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Human Cytomegalovirus US28: A Functionally Selective
Chemokine Binding Receptor

Jennifer Vomaske, Jay A. Nelson, and Daniel N. Streblow*

Department of Molecular Microbiology and Immunology and The Vaccine and Gene Therapy
Institute, Oregon Health and Sciences University, Portland, OR 97201

Abstract
The Human Cytomegalovirus (HCMV)-encoded chemokine receptor US28 is the most well-
characterized of the four chemokine receptor-like molecules found in the HCMV genome. US28
been studied as an important virulence factor for HCMV-mediated vascular disease and, more
recently, in models of HCMV-associated malignancy. US28 is a rare multi-chemokine family
binding receptor with the ability to bind ligands from two distinct chemokine classes. Ligand
binding to US28 activates cell-type and ligand-specific signaling pathways leading to cellular
migration, an example receptor functional selectivity. Additionally, US28 has been demonstrated
to constitutively activate PLC and NFkB. Understanding the structure/function relationships
between US28, its ligands and intracellular signaling molecules will provide essential clues for
effective pharmacological targeting this multifunctional chemokine receptor.

Introduction
The ubiquitous β-herpesvirus, HCMV establishes a life-long persistent/latent infection in the
immunocompetent host. Although HCMV infections are largely asymptomatic in
individuals with normal immune function, HCMV has been implicated in the development
of vascular diseases including transplant vascular sclerosis associated with chronic rejection
of transplanted solid organs, restenosis following angioplasty and atherosclerosis (Hendrix
et al., 1989; McDonald et al., 1989; Melnick, Adam, and DeBakery, 1998; Melnick et al.,
1983; Muhlestein et al., 2000; Speir et al., 1994; Zhou et al., 1996). HCMV infection is also
associated with malignancies (Cobbs et al., 2002; Harkins et al., 2002; Scheurer et al., 2008;
Soderberg-Naucler, 2006) but the mechanisms of cytomegalovirus contribution to cancer
remains poorly understood (Soderberg-Naucler, 2006) and is more likely oncomodulatory
rather than oncogenic in nature (Cinatl et al., 2004).

HCMV encodes four chemokine receptor homologues, namely UL33, US27, US28 and
UL78 (Chee et al., 1990). Of these, US28 is the most highly characterized. US28 has been
established as a key mediator of HCMV-associated vascular disease (Streblow, Orloff, and
Nelson, 2001) and has recently been implicated in models of HCMV-associated
glioblastoma (Maussang et al., 2006). US28 has been extensively studied as a consitutive
activator of phospholipase C and NF-kB (Casarosa et al., 2001). However, a number of
ligand-dependent US28 activities have been characterized including the initiation of calcium
flux (Gao and Murphy, 1994; Kuhn, 1995) and the activation of MAP kinase signaling
pathways (Billstrom et al., 1998) as well as directed chemotaxis of vascular smooth muscle
cells and macrophages (Streblow et al., 1999).
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Characterized US28 ligands include a number of human CC-chemokines (RANTES,
MCP-1, MCP-3 and MIP-1α) as well as the CX3C-chemokine Fractalkine. US28 is unusual
among chemokine receptors in its ability to bind chemokines of distinct chemokine families.
The functional implications of this unique property of US28 are just beginning to be
understood, and indicate that US28 displays “functional selectivity” defined as the ability of
a single receptor to activate different signaling pathways in a ligand-specific manner (Urban
et al., 2007). This extended understanding of US28 signaling has significant implications for
rational drug design to target the various functions of US28 in the context of HCMV
pathogenesis and, as such, is the major focus of this review.

Chemokine Receptor Structure and Function
General

Chemokine receptors (CCRs) comprise a subfamily of the large Class A (Rhodopsin-like) 7-
transmembrane domain (7-TM) G protein-coupled receptors (GPCRs). CCRs share many
characteristics with other GPCRs but contain several common characteristics by which they
can be distinguished. CCRs are generally 340-370 amino acids (aa) in length and contain
both acidic residues and sites for tyrosine sulfation in their N-termini. A cystine is often
found in each of the four extracellular domains. There is a conserved DRY-motif found in
the second intracellular loop and the third intracellular loop contains basic residues (Murphy
et al., 2000). Although no crystal structure exists for any CCR, their structure has been
inferred based upon sequence similarity to rhodopsin (Baldwin, 1993; Lomize, Pogozheva,
and Mosberg, 1999; Unger et al., 1997). However, the synthesis of numerous functional and
mutagenesis studies have provided a toggle-switch model for GPCR activation in which
TM-3, TM-6 and TM-7 move towards each other on the extracellular face and away from
each other on the intracellular face, utilizing proline residues as pivot points. The spreading
of these three helices on the intracellular face of the receptor allows for the binding of
signaling proteins such as G-proteins and subsequent intracellular signal transduction. This
model attempts to reconcile the structural similarity of GPCRs and the commonality of their
intracellular effector molecules (i.e. G-proteins and arrestins) with the vast diversity of
GPCR agonists, which range from metal ions to small molecules to large glycoprotiens. The
model is based upon the assumption that agonists function to stabilize, rather than induce,
the activated receptor conformation. Therefore, diverse ligands can interact with different
residues in distinct portions of the receptor to affect this stabilization. Interestingly, this
model also provides for the possibility of spontaneous adoption of the active conformation
in the absence of an agonist to stabilize, which could account for the constitutive activity
observed with a number of GPCRs (Schwartz et al., 2006).

Ligand Binding
Unlike small molecule agonists that generally bind inside the hydrophilic pocket formed by
the TM helices, chemokines and other peptide ligands are thought to stabilize activated
receptor conformations via multiple low affinity interactions in several regions of the
extracellular and TM domains. The N-terminus of chemokine receptors is often (but not
always) indespensible for high affinity chemokine binding (Ahuja, Lee, and Murphy, 1996;
Lau et al., 2004; Monteclaro and Charo, 1996).

G-protein Binding
The highly conserved D/ERY or ‘DRY’ motif at the intracellular end of TM-3 of all GPCRs
has received significant attention as a potential G-protein binding and receptor activation
determinant. Unfortunately, phenotypes observed with mutations in this region vary widely
from receptor to receptor, even within the Class A family of GPCRs (Rovati, Capra, and
Neubig, 2007). Mutation of the D/E residue often results in an increase in constitutive
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activity concurrent with an increase in agonist affinity. This phenotype has been observed
with CXCR2 mutants (Burger et al., 1999) and would suggest a destabilization of the
inactive receptor conformation. Similar mutations in CCR3 and CX3CR1 did not result in an
increase in constitutive activity (Auger et al., 2002; Haskell, Cleary, and Charo, 1999).
There is a similar lack of a consensus phenotype with mutations of the conserved arginine
residue (Rovati, Capra, and Neubig, 2007). The two chemokine receptors for which these
mutations have been studied (CCR3 and CX3CR1) display a decrease in agonist-induced
activity, most likely due to a defect in G-protein binding (Auger et al., 2002; Haskell,
Cleary, and Charo, 1999). These results suggest that the conserved arginine plays a
significant role in G-protein binding, however the current data are not conclusive in this
regard.

Recent evidence suggests that different ligands can stabilize receptor active conformations
that have a G-protein affinity bias. This agonist-specific activation of signaling via distinct
G-proteins has been demonstrated for the mu-opioid receptor (Saidak et al., 2006), the
beta-2 adrenergic receptor (Woo et al., 2008) and the thromboxane A2 receptor (Zhang,
Brass, and Manning, 2008). Taken together, these data indicate that the cellular G-protein
environment as well as the agonist environment can influence the signaling capabilities and
cellular functions of GPCRs.

Desensitization and Regulation
Regulation of chemokine receptor signaling proceeds via the generally accepted model for
GPCR regulation in which the ligand-stabilized, activated receptor transduces signal via G-
protein coupling and is subsequently phosphorylated on the intracellular face by one or more
G-protein coupled receptor kinases (GRKs). Phosphorylation mediates the coupling of
arrestins, which prevent further G-protein coupling and facilitate internalization of the
desensitized receptor. The receptor is then either recycled to the cell surface in a process of
resensitization or targeted for degradation (Krupnick and Benovic, 1998; Pitcher, Freedman,
and Lefkowitz, 1998). This “classical” model for GPCR regulation has been revised and
extended recently to account for the tissue-specific (Tobin, Butcher, and Kong, 2008) and
ligand-specific (Kelly, Bailey, and Henderson, 2008) control of GPCR signaling.

In addition to the seven known human GRKs, second messenger-dependent protein kinases
such as PKA and PKC can phosphorylate GPCRs to facilitate desensitization (Benovic et al.,
1985). Interestingly, CCR5 has been shown to be phosphorylated by both PKC and GRK 2
and/or 3 at different sites with different kinetics in a ligand-specific manner (Pollok-Kopp et
al., 2003). However, the impact of these differential phosphorylation events on receptor
function remains to be elucidated. These regulatory kinases differ in their tissue distribution,
providing a mechanism for cell-type specific regulation of GPCR activity (Tobin, Butcher,
and Kong, 2008). Furthermore, the expression of GRKs can be modulated in a specific cell
type in response to pro-inflammatory stimuli. This is of particular importance in the
regulation of chemokine receptor activity in hematopoetic cells and the development of
various inflammatory diseases (Vroon, Heijnen, and Kavelaars, 2006). In particular,
decreased GRK2 and GRK6 expression in immune cells is observed in experimental models
of arthritis (Lombardi et al., 2001). Further, TLR-4 mediated signaling via LPS stimulation
has been shown to decrease expression of GRK2 and GRK5 in neutrophils (Fan and Malik,
2003). Such inflammatory modulation of GRK expression could result in increased
signaling from chemokine receptors normally regulated by these kinases and provide a
mechanism for increased recruitment of immune cells to sites of chronic inflammation.
Indeed, decreases in GRK expression have been observed to increase chemotactic responses
in T-cells via CCR5 (Vroon et al., 2004a), and neutrophils via CXCR4 and CXCR2 (Fan
and Malik, 2003; Vroon et al., 2004b).
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One might expect that decreases in β-arrestin expression might have a similar effect on
cellular chemotaxis via a decrease in receptor desensitization and a concurrent increase in
pro-migratory signaling. However, β-arrestin-2 deficient T and B cells display decreased
chemotactic activity despite increases in GTPase activity associated with CXCR4 (Fong et
al., 2002). This data could be attributed to the β-arrestin mediated activation of pro-
migratory signaling molecules including ERK1/2 (Ge et al., 2003), and p38 MAPK (Sun et
al., 2002). Although very little is known about the specificity of β-arrestin recruitment to
phosphorylated receptors, there is clearly the potential for crosstalk between GRK and/or
second-messenger dependent kinase-mediated phosphorylation of receptors mediating
differential binding of β-arrestin proteins (Violin, Ren, and Lefkowitz, 2006) and potentially
modulating the signaling capacity of receptor-β-arrestin complexes (Kelly, Bailey, and
Henderson, 2008; Tobin, Butcher, and Kong, 2008).

Functions of US28 and their Pathophysiological Consequences
Cellular Activation

US28 was initially characterized as being able to cause ligand-dependent calcium flux and
Gα16-mediated signaling to ERK1/2 in 293 cells (Billstrom et al., 1998). Further signaling
functions were elucidated in COS-7 cells where US28 is a constitutive ‘cellular activator’. In
this system, US28 signals in a ligand-independent manner to both phospholipase C and NF-
kB (Casarosa et al., 2001). These pathways certainly conspire to produce a cellular
environment optimal for HCMV replication and NF-kB has been shown to directly
transactivate the HCMV major immediate-early promoter (Boomker et al., 2006b; DeMeritt,
Milford, and Yurochko, 2004). Constitutive activation of these cellular signaling pathways
may play a role in CMV-mediated inflammatory diseases and possibly CMV-mediated
oncogenesis (Soderberg-Naucler, 2006; Vischer, Leurs, and Smit, 2006). In addition, US28
expression has been shown to activate caspase-dependent apoptosis in a number of cell lines
(Pleskoff et al., 2005).

Chemokine Scavenging
The supernatants of HCMV-infected fibroblast cultures have been shown to be deficient in a
number of CC-chemokines. This has been attributed to a chemokine scavenging function of
US28 in which these chemokines are actively removed from the supernatant via the
constitutive recycling of US28 protein (Bodaghi et al., 1998). US28 expression in HCMV-
infected fibroblasts is sufficient to appreciably decrease the monocyte chemotactic activity
of the infected cell supernatants compared to supernatants from fibroblasts infected with a
US28 knockout virus (Randolph-Habecker et al., 2002). However, this role of US28 as a
‘chemokine sink’ has recently been challenged by others. US28 expression in endothelial
cells is insufficient to prevent static monocyte adhesion, suggesting that physiological
concentrations of chemokine are too high to be effectively scavenged by US28 (Boomker et
al., 2006a).

Cellular Chemotaxis
Importantly, US28 plays a role in motility of HCMV-infected cells. US28-mediated cellular
migration has important implications for both HCMV dissemination and mechanisms for the
development of HCMV-associated vascular disease. US28 binding to CC-chemokines
causes migration of HCMV infected SMC (Streblow et al., 1999). Conversely, stimulation
of US28-expressing SMC with Fractalkine can antagonize CC-chemokine mediated SMC
migration. Detailed examination of the signaling cascades involved in US28-mediated SMC
migration indicate that CC-chemokine binding to US28 induces the G12-dependent
activation of a variety of pro-migratory factors including FAK, Src, ERK1/2, Pyk2 and
RhoA (Melnychuk et al., 2004; Streblow et al., 1999; Streblow et al., 2003). Interestingly,
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Fractalkine binding to US28 activates many of the same cellular second messengers seen
with CC-chemokine binding, including FAK and ERK1/2. Although both chemokine classes
activate FAK via US28, they do so via different G-proteins. CC-chemokine activation of
FAK is G12-mediated while Fractalkine binding to US28 activates FAK via a Gq-dependent
mechanism (Vomaske et. al, in press). We have recently determined that Fractalkine but not
CC-chemokines can induce migration in US28-expressing macrophages (Vomaske et al, in
press). Therefore, US28 utilizes both the extracellular chemokine environment and the
intracellular complement of G-proteins to produce ligand and cell-type specific migration of
HCMV-infected cells. Taken together, these observations suggest a dual role for US28 in the
acceleration of vascular disease via (1) CC-chemokine mediated migration of SMC into the
vessel intima followed by Fractalkine-mediated fixation of SMC and subsequent
proliferation leading to vessel narrowing and (2) the Fractalkine-mediated deposition of
US28-expressing monocytes into atherosclerotic lesions leading to the formation of foam
cells.

US28 Structure and Function
Chemokine Binding Site

Although chemokine ligands interact with multiple sites on the extracellular face of
chemokine receptors, the N-terminus often dictates high-affinity ligand binding (Monteclaro
and Charo, 1996). A hexapeptide sequence in the N-terminus of US28 has been shown to be
critical for high-affinity binding of chemokine ligands to US28 (Casarosa et al., 2005) This
region is conserved between US28 and the endogenous human chemokine receptors CCR1
and CCR2 and is known to be a determinant for MCP-1 binding to CCR2 (Preobrazhensky
et al., 2000). Casarosa et. al. performed extensive mutagenesis studies of this region of US28
and discovered that CC-chemokine binding and fractalkine binding require different
residues within this hexapeptide region for high affinity binding. Specifically, mutation of
phenylalanine at position 14 negatively affects only CC chemokine binding to US28 but
retains high affinity binding of Fractalkine. In contrast, mutation of the tyrosine at position
16 of the US28 N-terminus negatively affects high affinity binding of both classes of
chemokine. The authors speculate that sulfation of Y16 may play a role in chemokine
binding to US28. Additionally, an aromatic amino acid seems to be required at this position
for surface expression of US28 suggesting a role in folding or trafficking of the receptor
(Casarosa et al., 2005).

Heterotrimeric G-protein Binding and Activation
US28 is known to couple to a variety of G-proteins alpha subunits. This G-protein
promiscuity appears to provide a level of control and selectivity to US28 signaling
depending upon ligand and cell-type context. The coupling of Gq/11 family members to
US28 mediates the activation of phospholipase C (PLC) and NFkB in a ligand-independent
manner (Casarosa et al., 2001; Waldhoer et al., 2002). In this system, Fractalkine binding to
US28 abrogates constitutive activation of PLC (Casarosa et al., 2001). Further, Fractalkine
binding to US28 in fibroblasts causes Gq/11-dependent signaling to focal adhesion kinase
(FAK) (Vomaske et. al., in press) Taken together, these findings indicate that US28 activates
Gq/11 signaling to PLC in the absence of ligand, but Fractalkine binding to US28 co-opts
the receptor and utilizes a different Gq/11-dependent pathway to activate FAK. In contrast,
CC-chemokine dependent US28 migration of SMC proceeds via G12/13-mediated signaling
to FAK, ERK, RhoA and the actin cytoskeleton (Melnychuk et al., 2004; Streblow et al.,
1999). In 293 cells, RANTES binding to US28 activates ERK1/2 pathways through the G-
proteins Gαi1 and Gα16 (Billstrom et al., 1998). The highly conserved ‘DRY’ motif at the
end of TM-3 is critical for US28 signaling to PLC (Waldhoer et al., 2003). In contrast,
mutagenesis of this motif has no effect on US28-mediated SMC migration (Table 1).
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Experiments with the OT-1 receptor showed that mutation of the DRY motif could
simultaneously decouple the receptor from Gi proteins while augmenting signaling via Gq,
indicating that different G-proteins may have different sequence requirement at this position
and that not all G-protein coupling requires a functional DRY (Favre et al., 2005). Taken
together, these results indicate that different activated forms of US28 (i.e. CC- vs. CX3C-
chemokine bound or unliganded constitutively active) may utilize slightly different sites for
G-protein interaction and activation contributing to G-protien and ligand binding specificity.

Regulation and Desensitization
US28 is heavily phosphorylated in a ligand-independent manner on several serine residues
within the C-terminal 30 amino acids. This phosphorylation can be reduced by
pharmacological inhibition of PKC and casein kinase 2 (CK2) and is enhanced by
overexpression of GRK2 or GRK5 (Miller et al., 2003; Mokros et al., 2002; Sherrill and
Miller, 2006). Although US28 phosphorylation in cell culture systems appears to be ligand-
independent, phosphorylation levels can be modulated by US28 ligands. In HEK293 cells,
Fractalkine can decrease this basal phosphorylation levels (Mokros et al., 2002). The same
effect has been observed with RANTES treatment in COS7 cells (Miller et al., 2003). Taken
together, these results indicate that regulatory kinases and phosphatases interact in a
dynamic manner with different activated states of US28. Phosphorylated forms of US28 are
known to recruit β-arrestin-2 and this association of β-arrestin with US28 can be augmented
by overexpression of GRK2 (Miller et al., 2003). However, the constitutive endocytosis and
recycling of US28 is not effected by expression in β-arrestin deficient cells (Fraile-Ramos et
al., 2003). Truncation mutants of US28 that remove the C-terminal phosphorylation sites are
generally more prevalent at the cell surface and display increased signaling to PLC, NFkB
and CREB (Miller et al., 2003; Mokros et al., 2002; Waldhoer et al., 2003). However, one
study which mutated the C-terminal serine residues rather than truncating the protein
showed that serine phosphorylation has no effect on US28 signaling to NFkB (Mokros et al.,
2002). Interestingly, while Fractalkine treatment generally decreases US28 consitutive
signaling, C-terminal truncation mutants display increased accumulation of inositol
phosphages and increased transcription from a CREB-responsive element when treated with
Fractalkine. The authors attribute this phenotype to increased surface expression of the
truncated US28 construct leading to increased binding of the ligand (Waldhoer et al., 2003).
Experiments with the MCMV-encoded GPCR M33 suggest that the constitutive activity of
this functional homolog of US28 is regulated both by phosphorylation by GRK2 and GRK2-
mediated sequestration of Gq proteins (Sherrill and Miller, 2006). The effect of ligand
binding on US28 phosphorylation via various regulatory kinases has not been determined.
Furthermore, the effect of US28 phosphorylation and arrestin binding on ligand dependent
US28 signaling pathways such as pro-migratory signaling to FAK and ERK remains to be
elucidated. Certainly, the dynamic regulation of US28 signaling in different signaling and
cell type contexts deserves further study.

Pharmacological Targeting of US28
To date, only one pharmacological means for inhibiting US28 has been characterized.
Casarosa et. al. characterized a nonpetidergic CCR1 antagonist, VUF2274, as an inverse
agonist for US28. This study demonstrates that VUF2274 interaction with US28 is able to
inhibit the constitutive activation of PLC signaling pathways. Mutagenesis of the receptor
indicates that VUF2274 does not interact with the chemokine binding domain, but instead
binds to residues in the hydrophilic pocket formed by the 7TM helices (Casarosa et al.,
2003). However, VUF2274 appears to have no inhibitory effect on the chemokine-
dependent signaling of US28 to FAK, or the production of actin cytoskeletal rearrangements
in fibroblasts (Streblow, unpublished observations). Subsequently, Hulshof et. al. performed
detailed pharmacological characterization of VUF2274 and related compounds, producing
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several drugs with increased selectivity for US28 that are capable of inhibiting the
constitutive activation of PLC (Hulshof et al., 2005; Hulshof et al., 2006). The efficacy of
these drugs for inhibition of US28 ligand-dependent signaling remains to be determined.

Summary and Conclusions
Recent research has revealed a startling complexity associated with signaling from the
HCMV-encoded chemokine receptor US28. US28 is able to respond to both the extracellular
chemokine environment and the intracellular complement of G-proteins, signaling
molecules and regulatory molecules to produce a wide variety of signaling and cell motility
responses. This highly context-specific functionality requires particular attention with
respect to pharmacological targeting of US28. It is apparent that a any potential US28
antagonists must be tested for efficacy against a number of US28-dependent signaling
pathways as well as in a number of HCMV-susceptible cell types. Furthermore,
characterization of the regulatory proteins interacting with US28 in different cell types may
provide targets for cell-type specific inhibition of US28 functions. US28 provides an
interesting example of a GPCR able to exert ligand- and cell-type specific signaling. Further
study of the mechanisms behind this functional selectivity may serve to elucidate more
general aspects of GPCR biology.
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Fig. 1.
Ribbon structure model for US28. Regions of US28 with known or predicted functional
significance are indicated by call outs. Non-italic boldface type indicates specific residues of
US28. Abbreviations used: Extracellular Loop (ECL), Intracellular Loop (ICL), Amino
Terminus (N-Term), Carboxyl Terminus (C-Term), Smooth Muscle Cell (SMC).
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Fig. 2.
Smooth muscle cell (SMC) migration data for several US28 functional domains. All US28
mutants were expressed via tet transactivator inducible adenovirus vector system. ‘Trans’
controls indicate cultures infected with Ad-Trans transactivator adenovirus only. (A) US28
mutations affecting intrahelical packing of US28 abrogate SMC migration. (B) Mutations in
the ‘DRY’ motif, a putative active domain of US28 have no effect on CC-chemokine
mediated SMC migration. In the US28-AGAA mutant the entire DRYY motif was replaced
with the indicated AGAA sequence (C) Chimeric proteins in which the C-terminal tail
domain of US28 is replaced with the tail domains of CXCR4 and CCR5 can still mediate
SMC migration. Chimeric proteins of CXCR4 and CCR5 containing the US28 C-terminal
tail are not able to cause SMC migration. (D) Deletion of the C-terminal 10 (Tail Del #2) or
18 (Tail Del #1) amino acids of US28 significantly abrogates SMC migration.
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