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ON DISCRETE ANALYTIC FUNCTIONS: PRODUCTS,

RATIONAL FUNCTIONS, AND SOME ASSOCIATED

REPRODUCING KERNEL HILBERT SPACES

DANIEL ALPAY, PALLE JORGENSEN, RON SEAGER, AND DAN VOLOK

Abstract. We introduce a family of discrete analytic functions, called ex-
pandable discrete analytic functions, which includes discrete analytic polyno-
mials, and define two products in this family. The first one is defined in a way
similar to the Cauchy-Kovalevskaya product of hyperholomorphic functions,

and allows us to define rational discrete analytic functions. To define the sec-
ond product we need a new space of entire functions which is contractively
included in the Fock space. We study in this space some counterparts of Schur
analysis.
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1. Introduction

In this paper, we explore a spectral theoretic framework for representation of dis-
crete analytic functions. While the more familiar classical case of analyticity plays
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2 D. ALPAY, P. JORGENSEN, R. SEAGER, AND D. VOLOK

an important role in such applications as the theory of systems and their realiza-
tions, carrying over this to the case of discrete analytic functions involves a number
of operator- and spectral theoretic subtleties; for example, we show that the repro-
ducing kernel, in the discrete case, behaves quite differently from the case of the
more familiar classical kernels of Szegö and Bergman. We introduce a reproduc-
ing kernel of discrete analytic functions, which is naturally isomorphic to a Hilbert
space of entire functions contractively included in the Fock space. The pointwise
product of two discrete analytic functions need not be discrete analytic, and we
introduce two products, each taking into account the specificities of discrete ana-
lyticity.

The first product is determined by a solution to an extension question for rational
functions, extending from Z+ to the right half-plane in the 2D lattice Z

2. Our
solution to the extension problem leads to a new version of the multiplication op-
erator Z. We further prove that the product in A will be defined directly from
Z. This in turn yields a representation of the multiplier problem for the repro-
ducing kernel Hilbert space H. While it is possible to think of the reproducing
kernel Hilbert space H as an extension of one of the classical Beurling-Lax theory
for Hardy space, the case for discrete analytic function involves a new and different
spectral analysis, departing from the classical case in several respects. For example,
we show that the new multiplication operator Z is part of an infinite-dimensional
non-Abelian Lie algebra of operators acting on the reproducing kernel Hilbert space
H. With this, we are able to find the spectral type of the operators described above.

The theory of discrete analytic functions has drawn a lot of attention recently, in
part because of its connections with electrical networks and random walks. In the
case of functions defined on the integer grid the notion of discrete analyticity was
introduced by J. Ferrand (Lelong) in [15]:

Definition 1.1. A function f : Z2 −→ C is said to be discrete analytic if

(1.1) ∀(x, y) ∈ Z
2,

f(x+ 1, y + 1)− f(x, y)

1 + i
=

f(x+ 1, y)− f(x, y + 1)

1− i
.

The properties of discrete analytic functions were extensively investigated by R. J.
Duffin in [13]. In this work it was shown that discrete analytic functions share many
important properties of the classical continuous analytic functions in the complex
domain, such as Cauchy integral representation and the maximum modulus prin-
ciple. More recently, the notion of discrete analyticity and accompanying results
were extended by C. Mercat to the case of functions defined on arbitrary graph
embedded in an orientable surface; see [22].

The concept of discrete analyticity seems to cause significant difficulties in the
following regard: the pointwise product of two discrete analytic functions is not
necessarily discrete analytic. For example, the functions z := x + iy and z2 are
discrete analytic in the sense of Definition 1.1, but z3 is not. Thus a natural ques-
tion arises, how to describe all complex polynomials in two variables x, y whose
restriction to the integer grid Z2 is discrete analytic, and, more generally, rational
discrete analytic functions. This problem was originally considered by R. Isaacs,
using a definition of discrete analyticity (the so-called monodiffricity), which is al-
gebraically simpler than Definition 1.1. In [17] R. Isaacs has posed a conjecture that
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all monodiffric rational functions are polynomials. This conjecture was disproved
by C. Harman in [16], where an explicit example of a non-polynomial monodiffric
function, rational in one quadrant, was constructed.

The results of R. Isaacs and C. Harman suggest that in the setting of discrete an-
alytic functions the notion of rationality based on the pointwise product is not a
suitable one. In order to introduce a class of rational discrete analytic functions,
which would be sufficiently rich for applications, one needs a suitable definition of
the product. This is one of the main objective of the present paper to introduce
two products in the setting of discrete analytic functions.

Organization: The paper is organized as follows. Sections 2 through 4 cover our
preparation of the discrete framework: analysis and tools. In Definition 2.1, the
notion of discrete analyticity makes a key link between the representation in the
two integral variables (x, y) in the 2-lattice Z2 , thus making precise the interaction
between the two integral variables x and y implied by analyticity. The notion of
analyticity in the discrete case is a basic rule (Definition 1.1) from which one makes
precise contour-summations around closed loops in Z2. In section 2, we introduce a
basis system of polynomials (which will appear to be restriction to the positive real
axis of discrete analytic polynomials ζn defined in section 5), see equation (2.1). We
further introduce a discrete Fourier transform for functions of (x, y) in the 2-lattice
Z2, and in the right half-planeH+ = Z+×Z in Z2. The Fourier representation in H+

is then used in sections 3 and 4; where we study extensions from Z to Z2, and from
Z+ to H+. We begin our analysis in section 4 with some lemmas for the polyno-
mial case. Theorem 4.1 offers a discrete version of the Cauchy-Riemann equations;
we show that the discrete analytic functions are defined as the kernel of a del-bar
operator D; to be studied in detail in section 7, as part of a Lie algebra represen-
tation. In Theorem 4.2 we show that every polynomial function on Z has a unique
discrete analytic extension to Z2. Sections 5 and 6 deal with expandable functions
(Definition 5.5), and section 7 rational discrete analytic functions. The expand-
able functions are defined from a basis system of discrete analytic polynomials ζn
from section 2, and a certain Cauchy-estimate, equation (5.10). We shall need two
products defined on expandable functions, the first is our Cauchy-Kovalesvskaya
product (in section 6), and the second (section 10) is defined on algebra gener-
ated by the discrete analytic polynomials ζn. Its study makes use of realizations
from linear systems theory. The definition of the Cauchy-Kovalesvskaya product
relies on uniqueness of extensions for expandable functions (Corollary 5.6). Hence
it is defined first for expandable functions, and then subsequently enlarged; first to
the discrete analytic rational functions (section 7), and then to a new reproducing
kernel Hilbert space in section 8. The latter reproducing kernel Hilbert space has
its kernel defined from the discrete analytic polynomials ζn; see (8.1). The study
of the reproducing kernel Hilbert space in turns involves such tools from analysis
as representations of Lie algebras (Theorem 7.4), and of C∗-algebras (Theorem 8.4).
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2. Polynomials and rational functions on the set of integers

In what follows, Ω stands for one of two sets: Z or Z+, and x[n] denotes the
polynomial of degree n defined by

(2.1) x[n] :=

n−1∏

j=0

(x− j)

(if n = 0, x[0] := 1).

They have the generating function

(2.2) (1 + t)x =

x∑

k=0

x[k] t
k

k!
,

and their discrete analytic extensions ζn(x, y) are studied in section 5.

The purpose of this section is to prove (see Theorem 2.9 below) that any rational
function f : Z+ −→ C (see Definition 2.7) has a unique representation

(2.3) f(x) =

∞∑

n=1

f̂(n)x[n],

where

(2.4) lim sup
n→∞

(
n!|f̂(n)|

) 1
n ≤ 1.

Definition 2.1. The linear difference operator δ on the space of functions f :
Ω −→ C is defined by

(δf)(x) = f(x+ 1)− f(x), x ∈ Ω.

Proposition 2.2. Let f : Z+ −→ C. Then, for every x ∈ Z+ the series

f̌(x) :=
∑

n∈Z+

f(n)x[n]

has a finite number of non zero terms.

Proof. In view of (2.1),

∀x ∈ Z+, ∀n ∈ Z+, x < n =⇒ x[n] = 0.

Therefore, for every x ∈ Z+ the series f̌(x) contains at most x+ 1 non-zero terms.
�

Proposition 2.3. Let f : Z+ −→ C. Then there exists a unique function f̂ :
Z+ −→ C such that

(2.5) ∀x ∈ Z+, f(x) =
∑

n∈Z+

f̂(n)x[n].

The function f̂(n) is given by

(2.6) f̂(n) =
(δnf)(0)

n!
.
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Proof. To show the uniqueness of f̂(n), assume that (2.5) holds for some function

f̂(n) and apply the identity

(2.7) δx[n] = nx[n−1]

repeatedly to obtain (2.6).

Next, let the function f̂(n) be defined by (2.6). Then, according to Proposition 2.2,
the series

f̃(x) :=
∑

n∈Z+

f̂(n)x[n]

converges absolutely for every x ∈ Z+ and defines a function f̃ : Z+ −→ C. Hence

(2.6) holds with f̃ replacing f and

∀n ∈ Z+, (δnf)(0) = n!f̂(n) = (δnf̃)(0).

Now one can verify that

(2.8) ∀x ∈ Z+, ∀n ∈ Z+, (δnf)(x) = (δnf̃)(x)

by induction on x: If

∀n ∈ Z+, (δnf)(x) = (δnf̃)(x)

then

∀n ∈ Z+, (δnf)(x+ 1) = (δnf)(x) + (δn+1f)(x)

= (δnf̃)(x) + (δn+1f̃)(x) = (δnf̃)(x+ 1).

It remains to set n = 0 in (2.8) to obtain (2.5). �

Definition 2.4. Let f : Z+ −→ C. Then the function f̂ : Z+ −→ C, defined by
(2.6), is said to be the Fourier transform of f .

Suppose that a function f : Z −→ C is such that

∀x ∈ Z, f(x) = p(x),

where p(x) is a polynomial with complex coefficients. Then such a polynomial p(x)
is unique, and we shall call the function f itself a polynomial. If f(x) 6≡ 0, the
degree of f(x) is the same as the degree of p(x).

Proposition 2.5. Let f : Z −→ C be a polynomial, and let f̂ : Z+ −→ C be the

Fourier transform of the restriction f|Z+ . Then the function f̂ has a finite support

and

∀x ∈ Z, f(x) =
∑

n∈Z+

f̂(n)x[n].

Proof. Note that

deg(δf) = deg(f)− 1

(if f = const, δf = 0). Hence

∀n ∈ Z+, n > deg(f) =⇒ δnf = 0.

Since

(δf)|Z+ = δ(f|Z+ ),
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(2.6) implies that

∀n > deg(f), f̂(n) = 0.

It follows that ∑

n∈Z+

f̂(n)x[n]

is, in fact, a polynomial, which coincides with the polynomial f(x) on Z+ and hence
on Z. �

It follows from Proposition 2.5 and identity (2.7) that if f : Z −→ C is a polynomial
then so is δf . A converse statement can be formulated as follows:

Proposition 2.6. Let f : Z −→ C be a polynomial. Then there exists a polynomial
g : Z −→ C such that f(x) ≡ (δg)(x). If f(x) 6≡ 0 then deg(g) = deg(f) + 1.

Proof. By Proposition 2.5,

f(x) =
∑

n∈Z+

f̂(n)x[n],

where f̂ : Z+ −→ C is a function with finite support. Consider the polynomial

g(x) =
∑

n∈Z+

f̂(n)

n+ 1
x[n+1],

then, in view of (2.7),

∀x ∈ Z, (δg)(x) =
∑

n∈Z+

f̂(n)x[n] = f(x).

�

Definition 2.7. A function f : Z+ −→ C is said to be rational if there exist
polynomials p, q : Z+ −→ C such that

∀x ∈ Z+, q(x) 6= 0,

and

∀x ∈ Z+, f(x) =
p(x)

q(x)
.

Proposition 2.8. Let f : Z+ −→ C be given. Then f(x) is a rational function if
and only if there exist a polynomial p(x) and matrices A,B,C such that

(2.9) σ(A) ∩ Z+ = ∅,
and

(2.10) f(x) = p(x) + C(xI −A)−1B.

Proof. We first recall that a matrix-valued rational function of a complex variable
can always be written in the form

(2.11) r(z) = p(z) + C(zI −A)−1B,

where the matrix-valued polynomial p takes care of the pole at infinity, and A,B
and C are matrices of appropriate sizes. Furthermore, when the dimension of A is
minimal, the (finite) poles of r coincide with the spectrum of A; see [8, 19]. Here,
we consider complex-valued functions, and thus C and B are respectively a row
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and column vector.

Now, by Definition 2.7, f is a rational function if and only if it is the restriction
on Z+ of a rational function of a complex variable, with no poles on Z+, that is
if and only if it can be written as (2.10) with the matrix A satisfying furthermore
(2.9). �

Theorem 2.9. Let f : Z+ −→ C be rational, and let f̂ : Z+ −→ C be the Fourier
transform of f . Then

lim sup
n→∞

(|f̂(n)|n!)1/n ≤ 1.

Proof. According to Proposition 2.8, there exist a polynomial p(x) and matrices
A,B,C such that σ(A) ∩ Z+ = ∅ and

f(x) = p(x) + C(xI −A)−1B.

Hence, for n > deg(p),

|f̂(n)n!| = |(δnf)(0)| ≤ ‖C‖ · ‖B‖ · ‖A−1‖ ·
n∏

j=1

‖
(
I − 1

n
A

)−1

‖.

Since

lim
n→∞

‖
(
I − 1

n
A

)−1

‖ = 1,

∀ǫ > 0, ∃M,N ∈ Z+, ∀n ∈ Z+ : n ≥ N =⇒ |f̂(n)n!| ≤ M(1 + ǫ)n,

and the conclusion follows. �

3. Discrete polynomials of two variables

Definition 3.1. The linear difference operators δx, δy on the space of functions
f : Ω1 × Ω2 −→ C are defined by

(δxf)(x, y) := f(x+ 1, y)− f(x, y), (δyf)(x, y) := f(x, y + 1)− f(x, y).

Note that the difference operators δx and δy commute:
(3.1)
(δxδyf)(x, y) = (δyδxf)(x, y) = f(x+ 1, y+ 1)− f(x, y + 1)− f(x+ 1, y) + f(x, y).

Proposition 3.2. Let f : Z2
+ −→ C. Then for every (x, y) ∈ Z2

+, the series

(3.2) f̌(x, y) :=
∑

(m,n)∈Z2
+

f(m,n)x[m]y[n]

contains finitely many non-zero terms.

Proof. In view of (2.1),

∀x ∈ Z+, ∀n ∈ Z+, x < n =⇒ x[n] = 0.

Therefore, for every (x, y) ∈ Z2
+ the series f̌(x) contains at most (x + 1)(y + 1)

non-zero terms. �

Formula (3.2) can be viewed as a transform of a discrete function. The inverse
transform is calculated in the next proposition.
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Proposition 3.3. Let f : Z2
+ −→ C. Then there exists a unique function f̂ :

Z2
+ −→ C such that

(3.3) ∀(x, y) ∈ Z
2
+, f(x, y) =

∑

(m,n)∈Z2
+

f̂(m,n)x[m]y[n].

The function f̂(m,n) is given by

(3.4) f̂(m,n) =
(δmx δny f)(0, 0)

m!n!
, (m,n) ∈ Z

2
+.

Proof. First, fix x ∈ Z+ and consider the function fx : Z+ −→ C given by

fx(y) = f(x, y), y ∈ Z+.

Then, according to Proposition 2.3, there is a unique function f̂x : Z+ −→ C such
that

∀y ∈ Z+, fx(y) =
∑

n∈Z+

f̂x(n)y
[n];

the function f̂x(n) is given by

f̂x(n) =
(δny f)(x, 0)

n!
, n ∈ Z+.

Next, fix n ∈ Z+ and consider the function gn : Z+ −→ C given by

gn(x) = f̂x(n), x ∈ Z+.

By the same Proposition 2.3, there is a unique function ĝn : Z+ −→ C such that

∀x ∈ Z+, gn(x) =
∑

m∈Z+

ĝn(m)x[m];

the function ĝn(m) is given by

ĝn(m) =
(δmx δny f)(0, 0)

m!n!
, m ∈ Z+.

Thus

∀(x, y) ∈ Z
2
+, f(x, y) =

∑

(m,n)∈Z2
+

ĝn(m)x[m]y[n].

It remains to set f̂(m,n) = ĝn(m). �

Definition 3.4. Let f : Z2
+ −→ C. Then the function f̂ : Z2

+ −→ C, defined by
(3.4), is said to be the Fourier transform of f .

Theorem 3.5. Let p(z, w) be a complex polynomial in two variables. Then, p
∣∣
Z2 =

0 if and only if p ≡ 0.

Proof. Write

(3.5) p(z, w) =

N∑

n=0

pn(z)w
n,

where the pn are polynomials in z. The equations p(z, w) ≡ 0 for w = 0, 1, . . .N
lead to (using a Vandermonde determinant) that p0(z), p1(z), . . . , pN (z) vanish on
Z and hence identically. �
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Suppose that a function f : Z2 −→ C is such that

∀(x, y) ∈ Z
2, f(x, y) = p(x, y),

where p(x, y) is a polynomial with complex coefficients. Then in view of Theorem
3.5, such a polynomial p(x, y) is unique, and we shall call the function f itself a
polynomial. If f(x, y) 6≡ 0, the degree of f(x, y) is the same as the degree of p(x, y).

Proposition 3.6. Let f : Z2 −→ C be a polynomial, and let f̂ : Z2
+ −→ C be the

Fourier transform of the restriction f|
Z2
+

. Then the function f̂ has a finite support

and

∀(x, y) ∈ Z
2, f(x, y) =

∑

(m,n)∈Z2
+

f̂(m,n)x[m]y[n].

Proof. First, in view of (3.4) and of the fact that

∀(m,n) ∈ Z
2
+, ∀(x, y) ∈ Z

2, m+ n > deg(f) =⇒ (δmx δny f)(x, y) = 0,

the function f̂ has a finite support. It follows that
∑

(m,n)∈Z2
+

f̂(m,n)x[m]y[n]

is, in fact, a polynomial, which coincides with the polynomial f(x, y) on Z2
+ and

hence on Z2. �

It follows from Proposition 3.6 and identity (2.7) that if f : Z2 −→ C is a polynomial
then so are δxf and δyf . A converse statement can be formulated as follows. It
will be used in the proof of Theorem 4.2,

Proposition 3.7. Let f, g : Z2 −→ C be two polynomials, such that

(3.6) (δyf)(x, y) ≡ (δxg)(x, y).

Then there exists a polynomial h : Z2 −→ C such that

(3.7) (δxh)(x, y) ≡ f(x, y), (δyh)(x, y) ≡ g(x, y).

Proof. By Proposition 3.6, there exist functions f̂ , ĝ : Z2
+ −→ C with finite support,

such that

f(x, y) =
∑

(m,n)∈Z2
+

f̂(m,n)x[m]y[n], g(x, y) =
∑

(m,n)∈Z2
+

ĝ(m,n)x[m]y[n].

Then identity (3.6) implies that

(3.8) ∀(m,n) ∈ Z
2
+, (n+ 1)f̂(m,n+ 1) = (m+ 1)ĝ(m+ 1, n).

Consider the polynomial

h(x, y) =
∑

(m,n)∈Z2
+

f̂(m,n)

m+ 1
x[m+1]y[n] +

∑

n∈Z+

ĝ(0, n)

n+ 1
y[n+1],

then

∀(x, y) ∈ Z
2, (δxh)(x, y) =

∑

(m,n)∈Z2
+

f̂(m,n)x[m]y[n] = f(x, y).
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On the other hand, in view of (3.8),

h(x, y) =
∑

(m,n)∈Z2
+

ĝ(m,n)

n+ 1
x[m]y[n+1] +

∑

n∈Z+

f̂(m, 0)

m+ 1
x[m+1],

hence

∀(x, y) ∈ Z
2, (δyh)(x, y) =

∑

(m,n)∈Z2
+

ĝ(m,n)x[m]y[n] = g(x, y).

�

4. Discrete analytic polynomials

Difference operators: It is convenient to recast Definition 1.1 in terms of the
difference operators. In what follows, each of the sets Ω1,Ω2 is either Z or Z+.

Theorem 4.1. A function f : Ω1 × Ω2 −→ C is discrete analytic if and only if

∀(x, y) ∈ Ω1 × Ω2, (D̄f)(x, y) = 0,

where

(4.1) D̄ := (1 − i)δx + (1 + i)δy + δxδy.

Proof. In view of (3.1),

∀(x, y) ∈ Ω1 × Ω2,
f(x+ 1, y + 1)− f(x, y)

1 + i
− f(x+ 1, y)− f(x, y + 1)

1− i

=
1− i

2
(f(x+ 1, y + 1)− f(x, y)− if(x+ 1, y) + if(x, y + 1))

=
1− i

2
((δxδyf)(x, y)− 2f(x, y) + (1 − i)f(x+ 1, y) + (1 + i)f(x, y + 1))

=
1− i

2
((δxδyf)(x, y) + (1− i)(δxf)(x, y) + (1 + i)(δyf)(x, y)).

�

Extension: In view of Definition 1.1, given f0 : Z −→ C there are infinitely dis-
crete analytic functions f on Z2 such that f(x, 0) = f0(x). However, the following
theorem show that in the case when f0 is a polynomial, only one of these discrete
analytic extensions will be a polynomial in x, y. The result itself originates with
the work of Duffin [13], and we give a new proof.

Theorem 4.2. Let p : Z −→ C be a polynomial. Then there exists a unique discrete
analytic polynomial q : Z2 −→ C such that

∀x ∈ Z, q(x, 0) = p(x).

In particular, q(x, y) ≡ 0 if and only if p(x) ≡ 0. If this is not the case,

deg(q) = deg(p).

Lemma 4.3. Let q : Z2 −→ C be a discrete analytic polynomial, such that q(x, 0) ≡
0. Then q(x, y) ≡ 0.
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Proof. Assume the opposite, then deg(q) > 0, and q can be chosen so that deg q is
the smallest possible. Observe that (δxq)(x, y) is also a discrete analytic polynomial,
that (δxq)(x, 0) ≡ 0, and that deg(δxp) < deg(p). Hence (δxq)(x, y) ≡ 0. Since
q(x, y) is discrete analytic, Definition 4.1 implies that

∀(x, y) ∈ Z
2, (δyq)(x, y) =

i− 1

2
((1 − i+ δy)δxq)(x, y) = 0.

Thus

(δxq)(x, y) ≡ (δyq)(x, y) ≡ 0

and hence q = const - a contradiction. �

Proof of Theorem 4.2. The uniqueness of the polynomial q(x, y) follows from Lemma
4.3. The existence in the case p = const is clear: it suffices to set

q(x, y) = p(0).

If p 6= const we proceed by induction on d = deg(p). According to Proposition
2.6, (δp)(x) is a polynomial and deg(δp) = d − 1. Therefore, by the induction
assumption, there is a discrete analytic polynomial f(x, y), such that

∀x ∈ Z, f(x, 0) = (δp)(x)

and deg(f) = d− 1. Let g : Z2 −→ C be defined by

g(x, y) = if(x, y)− 1− i

2
(δyf)(x, y),

then g(x, y) is also a discrete analytic polynomial, deg(g) = d − 1. Furthermore,
since (D̄f)(x, y) ≡ 0,

∀(x, y) ∈ Z
2, (δxg)(x, y) = i(δxf)(x, y)−

1− i

2
(δxδyf)(x, y)

= i(δxf)(x, y) +
1− i

2
((1− i)(δxf)(x, y) + (1 + i)(δyf)(x, y)) = (δyf)(x, y).

Hence, according to Proposition 3.7, there exists a polynomial h : Z2 −→ C such
that

(δxh)(x, y) ≡ f(x, y), (δyh)(x, y) ≡ g(x, y).

Since

∀(x, y) ∈ Z
2, (D̄h)(x, y) = (1− i)f(x, y) + (1 + i)g(x, y) + (δyf)(x, y) = 0,

the polynomial h(x, y) is discrete analytic. Finally, since

∀x ∈ Z, (δxh)(x, 0) = f(x, 0) = (δp)(x),

h(x, 0)− p(x) is a constant function. Thus it suffices to set

q(x, y) = h(x, y)− h(0, 0) + p(0)

to complete the proof. �
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5. Expandable discrete analytic functions

In view of Theorem 4.2, there exists a unique discrete analytic polynomial ζn(x, y)
determined by

ζn(x, 0) ≡ x[n].

Then (as follows from Proposition 3.6 and identities (2.7), (3.1)) (δxζn)(x, y) is also
a discrete analytic polynomial such that

(δxζn)(x, 0) ≡ δx[n] ≡ nx[n−1].

Hence, by the uniqueness part of Theorem 4.2,

(5.1) (δxζn)(x, y) ≡ nζn−1(x, y)

(if n = 0, ζ0(x, y) ≡ 1 and (δxζ0)(x, y) ≡ 0).

Proposition 5.1. For each (x, y) ∈ Z2 the function

(5.2) ex,y(z) = (1 + z)x
(
1 + i+ iz

1 + i+ z

)y

,

is analytic (in the usual sense) in the variable z in the open unit disk D, and admits
the Taylor expansion

(5.3) ex,y(z) =
∑

n∈Z+

znζn(x, y)

n!
, ∀z ∈ D.

Proof. The analyticity is clear because x, y ∈ Z and we have

ex,y(z) =
∑

n∈Z+

zncn(x, y)

n!
, ∀z ∈ D.

where

cn(x, y) =
dn

dzn
ex,y

∣∣∣
z=0

.

Since

ex+1,y(z)− ex,y(z) = zex,y(z) =
∑

n∈Z+

zn+1cn(x, y)

n!
,

∀(x, y) ∈ Z
2, ∀n ∈ Z+, (δxcn)(x, y) = ncn−1(x, y)

(if n = 0, c0(x, y) ≡ 1 and (δxc0)(x, y) ≡ 0). Similarly, since

ex+1,y+1(z)− ex,y(z)

1 + i
− ex+1,y(z)− ex,y+1(z)

1− i
=

=

(
(1 + z)

1 + i+ iz

1 + i+ z
− 1

)
ex,y(z)

1 + i
−
(
1 + z − 1 + i+ iz

1 + i+ z

)
ex,y(z)

1− i

= 0,

(5.4)

we have
∀(x, y) ∈ Z

2, and ∀n ∈ Z+, (D̄cn)(x, y) = 0.

Thus, for every n ∈ Z+, the function cn : Z2 −→ C is discrete analytic. Next, we
show by induction that

(5.5) ∀n ∈ Z+, cn(x, y) ≡ ζn(x, y).

Indeed, for n = 0,
c0(x, y) ≡ 1 ≡ ζ0(x, y).
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Assume that, for some n ∈ Z+,

cn(x, y) ≡ ζn(x, y),

then, in view of (5.1),

(δxcn+1(x, y) ≡ (n+ 1)cn(x, y) ≡ (n+ 1)ζn(x, y) ≡ (δxζn+1(x, y),

hence
(δx(ζn+1 − cn+1))(x, y) ≡ 0.

But the functions cn+1 and ζn+1 are discrete analytic, hence

(D̄(ζn+1 − cn+1))(x, y) ≡ 0

and
(δy(ζn+1 − cn+1))(x, y) ≡ 0.

It follows that
ζn+1 − cn+1 = const;

since
ζn+1(0, 0) = 0 = cn+1(0, 0),

one concludes that
cn+1(x, y) ≡ ζn+1(x, y),

and (5.5) follows. �

Corollary 5.2. Let x, n ∈ Z+. Then,

(5.6) ζn(x, 0) =

{
x(x − 1) · · · (x− n+ 1) = x[n], if n ≤ x

0, if n > x.

Proof. Set y = 0 in ex,y(z) in (5.2). By (5.5) we get

(5.7) (1 + z)x =
∑

n∈Z+

zn

n!
ζn(x, 0).

(5.6) follows by comparing the coefficients of zn in (5.7). �

Theorem 5.3. It holds that

∀(x, y) ∈ Z+ × (Z \ {0}), lim sup
n→∞

( |ζn(x, y)|
n!

)1/n

=
1√
2
.

Proof. When x ≥ 0 the function (5.2) is analytic in the variable z in the disk

centered at the origin and of radius
√
2, and has a pole on the boundary of this

disk. Hence the radius of convergence of the McLaurin series is precisely
√
2, and

lim sup
n→∞

( |ζn(x, y)|
n!

)1/n

=
1√
2
.

�

Theorem 5.4. Let g : Z+ −→ C be such that for every (x, y) ∈ Z+ × Z the series

(5.8) f(x, y) =
∑

n∈Z+

g(n)ζn(x, y)

converges absolutely. Then the function f : Z+ × Z −→ C, defined by (5.8), is
discrete analytic, and it holds that

g(n) ≡ f̂0(n),
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where the function f0 : Z+ −→ C is given by

(5.9) f0(x) = f(x, 0), x ∈ Z+.

Proof. The discrete analyticity of f follows directly from the discrete analyticity of
the polynomials ζn. Furthermore, when y = 0 the formula (5.8) becomes

f0(x) =
∑

n∈Z+

g(n)x[n],

hence, according to Proposition 2.3, g = f̂0. �

Now we can introduce the main class of functions to be considered in this paper.

Definition 5.5. A function f : Z+ × Z −→ C is said to be expandable if:

(1) the Fourier transform f̂0 of the function f0 : Z+ −→ C, given by (5.9),
satisfies the estimate

(5.10) lim sup
n→∞

(|f̂0(n)|n!)1/n <
√
2;

(2) the function f admits the representation

f(x, y) =
∑

n∈Z+

f̂0(n)ζn(x, y), (x, y) ∈ Z+ × Z.

The class of expandable functions contains all discrete analytic polynomials, and
elements of this class are determined by their values on the positive horizontal axis.

Corollary 5.6. Suppose that f0 : Z+ −→ C is rational. Then there exists a unique
expandable function f : Z+ × Z −→ C such that

f(x, 0) ≡ f0(x).

Proof. This is a consequence of Theorem 2.9. �

6. The Cauchy-Kovalevskaya product

Theorem 5.4 and Corollary 5.6 allows us to define a (partially) defined product on
expandable functions, which is everywhere defined on rational functions. This prod-
uct will be denoted by ⊙ and called, for reasons to be explain later in the section,
the Cauchy-Kovalesvskaya product. Consider f1 and f2 two expandable functions,
and assume that the Fourier transform of the pointwise product f1(x, 0)f2(x, 0)
satisfy (5.10). Then there exists a unique discrete analytic expandable function g
such that

(6.1) g(x, 0) = f1(x, 0)f2(x, 0)

g is called the Cauchy-Kovalesvskaya product of f1 and f2 and is denoted by f1⊙f2.
Note that the Cauchy-Kovalesvskaya product of two rational functions always exist.
We now give a more formal definition of the product:

Definition 6.1. Let f : Z2 −→ C be a polynomial, such that

f(x, 0) ≡ c0 + c1x+ · · ·+ cnx
n,

and let g : Ω × Z −→ C be given. The Cauchy-Kovalevskaya (C-K) product of f
and g is defined by

(6.2) (g⊙ f)(x, y) = (f ⊙ g)(x, y) = c0g(x, y)+ c1(Zg)(x, y)+ · · ·+ cn(Zng)(x, y).
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We shall abbreviate this as

(6.3) f ⊙ g = f(Z)g.

The commutativity asserted in the definition is proved in the following theorem.

Theorem 6.2.

(1) The restriction of the C-K product to Z+ is the product of the restriction.
(2) The C-K product is the unique discrete analytic extension corresponding to the
product of the restrictions.
(3) The C-K product is commutative, i.e.

(6.4) g ⊙ f = f ⊙ g

for all choices of discrete analytic polynomials

Proof.
(1) Setting y = 0 in (6.2) and taking into account the definition of Z we have

(g ⊙ f)(x, 0) = c0g(x, 0) + c1(Zg)(x, 0) + · · ·+ cn(Zng)(x, 0)

= c0g(x, 0) + c1xg(x, 0) + · · ·+ cnx
ng(x, 0)

= f(x, 0)g(x, 0).

(6.5)

(2) For an expandable function the discrete Cauchy-Riemann equation Df = 0
with prescribed initial values on the horizontal positive axis has a unique solution
(see Theorem 5.4).

(3) is then clear from (1) and (2). �

We now explain the name given to this product. Recall that the classical Cauchy-
Kovalevskaya theorem concerns uniqueness of solutions of certain partial differential
equations with given initial conditions. See for instance [20]. In Clifford analysis,
where the pointwise product of hyperholomorphic functions need not be hyper-
holomorphic, this theorem was used by F. Sommen in [26] (see also [9]) to define
the product of hyperholomorphic quaternionic-valued functions in R

4 by extending
the pointwise product from an hyperplane. In the present setting of expandable
functions the discrete Cauchy-Riemann equation Df = 0 with prescribed initial
values on the horizontal positive axis also has a unique solution. This is why the
pointwise product on the horizontal positive axis can be extended to a unique ex-
pandable function, which we call the C-K product.

If p is a discrete analytic polynomial and f is an expandable function, p⊙ f is the
expandable function determined by

(6.6) (p⊙ f)(x, 0) = p(x, 0)f(x, 0).

However it is not true in general that the pointwise product of the restrictions of
two expandable functions, say f and g, is itself the restriction of an expandable
function, as is illustrated by the example

(6.7) f(x, y) = g(x, y) = ex,y(t),

where ex,y(t) is defined by (5.2) and |t| >. Indeed,

(6.8) ex,0(t) = (1 + t)x



16 D. ALPAY, P. JORGENSEN, R. SEAGER, AND D. VOLOK

is the restriction of an expandable function whenever |t| <
√
2. On the other hand,

(ex,0(t))
2 = ex,0(2t + t2) will not be the restriction of an expandable function for

|t| >
√
1 +

√
2− 1 which is strictly smaller than

√
2.

We note that the C-K product for hyperholomorphic functions was used in [3,
4, 5] to define and study rational hyperholomorphic functions, and some related
reproducing Hilbert spaces.

Proposition 6.3. For m,n ∈ Z+ and j ∈ {0, . . . ,m+ n}, set

(6.9) cm,n
j =

δj
(
x[m]x[n]

)

j!
|x=0.

Then,

(6.10) ζm ⊙ ζn =

m+n∑

j=0

cm,n
j ζj .

Proof. It suffices to note that (6.10) holds for y = 0, thanks to Proposition 2.3. �

Systems like (6.10) occur in the theory of discrete hypergroups. See [21].

7. Rational discrete analytic functions

As we already mentioned, the pointwise product of two discrete analytic functions
need not be discrete analytic. In the sequel of the section we define a product on
discrete analytic functions when one of the terms is a polynomial, and show that a
rational function is a quotient of discrete analytic polynomials with respect to this
product. We first need the counterpart of multiplication by the complex variable.

Definition 7.1. The multiplication operator Z on the class of functions f : Ω ×
Z −→ C is given by

(Zf)(x, y) = xf(x, y) + iy
f(x, y + 1) + f(x, y − 1)

2
.

Proposition 7.2. Let f be a function from Ω× Z into C. Then
(1)

(7.1) (Zf)(x, 0) ≡ xf(x, 0).

Furthermore:
(2) If f is a polynomial, then so is Zf.
(3) If f is discrete analytic, then so is Zf .

Proof. The proofs of (1) and (2) are clear from the definition. The proof of (3)
follows from the identity (7.6) in Theorem 7.4. �

Proposition 7.3. Let f : Z+ × Z −→ C be expandable. Then so is Zf . In
particular,

(7.2) ∀n ∈ Z+, (Zζn)(x, y) ≡ ζn+1(x, y) + nζn(x, y).

Proof. By Proposition 7.2, for every n ∈ Z+, (Zζn)(x, y) is a discrete analytic
polynomial. In view of (7.1),

(Zζn)(x, 0) = x · x[n] = x[n+1] + nx[n],

hence formula (7.2) follows from Theorem 4.2.
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Let f0 : Z+ −→ C be defined by (5.9), then

(Zf)(x, 0) = xf0(x) =
∑

n∈Z+

(nf̂0(n) + f̂0(n− 1))x[n],

where f̂0(−1) := 0. Since

lim sup
n→∞

(|f̂0(n)|n!)1/n <
√
2,

lim sup
n→∞

(|nf̂0(n) + f̂0(n− 1)|n!)1/n <
√
2.

Finally, since

f(x, y) =
∑

n∈Z+

f̂0(n)ζn(x, y),

where the convergence is absolute,

(Zf)(x, y) =
∑

n∈Z+

f̂0(n)(Zζn)(x, y) =
∑

n∈Z+

(nf̂0(n) + f̂0(n− 1))ζn(x, y).

�

From the preceeding proof we note that

(7.3) ζ1 ⊙ ζn = Zζn = nζn + ζn+1.

Theorem 7.4. The operators δx, δy,Z and D generate a Lie algebra of linear
operators on the space of all functions from Z

2 into C. The Lie bracket is [A,B] =
AB −BA and the relations on the generators are

[δx,Z] = 1 + δx,(7.4)

[δy,Z] = i(1 + δy + δ2y),(7.5)

[D,Z] =

(
1 + i

2
+

i

2
δy

)
D,(7.6)

[D, δx] = [D, δy] = [δx, δy] = 0.(7.7)

Proof. The identities (7.4)-(7.7) can be verified by the calculations in the proofs of
the two preceding propositions. �

Definition 7.5. A function f : Z+ × Z −→ C is said to be a rational discrete
analytic function if f(x, y) is expandable and f(x, 0) is rational.

Theorem 7.6. An expandable function f : Z+ ×Z −→ C is rational if and only if
it is a C-K quotient of discrete analytic polynomials function that is, if and only if
there exist discrete analytic polynomials p(x, y) and q(x, y) such that

∀x ∈ Z+, q(x, 0) 6= 0

and

(q ⊙ f)(x, y) ≡ p(x, y).

Proof. Suppose first that f is rational, and let f0(x) denote the restriction of f to
the horizontal positive axis. By definition there exists two polynomials p0(x) and
q0(x) such that q0(x) 6= 0 (on Z+) and

(7.8) q0(x)f0(x) = p0(x), x ∈ Z+.
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Let p(x, y) and q(x, y) denote the discrete analytic polynomials extending p0(x) and
q0(x) respectively. Then both p and q⊙f are expandable functions, which coincide
on Z+, and therefore everywhere.

Conversely, let p(x, y) and q(x, y) be the discrete analytic polynomials such that

∀x ∈ Z+, q(x, 0) 6= 0

and
(q ⊙ f)(x, y) ≡ p(x, y).

Setting y = 0 leads to

∀x ∈ Z+, q(x, 0)f(x, 0) = p(x, 0),

which ends the proof. �

Theorem 7.7. Let p(x, y) and q(x, y) be the discrete analytic polynomials such
that

∀x ∈ Z+, q(x, 0) 6= 0

Then there is a unique expandable rational function f such that

(q ⊙ f)(x, y) ≡ p(x, y).

Proof. Denote
g(x, y) = (q ⊙ f)(x, y).

According to Proposition 7.3, the function g : Z+ × Z −→ C is expandable, and
therefore can be written as

g(x, y) =
∑

n∈Z+

ĝ0(n)ζn(x, y),

where ĝ0 is the Fourier transform of its restriction

g0(x) = g(x, 0).

In particular, by Theorem 5.4, g is discrete analytic. In view of (7.1),

g0(x) = q(x, 0)f(x, 0) = p(x, 0),

hence, by Proposition 2.5, ĝ0 has finite support and g is a discrete analytic polyno-
mial. In view of Theorem 4.2,

g(x, y) ≡ p(x, y).

�

8. The C∗-algebra associated to expandable discrete analytic
functions

. We denote by HDA the reproducing kernel Hilbert space with reproducing kernel

(8.1) K((x1, y1), (x2, y2)) =

∞∑

n=0

ζn(x1, y1)ζn(x2, y2)
∗

(n!)2
,

and let en := 1
n!ζn be the corresponding ONB in HDA. Then,

Theorem 8.1.

(8.2) δxe1 = 0 and δxen = en−1, n > 1,

i.e., δx is a copy of the backwards shift.
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Proof. Using Proposition 5.1, we get

(8.3) δxex,y(z) = ex+1,y(z)− ex,y(z) = zex,y(z).

Substituting the expression ex,y(z) =
∑

n∈Z+

zn

n! ζn(x, y) into (8.3), we get δxζ1 = 0

and δxζn = nζn−1 if n > 1. The result (8.2) follows. �

Proposition 8.2. In HDA we have

δy = δx

(
I − i− 1

2
δx

)−1

=

∞∑

n=0

(
i − 1

2

)n

δn+1
x ,

(8.4)

where the convergence of the above series is in the operator norm

Proof. Recall that the operator D was defined in (4.1). Since the elements of HDA

are discrete analytic we have D = 0 in HDA, that is,

(8.5) (1− i)δx + (1 + i)δy + δxδy = 0,

and thus

(8.6) δy ((1 + i)I + δx) = (1− i)δx.

Since δx is an isometry, and has in particular norm 1, we can solve equation (8.5)
and obtain (8.4). The power expansion converges in the operator norm since

(8.7) ‖
(
i− 1

2

)
δx‖ =

1√
2
< 1.

�

Theorem 8.3. The C∗-algebra generated by δx, or equivalently by δx and δy is the
Toeplitz C∗-algebra.

Proof. This follows from the preceding proposition and from [11]. Indeed it is
known [11] that the Toeplitz C∗-algebra T is the unique C∗-algebra generated by
the shift. Since δ∗x is a copy of the shift, and δy ∈ C∗(δ∗x), the result follows. �

We now consider

(8.8) A = Re Z =
1

2
(Z + Z∗) ,

where Z is defined from Definition 7.1.

Theorem 8.4.

(i) The operator A is essentially self-adjoint on the linear span D of the functions
ζn, n ∈ Z+.
(ii) On D it holds that

(8.9) [δx, A] =
1

2

(
I + δx + δ2x

)
.

(iii) There exists a strongly continuous one parameter semi-group αt : T −→ T
such that

(8.10) (eitA)b(e−itA) = αt(b), ∀t ∈ R, ∀b ∈ T ,

where T denotes the Toeplitz C∗-algebra.
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Proof. In (iii), we denote by eitA the unitary one-parameter group generated by
the self-adjoint operator A from (i). The matrix representation of A with respect
to the ONB en := 1

n!ζn is:

(8.11)




0
n− 2 n− 1 0
n− 1 n− 1 n 0

n n n+ 1
0 n+ 1 n+ 1 n+ 2
0 0 n+ 2 n+ 2

0




It is therefore a banded infinite matrix with terms going to infinity linearly with n.
It follows from [18] that A is essentially self-adjoint.

(ii) By definition of Z and δx

[A, δ∗x](en) = (Aδ∗x − δ∗xA)(en)

=
1

2
(en + en+1 + en+2)

=
1

2
(I + δ∗x + δ∗2x )en,

(8.12)

and hence the result.

(iii) We have

(8.13) eitAbe−itA =

∞∑

n=0

(it)n

n!
(ad A)n (b),

and

(8.14) (ad A)n+1 (b) = [A, (ad A)n b],

We verify (8.13) on monomials of δx and δ∗x using (8.14) and induction. See [10, 24]
for more details regarding limits. �

The next corollary deals with a flow. For more information on this topic, see [23].

Corollary 8.5. The one-parameter group {αt} ⊂ Aut (T ) passes to a flow on the
circle group T = {z ∈ C ; |z| = 1}.
Proof. By [11], the Toeplitz algebra T has a represnetation as a short exact sequence

(8.15) 0 −→ T /K −→ T −→ C(T) −→ 0,

where K is a copy of the C∗-algebra of all compact operators on HDA. Hence,

(8.16) T /K ≃ C(T).

Since the left hand-side of (8.10) leaves K invariant, it follows that

(8.17) αt : T −→ T
passes to the quotient T /K ≃ C(T). �
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9. A reproducing kernel Hilbert space of entire functions

As we stated in the previous section, the C-K product has the disadvantage of not
being defined for all pairs of expandable functions. In Section 10 we introduce a
different product which turns the space of expandable functions into a ring, and
consider a related reproducing kernel Hilbert space. In preparation we introduce
in the present section a reproducing kernel Hilbert space of entire functions of a
complex variable within which the results of Section 10 can be set in a natural way.

To set these results in a wider setting, let us recall a few facts on Schur analysis,
that is, on the study of functions analytic and contractive in the open unit disk. If
s0 is such a function (in the sequel, we write s0 ∈ S ), the operator of multiplication
by s0 is a contraction from the Hardy space of the open unit disk H2 into itself.
The kernel

(9.1)
1− s0(z)s0(w)

∗

1− zw∗

is then positive definite in the open unit D, and its associated reproducing kernel
Hilbert space H(s0) was first studied by de Branges and Rovnyak. Spaces H(s0)
and their various generalizations play an important role in linear system theory
and in operator theory. See for instance [1, 2, 7, 14] for more information. Here we
replace H2 by two spaces, a space of entire functions in the present section and a
space of discrete analytic functions in the next section.

Thus, let H be a Hilbert space, and let O denote the space of L(H)-valued functions
analytic at the origin, and consider the linear operator T on O defined by

(9.2) T (znAn) =
zn

n!
An, An ∈ L(H).

Then TO is a space of L(H)-valued entire functions. The operator T induces a
product ♦ of elements in TO via

(Tf)♦(Tg) = T (fg).

Theorem 9.1. Let H be a Hilbert space and let A is a bounded operator from H
into itself. Then the L(H)-valued entire function

(IH − zA)−♦ = (

∞∑

n=0

znAn

n!
) = ezA

satisfies

(9.3) (IH − zA)♦(IH − zA)−♦ = IH,

and it is the only function in TO with this property.

Proof. This comes from the power expansion and norm estimates. �

Take now H = C and let H2 denote the Hardy space of the unit disk. Then T is
a positive contractive injection from H2 into itself. Denote by H the space TH2

equipped with the range norm:

∀f ∈ H2, ‖Tf‖H = ‖f‖2.
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Then T : H2 −→ H is unitary, and H is a reproducing kernel Hilbert space of entire
functions with the reproducing kernel

KH(z, w) =

∞∑

n=0

(zw∗)n

(n!)2
.

Proposition 9.2. H is the Hilbert space of entire functions such that
∫

C

|f(z)|2K0(2|z|)dA(z) < ∞,

where

K0(r) =
1

π

∫

R

exp(−r cosh t)dt

is the modified Bessel function of the second kind of order 0.

Proof. This follows from the fact that the Mellin transform of the square of the
function Γ is the function K0(2

√
x). See for instance [12, p. 50] for the latter. �

We note that H is contractively included in the Fock space since the reproducing
kernel of the latter is

(9.4) KF (z, w) =
∞∑

n=0

znw∗n

n!
,

and

(9.5) KF (z, w)−KH(z, w) =

∞∑

n=0

(zw∗)n
(

1

n!
− 1

(n!)2

)

is positive definite in C. See for instance [6, Theorem I, p. 354], [25] for differences
of positive definite functions.

In view of Liouville’s theorem, the only multipliers on H in the sense of the usual
pointwise product are constants. The class of multipliers in the sense of the ♦

product is more interesting.

Theorem 9.3. A function s ∈ O is a contractive ♦-multiplier on H if and only if
it is of the form

s = Ts0, s0 ∈ S ,

where S denotes the Schur class of functions analytic and contractive in the open
unit disk.

Proof. Assume first that s ∈ O is a contractive ♦-multiplier on H. Then s =
s♦1 ∈ H and hence s = Ts0 for some s0 ∈ H2. Furthermore, let f ∈ H2. Since
s♦(Tf) = T (s0f) ∈ H, s0f ∈ H2. Since

‖f‖H2
= ‖Tf‖H ≥ ‖s♦(Tf)‖H = ‖T (s0f)‖H = ‖s0f‖H2

,

s0 ∈ S .
Conversely, if s = Ts0 where s0 ∈ S , and f ∈ H2 then s♦(Tf) = T (s0f) ∈ H and

‖s♦(Tf)‖H = ‖T (s0f)‖H = ‖s0f‖H2
≤ ‖f‖H2

= ‖Tf‖H.

Thus s is a contractive ♦-multiplier on H. �
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Let s0 ∈ S . The operator Ms0 of pointwise multiplication is a contraction from
H2 into itself. The operator range

√
I −Ms0M

∗
s0 endowed with the range norm is

called the associated de Branges-Rovnyak space. We denote it by H(s0). Similarly
one can associate with s ∈ TS a reproducing kernel

Ks(z, w) = ((I −MsM
∗
s )KH(·, w)) (z),

where Ms denotes the operator of ♦-multiplication by s on H. The corresponding
reproducing kernel Hilbert space is ran(

√
I −MsM∗

s ) with the range norm; it will
be denoted by H(s).

Theorem 9.4. The mapping f 7→ Tf is unitary from de Branges - Rovnyak space
H(s0) onto H(s).

Proof. Since

MsT = TMs0,
√
I −MsM∗

s T = T
√
I −Ms0M

∗
s0 .

�

The H(s) spaces can be characterized in terms of ∂-invariance, where ∂ is the
differentiation operator:

∂f = f ′.

Lemma 9.5. The operator ∂ is bounded on H; moreover,

(9.6) ∂T = TR0,

where R0 is the backward shift operator, and

∂∗∂ = IH − C∗C, ∂∂∗ = IH,

where Cf := f(0). Furthermore, the reproducing kernel of H is given by

KH(z, w) = Cez∂ew
∗∂∗

C∗.

Proof. The claims follow from the definition of the operator T in (9.2). We prove
only (9.6). Let f ∈ H2 with power series expansion

(9.7) f(z) =
∞∑

n=0

anz
n.

Then,

(9.8) (R0f)(z) =

∞∑

n=1

anz
n−1,

and therefore

(TR0f)(z) =

∞∑

n=1

an
(n− 1)!

zn−1

=
d

dz

(
∞∑

n=0

an
n!

zn

)

= (∂Tf)(z).

(9.9)

�



24 D. ALPAY, P. JORGENSEN, R. SEAGER, AND D. VOLOK

Theorem 9.6. A closed subspace H of H is ∂-invariant if and only if

H = H⊖MTs0H,

where s0(z) is an inner function.

Proof. Let H be a closed subspace of H then H = TH0 where H0 is a closed sub-
space of H2. H is ∂-invariant if and only if H0 is R0-invariant, which is equivalent
to H2 ⊖H0 being invariant under multiplication by z. By the Beurling-Lax theo-
rem, the last condition holds if and only if H2⊖H0 = Ms0H2, where s0 is an inner
function. �

Theorem 9.7. Let s ∈ TS . Then s admits the representation

s(z) = D +

∫ z

0

Cet∂Bdt,

where (
∂ B
C D

)
:

(
H(s)
C

)
−→

(
H(s)
C

)

is a coisometry given by

∂f = f ′,

B1 = s′,

Cf = f(0),

D1 = s(0).

Proof. Write s = Ts0, where s0 ∈ S . Then

s0(z) = D0 + zC0(I − zR0)
−1B0,

where (
R0 B0

C0 D0

)
:

(
H(s0)
C

)
−→

(
H(s0)
C

)

is a coisometry given by

R0f = (f − f(0))/z,

B01 = R0s0,

C0f = f(0),

D01 = s0(0) = s(0).

Hence

s(z) = D0 +

∞∑

n=0

zn+1

(n+ 1)!
C0R

n
0B0

= D0 +

∞∑

n=0

zn+1

(n+ 1)!
C0T

−1(TR0T
−1)nTB0

= D +

∞∑

n=0

zn+1

(n+ 1)!
C∂nB

= D +

∫ z

0

Cet∂Bdt.

�
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Theorem 9.8. Let H be a Hilbert space and let
(
A B
C D

)
:

(
H
C

)
−→

(
H
C

)

be a coisometry. Then the function

s(z) = D +

∫ z

0

CetABdt

is a contractive ♦-multiplier on H, and the corresponding reproducing kernel is
given by

Ks(z, w) = CezAew
∗A∗

C∗.

Proof. Set

s0(z) = D + zC(I − zA)−1B,

then s0 ∈ S and s = Ts0. Since

Ks0(z, w) = C(I − zA)−1(I − wA)−∗C∗,

the formula for Ks(z, w) follows. �

Theorem 9.9. A reproducing kernel Hilbert space H of functions in O is of the
form H = H(s) for some s ∈ TS if and only if

(1) H is ∂-invariant;
(2) for every f ∈ H

‖∂f‖2H ≤ ‖f‖2H − |f(0)|2.
Proof. One direction follows immediately from Theorem 9.4. The proof of the other
direction is modelled after the proof of [2, Theorem 3.1.2, p. 85] and is done as
follows: let H be ∂-invariant; then for every f ∈ H

Cez∂f = f(z),

where Cf = f(0). Hence the reproducing kernel of H is given by

L(z, w) = Cez∂ew
∗∂∗

C∗.

Since

∂∗∂ + C∗C ≤ I,

there exists a coisometry

(
∂ B
C D

)
:

(
H
C

)
−→

(
H
C

)
.

But the the function

s(z) = D +

∫ z

0

Cet∂Bdt

is a contractive ♦-multiplier and the associated kernel Ks(z, w) coincides with
L(z, w). Hence H = H(s). �

It is also of interest to consider ♦-rational matrix valued functions.

Theorem 9.10. Tne following are equivalent:

(1) A function f ∈ TO is ♦-rational in the sense that for some polynomial
p(z), not vanishing at the origin, p♦f is also a polynomial.
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(2) f(z) is of the form

f(z) = D +

∫ z

0

CetABdt

with A,B,C,D - matrices of suitable dimensions;
(3) the columns of ∂f belong to a finite-dimensional ∂-invariant space.

Proof. It suffices to observe that a function f ∈ TO is ♦- rational if and only if it
is of the form f = Tf0 wheref0 ∈ O is rational in the usual sense. �

10. A reproducing kernel Hilbert space of expandable discrete
analytic function

In parallel with the previous section, we introduce the product ⊡ of expandable
discrete analytic functions by

(10.1) ζn ⊡ ζm =
m!n!ζm+n

(m+ n)!
.

The advantage of this product versus the C-K one is that the space of expandable
discrete analytic functions forms a ring.

Consider the linear mapping V : zn 7→ ζn. Then V T maps, in particular, the space
of functions analytic in a neighborhood of the closed disk {z : |z| ≤ 1/

√
2} onto the

space of expandable functions. Then VH with the range norm is the reproducing
kernel Hilbert space HDA with the reproducing kernel (8.1)

K((x1, y1), (x2, y2)) =

∞∑

n=0

ζn(x1, y1)ζn(x2, y2)
∗

(n!)2
.

Note that

V ∂ = δxV, V (ezA) = ex,y(A).

Since V : H −→ HDA is unitary, the following theorems are direct consequences of
Theorems 9.3-9.10 in the previous section. We state them here in order to emphasize
the new product.

Theorem 10.1. A closed subspace H of HDA is δx-invariant if and only if

H = HDA ⊖MV Ts0HDA,

where s0(z) is an inner function.

Theorem 10.2. Let s ∈ V TS . Then s admits the representation

s(x, y) = D + Cex,y(δx)⊡ (ζ1(x, y)B),

where (
δx B
C D

)
:

(
H(s)
C

)
−→

(
H(s)
C

)

is a coisometry given by

B1 = δxs,

Cf = f(0),

D1 = s(0).
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Theorem 10.3. Let H be a Hilbert space and let
(
A B
C D

)
:

(
H
C

)
−→

(
H
C

)

be a coisometry. Then the function

s(z) = D + Cex,y(A) ⊡ (ζ1(x, y)B),

is a contractive ⊡-multiplier on HDA, and the corresponding reproducing kernel is
given by

Ks((x1, y1), (x2, y2)) = Cex1,y1
(A)(ex2,y2

(A))∗C∗.

Theorem 10.4. A reproducing kernel Hilbert space H of expandable functions is
of the form H = H(s) for some s ∈ V TS if and only if

(1) H is δx-invariant;
(2) for every f ∈ H

‖δxf‖2H ≤ ‖f‖2H − |f(0, 0)|2.
Theorem 10.5. The following are equivalent:

(1) An expandable function f is ⊡-rational in the sense that for some discrete
analytic polynomial p(x, y), not vanishing at the origin, p ⊡ f is also a
discrete analytic polynomial.

(2) f(x, y) is of the form

f(x, y) = D + Cex,y(A)⊡ (ζ1(x, y)B),

with A,B,C,D - matrices of suitable dimensions, and ‖A‖ <
√
2, and

ex,y(A) is as in (5.2).
(3) the columns of δxf belong to a finite-dimensional δx-invariant space of ex-

pandable functions.

Theorem 10.6. Let s ∈ TS . Then s admits the representation

s(x, y) = D + Cex,y(δx)⊡ (ζ1(x, y)B),

where (
δx B
C D

)
:

(
H(s)
C

)
−→

(
H(s)
C

)

is a coisometry given by

B1 = s′,

Cf = f(0),

D1 = s(0).

Theorem 10.7. The following are equivalent:

(1) An expandable function f is ⊡-rational in the sense that for some discrete
analytic polynomial p(x, y), not vanishing at the origin, p ⊡ f is also a
discrete analytic polynomial.

(2) f(x, y) is of the form

f(x, y) = D + Cex,y(A)⊡ (ζ1(x, y)B),

with A,B,C,D - matrices of suitable dimensions, and ‖A‖ <
√
2, and

ex,y(A) is as in (5.2).
(3) the columns of δxf belong to a finite-dimensional δx-invariant space.
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