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INTRODUCTION

Scientific study of marine reserves has evolved
rapidly in recent decades as reserves have prolifer-
ated around the globe (Lester et al. 2009, Gaines et
al. 2010). Early empirical work demonstrated that
reserve protection directly increased the density of
harvested target species (Davis & Doldrill 1980, Cole
et al. 1990). In addition, more recent studies have
identified strong indirect effects on community struc-
ture, mediated by the abundant protected predators
(Shears & Babcock 2003, Sale et al. 2005, Babcock et
al. 2010, Aburto-Oropeza et al. 2011). Virtually all
research in this area has focused on numerical

effects; field work has typically measured aggregate
disappearance rates of preferred prey (e.g. Shears &
Babcock 2002, Pederson & Johnson 2006, Guidetti &
Dulcic 2007) and multispecies models assume con-
stant attack rates by predators (e.g. Kellner et al.
2010). The possibility of a significant change in pred-
ator foraging behavior in reserves has not been
investigated.

In marine reserves where increased predator
abundance reduces the availability of preferred prey
items, optimal diet theory suggests that predators
should increase the range of acceptable prey items to
include less desirable species (Pyke et al. 1977, Sih &
Christensen 2001, Svanbäck & Bolnick 2007). If true,
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then this hypothesized change in behavior could
have potentially large, and otherwise unintended,
consequences for community structure. In many sys-
tems, the prey species with the greatest potential to
alter community structure are those that can reach
very high densities because they are either not
favored due to their low nutritional value (Stewart &
Konar 2012), or are unpalatable due to chemical
defense (Eckert 2007). If predators change their
attack behavior and begin eating such unfavored
prey in reserves where preferred prey are depleted,
the consequences to community structure would be
significant.

The California spiny lobster Panulirus interruptus
is an important and heavily fished kelp forest preda-
tor. Like most clawless lobsters, it is a generalist
predator of benthic invertebrates (Lindberg 1955,
Castañeda-Fernandez-de-Lara et al. 2005). Protec-
tion by marine reserves in California has been shown
to increase the density of lobsters (Iacchei et al. 2005,
Kay et al. 2012a,b) and reduce the density of sea
urchins (Lafferty 2004), which are common lobster
prey (Lindberg 1955, Tegner & Dayton 1981, Zim-
mer-Faust & Case 1982, Tegner & Levin 1983). Simi-
lar reserve effects on densities of lobsters and sea
urchins have been reported elsewhere in the world
(Shears & Babcock 2002, Pederson & Johnson 2006,
Ling et al. 2009).

In the present study, we examined whether the
protection afforded by marine reserves caused the
California spiny lobster to alter its attack behavior
to include unpalatable prey. To do this, we first ver-
ified the effects of reserves on the abundance of P.
interruptus and sea urchins by measuring their den-
sities in 4 marine no take reserves, each paired with
an adjacent fished area. Previous comparisons of
lobster and urchin densities inside versus outside
reserves have shown predation by spiny lobsters to
have a significant impact on urchin populations
(Shears & Babcock 2002, Lafferty 2004, Pederson &
Johnson 2006, Ling et al. 2009). We then assessed
whether predator attack behavior varied with re -
serve status by experimentally offering individuals
of a chemically de fended prey species, the Califor-
nia sea hare Aplysia californica, to foraging Califor-
nia spiny lobsters at the paired protected and un -
protected sites. Individuals of A. californica de ploy
active (i.e. ink and opaline; Kicklighter et al. 2005,
Derby & Aggio 2011) as well as passive (Takagi et
al. 2010) chemical defenses to make them effec-
tively unpalatable to most predators (see review by
Carefoot 1987). If in deed lobsters attacked sea hares
only inside reserves, then this would (1) be consis-

tent with optimal diet theory, (2) constitute previ-
ously unreported evidence that reserves change
attack behavior of protected predators, and (3) high-
light the need to consider changes in predator
behavior when assessing the ecological conse-
quences of marine protected areas.

MATERIALS AND METHODS

We chose 4 rocky-reef sites (Fig. 1) inside different
aged reserves where lobsters have been protected
since (from southeast to northwest) 1988 (Big Fisher-
man Cove, Catalina Island no-take reserve), 1980
(Lulu Cove, Catalina Island invertebrate no-take
reserve), 1978 (Cathedral Cove, Anacapa Island no-
take reserve), and 2003 (Cavern Point, Santa Cruz

Fig. 1. Study area showing the Marine Protected Areas
(MPAs, hatched areas) of the southern California bight. Cir-
cled dots indicate reserve sites and adjacent fished sites
used in the present study for Santa Cruz Island (34.052° N,
119.567° W), Anacapa Island (34.015° N, 119.372° W), and
Catalina Island (33.445° N, 118.486° W); invertebrate no-
take reserve, to the west of the MPA, 33.454° N, 118.505° W)
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Island no-take reserve). We paired each protected
reef with an adjacent fished reef outside the reserve.

We used SCUBA to collect population density data
for spiny lobsters and 3 common species of sea
urchins (Centrostephanus coronatus, Mesocentrotus
franciscanus, and Strongylocentrotus purpuratus)
from reserves and adjacent fished areas at Catalina
Island in the summer and early autumn of 2012. Data
for Anacapa Island and Santa Cruz Island reserves
and adjacent fished areas were obtained from the US
National Park Service, who used similar methods
during summer and early autumn of 2011 (Kushner et
al. 2013). All surveys were conducted before the start
of California’s annual lobster fishing season. Lobster
density was measured at all sites in 20 × 3 m plots
located transversely across a single 100 m long tran-
sect (3 to 8 m depth, n = 11 or 12 plots transect−1).
Densities of sea urchins were measured in 2 m2

quadrats spaced every 10 m along a 100 m transect
(3 to 8 m depth, n = 12 quadrats transect−1, Anacapa
and Santa Cruz Islands, National Park Service) or in
1 m2 quadrats spaced every 5 m along a 100 to 150 m
transect (3 to 8 m depth, n = 21 to 32 quadrats tran-
sect−1, Catalina Island).

To observe the propensity for lobster to attack
unpalatable prey, we presented individuals of the
California sea hare Aplysia californica to freely
 foraging lobsters at each of the 4 site pairs in
autumn 2009 and summer and autumn 2012. Sea
hares were collected from non-reserve areas at
Catalina Island or Palos Verdes Peninsula on the
mainland (ca. 35 km northeast of Catalina Island;
33.7742° N, 118.4306° W), and were maintained in
running seawater before being presented to lob-
sters in the field. All behavioral observations were
performed using SCUBA (3 to 12 m depth) after
sunset, when the  nocturnal lobsters forage for food.
We used red lights to minimize disturbance to lob-
sters. Each lobster encountered during a dive was
presented with a sea hare by positioning the sea
hare anterior to the antennules of the lobster, while
avoiding excessive motion (lobsters presented with
sea hares were separated by at least 3 m, usually
>10 m; details on the number of dives and number
of presentations per dive are summarized in the
Appendix). A lobster’s behavior was scored as ‘at -
tack’ if it grasped and moved the sea hare to its
mouth and manipulated it there for a minimum of
10 s. Usually, the lobster either aggressively gras p -
ed and bit the sea hare (attack), or alternatively
showed no interest, often batting it away with its
antennae. Rarely (ca. 10% of observations), lobsters
grasped the sea hare for a few seconds before

releasing it and moving away. For each dive, we
calculated the percentage of presentations that
elicited attack behavior.

To investigate whether attack is commonly fol-
lowed by consumption, we observed 3 of these
attacks for more than 5 min. We also performed an
enclosure experiment in the field that tested whether
acclimated sea hares were vulnerable to consump-
tion. In 10 separate experiments, we placed 5 sea
hares into a mesh enclosure (2 × 1 × 1 m) for 24 h,
then added a reserve-caught lobster which had
demonstrated its willingness to attack a presented
sea hare. In 7 control experiments, we placed sea
hares into enclosures lacking lobsters. We compared
the disappearance of sea hares from these 2 treat-
ments with a Fisher’s exact test.

In the laboratory, we tested whether hunger led to
a higher probability of lobsters attacking unpalatable
prey. We captured lobsters by hand at Big Fisherman
Cove reserve and the adjacent fished area after pre-
senting them with a sea hare. Captured lobsters were
placed in buckets of seawater and transported within
2 h to large (2 m diameter, 1.5 m deep) tanks sup-
plied with running seawater at the Wrigley Marine
 Science Center. There, we deprived each lobster of
food, and presented it with a live sea hare every
evening until the lobster attacked the sea hare. Pres-
entation of sea hares and scoring of lobster behavior
(e.g. willingness to attack) were performed in the
same manner as in the field. Differences between the
treatments in the number of days elapsed before an
attack were evaluated with a Kruskal-Wallis test.

Lobsters in the adjacent fished areas of our study
experience recreational fishing by hand, hoop nets,
and traps (Neilson et al. 2009, Kay et al. 2012a,b). As
a result, it is possible that lobsters in fished areas are
more wary of humans than lobsters living in reserves,
and thus less likely to attack any type of prey offered
by divers regardless of palatability. We tested this
hypothesis during summer 2013 by presenting pieces
of market squid Doryteuthis opalescens, a highly
palatable food, to freely foraging lobsters within Big
Fisherman Cove reserve and its adjacent fished area
following the same protocol used when presenting
sea hares. Market squid are seasonally abundant
lobster forage at our sites and elsewhere in southern
California, where they aggregate to spawn and sub-
sequently die (e.g. Zeidberg et al. 2012).

The effects of protection status and site on the
densities of lobsters and sea urchins were sepa-
rately evaluated using generalized linear models
(GLMs; Poisson distributed error, log link). Because
reserves were different ages, site was treated as a
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fixed factor. There were 2 levels of protection
status (reserve and fished) and 4 sites (Big Fisher-
man Cove, Lulu Cove, Cathedral Cove and Cavern
Point). We tested the effect of protection status on
the frequency with which lobsters attacked sea
hares in 2 ways. First, we treated each presentation
as an independent sample and applied a log linear
analysis with site and reserve status as fixed
factors. Second, because of potential non-indepen-
dence of presentations within the same dive, we
reanalyzed the data with a more conservative
approach, treating dives as independent samples.
We used Fisher’s exact test to examine differences
between reserves and fished areas with respect to
the fraction of dives in which at least one attack
was observed. All statistical tests were performed
in SAS v.9.4 (SAS Institute).

RESULTS

As has been found in previous research on reserves
in the Channel Islands (Lafferty 2004, Iacchei et al.
2005, Kay et al. 2012a,b) the density of lobsters in the
present study was consistently higher inside no-take
reserves compared to adjacent unprotected fished
areas (Fig. 2A). The degree to which lobster densities
were significantly higher inside reserves varied
among sites (GLM-Poisson, F6,88 = 17.20, p < 0.0001
for the reserve × site interaction). By contrast, the
density of sea urchins inside reserves was much
lower (0 to 16%, mean ± SE: 9.5 ± 2.9%, n = 4) than
that in adjacent fished areas (Fig. 2B). The magni-
tude of the difference in urchin densities inside ver-
sus outside reserves also varied among sites (GLM-
Poisson, F6,135 = 335.6, p < 0.0001 for the reserve × site
interaction).

Lobsters showed no attack behavior on sea hares at
any of the fished sites (n = 13 dives; Fig. 3), which is
consistent with observations that sea hares are rarely
if ever eaten by lobsters (Carefoot 1987, D. Stark
pers. comm.). By contrast, we consistently observed
lobsters attacking sea hares in 3 of the 4 reserves (22
of 26 total reserve dives), implying a significant dif-
ference in attack rates inside reserves relative to out-
side (Fisher’s exact test, p < 0.0001; Fig. 3). A log-
analysis of the data, treating each presentation as
independent, confirmed this conclusion, indicating a
significant effect of reserve status on probability of
attack (χ2 = 95.6, df =1, p < 0.0001) and a significant
site effect (χ2 = 52.5, df = 3, p < 0.0001).

In order to assess whether lobsters consumed the
sea hares they attacked, we observed 3 individual

lobsters after they had dragged their sea hare
offering into dens, where each lobster continued to
consume its prey. Two of the 3 lobsters eventually
retreated deeper into their dens, where they were
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hidden from observation by the diver. The third
lobster remained visible. This lobster continued to
eat the sea hare for the next 60 min (when our air
supply was exhausted). We were able to retrieve
the remains of the sea hare at that time. It was
approximately 10% of the volume prior to attack.
The consumption of presented sea hares by lob -
sters was also supported by the results of the field
enclosure experiments, in which sea hares disap-
peared from 7 of the 10 enclosure trials with lob-
sters and 0 of 7 trials without lobsters (Fisher’s
exact test, p < 0.01).

Significantly, the only reserve in which lobsters
did not attack sea hares was the most recently
established of the 4 reserves (Cavern Point), which
also had by far the lowest lobster densities
(0.007 ind. m−2; Fig. 1) and highest urchin densities
(38 ind. m−2; Fig. 3). When the behavioral results
from this new reserve and its adjacent control site
were excluded, 19 out of 19 dives inside reserves
showed attack behavior versus 0 attacks in 9 dives
at sites outside reserves. Our results suggest that
the willingness of lobsters to attack unpalatable
prey is increased by their higher densities inside
reserves, a supposition supported by the overall
high correlation between average attack frequency
and the density of lobsters (r = 0.90, p = 0.0024;
Fig. 4).

Attack rates on market squid, a more palatable
food item, were similar in both fished (67 ± 4.7%; 24

presentations during 3 dives) and reserve areas (72 ±
5.5%; 30 presentations during 4 dives). They were
also much greater than attack rates on sea hares (0
and 37% in fished and reserve areas, respectively;
Fig. 3, Big Fisherman Cove). These observations fur-
ther support the idea that palatability of the prey is a
critical determinant of the effects of reserves on
predator attack behavior.

In the laboratory, we found that most lobsters did
not attack sea hares until they had experienced
several days of food deprivation. Furthermore, the
propensity for lobsters to attack sea hares in the lab
depended on the reserve status and initial attack
behavior observed in the field. Lobsters caught in
fished areas that did not attack sea hares in the
field delayed for 8.3 ± 1.3 d (n = 4) before their first
attack behavior on sea hares in the laboratory. By
contrast, reserve-caught lobsters that attacked sea
hares in the field attacked sea hares in the labora-
tory within an average of only 2.3 ± 0.5 d (n = 7).
Finally, reserve-caught lobsters that failed to attack
sea hares in the field delayed an intermediate num-
ber of days 6.3 ± 0.3 d (n = 3) before attacking a
sea hare in the lab. The time be fore consumption
was significantly different across the 3 groups
(Kruskal-Wallis test, χ2 = 9.7, df = 2, p < 0.0003). If
treated as 2 groups (reserve-caught and off-reserve
lobsters), time until first attack be havior was still
significantly different (Kruskal-Wallis test, χ2 = 5.9,
df = 1, p = 0.0154).

DISCUSSION

Our observations indicate that the protection
afforded by marine reserves leads to higher densities
of hungrier lobsters, which causes them to attack oth-
erwise unpalatable prey. The fact that we observed
no lobster attacks on sea hares outside reserves reaf-
firms their unpalatability, as originally demonstrated
in laboratory studies (Carefoot 1987, Kicklighter et
al. 2005, Derby & Aggio 2011). Chemical defenses,
both passively sequestered in the body wall, and
actively secreted in response to a predatory attack
are known to deter lobster feeding (Kicklighter et al.
2005, Derby & Aggio 2011). Our observations indi-
cate that despite these chemical defenses, sea hares
were attacked and consumed to some degree by
hungry lobsters inside reserves. Our finding that food
deprivation in the laboratory eventually causes lob-
sters collected outside reserves to attack sea hares
implies that hunger is the proximate cause of this
shift in attack behavior.
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The differences that we observed between re ser -
ves and fished areas in the propensity of lobsters to
attack unpalatable sea hares cannot be explained by
differences in the skittishness of lobsters because
reserve and fished-area lobsters were similar in their
willingness to attack palatable food offered by
divers. The hunger hypothesis is further supported
by our laboratory observations that the willingness of
lobsters to attack sea hares increased with length of
food deprivation, and that a shorter period of depri-
vation was required to induce attack if lobsters were
captured inside the reserve. Patterns of abundance of
one class of known prey item (urchins) also support
the hunger hypothesis. However, lobster density is
clearly not the only driver of lobster behavior, as
 evidenced by different attack rates observed at
 similar densities of lobsters (e.g. Big Fisherman Cove
off-reserve versus Cathedral Cove on-reserve). Al -
though we do not understand all drivers of attack
behavior, the clear patterns between paired reserve
and off-reserve sites strongly supports reserve pro-
tection as one important driver.

The extent to which spiny lobster behavior has been
altered by changes in the densities and size structure
of their predators (Pondella & Allen 2008) is unknown.
Nonetheless, it is unlikely that such changes ac-
counted for the differences in lobster behavior that we
observed. Large predatory fish such as giant sea bass
Stereolepis gigas are universally rare in southern
 California, and other species that potentially feed on
lobsters such as the California sheephead Semicossy-
phus pulcher and kelp bass Paralabrax clathratus
tend to be larger and more abundant inside reserves
(Tetreault & Ambrose 2007, Loflen & Hovel 2010).
Higher densities and larger sizes of these potential
predators inside reserves should, if anything, have
made reserve lobsters more skittish and less likely to
attack the sea hares presented by divers. As noted
above, we did not find this to be true.

Studies of foraging behavior of spiny lobsters from
California (Withy-Allen & Hovel 2013) as well as
other palinurids (Green et al. 2013, Steyn & Schleyer
2011) suggest that lobsters are relatively mobile,
moving hundreds of meters per night as they forage
for food. However, these studies also show that spiny
lobsters have high site fidelity and generally stay
within a 1 ha area for weeks to months. Furthermore,
tagging studies have shown that movement of spiny
lobsters into and out of reserves is relatively un -
common (Kay et al. 2012a). Thus, it is reasonable
to assume that lobsters inside reserves will remain
there long enough to experience the high densities
of conspecifics and relatively deple ted food supply,

thereby leading them to broaden the list of species
they will attack for food.

The shift in predatory behavior within marine re-
serves described here has yet to be reported for any
taxa. Our discovery of this effect in the California
spiny lobster is noteworthy because the effects of re-
serves on the density and size of spiny lobsters are
well described (Lafferty 2004, Iacchei et al. 2005, Kay
et al. 2012a,b). In many instances, spiny lobsters have
served as model organisms for marine reserve re-
search. For example, spiny lobsters were the focus of
early empirical studies profiling the direct effects of
reserves on fished species (e.g. Davis & Doldrill 1980,
Cole et al. 1990), and they continue to provide insights
into indirect effects such as changes in community
structure due to trophic cascades (Babcock et al.
2010), disease dynamics among prey species (Lafferty
2004), and increased fishery yield due to reserves
(Goñi et al. 2010). The finding of the present study is
significant because in the absence of predator control
some species of unpalatable prey are known to form
dense aggregations that exclude more palatable spe-
cies (e.g. Eckert 2007, Rassweiler et al. 2010). Our
findings suggest that the protection from fishing af-
forded to top predators by no-take reserves may indi-
rectly alter community dynamics by reducing oppor-
tunities for these unpalatable prey to dominate in the
face of predatory behavior that is absent outside the
reserve. Although sea hares are normally found at low
densities in our study region (<0.1 ind. m−2; Kushner
et al. 2013) and are not known to have strong effects
on the structure of the communities in which they live,
they proved to be an effective model species for test-
ing whether reserves cause predators to alter their
 attack behavior to include unpalatable prey.

There are no previous reports of presentations of
the same prey item to predators in protected versus
unprotected areas, most likely because presenting
prey to predators is usually difficult. Nevertheless,
changes in diet are known among protected preda-
tors. For example, individuals in established popula-
tions of the protected sea otter Enhydra lutris forage
on less preferred species once their preferred prey
become depleted (Tinker et al. 2008). More gener-
ally, predators that have depleted their preferred
prey are predicted to broaden their diet (Stephens &
Krebs 1986, Svanbäck & Bolnick 2007), and observa-
tion confirms this supposition (Barkai & Branch 1988,
Stiner 2002, Roth et al. 2007, Svanbäck & Bolnick
2007, Haley et al. 2011). Importantly, there have
been no comparisons of attack behavior of predators
inside versus outside reserves on a geographical
scale of specific protected areas, and our findings of
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altered predator behavior may apply generally to
areas with protected status.

Although our results focused on a single trophic
link, the increased willingness of lobsters to attack
sea hares inside reserves suggests an overall broad-
ening of this predator’s palette of acceptable prey
within reserves. Thus, lobsters’ increased willingness
to attack sea hares is likely to be only one aspect of a
general change in behavior generated by increased
hunger, with increased attack rates on preferred
prey and a willingness to attack prey that would oth-
erwise be ignored. Changes in predator behavior
such as these pose a challenge for predicting the
effects of marine reserve implementation. In the
absence of reserves, interaction strengths can only
be estimated from fished populations. If predators
have higher per-capita attack rates on some prey
species within reserves, then the potential for
reserves to produce top-down effects and trigger
trophic cascades may be much greater than other-
wise anticipated (Strong 1992). More dramatically,
reserve protection may create trophic links that are
non-existent outside of protected areas, as documen -
ted in this study. Furthermore, these ‘new’ trophic
links may well reflect those present before modern
fishing began. The consequences of major reorgani-
zation of the food web within reserves are potentially
far-reaching, as food-web structure can have signifi-
cant effects on the strength of top-down control,
trophic dynamics, and community stability (Dunne et
al. 2002, Bascompte et al. 2005). Although consistent
with optimal diet theory, this potential for new
trophic links has not been considered in the context
of marine reserves.

The possibility that predator−prey interaction
strengths are altered by reserve protection has im -
portant implications for conservation and manage-
ment. The benefits of marine reserves for conserva-
tion are increasingly well documented (Lester et al.
2009). Furthermore, reserve design can strongly
affect performance (Rassweiler et al. 2012), and
mathematical models (Smith & Wilen 2003, Gaylord
et al. 2005, Rassweiler et al. 2014) are increasingly
being used to guide design (White et al. 2013). While
a few models of reserve effects have incorporated
trophic dynamics (e.g. Kellner et al. 2010), none have
accounted for changes in per-capita interaction
strengths, such as demonstrated in this study. Incor-
porating alterations in trophic links resulting from
protection status into models used for decision-mak-
ing should improve the ability of marine reserves to
meet their intended goals in conservation and fishery
management.
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Appendix. Summary of sampling design showing the number of dives, the number of
sea hares presented per dive and the number of dives in which at least 1 lobster was
observed attacking a sea hare. The number of lobsters tested in each dive depended on
the density of foraging lobsters and diving conditions, both of which varied sub -
stantially from night to night. The number of presentations per dive averaged 15 in the
3 reserves that always had attacking lobsters; 15 in the 1 reserve that showed no attack,
and 13 in off-reserve dives, none of which showed attack. Thus, there was no syste-

matic bias in the number of lobsters that were offered sea hares at particular sites

Site Reserve status No. of No. of presen- No. of dives 
dives tations dive−1 with attacks

Big Fisherman Cove Reserve 12 9−22 12
Off reserve 3 12−16 0

Lulu Cove Reserve 5 12−26 5
Off reserve 3 10−20 0

Cathedral Cove Reserve 5 12−20 5
Off reserve 3 11−12 0

Cavern Point Reserve 4 10−20 0
Off reserve 3 10−14 0
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