4.4 and
Lemma 5.2 imply

Pn[T ]f(T )u = (Pnf)(T )u =
1

2π

∫

∂(Wcn∩CI)
Pn(s)f(s)(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u

for arbitrary I ∈ S and cn ∈ R with w < cn < |α| such that Pnf is right slice regular on Wcn .
However, we have assumed that there exists a constant M such that |Pn(s)f(s)| ≤ M for any
n ∈ N on a strip −(ω + ε) ≤ Re(s) ≤ ω + ε. Moreover, because of (19), the right S-resolvent
is uniformly bounded on any set {s ∈ CI : |Re(s)| > ω + ε′} with ε′ > 0. Applying Cauchy’s
integral theorem we can therefore replace ∂(Wcn ∩ CI) for any n ∈ N by ∂(Wc ∩ CI) where c is
a real number with ω < c < min{|α|, ω + ε}. In particular, we can choose c independent of n.
Lebesgue’s dominated convergence theorem allows us to exchange limit and integration and we
obtain

Pn[T ]f(T )u =
1

2π

∫

∂(Wc∩CI)
(α− s)−2 dsI S

−1
R (s, T )(αI − T )2u = u.
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If u ∈ V does not belong to D(T 2), then we can choose for any ε > 0 a vector uε ∈ D(T 2)
with ‖u− uε‖ < ε. Since the mappings (Pnf)(T ) are uniformly bounded by a constant M > 0,
we get

‖(Pnf)(T )u− u‖ ≤ ‖(Pnf)(T )u− (Pnf)(T )uε‖+ ‖(Pnf)(T )uε − uε‖+ ‖uε − u‖

≤ M‖u− uε‖+ ‖(Pnf)(T )uε − uε‖+ ‖uε − u‖
n→∞
−→ M‖u− uε‖+ ‖uε − u‖ ≤ (M + 1)ε.

Since ε > 0 was arbitrary, we deduce limn→∞ ‖(Pnf)(T )u− u‖ = 0 even for arbitrary u ∈ V .

Corollary 5.5. Let V be reflexive and let Pn be an inverting sequence for an intrinsic function
f ∈ S(T ). A vector u belongs to the range of f(T ) if and only if x is in D(Pn[T ]) for all n ∈ N

and the sequence (Pn[T ]u)n∈N is bounded.

Proof. If u ∈ ranf(T ) with u = f(T )v then Lemma 5.2 implies u ∈ D(Pn(T )) for all n ∈ N.
Theorem 5.4 states limn→∞ Pn[T ]u = v which implies that (Pn[T ]u)n∈N is bounded.

To prove the converse statement consider u ∈ V such that (Pn[T ]u)n∈N is bounded. Since
V is reflexive the set {Pn[T ]u : n ∈ N} is weakly sequentially compact (the proof that a set
E in a reflexive quaternionic Banach space V is weakly sequentially compact if and only if E
is bounded can be completed just as in the classical case when V is a complex Banach space,
see, e.g., Theorem II.28 in [17]) and hence there exists a subsequence (Pnk

[T ]u)k∈N and a vector
v ∈ V such that 〈x∗, Pnk

[T ]u〉 → 〈x∗, v〉 as k → ∞ for any x∗ ∈ V ∗. We show u = f(T )v.
For any functional x∗ ∈ V ∗ the mapping x∗f(T ) defined by 〈x∗f(T ), w〉 = 〈x∗, f(T )w〉 also

belongs to V ∗. Hence,

〈x∗, f(T )Pnk
[T ]u〉 = 〈x∗f(T ), Pnk

[T ]u〉 → 〈x∗f(T ), v〉 = 〈x∗, f(T )v〉.

Recall that the measure µ is real-valued since f is intrinsic. Therefore it commutes with the
operator Pnk

[T ]. Recall also that if w ∈ D(T n) for some n ∈ N then Z(t)w ∈ D(T n) for any t ∈ R

and Z(t)T nw = T nZ(t)w. Thus, Pnk
[T ]Z(t)u = Z(t)Pnk

[T ]u because Pnk
has real coefficients.

Moreover, we can therefore exchange the integral with the unbounded operator Pnk
[T ] in the

following computation

f(T )Pnk
[T ]u =

∫

R

dµ(t)Z(−t)Pnk
[T ]u = Pnk

[T ]

∫

R

dµ(t)Z(−t)u = Pnk
[T ]f(T )u.

Theorem 5.4 implies for any x∗ ∈ V ∗

〈x∗, u〉 = lim
k→∞

〈x∗, Pnk
[T ]f(T )u〉 = lim

k→∞
〈x∗, f(T )Pnk

[T ]u〉 = 〈x∗, f(T )v〉

and so u = f(T )v follows from the quaternionic version of the Hahn-Banach Theorem (see for
example Theorem 4.10.1 in [16]).
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[4] D. Alpay, F. Colombo and I. Sabadini, Perturbation of the generator of a quater-
nionic evolution operator, to appear in Analysis and Applications (2015), DOI
10.1142/S0219530514500249.

[5] D. Alpay, F. Colombo, J. Gantner and I. Sabadini, A new resolvent equation for the S-
functional calculus, arxiv 1310.7626v1, to appear in Journal of Geometric Analysis (2015)
DOI 10.1007/s12220-014-9499-9.

[6] D. Alpay, F. Colombo, D. P. Kimsey, The spectral theorem for for quaternionic unbounded
normal operators based on the S-spectrum, Preprint 2014, avaliable on arXiv:1409.7010.

[7] D. Alpay, F. Colombo, D. P. Kimsey and I. Sabadini. The spectral theorem for unitary
operators based on the S-spectrum, Preprint 2014, avaliable on arXiv:1403.0175.

[8] D. Alpay, F. Colombo, I. Sabadini, Schur functions and their realizations in the slice hy-
perholomorphic setting, Integral Equations Operator Theory, 72 (2012), 253–289.

[9] D. Alpay, F. Colombo and I. Sabadini, Pontryagin De Branges Rovnyak spaces of slice
hyperholomorphic functions, J. Anal. Math., 121 (2013), 87-125.

[10] D. Alpay, F. Colombo and I. Sabadini, Krein-Langer factorization and related topics in the
slice hyperholomorphic setting, J. Geom. Anal., 24 (2014), 843–872.

[11] D. Alpay, A. Dijksma, J. Rovnyak, H. de Snoo, Schur functions, operator colligations,
and reproducing kernel Pontryagin spaces, volume 96 of Operator theory: Advances and
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