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BOUNDARY INTERPOLATION FOR SLICE

HYPERHOLOMORPHIC SCHUR FUNCTIONS

KHALED ABU-GHANEM, DANIEL ALPAY, FABRIZIO COLOMBO, DAVID P. KIMSEY,
AND IRENE SABADINI

Abstract. A boundary Nevanlinna-Pick interpolation problem is posed and solved
in the quaternionic setting. Given nonnegative real numbers κ1, . . . , κN , quaternions
p1, . . . , pN all of modulus 1, so that the 2-spheres determined by each point do not
intersect and pu 6= 1 for u = 1, . . . , N , and quaternions s1, . . . , sN , we wish to find a
slice hyperholomorphic Schur function s so that

lim
r→1

r∈(0,1)

s(rpu) = su for u = 1, . . . , N,

and

lim
r→1

r∈(0,1)

1− s(rpu)su
1− r

≤ κu, for u = 1, . . . , N.

Our arguments relies on the theory of slice hyperholomorphic functions and repro-
ducing kernel Hilbert spaces.
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1. Introduction

In the paper [1] the Nevanlinna-Pick interpolation problem for slice hyperholomor-
phic Schur functions has been solved using the FMI (fundamental matrix inequality)
method (see [20] for details). By a Schur function we mean a function f which is
slice hyperholomorphic on the open unit ball B1 of the quaternions and is bounded in
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modulus by 1, i.e. supp∈B1
|f(p)| ≤ 1. In the present paper we solve a boundary in-

terpolation problem for slice hyperholomorphic functions using the reproducing kernel
Hilbert space method based on de Branges-Rovnyak spaces. We refer the reader to
[2, 3, 17] for more information on the reproducing kernel Hilbert space approach to
interpolation problems.

We state the problem we will solve in this paper and introduce some notation and
definitions. Let us denote by B1 and H1, the open unit ball and the unit sphere of H,
respectively. For a given element p ∈ H we denote by [p] the associated 2-sphere:

[p] =
{
qpq−1 : q ∈ H \ {0}

}
.

Recall that two quaternions belong to the same sphere if and only if they have the
same modulus and the same real part.

Problem 1.1. Given p1, . . . , pN ∈ H1 \ {1} such that [pu] ∩ [pv] = ∅ for u 6= v (the
interpolation nodes), s1, . . . , sN ∈ H1, and κ1, . . . , κN ∈ [0,∞), find a necessary and
sufficient condition for a slice hyperholomorphic Schur function s to exist such that the
conditions

lim
r→1

r∈(0,1)

s(rpu) = su, (1.1)

lim
r→1

r∈(0,1)

1− s(rpu)su
1− r

≤ κu (1.2)

hold for u = 1, . . . N , and describe the set of all Schur functions satisfying (1.1)-(1.2)
when this condition is in force.

We note that (1.1)-(1.2) imply that

lim
r→1

r∈(0,1)

1− |s(rpu)|2
1− r2

≤ κu, u = 1, . . . , N, (1.3)

since
1− |s(rpu)|2

1− r2
=

1− s(rpu)su
(1− r)(1 + r)

+ (s(rpu)su)
1− sus(rpu)

(1− r)(1 + r)
. (1.4)

We also note that the fact that the limits (1.3) is part of the requirement in the in-
terpolation problem (in the complex case, the corresponding limit is well-known to be
non-negative).

As it appears from the statement of Problem 1.1, there is a major difference with the
complex case. Here we have to require that not only the interpolation points are dis-
tinct, but also the spheres they determine. The fact that this hypothesis is necessary,
and cannot be avoided, can be intuitively justified by the fact that the S-spectrum of
a matrix, or in general of an operator (see Definition 2.6), consists of spheres (which
may reduce to real points). It is important to note that the notion of S-spectrum of a
matrix T coincides with the set of right eigenvalues of T , i.e. the set of λ ∈ H so that
Tx = xλ for a nonzero vector x.
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Another major difference is the lack of a Carathéodory theorem (see e.g. [22, p. 48])
in the quaternionic setting.

Part of the arguments follow the classical case, taking into account the noncommu-
tativity of the quaternions. As we shall see, even though the structure of the proof
follows the the arguments from [9], it is necessary to suitably adapt the arugment to
the quaternionic setting and often the needed modifications are not immediate.

The paper consists of five sections, besides the introduction. In Section 2, we recall
some basic material on slice hyperholomorphic functions which will be needed in the
sequel. Section 3 illustrates the strategy and the various steps we will follow to solve
Problem 1.1. Section 4 contains detailed proofs of these steps and Section 5 deals with
the degenerate case. Section 6 deals with an analogue of Carathéodory’s theorem in
the quaternionic setting.

2. Some preliminaries

In this section we collect some basic results, which will be used in the sequel. Let H be
the real associative algebra of quaternions with respect to the basis {1, i, j, k} satisfying
the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. A
quaternion p is denoted by p = x0+ ix1+ jx2+ kx3, xℓ ∈ R, ℓ = 0, . . . , 3, its conjugate
is p̄ = x0 − ix1 − jx2 − kx3, and the norm of a quaternion is such that |p|2 = pp.
A quaternion p can be written as p = Re(p) + p where the real part Re(p) is x0 and
p = ix1 + jx2 + kx3. The symbol S denotes the 2-sphere of purely imaginary unit
quaternions, i.e.

S = {p = ix1 + jx2 + kx3 | x2
1 + x2

2 + x2
3 = 1}.

Note that if I ∈ S then I2 = −1. Any nonreal quaternion p = x0 + ix1 + jx2 + kx3

uniquely determines an element Ip = (ix1 + jx2 + kx3)/|ix1 + jx2 + kx3| ∈ S. If
p = x0 ∈ R then p = x0 + I0 for all I ∈ S. Given p ∈ H we can write p = p0 + Ipp1
and the 2-sphere [p] coincides with the set of all elements of the form p0 + Jp1 when J
varies in S. The set [p] is reduces to the point p if and only if p ∈ R.
We now recall the definition of a slice hyperholomorphic function, for more details see
[16].

Definition 2.1. Let Ω ⊆ H be an open set and let f : Ω → H be a real differentiable
function. Let I ∈ S and let fI be the restriction of f to the complex plane CI := R+IR
passing through 1 and I and denote by x + Iy an element on CI . We say that f is a
left slice hyperholomorphic (or slice hyperholomorphic, for short) function in Ω if, for
every I ∈ S, we have

1

2

(
∂

∂x
+ I

∂

∂y

)

fI(x+ Iy) = 0.

We say that f is a right slice hyperholomorphic function in Ω if, for every I ∈ S, we
have

1

2

(
∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x+ Iy)I

)

= 0.

Slice hyperholomorphic functions have nice properties on some particular open sets
which are defined below.



4 K. ABU-GHANEM, D. ALPAY, F. COLOMBO, D. P. KIMSEY, AND I. SABADINI

Definition 2.2. Let Ω be a domain in H. We say that Ω is a slice domain (s-domain
for short) if Ω ∩ R is non empty and if Ω ∩ CI is a domain in CI for all I ∈ S. We say
that Ω is axially symmetric if, for all p ∈ Ω, the sphere [p] is contained in Ω.

On an axially symmetric s-domain Ω, a slice hyperholomorphic function satisfies the
following formula, which is called the Structure formula or the Representation formula
(see [16, Theorem 4.3.2]):

f(x+ Jy) =
1

2
[f(x+ Iy) + f(x− Iy) + JI(f(x− Iy)− f(x+ Iy))] . (2.1)

Formula (2.1) is useful as it allows one to extend a holomorphic map h : Ω ⊆ C ∼= CI →
H to a slice hyperholomorphic function. Let UΩ be the axially symmetric completion
of Ω, i.e.

UΩ =
⋃

J∈S, x+Iy∈Ω

{x+ Jy}.

The left slice hyperholomorphic extension ext(h) : UΩ ⊆ H → H of h is the function
defined as (see [16]):

ext(h)(x+ Jy) =
1

2
[h(x+ Iy) + h(x− Iy) + JI(h(x− Iy)− h(x+ Iy))] . (2.2)

It is immediate that ext(h+ g) = ext(h) + ext(g) and that if h(z) =
∑∞

n=0 hn(z) then
ext(h)(z) =

∑∞
n=0 ext(hn)(z).

Two left (resp. right) slice hyperholomorphic functions can be multiplied, on an axially
symmetric s-domain, using the so called ⋆-product (resp. ⋆r-product) in order to obtain
another left (resp. right) slice hyperholomorphic function.
Let f, g : Ω ⊆ H be slice hyperholomorphic functions. Their restrictions to the complex
plane CI can be written as fI(z) = F (z) +G(z)J , gI(z) = H(z) +L(z)J where J ∈ S,
J ⊥ I, i.e. IJ = −JI. The functions F , G, H , L are holomorphic functions of the
variable z ∈ Ω ∩ CI , see [16, p. 117]. We have the following:

Definition 2.3. Let f and g be slice hyperholomorphic functions defined on an axially
symmetric s-domain Ω ⊆ H. The ⋆-product of f and g is defined as the unique left slice
hyperholomorphic function on Ω whose restriction to the complex plane CI is given by

(f ⋆ g)I(z) = (F (z) +G(z)J) ⋆ (H(z) + L(z)J)

= (F (z)H(z)−G(z)L(z̄)) + (G(z)H(z̄) + F (z)L(z))J.
(2.3)

If f and g are slice hyperholomorphic on a ball with center at the origin, they can
be expressed in a power series, i.e. f(p) =

∑∞
n=0 p

nan and g(p) =
∑∞

n=0 p
nbn. Thus

(f ⋆g)(p) =
∑∞

n=0 p
ncn, where cn =

∑n

r=0 arbn−r is obtained by convolution on the coef-
ficients. For the construction of the ⋆-product of right slice hyperholomorphic functions
and for more information on the ⋆-product, we refer the reader to [7, 16].
Given a slice hyperholomorphic function, it is possible to define its slice hyperholomor-
phic reciprocal, see [16]. Here we limit ourselves to the case in which f admits the
power series expansion f(p) =

∑∞
n=0 p

nan. In this case we set

f c(p) =
∞∑

n=0

pnān, f s(p) = (f c ⋆ f)(p) =
∞∑

n=0

pncn, cn =
n∑

r=0

arān−r,
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so that the left slice hyperholomorphic reciprocal of f is defined as

f−⋆ := (f s)−1f c.

In the general case, this formula is still valid with f s, f c suitably defined.

Remark 2.4. Let k(p, q) be a function left slice hyperholomorphic in p and right slice
hyperholomorphic in q̄. When taking the ⋆-product of a function f(p) slice hyperholo-
morphic in the variable p with a function k(p, q), we will write f(p) ⋆ k(p, q) meaning
that the ⋆-product is taken with respect to the variable p; similarly, the ⋆r-product of
k(p, q) with functions right slice hyperholomorphic in the variable q̄ is always taken
with respect to q̄.

The following proposition is taken from [7, Proposition 4.3], where a proof can be
found.

Proposition 2.5. Let H(K1) and H(K2) be two reproducing kernel Hilbert spaces of
Hm and Hn-valued slice hyperholomorphic functions in Ω, with reproducing kernels K1

and K2, respectively. Let R be a Hn×m-valued function slice-hyperholomorphic in Ω.
Then the operator of left ⋆-multiplication

MR : f 7→ R ⋆ f

is continuous from H(K1) into H(K2) if and only if the kernel

K2(p, q)− R(p) ⋆ K1(q, p) ⋆r R(q)∗

is positive definite in Ω. Furthermore

M∗
R(K2(·, q)d) = K1(·, q) ⋆r R(q)∗d, d ∈ H

n. (2.4)

Let us recall a few facts on the S-spectrum and on the S-resolvent operator.

Definition 2.6. Let A be a bounded quaternionic linear operator acting on a quater-
nionic, two sided, Banach space V . We define the S-spectrum σS(A) of A as:

σS(A) = {s ∈ H : A2 − 2Re (s)A+ |s|2I is not invertible},
where I denotes the identity operator on V . The S-resolvent set ρS(A) is defined as
ρS(A) = H \ σS(A).

From Definition 2.6 it follows that the S-spectrum consists of spheres (which may
reduce to real points).
The definition of S-spectrum arises from the following:

Proposition 2.7. Let A be a bounded quaternionic linear operator acting on a quater-
nionic, two sided, Banach space V . Then, for ‖A‖ < |p|, we have

∞∑

n=0

s−1−nAn = −(A− sI)(A2 − 2Re(s)A+ |s|2I)−1. (2.5)

Definition 2.8. The operator

S−1
R (s, A) := −(A− sI)(A2 − 2Re(s)A+ |s|2I)−1, (2.6)

is called the right S-resolvent operator.
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The right S-resolvent operator is obviously defined for s ∈ ρS(A).
In the sequel we will be in need of the result below:

Proposition 2.9. Let V be a two sided quaternionic Banach space and let A be a
bounded right linear operator from V into itself. Then, for |p| ‖A‖ < 1 we have

∞∑

n=0

pnAn = (I − p̄A)(|p|2A2 − 2Re(p)A+ I)−1. (2.7)

Another way to write the operator on the right hand side of (2.7) is to observe that it
corresponds to the function one obtains by constructing the right ⋆-reciprocal of the
function f(q) = (1 − pq). Upon computing f−⋆(A) using the quaternionic functional
calculus, see [16], one can write:

(I − pA)−⋆ =

∞∑

n=0

pnAn. (2.8)

Finally, we mention a result which is a restatement of [4, Proposition 2.22] and which
contains an identity that will be crucial in the sequel.

Proposition 2.10. Let p ∈ H, 1/p ∈ ρS(A) and (G,A) ∈ Hn×m ×Hm×m. Then
∞∑

t=0

ptGAt = (G− pGA)(Im − 2Re(p)A+ |p|2A2)−1, (2.9)

where Im denotes the m×m identity matrix.

Remark 2.11. We note that if m = 1 then A is a quaternion a and the condition
1/p ∈ ρS(A) translates to the condition 1/p 6∈ [a].

3. The main result and the strategy

For the convenience of the reader we recall the main steps of the reproducing kernel
method. We first introduce some notation. We set

A = diag (p1, . . . , pN) ∈ H
N×N , C =

(
1 · · · 1
s1 · · · sN

)

∈ H
2×N , (3.1)

and

J =

(
1 0
0 −1

)

∈ R
2×2.

Consider the matrix equation

P − A∗PA = C∗JC (3.2)

where the unknown is P ∈ HN×N . The off diagonal entries of the matrix equation are
uniquely determined by the equation

Puv − puPuvpv = 1− susv (3.3)

but, in view of the following lemma the diagonal entries can be arbitrary:

Lemma 3.1. Let p and q be quaternions of modulus 1. Then, the equation

ph− hq = 0, (3.4)

where h ∈ H, has the only solution h = 0 if and only if Re(p) 6= Re(q), that is, if and
only if [p] ∩ [q] = ∅.
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Proof. If (3.4) has a solution h 6= 0, then p = hqh−1 and so p and q are in the same
sphere. So a necessary condition for (3.4) to have only h = 0 as solution is that
[p] ∩ [q] = ∅. We now show that this condition is also sufficient. Let p = z1 + z2j and
q = w1 + w2j, where z1, z2, w1, w2 ∈ C. Since Re(p) 6= Re(q) we have

Re(z1)± i
√

1− (Re(z1))2 6= Re(w1)± i
√

1− (Re(w1))2. (3.5)

We now introduce the injective ring homomorphism χ : H → C2×2 given by

χ(p) =

(
z1 z2
−z2 z1

)

. (3.6)

Using the map χ, equation (3.4) becomes

χ(p)χ(h)− χ(h)χ(q) = 0. (3.7)

The eigenvalues of χ(p) are the solutions of

λ2 − 2(Re(z1))λ+ 1 = 0,

that is λ = Re(z1)±i
√

1− (Re(z1))2, and similarly for χ(q). By a well known result on
matrix equations (see e.g., Corollary 4.4.7 in [19]), equation (3.7) has only the solution
χ(h) = 0 if and only if λ−µ 6= 0 for all possible choices of eigenvalues of χ(p) and χ(q),
and this condition holds in view of (3.5). So the only solution of (3.7) is h = 0. �

We denote by P the N ×N Hermitian matrix with entries Puv given by (3.3) for u 6= v
and with diagonal entries equal to Puu = κu, u, v = 1, . . . , N . When P is invertible we
define

Θ(p) = I2 − (1− p) ⋆ C ⋆ (IN − pA)−⋆P−1(IN −A)−∗C∗J =

(
a(p) b(p)
c(p) d(p)

)

. (3.8)

Note that Θ is well defined in B1 since we assumed that the interpolation nodes pu are
all different from 1. Finally we denote by M the span of the columns of the function

F (p) = C ⋆ (IN − pA)−⋆ =

∞∑

t=0

ptCAt, (3.9)

and endow M with the Hermitian form

[F (p)c, F (p)d]M = d∗Pc, c, d ∈ H
N .

We prove the following theorem.

Theorem 3.2.

(1) There always exists a Schur function so that (1.1) holds.
(2) Fix κ1, . . . , κN ≥ 0 and assume P > 0. Any solution of Problem 1.1 is of the form

s(p) = (a(p) ⋆ e(p) + b(p)) ⋆ (c(p) ⋆ e(p) + d(p))−⋆, (3.10)

where a, b, c, d are as in (3.8) and e is a slice hyperholomorphic Schur function.
(3) Conversely, any function of the form (3.10) satisfies (1.1). If

lim
r→1

r∈(0,1)

1− s(rpu)su
1− r

(3.11)
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exists and is real, then s satisfies (1.2).
(4) If e is a unitary constant, then the limit (3.11) exists (but are not necessarily real)
and satisfies

|βu − puβupu|2
|1− pu

2| ≤ (Re βu)κu. (3.12)

The strategy of the proof is as follows:

STEP 1: The condition P ≥ 0 is necessary for Problem 1.1 to have a solution.

STEP 2: Assume that s is a solution of Problem 1.1. Then the map M(

1 −s
) of

left ⋆-multiplication by
(
1 −s(p)

)
is a contraction from M into H(s), where H(s)

denotes the reproducing kernel Hilbert space of quaternionic valued functions which

are hyperholomorphic in the ball B1 and with reproducing kernel

Ks(p, q) =
∞∑

t=0

pt(1− s(p)s(q))q̄t.

STEP 3: Assume that s is a solution of Problem 1.1 and that P > 0. Then, s is of the

form (3.10).

STEP 4: Assume that P > 0. Then any function of the form (3.10) satisfies the inter-

polation condition (1.1) and if, in addition, (3.11) is in force, then s satisfies (1.2).

The proofs of Steps 1-4 are given in Section 4. The degenerate case is considered in
Section 5.

4. Proofs of Steps 1-4

Proof of Step 1: Assume a solution s exists. Since s is a Schur function the kernel
Ks(p, q) is positive definite and so for every r ∈ (0, 1) the N × N matrix P (r) with
(u, v) entry equal to

Puv(r) = Ks(rpu, rpv) =
∞∑

t=0

r2tptu(1− s(rpu)s(rpv))p
t
v, u, v = 1, . . .N

is positive. Setting

G = (1− s(rpu)s(rpv)), p = r2pu, and A = pv

in formula (2.9) we have

Puv(r) =
(

(1− s(rpu)s(rpv))− r2pu(1− s(rpu)s(rpv))pv

)

(1− 2r2Re(pu)pv + r4pv
2)−1.

Furthermore, we note that P (r) is a solution of the matrix equation

P (r)− r2A∗P (r)A = C(r)∗JC(r)
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where

C(r) =





1 · · · 1

s(rp1) · · · s(rpN)



 ,

and A is as in (3.1). In fact, with the above notation, the (u, v) element of the matrix
P (r)− r2A∗P (r)A can be computed as follows:

Puv(r)− r2puPuv(r)pv

=
((
G− r2puGpv

)
− r2pu

(
G− r2puGpv

)
pv
)
(1− 2r2Re(pu)pv + r4pv

2)−1

=
(
G− r2puGpv − r2puGpv + r4Gpv

2
)
(1− 2r2Re(pu)pv + r4pv

2)−1

= G
(
1− 2r2Re(pu)pv + r4pv

2
)
(1− 2r2Re(pu)pv + r4pv

2)−1 = (1− s(rpu)s(rpv))

and so the (u, v) element in the matrix P (r)− r2A∗P (r)A equals the (u, v) element in
C(r)∗JC(r) as stated. We now let r tend to 1. Since s is assumed to be a solution of
Problem 1.1, we have

lim
r→1

r∈(0,1)

Ks(rpu, rpu) = lim
r→1

r∈(0,1)

1− |s(rpu)|2
1− r2

≤ κu, u = 1, . . . N

and

lim
r→1

r∈(0,1)

C(r) = C,

where C is as in (3.1). Furthermore we note that 1 − 2Re(pu)pv + pv
2 6= 0 since

1− 2Re(pu)x+ x2 is the so-called minimal (or companion) polynomial associated with
the sphere [pu] which vanishes exactly at points on the sphere [pu] and pv 6∈ [pu]. This
fact can also be obtained directly using Lemma 3.1. Indeed, for indices u 6= v, we have

1− 2Re(pu)pv + pv
2 = pu(pu − pv)− (pu − pv)pv 6= 0, (4.1)

since pu and pv (and hence pu and pv) are assumed on different spheres for u 6= v. It
follows that lim r→1

r∈(0,1)
Puv(r) exists and is in fact equal to Puv for u 6= v by uniqueness

of the solution of the equation

x− puxpv = 0. (4.2)

Hence P ≥ 0 since P (r) ≥ 0 for all r ∈ (0, 1).

Proof of Step 2: Let s be a solution (if any) of Problem 1.1, let u ∈ {1, . . . , N}, and
let r ∈ (0, 1). The functions

gu,r(p) = Ks(p, rpu) =

∞∑

t=0

pt(1− s(p)s(rpu))pu
t

belong to H(s) and have uniformly bounded norms since

lim
r→1

r∈(0,1)

‖gu,r(rpu)‖2H(s) = lim
r→1

r∈(0,1)

Ks(rpu, rpu) ≤ κu.

Thus there is a sequence of numbers r0, r1, . . . ∈ (0, 1) which tends to 1 (without loss of
generality we may assume that the sequence is the same for p1, · · · , pN) and an element
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gu ∈ H(s) such that the functions gu,rn tend weakly to gu. In a reproducing kernel
Hilbert space weak convergence implies pointwise convergence, and so

gu(p) = lim
n−→∞

gu,rn(p)

= lim
n−→∞

∞∑

t=0

rtnp
t(1− s(p)s(rnpu))pu

t

=

∞∑

t=0

pt(1− s(p)su)pu
t

=
(
1 −s(p)

)
⋆ fu(p), ∀p ∈ B1,

where

fu(p) =

∞∑

t=0

pt
(
1
su

)

pu
t (4.3)

denotes the u-th column of the matrix-function F (p) and where the interchange of
summation and limit is justified since |p| < 1. Hence M(

1 −s
) sends M into H(s).

Note that for Y = (yu,v)
N
u,v=1 and Z = (zu,v)

N
u,v=1 we define Y ⋆ Z to be the N × N

matrix whose (u, v) entry is given by
∑N

t=1 yu,t ⋆ zt,v. To show that this operator is a
contraction we first compute the inner product 〈gv, gu〉H(s) for u 6= v. By the definition
of the weak limit and of the reproducing kernel, we can write

〈gv, gu〉H(s) = lim
n−→∞

〈gv, gu,rn〉H(s)

= lim
n−→∞

gv(rnpu)

= lim
n−→∞

∞∑

t=0

rtnp
t
u(1− s(rnpu)sv)pv

t

= lim
n−→∞

((1− s(rnpu)sv)− rnpu(1− s(rnpu)sv)pv) (1− 2rnRe(pu)pv + r2npv
2)−1

= ((1− susv)− pu(1− susv)pv) (1− 2Re(pu)pv + pv
2)−1,

where we have used formula (2.9) and, as in the proof of Step 1 (see (4.1)), the fact
that [pu] ∩ [pv] = ∅ (recall that we assume here u 6= v). We claim that

Puv = ((1− susv)− pu(1− susv)pv) (1− 2Re(pu)pv + pv
2)−1. (4.4)

The proof is similar to the argument in the proof of step 1, and is as follows. Set
hn = 〈gv, gu,rn〉H(s). Then

hn − rnpuhnpv = 1− s(rnpu)sv.

Letting n → ∞ we see that h = limn→∞ hn satisfies equation (3.3). By the uniqueness
of the solution of this equation we have h = Puv. Furthemore, by the property of the
weak limit versus the norm,

‖gu‖2H(s) ≤ lim
n→∞

‖gu,rn‖2H(s) ≤ κu. (4.5)
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We can now show that ‖M(

1 −s
)‖ ≤ 1. Let c ∈ HN . Then,

(

M(

1 −s
)Fc

)

(p) =
N∑

u=1

gu(p)cu

and we have

‖(M(

1 −s
)Fc‖2H(s) =

N∑

u,v=1

cu
(
〈gv, gu〉H(s)

)
cv

=
N∑

u=1

|cu|2‖gu‖2H(s) +
N∑

u,v=1
u 6=v

cu
(
〈gv, gu〉H(s)

)
cv

=

N∑

u=1

|cu|2‖gu‖2H(s) +

N∑

u,v=1
u 6=v

cuPuvcv

≤
N∑

u=1

|cu|2κu +

N∑

u,v=1
u 6=v

cuPuvcv

= c∗Pc

= ‖Fc‖2M,

where we have used (4.4) and (4.5). Thus the ⋆-multiplication by (1 − s(p)) is a
contraction from M into H(s).

Proof of Step 3: Let Θ be defined by (3.8), and

KΘ(p, q) =

∞∑

t=0

pt (J −Θ(p)JΘ(q)∗) qt. (4.6)

The formula

F (p)P−1F (q)∗ = KΘ(p, q) (4.7)

is proved as in the complex case when p and q are real, and is then extended to p, q ∈ B1

by a slice hyperholomorphic extension. Using (2.4) we have

(

M∗
(

1 −s
)Ks(·, q)

)

(p) =
∞∑

t=0

pn
((

1

−s(q)

)

−Θ(p)JΘ(q)∗ ⋆r

(
1

−s(q)

))

qt,

and so

(M(

1 −s
)M∗

(

1 −s
)Ks(·, q))(p)

= Ks(p, q)−
∞∑

t=0

pt
(
(
1 −s(p)

)
⋆Θ(p)JΘ(q)∗ ⋆r

(
1

−s(q)

))

qt

≤ Ks(p, q),
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and therefore the kernel

∞∑

t=0

pt
(
(
1 −s(p)

)
⋆Θ(p)JΘ(q)∗ ⋆r

(
1

−s(q)

))

qt
∞∑

t=0

pt
(

A(p)A(q)−B(p)B(q)
)

qt

is positive definite in B1, where

A(p) = (a− s ⋆ c)(p) and B(p) = (b− s ⋆ d)(p).

The point p = 1 is not an interpolation node, and so Θ is well defined at p = 1. From
(3.8) we have

Θ(1) = I2 (4.8)

and so (a−1c)(1) = 0. Since s is bounded by 1 in modulus in B1 it follows that
(a−s⋆c)(p) 6≡ 0. Thus e = −(a−s⋆c)−⋆ ⋆ (b−s⋆d) is defined in B1, with the possible
exception of spheres of poles. Since

∞∑

t=0

pt
(

A(p)A(q)− B(p)B(q)
)

qt = A(p) ⋆

{
∞∑

t=0

pt(1− e(p)e(q))qt

}

⋆r A(q),

we have from [5, Proposition 5.3] that the kernel

Ke(p, q) =

∞∑

t=0

pt(1− e(p)e(q))qt

is positive definite in its domain of definition, and thus e extends to a Schur function
(see [6] for the latter assertion). From

e = −(a− s ⋆ c)−⋆ ⋆ (b− s ⋆ d)

we get s ⋆ (c ⋆ e + d) = a ⋆ e+ b. To conclude we remark that (4.8) implies that

(d−1c)(1) = 0.

Thus, as just above c ⋆ e + d 6≡ 0 and we get that s is of the form (3.10).

Proof of Step 4: Assume that s is of the form (3.10). Then the formula

Ks(p, q) =
(
1 −s(p)

)
⋆KΘ(p, q) ⋆r

(
1

−s(q)

)

+ (a− s ⋆ c)(p) ⋆Ke(p, q) ⋆r (a− s ⋆ c)(q)

implies that M(

1 −s
) is a contraction from H(Θ) into H(s). In particular

gu(p) =
(
1 −s(p)

)
⋆ fu(p) =

∞∑

t=0

pt(1− s(p)su)pu
t ∈ H(s) (4.9)

and

‖gu‖2H(s) ≤ κu.
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We want to infer from these facts that s satisfies the interpolation conditions (1.1). We
have

|gu(rpu)|2 = |〈gu(·), Ks(·, rpu)〉H(s)|2

≤
(
‖gu‖2H(s)

)
·Ks(rpu, rpu)

≤ κu ·
1− |s(rpu)|2

1− r2

≤ 2κu

1− r
.

(4.10)

In view of (2.9), we get

gu(rpu) =

∞∑

t=0

rtptu(1− s(rpu)su)pu
t

= ((1− s(rpu)su)− rpu(1− s(rpu)su)pu) (1− 2rRe(pu)pu + r2pu
2)−1

= ((1− s(rpu)su)− rpu(1− s(rpu)su)pu) ((1− r)(1− rpu
2))−1,

(4.11)

and so we have

|(1− s(rpu)su)− rpu(1− s(rpu)su)pu|
|1− rpu

2| ≤
√
2κu ·

√
1− r.

Let σu be a limit, via a subsequence, of s(rpu) as r → 1, and set Xu = 1− σusu. The
above inequality implies that Xu = puXupu, and so

Xupu = puXu. (4.12)

The conjugate of (4.12) is

Xupu = puXu. (4.13)

Adding (4.12) and (4.13) we obtain

Re(Xu)pu = puRe(Xu).

Since pu is not real we get that Re(Xu) = 0. Let Xu = αi+βj+γk, where α, β, γ ∈ R.
From σusu = 1−Xu we have

|σusu|2 = 1 + α2 + β2 + γ2.

Since σu ∈ B1 we have |σusu| ≤ 1 and so α = β = γ = 0. Thus, Xu = 0 and σusu = 1.
Hence σu = su and the limit lim r→1

r∈(0,1)
s(rpu) exists and is equal to su, and hence (1.1)

is satisfied.

To prove that (1.2) is met we proceed as follows. From (4.10) we have in particular

|gu(rpu)|2 ≤ κu ·
1− |s(rpu)|2

1− r2
,

and using (4.11) we obtain:

|X(r)− rpuX(r)pu|2
(1− r)2|1− rpu

2|2 ≤ κu ·
1− |s(rpu)|2

1− r2
, (4.14)
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where we have set X(r) = 1− s(rpu)su. Assume now that (3.11) is in force and let

lim
r→1

r∈(0,1)

1− s(rpu)su
1− r

= βu ∈ R. (4.15)

Then (4.14) together with (1.4) imply that

β2
u ≤ βuκu,

from which we get that βu ≥ 0 and

lim
r→1

r∈(0,1)

1− s(rpu)su
1− r

≤ κu.

5. The degenerate case

We now consider the case where P is singular. We need first a definition. A finite
Blaschke product is a finite ⋆-product of terms of the form which are given by

ba(p) = (1− pā)−⋆ ⋆ (a− p)
ā

|a| , (5.1)

where a ∈ H, |a| < 1 (see [7]).

The purpose of this section is to prove the following theorem. First a remark. We
denote by r the rank of P and assume that the main r × r minor of P is invertible.
This can be done by rearranging the interpolation points.

Theorem 5.1. Assume that P is singular. Then Problem 1.1 has at most one solution,
and the latter is then a finite Blaschke product. It has a unique solution satisfying (3.12)
for u = 1, . . . , r.

We begin with some preliminary results and definitions.

Definition 5.2. Let f be a slice hyperholomorphic in a neighborhood Ω of p = 1, and
let f(p) =

∑∞
t=0(p− 1)tft be its power series expansion at p = 1. We define

R1f(p) =
∞∑

t=1

(p− 1)tft. (5.2)

Denoting by ext the slice hyperholomorphic extension we have

R1f(p) = ext (R1f |p=x) . (5.3)

Lemma 5.3. Let f(p) = F (p)ξ where F (p) = C ⋆ (IN − pA)−⋆, then

R1f(p) = F (p)A(IN − A)−1ξ. (5.4)

Proof. First of all, recall that

F (p) = C ⋆ (IN − pA)−⋆ = (C − p̄CA)(In − 2Re(p)A+ |p|2A2)−1

so

F (1) = (C − CA)(IN − 2A+ A2)−1 = C(IN − A)−1.
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Let us compute

R1f(p) = (p− 1)−1(f(p)− f(1)) = (p− 1)−1(C ⋆ (IN − pA)−⋆ξ − C(IN − A)−1ξ)

= C ⋆ (p− 1)−1((IN − pA)−⋆ − (IN − A)−1)ξ

= C ⋆ (p− 1)−1 ⋆ (IN − pA)−⋆ ⋆ ((IN − A)− (IN − pA))(IN −A)−1ξ

= C ⋆ (p− 1)−1 ⋆ (IN − pA)−⋆ ⋆ (p− 1)A(IN − A)−1ξ

= C ⋆ (IN − pA)−⋆A(IN −A)−1ξ

= F (p)A(IN −A)−1ξ.

�

Lemma 5.4. Let f, g ∈ M. Then

[f, g] + [R1f, g] + [f, R1g] = g(1)∗J f(1). (5.5)

Proof. Let f(p) = F (p)ξ and g(p) = F (p)η with ξ, η ∈ HN . We have

f(1) = C(IN − A)−1ξ and g(1) = C(IN − A)−1η.

These equations together with (5.4) show that (5.5) is equivalent to

P + P (IN −A)−1A+ A∗(IN − A)−∗P = (IN − A)−∗C∗JC(IN − A).

Multiplying this equation by IN − A∗ on the left and by IN − A on the right we get
the equivalent equation (3.2). �

Remark 5.5. Equation (5.5) corresponds to a special case of a structural identity
which characterizes H(Θ) spaces in the complex setting. A corresponding identity
in the half place case was first introduced by de Branges, see [14], and improved by
Rovnyak [21]. Ball introduced the corresponding identity in the setting of the open
unit disk and proved the corresponding structure theorem. See [13]. See e.g. [11, p.
17] for further discussions on this topic.

Proposition 5.6. Let a and b be slice hyperholomorphic functions defined in an axially
symmetric s-domain containing p = 1. Then,

R1(a ⋆ b)(p) = (R1a(p)) b(1) + (a ⋆ R1b)(p). (5.6)

Proof. By the Identity Principle, see [16, Theorem 4.2.4] the equality holds if and only
if it holds for the restrictions to a complex plane CI i.e., using the notations in Section
2, if and only if

(R1(a ⋆ b))I(z) = (R1a(z))I b(1) + (a ⋆ R1b)I(z), z ∈ CI . (5.7)

Let J ∈ S be such that J is orthogonal to I and assume that

aI(z) = F (z) +G(z)J, bI(z) = H(z) + L(z)J.

Let us compute the left-hand side of (5.7), using the fact that (R1(a⋆ b))I(z) = R1((a⋆
b)I) and formula (2.3):

R1((a ⋆ b)I) = R1

(

F (z)H(z)−G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J
)

= (z − 1)−1
(

F (z)H(z)−G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J

−F (1)H(1) + G(1)L(1)− (G(1)H(1) + F (1)L(1))J)
)

.
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At the right hand side of (5.7) we have (R1a(z))I b(1) = (R1aI(z)) b(1) which can be
written as

(R1aI(z))b(1) =
(
(z − 1)−1(F (z) +G(z)J − F (1)−G(1)J)

)
(H(1) + L(1)J)

= (z − 1)−1
(

F (z)H(1) + F (z)L(1)J +G(z)H(1)J −G(z)L(1)− F (1)H(1)

−F (1)L(1)J −G(1)H(1)J +G(1)L(1)
)

,

moreover

(a ⋆ R1b)I(z) = (F (z) +G(z)J) ⋆
(
(z − 1)−1(H(z) + L(z)J −H(1)− L(1)J)

)

= (z − 1)−1(F (z) +G(z)J) ⋆ (H(z) + L(z)J −H(1)− L(1)J)

= (z − 1)−1(F (z)H(z)−G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J)

− F (z)H(1) +G(z)L(1)− (G(z)H(1) + F (z)L(1))J

from which the equality follows. �

We will also need the following result, well known in the complex case. We refer to
[12, 24] for more information and to [18] for connections with operator ranges.

Theorem 5.7. Let K1(p, q) and K2(p, q) be two H-valued functions positive definite
in a set Ω and assume that the corresponding reproducing kernel Hilbert spaces have a
zero intersection. Then the sum

H(K1 +K2) = H(K1) +H(K2)

is orthogonal.

Proof. Let K = K1 + K2. The linear relation in H(K) × (H(K1) × H(K2)) spanned
by the pairs

(K(p, q), (K1(p, q), K2(p, q))), q ∈ Ω,

is densely defined and isometric. It therefore extends to the graph of an everywhere
defined isometry, which we will call T . See [7, Theorem 7.2]. From

(T ∗(f1, f2))(q) = 〈T ∗(f1, f2), K(p, q)〉H(K)

= 〈(f1, f2), TK(p, q)〉H(K1)×H(K2)

= 〈f1, K1(p, q)〉H(K1) + 〈f2, K2(p, q)〉H(K2)

= f1(q) + f2(q), q ∈ Ω,

we see that ker T ∗ = {0} since H(K1)∩H(K2) = {0}. Thus T is unitary and the result
follows then easily. �

Proof of Theorem 5.1. We proceed in a number of steps. Recall that r = rankP .

STEP 1: Assume r = 0. Then, s1 = · · · = sN and Problem 1.1 is solvable with the

unique solution the constant unitary function s(p) ≡ s1 .

The matrix P = 0, and equation (3.2) imply that C∗JC = 0, and so 1 − susv = 0
for u 6= v ∈ {1, . . . , N}. Thus s1 = · · · = sN and the function s(p) ≡ s1 is clearly
a solution. Assume that s is a (possibly different) solution of Problem 1.1. The map
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M(

1 −s
) of slice multiplication by

(
1 −s(p)

)
is a contraction from M into H(s) (see

the second step in the proof of Theorem 3.2). Thus
(
1 −s(p)

)
⋆ fu(p) ≡ 0, u = 1, . . . , N,

that is gu(p) ≡ 0, where fu and gu have been defined in (4.3) and (4.9) respectively.
From (2.9) we have (for |p| < 1)

gu(p) = ((1− s(p)su)− p(1− s(p)su)pu) (1− 2Re(p)pu + |p|2p2u)−1

since

1− 2Re(p)pu + |p|2p2u 6= 0

for |p| < 1. Hence

(1− s(p)su) = p(1− s(p)su)pu, ∀p ∈ H1.

Taking absolute values of both sides of this equality we get 1 − s(p)su ≡ 0, and so
s(p) ≡ su. This ends the proof of Step 1.

In the rest of the proof we assume r > 0. By reindexing the interpolating nodes we
can assume that the principal minor of order r is invertible. Thus the corresponding
space is a H(Θr) space, and we can write

M = H(Θr)⊕Θr ⋆N .

STEP 2: The elements of N are slice hyperholomorphic in a neighborhood of p = 1
and R1N ⊂ N .

We follow the argument in Step 1 in the proof of Theorem 3.1 in [10] (see p. 153).
From (5.6) we have

(R1(Θr ⋆ n))(p) = (R1Θr)(p)n(1) + (Θr ⋆ R1n)(p). (5.8)

To prove that R1n ∈ N we show that

[(R1(Θr ⋆ n))(p)− (R1Θr)(p)n(1), g]M = 0, ∀g ∈ H(Θr). (5.9)

Using (5.5) we have

[(R1(Θr ⋆ n))(p), g]M = g(1)∗J (R1(Θr ⋆ n))(1)− [Θr ⋆ n, g]M − [Θr ⋆ n,R1g]M

= g(1)∗J (R1(Θr ⋆ n))(1)

since

[Θr ⋆ n, g]M = 0 and [Θr ⋆ n,R1g]M = 0,

where the second equality follows from R1g ∈ M. Moreover, for real p = x we have
the equality of real analytic functions

(R1Θr)(x) = −KΘr
(x, 1)JΘr(1)

∗,

and so, by slice hyperholomorphic extension, see [4, Remark 2.18], in a suitable neigh-
borhood of p = 1 we have

(R1Θr)(p) = −KΘr
(p, 1)JΘr(1)

∗.
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Note that Θr(1) is the identity. Thus

[(R1Θr)(p)n(1), g]M = −[KΘr
(p, 1)JΘr(1)

∗n(1), g]M

= −(n(1)∗Θr(1)
∗g(1)∗)

= −g(1)∗Θr(1)J n(1),

and so (5.9) is in force. This ends the proof of the second step.

Endow now N with the Hermitian form

[n1, n2]N = [Θr ⋆ n1,Θr ⋆ n2]M.

STEP 3: There exist matrices (G, T ) ∈ H2×(N−r)×H(N−r)×(N−r) such thatN is spanned

by the columns of the function FN (p) = G⋆ (IN−r−pT )−⋆ and moreover for ξ ∈ HN−r.

FN (p)ξ ≡ 0 =⇒ ξ = 0.

Indeed, we first note that the elements of N are well defined at p = 1 since Θ is
invertible at p = 1 (see also the formulas in [10, Theorem 3.3 (2)] ). Let FN (p) be built
from the columns of a basis of N and note that there exists B ∈ H(N−r)×(N−r) such
that

R1FN = FNB.

Restricting to p = x, where x is real, we have

F (x)− F (1)

x− 1
= F (x)B,

and so
F (x)(IN−r +B − xB) = F (1). (5.10)

We claim that IN−r + B is invertible. Let ξ ∈ H
N−r be such that Bξ = −ξ. Then,

(5.10) implies that
xF (x)ξ = F (1)ξ, x ∈ (−1, 1).

Thus F (1)ξ = 0 (by setting x = 0) and so F (x)ξ = 0 and so ξ = 0. Hence

F (x) = F (1)(IN−r +B)−1(IN−r − xB(IN−r +B)−1)−1,

and the result follows.

The following step is [10, Step 2 of proof of Theorem 3.1, p. 154]. The proof uses (5.9)
and is similar to the above arguments.

STEP 3: The space N is neutral and G∗JG = 0.

N is neutral by construction since r = rankP . We first show that the inner product
in N satisfies (5.5). We may proceed as in [10, p. 154] and using (5.5) in M we have
for n1, n2 ∈ M:

[R1n1, n2]N = [Θ ⋆ R1n1,Θ ⋆ n2]M

= [R1(Θ ⋆ n1),Θ ⋆ n2]M − [(R1Θ)(n1(1)),Θ ⋆ n2]M (where we used (5.8))

= [R1(Θ ⋆ n1),Θ ⋆ n2]M

since (R1Θ)(n1(1)) ∈ H(Θ), and so [(R1Θ)(n1(1)),Θ ⋆ n2]M = 0.
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Similarly,

[n1, R1n2]N = [Θ ⋆ n1,Θ ⋆ R1n2]M

= [Θ ⋆ n1, (R1Θ)(n2(1))]M − [Θ ⋆ n1, (R1Θ)(n2(1))]M

= [Θ ⋆ n1, (R1Θ)(n2(1))]M.

Thus, with m1 = Θ ⋆ n1 and m2 = Θ ⋆ n2,

[n1, n2]N + [R1n1, n2]N + [n1, R1n2]N = [m1, m2]M + [R1m1, m2]M + [m1, R1m2]M

= m2(1)
∗Jm1(1)

= n2(1)J n1(1)

since mv(1) = (Θ ⋆ nv)(1) = Θ(1)nv(1) for v = 1, 2 and Θ(1)∗JΘ(1) = J .

Proceeding as in Step 1 it follows that

PN − T ∗PNT = G∗JG,

and so G∗JG = 0.

STEP 4: Problem 1.1 has at most one solution.

Let

Θr(p) =

(
ar(p) br(p)
cr(p) dr(p)

)

.

From the study of the nondegenerate case, we know that, under the assumptions that
ensure the existence of a solution, any solution is of the form

s(p) = (ar(p) ⋆ e(p) + br(p)) ⋆ (cr(p) ⋆ e(p) + dr(p))
−⋆, (5.11)

for some Schur function e. Furthermore as in step 1, for every n ∈ N we have
(
1 −s

)
⋆Θr ⋆ n ≡ 0.

Thus

(a− sc) ⋆
(
1 −e

)
⋆ n ≡ 0,

and so
(
1 −e

)
⋆ n ≡ 0.

Since G∗JG = 0 we conclude in the way as in step 1. Indeed, let

G =

(
h1 . . . hN−r

k1 . . . kN−r

)

.

At least one of the hu or ku is different from 0 and G∗JG = 0 implies that

huhv = kukv, ∀u, v = 1, . . . , N − r,

and so e is a unitary constant.

We now show that the solution, when it exists, is a finite Blaschke product.

STEP 5: Let s be given by (5.11). Then the associated spaceH(s) is finite dimensional.
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This follows from

Ks(p, q) =
(
1 −s(p)

)
⋆ KΘr

(p, q) ⋆r

(
1

s(q)

)

+
(
1 −s(p)

)
⋆Θr(p)JΘr(q)

∗ ⋆r

(
1

s(q)

)

︸ ︷︷ ︸

is equal to 0 since |e| = 1

,

where KΘr
is defined as in (4.6) (with Θr in place of Θ).

STEP 6: The space H(s) contains an element of the form

f(p) = x ⋆ (1− pa)−⋆, (5.12)

where x ∈ H and a ∈ B1.

We first recall that (see [5, Theorem 7.1])

‖R0f‖2H(s) ≤ ‖f‖2H(s) − |f(0)|2, ∀f ∈ H(s). (5.13)

Here, the space H(s) is finite dimensional and R0 invariant. Thus R0 has a right
eigenvector f with eigenvalue a; see [25, p. 36]. Any eigenvector of R0 is of the form
(5.12), and equation (5.13) implies that

‖f‖2 ≤ |f(0)|2
1− |a|2 . (5.14)

We will see at the end of the proof of Step 8 that equality in fact holds in (5.14).

STEP 7: It holds that s(a) = 0.

From [6, p. 282-283] it follows that the span of f endowed with the norm ‖f‖2 = |f(0)|2

1−|a|2

is equal to H(ba), where ba is a Blaschke factor, see (5.1). From (5.14) we get that
H(ba) is contractively included in H(s) and from [6, Lemme 5.1] we then have that the
kernel

Ks(p, q)−Kba(p, q) =

∞∑

t=0

pt(ba(p)ba(q)− s(p)s(q))qt (5.15)

is positive definite in B1. But ba(a) = 0. Thus, setting p = q = a in (5.15) leads to
s(a) = 0.

STEP 8: We can write s = ba ⋆ σ1, where σ1 is a Schur function.

In the argument we make use of the Hardy space H2(B1) which is the reproducing
kernel Hilbert space with reproducing kernel

(1− pq)−⋆ =
∞∑

t=0

ptqt.

Note that this is the kernel ks with s(p) ≡ 0. For more information on this space we
refer to [1, 6].

Since a Schur function is bounded in modulus and thus belongs to the space H2(B1)
(see [1]), the representation s = ba ⋆ σ1 with σ1 ∈ H2(B1), follows from [7, Proof of
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Theorem 6.2, p. 109]. To see that σ1 is a Schur multiplier we note that

Ks(p, q)−Kba(p, q) = ba(p) ⋆ Kσ1
(p, q) ⋆r ba(q) (5.16)

implies that ba(p) ⋆Kσ1
(p, q) ⋆r ba(q) is positive definite in B1 and hence Kσ1

(p, q) is as
well by [5, Proposition 5.3].

STEP 9: It holds that dim (H(σ1)) = dim (H(s))− 1.

The decomposition (5.16) gives the decomposition

Ks(p, q) = Kba(p, q) + ba(p) ⋆ Kσ1
(p, q) ⋆r ba(q).

The corresponding reproducing kernel spaces do not intersect. Indeed, all elements in
the reproducing kernel Hilbert space with reproducing kernel ba(p) ⋆ Kσ1

(p, q) ⋆r ba(q)
vanish at the point a while non zero elements in H(ba) do not vanish. So the decompo-
sition is orthogonal in H(s) by Theorem 5.7, and equality holds in (5.14). The claim
on the dimensions follow.

After a finite number of iterations, this procedure leads to a constant σℓ, for some
positive integer ℓ. This constant has to be unitary since the corresponding space H(σℓ)
reduces to {0}, thus proving the theorem. �

We conclude with two remarks and a corollary.

Remark 5.8. Given a Blaschke factor the operator of multiplication by ba is an isom-
etry from H2(B1) into itself (see [7, Theorem 5.17, p. 106]), and so is the operator of
multiplication by a finite Blaschke productB. The degree of the Blaschke product is the
dimension of the space H2(B1)⊖BH2(B1). Thus the previous argument shows in fact
thatH(s) is isometrically included inside H2(B1) and thatH(s) = H2(B1)⊖MsH2(B1).

One can plug a unitary constant e also in the linear fractional transformation (3.10)
and the same arguments lead to:

Corollary 5.9. If Problem 1.1 has a solution, it is a Blaschke product of degree rankP .

Remark 5.10. The arguments in Steps 5-7 take only into account the fact that the
space H(Θ) is finite dimensional and that e is a unitary constant. In particular, they
also apply in the setting of [1], and in that paper too, the solution of the interpolation
problem is a Blaschke product of degree rankP when the Pick matrix is degenerate.

6. An analogue of Carathéodory’s theorem in the quaternionic
setting

Recall first that Carathéodory’s theorem states the following (see for instance [15, pp.
203-205], [22, p. 48]). We write the result for a radial limit, but the result holds in fact
for a non tangential limit.

Theorem 6.1. Let s(z) be a Schur function and let eit0 be a point on the unit circle
such that

lim inf
r→1

r∈(0,1)

1− |s(reit0)|
1− r

< ∞.
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Then, the limits

c = lim
r→1

r∈(0,1)

s(reit0) and lim
r→1

r∈(0,1)

1− s(reit0)c

1− r

exist, and the second one is positive.

This result plays an important role in the classical boundary interpolation problem for
Schur functions. See for instance [8], [23].

We prove a related result in the setting of slice-hyperholomorphic functions. The con-
dition (6.18) will hold particular for rational functions s, as is proved using a realization
of s (see [6] for the latter).

Theorem 6.2. Let s be a slice hyperholomorphic Schur function, and assume that at
some point pu of modulus 1 we have

sup
r∈(0,1)

1− |s(rpu)|2
1− r2

< ∞. (6.17)

Assume moreover that the function r 7→ s(rpu) has a development in series with respect
to the real variable r at r = 1:

s(rpu) = su + (r − 1)au +O(r − 1)2. (6.18)

Then

lim
r→1

r∈(0,1)

∞∑

t=0

rtptu(1− s(rnpu)su)pu
t = (ausu − puausu pu)(1− pu

2)−1.

Proof. In view of (6.17), the family of functions Ks(·, rpu) has a weakly convergent
subsequence. Since weak convergence implies pointwise convergence the weak limit is
readily seen to be the function gu. Thus

0 ≤ 〈gu, gu〉H(s) = lim
n→∞

〈gu, Ks(·, rnpu)〉H(s) = lim
n→∞

gu(rnpu),

where (rn)n∈N is a sequence of numbers in (0, 1) with limit equal to 1. Hence we have
that

lim
n→∞

∞∑

t=0

rtnp
t
u(1− s(rnpu)su)pu

t ≥ 0.

Using (6.18) we have:
∞∑

t=0

rtptu(1− s(rnpu)su)pu
t =

∞∑

t=0

rtptu((r − 1)ausu +O(r − 1)2)pu
t

= ((r − 1)ausu − rpu(r − 1)ausu pu)(1− r)−1(1− rpu
2)−1+

+
∞∑

t=0

rtpnuO(r − 1)2pu
t

= (ausu − rpuausu pu)(1− rpu
2)−1+

+
∞∑

t=0

rtpnuO(r − 1)2pu
t.
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This expression tends to

(ausu − puausu pu)(1− pu
2)−1, (6.19)

as r → 1. �

Remark 6.3. The example s(p) = 1+pa

2
, where a ∈ B1 is such that apu 6= pua, shows

that (6.19) is different, in general, from ausu.
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