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A NEW REALIZATION OF RATIONAL FUNCTIONS,

WITH APPLICATIONS TO LINEAR COMBINATION

INTERPOLATION

DANIEL ALPAY, PALLE JORGENSEN, IZCHAK LEWKOWICZ,
AND DAN VOLOK

Abstract. We introduce the following linear combination inter-

polation problem (LCI), which in case of simple nodes reads as
follows: Given N distinct numbers w1, . . . wN and N + 1 complex
numbers a1, . . . , aN and c, find all functions f(z) analytic in an
open set (depending on f) containing the points w1, . . . , wN such
that

N∑

u=1

auf(wu) = c.

To this end we prove a representation theorem for such functions
f in terms of an associated polynomial p(z). We give applications
of this representation theorem to realization of rational functions
and representations of positive definite kernels.

Contents

1. Introduction 2
2. A decomposition of analytic functions 4
3. A new realization of rational functions 6
4. Linear combination interpolation 12
5. Representation in reproducing kernel Hilbert spaces 13
References 14

2010 Mathematics Subject Classification. MSC: 30E05, 47B32, 93B28, 47A57.
Key words and phrases. multipoint interpolation, reproducing kernels, Cuntz

relations, infinite products.
The authors thank the Binational Science Foundation Grant number 2010117.

D. Alpay thanks the Earl Katz family for endowing the chair which supported his
research.

1

http://arxiv.org/abs/1408.4404v2


2 D. ALPAY, P. JORGENSEN, I. LEWKOWICZ, AND D. VOLOK

1. Introduction

Any function f analytic in a neighborhood of the origin can be uniquely
written as

(1.1) f(z) =
N−1∑

n=0

znfn(z
N ),

where f0, . . . , fN−1 are analytic at the origin. Furthermore, the maps

(1.2) Tnf = fn, n = 0, . . . , N − 1

satisfy, under appropriate hypothesis, the Cuntz relations (see also
(3.7)). See for instance [4], where applications to wavelets are given.
In the present paper, we extend these methods, and we derive new and
explicit formulas for solutions to a class of multi-point interpolation
problems; not amenable to tools from earlier investigations. Following
common use, by Cuntz relations we refer here to a symbolic represen-
tation of a finite set (say N) of isometries having orthogonal ranges
which add up to the identity (operator). When N is fixed the notation
ON is often used. By a representation of ON in a fixed Hilbert space,
we mean a realization of the N -Cuntz relations in a Hilbert space.
Here we will be applying this to specific Hilbert spaces of analytic
functions which are dictated by our multi-point interpolation setting.
In general it is known that the problem of finding representations
of ON is subtle. (The literature on representations of ON is vast.)
For example, no complete classification of these representations is
known, but nonetheless, specific representations can be found, and
they are known to play a key role in several areas of mathematics
and its applications; e.g., to multi-variable operator theory, and in
applications to the study of multi-frequency bands; see the cited
references below. Realizations as in (1.1) then results from representa-
tions of ON ; the particulars of these representations are then encoded
in the operators from (1.2). Readers not familiar with ON and its
representations are referred to [11, 21, 20, 19], and to Remark 3.7 below.

The outline of the paper is as follows. In Section 2, we replace
zN by an arbitrary polynomial p(z), and prove a counterpart of
the decomposition (1.1), see Theorem 2.1. The rest of the paper
is organized as follows: In sections 3 -4, we discuss uniqueness of
solutions, and (motivated by applications from systems theory) we
extend our result in three ways, first to that of Banach space valued
functions (Theorem 3.4) and then we specialize to the case rational
functions (Theorem 3.5). Thirdly we study multipoint interpolation
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when derivatives are specified. In section 5, we give an application to
positive definite kernels.

More precisely, a first application of Theorem 2.1 is in giving a new
realization formula for rational functions. To explain the result, recall
that a matrix-valued rational function W analytic at the origin can
always be written in the form

W (z) = D + zC(I − zA)−1B,

whereD = W (0) andA,B,C are matrices of appropriate sizes. Such an
expression is called a state space realization, and plays an important
role in linear system theory and related topics; see for instance [8]
and [10] for more information. We here prove that a rational function
analytic at the points w1, . . . , wn can always be written in the form

W (z) = Z(z)γ(I − p(z)α)−1β,

where p(z) is a polynomial vanishing at the points w1, . . . , wn and of
degree N ≥ n, and

(1.3) Z(z) =
(
1 z · · · zN−1

)
,

and α, β, γ are matrices of appropriate sizes. Finally we give an ap-
plication to decompositions of positive definite kernels and the Cuntz
relations.

The multipoint interpolation problem, which in the case where p has
simple zeros w1, . . . , wN consists in finding all functions f(z) analytic
in a simply connected set (depending on f) containing the points
w1, . . . , wN and such that

(1.4)
N∑

u=1

auf(wu) = c.

This can be equivalently written as

(a1, . . . , aN)

(
f(w1)

...
f(wN )

)

= c.

Namely the points f(w1), . . . , f(wN) lie on a hyper-plane, so roughly
speaking, the points w1, . . . , wN lie on some manifold.

This type of problem seems to have been virtually neglected in the lit-
terature. In [3] the case of two points was considered in the setting of
the Hardy space of the open unit disk. The method there consisted in
finding an involutive self-map of the open unit disk mapping one of the
points to the second one, and thus reducing the given two-point inter-
polation problem to a one-point interpolation problem with an added
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symmetry. This method cannot be extended to more than two points,
but in special cases. In [6] we considered the interpolation condition
(1.4) in the Hardy space. Connections with the Cuntz relations played
a key role in the arguments.

2. A decomposition of analytic functions

We set

p(z) =
n∏

j=1

(z − wj)
µj ,

n∑

j=1

µj = N,

and recall that Z(z) is given by (1.3).

Theorem 2.1. Let Ω be a (possibly disconnected) neighborhood of
{w1, . . . , wn}. Then there exists a neighborhood Ω0 of the origin, such
that p−1(Ω0) ⊂ Ω and every function f(z), analytic in Ω, can be repre-
sented in the form

(2.1) f(z) = Z(z)F (p(z)), z ∈ p−1(Ω0),

where F (z) is a C
N -valued function, analytic in Ω0.

Proof. Choose n simple closed counterclockwise oriented contours
γ1, . . . , γn with the following properties:

(1) The function f(z) is analytic on each contour γj and in the
simply connected domain Dj encircled by γj.

(2) For j = 1, . . . , n the domain Dj contains the point wj .
(3) The domains D1, . . . , Dn are pairwise disjoint.

Denote

D :=
n⋃

j=1

Dj , ρ := min

{

|p(s)| : s ∈
n⋃

j=1

γj

}

.

Since all the zeros of p(z) are contained in D, ρ > 0 and, by the
maximum modulus principle, p−1(Ω0) ⊂ D, where Ω0 is the open disk
of radius ρ centered at the origin. Furthermore, for z ∈ p−1(Ω0) it
holds that

f(z) =
1

2πi

n∑

j=1

∫

γj

f(s)

p(s)− p(z)

p(s)− p(z)

s− z
ds

=
Z(z)

2πi

n∑

j=1

∫

γj

Q(s)f(s)

p(s)− p(z)
ds = Z(z)F (p(z)),

where Q(s) is a CN -valued polynomial, such that

p(s)− p(z)

s− z
= Z(z)Q(s),
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and

(2.2) F (z) =
1

2πi

n∑

j=1

∫

γj

Q(s)f(s)

p(s)− z
ds, z ∈ Ω0,

is a CN -valued function, analytic in Ω0. �

Corollary 2.2. Assume that f is a polynomial (resp. rational). Then
F given by (2.2) is also a polynomial (resp. rational).

Proof. We first consider the case of a polynomial. For z near the origin
we have

F (z) =

∞∑

u=0

zuFu with Fu =

n∑

j=1

1

2πi

∫

γj

Q(s)f(s)

p(s)u+1
du.

Note that 1
2πi

∫

γj

Q(s)f(s)
p(s)u+1 du is the residue of the rational function Q(s)f(s)

p(s)u+1

at the point wj. For u large enough the difference of the degrees of the
denominator and the numerator of this rational function is at least
two, and so the sum of its residues is equal to 0 (the so-called exactity
relation; see [17, p. 173] and [2, Exercise 7.3.6, p. 326]). Thus Fu = 0
for u large enough and we conclude by analytic continuation that F is
a polynomial.

In the case of a rational function consider the partial fraction represen-
tation, which is the sum of a polynomial (which we just have treated)
and of terms of the form 1

(s−a)M
, where a is not a zero of p. We thus

need to show that, for such a, a sum of the form

(2.3) G(z) =
1

2πi

n∑

j=1

∫

γj

Q(s)

(s− a)M(p(s)− z)
ds,

is rational. Chose the contours γ1, . . . , γn such that no zeroes of the
equation p(s) = p(a) lie inside or on them. Using the polynomial case,
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the result follows from writing

G(z) =
1

2πi

n∑

j=1

∫

γj

Q(s)

(s− a)M(p(s)− z)
ds

=
1

2πi

n∑

j=1

∫

γj

Q(s)
(

p(s)−p(a)
s−a

)M

(p(s)− p(a))M(p(s)− z)
ds

=
1

2πi

n∑

j=1

∫

γj

Q(s)

(
p(s)− p(a)

s− a

)M (
c(z)

p(s)− z
+

+
M∑

u=1

cu(z)

(p(s)− p(a))u

)

ds,

for some complex numbers c(z), c1(z), . . . , cM(z) corresponding to the
partial fraction expansion of the function 1

(λ−z)(λ−p(a))M
:

1

(λ− z)(λ− p(a))M
=

c(z)

λ− z
+

M∑

u=1

cu(z)

(λ− p(a))u
.

These are readily seen to be rational functions of z, and hence the
function G above is rational. �

3. A new realization of rational functions

Denote by V the generalized N ×N Vandermonde matrix

V =





V1
...
Vn



 , where Vj =







Z(wj)
Z ′(wj)

...
Z(µj−1)(wj)







,

and by Cw the linear operator

f(z) 7→





Cw1
f

...
Cwn

f



 , where Cwj
f :=







f(wj)
f ′(wj)

...
f (µj−1)(wj)







.

By rearanging the rows the matrix V is readily seen to be invertible.

Proposition 3.1. Let f(z) be a function, analytic in a neighborhood of
{w1, . . . , wn} and let F (z) be a C

N function, analytic in a neighborhood
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of the origin, which provides the decomposition (2.1) for the function
f(z). Then the Taylor expansion of F (z) is given by

(3.1) F (z) =

∞∑

k=0

zkV −1Cw(R
(p)
0 )kf,

where R
(p)
0 denotes the linear operator

f(z) 7→
f(z)− Z(z)V −1Cwf

p(z)
.

Remark 3.2. A priori the convergence in (3.1) is pointwise, and uni-
form on compact subsets of the origin where f is defined. When the
underlying spaces are finite dimensional, or when some extra topolog-
ical structure is given, one can rewrite (3.1) as

F (z) = V −1Cw(I − zR
(p)
0 )−1f.

Proof of Proposition 3.1. Since

p(wj) = p′(wj) = · · · = p(µj−1)(wj) = 0, j = 1, . . . , n,

differentiate both sides of (2.1) at wj to obtain

Cwj
f = VjF (0), j = 1, . . . , n.

Hence, in vector notation,

Cwf = V F (0),

(3.2) F (0) = V −1Cwf,

and

(3.3) (R
(p)
0 f)(z) = Z(z)(R0F )(p(z)),

where

(RwF )(z) =
F (z)− F (w)

z − w

is the classical backward-shift operator. In particular, the function R0F

provides a decomposition (2.1) for the function R
(p)
0 f . By induction,

one may conclude that

((R
(p)
0 )kf)(z) = Z(z)Rk

0F (p(z)), k = 0, 1, 2, . . .

hence, in view of (3.2),

(Rk
0F )(0) = V −1Cw(R

(p)
0 )kf, k = 0, 1, 2, . . .

�



8 D. ALPAY, P. JORGENSEN, I. LEWKOWICZ, AND D. VOLOK

Corollary 3.3. Every function f(z), analytic in a neighborhood of
{w1, . . . , wn}, admits a unique decomposition (2.1), in which (as follows
form Corollary 2.2) F is a polynomial (resp. rational) when f is a
polynomial (resp. rational).

Theorem 2.1 has an analogue in the setting of analytic functions with
values in a Banach space B. In what follows, Bs denotes the product
space

Bs := C
s ⊗ B,

and the tensor product of a matrix (ai,j) ∈ Cr×s and a linear operator
A ∈ L(B) is understood as the operator matrix

(ai,j)⊗A := (ai,jA) ∈ L(Bs,Br).

Theorem 3.4. Let B be a Banach space and let f(z) be a B-valued
function, analytic in a neighborhood Ω of {w1, . . . , wn}. Then there
exist a neighborhood Ω0 of the origin, and a BN -valued function F (z),
analytic in Ω0, such that

(3.4) f(z) = (Z(z)⊗ IB)F (p(z)), z ∈ p−1(Ω0) ⊂ Ω.

Furthermore, the Taylor expansion of F (z) is given by

(3.5) F (z) =
∞∑

k=0

zkV −1Cw(R
(p)
0 )kf,

where R
(p)
0 denotes the linear operator

f(z) 7→
f(z)− ((Z(z)V −1)⊗ IB)Cwf

p(z)
.

Proof. Let ϕ ∈ B∗. Then, according to Theorem 2.1 and Proposition
3.1, the function ϕ ◦ f admits a unique decomposition (3.1) provided
by the C

N -valued function

F ϕ(z) =
∞∑

k=0

zkV −1Cw(R
(p)
0 )k(ϕ ◦ f).

Then

F ϕ(z) =
∞∑

k=0

zk(IN ⊗ ϕ)Fk,

where

Fk := (V −1 ⊗ IB)Cw(R
(p)
0 )kf.

Since F ϕ(z) is analytic in an open disk

Ω0 = {z : |z| < ρ},
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where ρ is independent of ϕ, the uniform boundedness principle implies
that the BN -valued function

F (z) :=

∞∑

k=0

zkFk

is also analytic in Ω0, and (3.4) follows from

F ϕ = (IN ⊗ ϕ) ◦ F, ϕ ∈ B∗.

�

The preceding analysis leads to a new kind of realization for rational
functions.

Theorem 3.5. Every rational Cr×s-valued function f(z), which has no
poles in {w1, . . . , wn}, can be written as

(3.6) f(z) = (Z(z)⊗ Ir)C(I − p(z)A)−1B,

where A,B,C are constant matrices of appropriate sizes.

Proof. Write

1

p(z)
=

n∑

j=1

µj∑

k=1

cj,k

(z − wj)k
,

where cj,k ∈ C are constants. Then the operator R
(p)
0 defined in (3.3)

can be written as

R
(p)
0 =

n∑

j=1

µj∑

k=1

cj,kR
k
wj
.

Since f(z) is a rational function, the space

L(f) := colspan{Akf : k = 0, 1, 2, . . . }

⊂ colspan{Rk
wj
f : j = 1, . . . , n; k = 0, 1, 2, . . . }

is finite-dimensional. Choose a basis of this finite-dimensional space
and let A,B,C be matrices representing the operators

L(f) ∋ fu 7→ R
(p)
0 fu ∈ L(f), u ∈ C

s,

C
s ∋ u 7→ fu ∈ L(f),

L(f) ∋ fu 7→ (V −1 ⊗ Ir)Cwfu ∈ C
rN , u ∈ C

s,

respectively. Then

f(z) = (Z(z)⊗ Ir)
∞∑

k=0

p(z)kCAkB = (Z(z)⊗ Ir)C(I − p(z)A)−1B.

�
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We will call the realization (3.6) minimal if the size of the matrix A is
minimal (for more on this notion, and equivalent characterizations, see
for instance [9]). As a consequence of the uniqueness of the decompo-
sition we also have:

Corollary 3.6. When minimal, the realization (3.6) is unique up to a
similarity matrix. Then, F is a polynomial if and only if A is nilpotent.

Proof. It suffices to notice that the uniqueness of the decomposition
(2.1) reduces the problem to the uniqueness of the minimality of the
function C(I − λA)−1B with λ ∈ C. �

Remark 3.7. The uniqueness allows us to give an interpretation on
terms of generalized Cuntz relations. More precisely, define linear op-
erators on analytic functions by S1, . . . , SN , T1, . . . , TN by:

(3.7) (Sjg)(z) = zj−1g(p(z)) and TjF = Fj, j = 1, . . . , N

where F is a CN -valued analytic function (see also (1.2) for the defintion
of T1, . . . , TN).Then the given decomposition (2.1) reads

TiSj = δij and

N∑

n=1

SjTj = I.

Remark 3.8. We note that in the case µ1 = · · · = µn = 1 the operator

R
(p)
0 can be written as

(3.8) R
(p)
0 f(z) =

f(z)

p(z)
−

N∑

u=1

f(wu)

p′(wu)(z − wu)

is reminiscent of a formula for a resolvent operator given in the setting
of function theory on compact real Riemann surfaces. See [7, (4.1), p.
307]. This point is emphasized in the following proposition.

Proposition 3.9. Let α and β be such that the roots w1(α), . . . , wN(α)
and w1(β), . . . , wN(β) of the equations p(z) = α and p(z) = β are
all distinct (wu(α) 6= wv(β) for u, v = 1, . . . , N). Then the resolvent
equation

R(p)
α −R

(p)
β = (α− β)R(p)

α R
(p)
β

holds.
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Proof. Indeed, on the one hand,
(

(R(p)
α −R

(p)
β )(f)

)

(z) =

=
f(z)

p(z)− α
−

N∑

u=1

f(wu(α))

p′(wu(α))(z − wu(α))
−

f(z)

p(z)− α
+

N∑

u=1

f(wu(α))

p′(wu(α))(z − wu(α))

= (α− β)
f(z)

(p(z)− α)(p(z)− β)
−

N∑

u=1

f(wu(α))

p′(wu(α))(z − wu(α))
+

N∑

v=1

f(wv(β))

p′(wv(β))(z − wv(β))
.

On the other hand,

(

(R(p)
α

(

R
(p)
β (f)

))

(z) =

(

R
(p)
β (f)

)

(z)

p(z)− α
−

N∑

u=1

(

R
(p)
β (f)

)

(wu(α))

p′(wu(α))(z − wu(α))

=
f(z)

(p(z)− α)(p(z)− β)
−

N∑

v=1

f(wv(β))

p′(wv(β))(z − wv(β))(p(z)− α)
−

−
N∑

u=1

f(wu(α))

(p(wu(α)
︸ ︷︷ ︸

= α

−β))p′(wu(α))(z − wu(α))
+

+

N∑

u=1

(
∑N

v=1
f(wv(β))

p′(wv(β))(wu(α)−wv(β))

)

p′(wu(α))(z − wu(α))
.

Proving the resolvent identity amounts to showing that:

N∑

v=1

f(wv(β))

p′(wv(β))(z − wv(β))
=

= (α− β)






−

N∑

v=1

f(wv(β))

p′(wv(β))(z − wv(β))(p(z)− α)
+

N∑

u=1

(
∑N

v=1
f(wv(β))

p′(wv(β))(wu(α)−wv(β))

)

p′(wu(α))(z − wu(α))







= (α− β)

{

−

N∑

v=1

f(wv(β))

p′(wv(β))(z − wv(β))(p(z)− α)
+

+

N∑

v=1

f(wv(β))

p′(wv(β))

{
N∑

u=1

1

p′(wu(α))(z − wu(α))(z − wv(β))
+

+
1

p′(wu(α))(wu(α)− wv(β))(z − wv(β))

}}

.

(3.9)
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Taking into account the equality

1

p(z)− α
=

N∑

u=1

1

p′(wu(α))(z − wu(α))

we have
N∑

u=1

1

p′(wu(α))(wu(α)− wv(β))
=

1

α− p(wv(β))
=

1

α− β
.

(3.9) follows. �

Remark 3.10. Proposition 3.9 can be proved in an easier way us-

ing the classical resolvent identity by remarking that (R
(p)
α f)(z) =

Z(z)(RαF )(p(z)), where f(z) = Z(z)F (p(z)). The proof proposed
here is more conducive to explicit links with the Riemann surface case.

We finally note that, at least in spirit, we used the theory of linear
system in this section. See for instance [22, 10, 1] for more on this
theory. In the sequel we resort to the theory of reproducing kernel
Hilbert spaces. The reader may find the following references helpful:
[27, 24, 1, 23, 26, 16, 28, 25]

4. Linear combination interpolation

In [6] we introduced a general problem of linear combination inter-
polation, and solved it in the setting of the Hardy space. Here, the
preceding analysis enables us to solve a linear combination interpola-
tion problem in the setting of functions analytic in the neighborhoods
of given preassigned points.

Problem 4.1. Given complex numbers aj,k, j = 1, . . . , n; k =
0, . . . , µj − 1; and c, describe the set of all functions f analytic in a
possibly disconnected neighborhood of the points w1, . . . , wn and such
that

(4.1)
n∑

j=1

µj−1
∑

k=0

aj,kf
(k)(wj) = c.

The idea is to use the decomposition (3.1) and to reduce the interpo-
lation condition (4.1) to a unique interpolation condition for a vector-

valued analytic function. Let

v =
(
a1,0 a1,1 · · · an,µn−1

)
.

Then (4.1) can be re-written as

vCwf = c.
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In view of Propositions 3.1, this last condition is equivalent to

vV F (0) = c,

which is a basic interpolation problem whose solution is given by

F (z) =
V ∗v∗

vV V ∗v∗
c+

(

IN + (z − 1)
V ∗v∗vV ∗

vV V ∗v∗
G(z)

)

,

where G(z) is an arbitrary CN -valued function analytic in a neighbor-
hood of the origin. Thus the solutions f are given by

f(z) = Z(z)F (p(z))

= Z(z)

(
V ∗v∗

vV V ∗v∗
c +

(

IN + (p(z)− 1)
V ∗v∗vV ∗

vV V ∗v∗
G(p(z))

))

.

Furthermore, we obtain all the rational solutions of the interpolation
when G(z) is chosen rational.

5. Representation in reproducing kernel Hilbert spaces

Here we focus on the case when f(z) belongs to a reproducing kernel
Hilbert space H(K) of analytic functions.

Proposition 5.1. Let K(z, w) be a positive definite function analytic
in z an in w in an open set Ω which contains w1, . . . , wn. There exists
a neighborhood Ω0 of the origin and a positive CN×N -valued kernel
L(z, w), analytic in Ω0, such that

K(z, w) = Z(z)L(p(z), p(w))Z(w)∗, z, w ∈ p−1(Ω0) ⊂ Ω.

Proof. Write K(z, w) = C(z)C(w)∗, where C(z) : H(K) −→ C is the
point evaluation functional:

C(z)f = f(z), z ∈ Ω.

Then C(z) is a L(H(K),C)-valued function, analytic in Ω and, by
Theorem 3.4, there exists a neighborhood Ω0 of the origin, such that
p−1(Ω0) ⊂ Ω and

C(z) = Z(z)E(p(z)), z ∈ Ω0,

where E(z) is a L(H(K),CN×1)-valued function, analytic in Ω0. Now
set

L(z, w) := E(z)E(w)∗

to compete the proof. �
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Proposition 5.2. Let F ∈ H(L). Then the function Z(z)F (p(z)),
which is analytic a priori in p−1(Ω0), admits analytic continuation into
Ω and is an element of the reproducing kernel Hilbert space H(K).
Moreover, the operator S : H(L) −→ H(K) determined by

(5.1) (SF )(z) = Z(z)F (p(z)), F ∈ H(L), z ∈ p−1(Ω0),

is unitary.

Proof. Consider a linear relation in H(K)×H(L) spanned by

(K(·, w), L(·, p(w))Z(w)∗), w ∈ p−1(Ω0).

Since

‖K(·, w)‖2H(K) = K(w,w) = Z(w)L(p(w), p(w))Z(w)∗ = ‖L(·, p(w))Z(w)∗‖2H(L)

and since span{Kw : w ∈ p−1(Ω0)} is dense in H(K), the above rela-
tion is the graph of an isometry T ∈ L(H(K),H(L)). The adjoint of
T is the operator S. In view of Corollary 3.3, S is injective and hence
unitary.

�

Remark 5.3. In the special case where the kernel L is block diago-
nal, L = diag (L1, . . . , LN), with L1, . . . , LN complex-valued positive
definite kernels, we have the orthogonal decomposition

H(L) = ⊕N
j=1H(Lj),

and, with S as in (5.1) we can define operators S1, . . . , SN via S =
(
S1 · · · SN

)
. These operators are given by (3.7) and satisfy the

Cuntz relations. For the theory (and applications) of representations
of Cuntz relations by operators in Hilbert space, see e.g. [13, 18, 12].

Acknolwedgments: We thank Professor Vladimir Bolotnikov for
enlightening discussions and for encouragements and helpful sugges-
tions.
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