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In this study, we present results from experiments on the retention of single oil
droplets rising through a two-layer density stratification, with the goal of quantifying and
parametrizing the impact of stratification on timescales that describe the delay in rising.
These experiments confirm the significant slowdown observed in past literature of settling
and rising particles and droplets in stratification, and these are the first experiments to study
single liquid droplets as opposed to solid particles or bubbles. By tracking the motion
of the droplets as they rise through a stratified fluid, we identify two new timescales
which quantitatively describe this slowdown: an entrainment timescale and a retention
timescale. These timescales measure dynamics that were not captured in previous timescale
discussions, which primarily focused on the timescale to the velocity minimum (Umin). The
entrainment timescale is a measure of the time that a droplet spends below its upper-layer
terminal velocity and relates to the duration over which the droplet’s rise is affected by
entrained dense fluid. The retention time is a measure of the time that the droplet is delayed
from reaching an upper threshold far from the density transition. These two timescales are
interconnected by the magnitude of the slowdown (Uu − Umin) relative to the upper-layer
terminal velocity (Uu), as well as a constant that reflects the approximately universal form
of the recovery of a droplet’s velocity from Umin to Uu. Both timescales are found to depend
on the Froude and Reynolds numbers of the system, Fr = Uu/(Nd ) and Re = ρuUud/ν. We
find that both timescales are only significantly large for Fr � 1, indicating that trapping
dynamics in a relatively sharp stratification arise from a balance between drop inertia and
buoyancy. Finally, we present a theoretical formulation for the force enhancement �, the
ratio between the maximum stratification-induced force and the corresponding drag force
on the droplet, based on a simple force balance at the point of the velocity minimum.
Using our experimental data, we find that our formulation compares well with recent
theoretical and computational work by Zhang et al. [J. Fluid Mech. 875, 622 (2019)] on
the force enhancement on a solid sphere settling in a stratified fluid, and provides the first
experimental data supporting their approach.
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FIG. 1. (a) Schematic of a single droplet rising through the transition between two homogeneous-density
layers. The droplet entrains denser fluid, decreasing its effective buoyancy as it enters the low density fluid.
(b) Shadowgraph image of actual experiment showing the column of entrained fluid being dragged upward by
the droplet, as well as distortion of isopycnals.

I. INTRODUCTION

There are many examples of droplets, bubbles, and particles interacting with stratified fluids,
including atmospheric and marine pollution [1], oil spills [2–6], oil seeps [7,8], marine snow [9–11],
and transport and motion of microplastics and marine organisms [12–15]. As a result, understanding
when and how stratification affects rising and settling is of significant interest within a variety of
fields, particularly in the environment. Further, many industrial processes, although often involving
immiscible fluids, rely on the effects of a two-layer stratification to control the motion of drops and
particles [e.g., Refs. 16,17], as reviewed by Magnaudet and Mercier [18].

There has been extensive prior work examining particles, drops, and bubbles rising and settling
in homogeneous-density fluids, from the vortex shedding and wake dynamics of a sphere [19,20]
to basic statistics such as terminal rise velocity of droplets [21–23]. However, density stratification
adds an additional level of complexity, in the form of additional forces acting on a particle or droplet.
When a droplet or particle moves through a fluid, it experiences a variety of forces, including
buoyancy, drag, added mass, and history forces. When a droplet rises vertically through a stable
stratification, it entrains denser fluid with it, altering the effective buoyancy of the droplet and
reducing its upward speed (Fig. 1) [24]. Furthermore, recent numerical work has suggested the
presence of an additional aspect of the stratification-induced force, due to the specific structure of
vorticity generated within a stratified fluid [25,26]. This study seeks to quantify and explore the
impact of these stratification-induced phenomena on the timescales of delay of a droplet rising to
the surface. What is the net effect of stratification on the rising and settling of droplets and particles
in a stratified fluid? What are the timescales associated with the induced delay, and how can we
parametrize them? And finally, how does a droplet’s motion connect to the physics of the problem?

Many prior experimental and numerical studies have been conducted investigating both solid and
porous particles settling in stratified fluids, and will be described in detail below. However, to our
knowledge, all work on the rising of droplets in stratified fluids has been computational in nature.
The current study will thus focus on experimental work, to provide an expansion and validation of
previous numerical studies.

The numerical simulations of Bayareh et al. [27] showed that the drag coefficient of a settling
spherical drop was enhanced in linearly stratified fluids with drop Froude numbers in the range
4 � Fr � 16 (where Fr is the ratio of the buoyancy timescale to the inertial timescale). A sharp
two-layer stratification was also studied briefly in their Appendix, for both a rigid particle and a drop,
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and good agreement was found with prior experimental and numerical results. Shaik and Ardekani
found that at low Reynolds number, stratification and inertial forces both can increase the drag on
a drop, and that this enhancement depends on the dynamic viscosity ratio between the drop and the
surrounding fluid [28]. Other numerical work has studied two-droplet [29] and swarm-scale [30]
interactions among droplets in linear stratification. These works did not involve a sharp transition
between two homogeneous-density fluids, so trapping dynamics were not studied. In a two-layer
stratification, the simulations of Blanchette and Shapiro [31] found that the dynamics of oil droplets
in stratified fluids may have additional complexities, namely Marangoni forces. These authors found
that in a sharp transition in stratification, a drop may either suddenly accelerate through the transition
region or be prevented from crossing into the next layer, depending on the relative interfacial tension
between the drop and the two layers.

While experimental work on drops is limited, there is significant prior experimental work that
has looked at the small-scale dynamics of rigid spheres settling in stratified fluids. The experiments
of Srdic-Mitrovic et al. [24] studied the gravitational settling of solid particles through a sharp
two-layer stratification and found that stratification drag—that is, an increase in the drag coefficient
and an associated deceleration occurring with entry into a stratified layer—was significant in only a
narrow range of Reynolds numbers, 1.5 < Re < 15. Otherwise, experiments at Reynolds numbers
outside of this range showed no significant change in drag as particles passed through the interface,
instead behaving similarly to a particle in a homogeneous fluid. Verso et al. [32] obtained similar
experimental results, and further observed that the minimum velocity occurred during a particle’s
exit from the density transition. Abaid et al. [33] also observed a velocity minimum for a sphere
passing through a sharp transition between two homogeneous-density fluids, and in some cases
reversal of the sphere’s motion. Other experiments [34–36] have studied the wake of spheres moving
at a constant vertical velocity in stratification, and have found that varying trailing jet structures
emerge and contribute to fluid entrainment and mixing. However, these studies were conducted
in linear stratification, so the effects of a sharp density transition are unknown in these regimes,
and the fluid structures that emerge in a continuous stratification may be suppressed in a two-layer
stratification. Studies on rigid spheres in two-layer or linear stratification [37–39] have also been
conducted at very low Reynolds number. Oceanic applications, such as rising bubbles or oil droplets
from spills in the ocean may have Reynolds numbers ranging from intermediate to high, depending
on estimates of drop diameter and drop velocity [40,41], indicating the necessity of studies to be
performed beyond the low Reynolds number regime and over a range of density transitions.

Experimental and theoretical studies of settling porous spheres have also predicted increased
drag or prolonged retention times at sharp density transitions [11,42–44], due to either diffusion of
lighter fluid into the settling porous particle, or to entrainment of lighter fluid from above. However,
most of these studies were limited to the Stokes regime (Re � 1), and the observed retention was
primarily driven by diffusive processes.

Finally, recent theoretical and computational work by Doostmohammadi et al. [25] and Zhang
et al. [26] addressed the “stratification drag” force that is commonly used as a catch-all for the
contribution of stratification to changes in an object’s motion, including increased residence time
or significant slowdown [24,32]. Doostmohammadi et al. identified an additional mechanism, the
generation of vorticity by baroclinic torque (nonalignment of density and pressure gradients), which
leads to increased shear at a particle’s surface. Zhang et al. built upon this work by methodically
decomposing contributions of stratification to enhanced force into two components: (1) modified
buoyancy forces, due to the relative buoyancy of entrained fluid dragged behind a sphere, and (2)
modification of the local vorticity field due to baroclinic torque, inducing an increased shear stress
at the surface of the sphere, which we will refer to here as the baroclinic vorticity force. They
presented a rigorous scaling of these two forces in different Prandtl, Reynolds, and Froude number
regimes. While previous literature has focused heavily on the contributions of this first force due to
the buoyancy effects of entrained fluid, the baroclinic vorticity contribution to stratification forces
had not previously been identified, and experimental measurements corroborating this approach are
lacking.
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TABLE I. Definition and range of parameters covered in laboratory experiments. Variables with the
subscript f represent that quantity in either the upper layer (e.g., ρu and Uu) or lower layer (e.g., ρl and Ul ).

Parameter Symbol Definition Range of values

Drop density ρd – 0.9375−0.9927 g cm−3

Ambient fluid density ρ f – 0.9972−1.117 g cm−3

Terminal drop speed Uf – 0.33−13.3 cm s−1

Drop diameter d – 0.15–0.78 cm
Transition thickness h – 3.0–9.0 cm
Buoyancy frequency N

√−(g/ρu)(∂ρ/∂z) 3.6−7.5 s−1

Dynamic viscosity of water μu – 0.01 g cm−1 s−1

Dynamic viscosity of oil μd – 0.093−0.10 g cm−1 s−1

Drop Reynolds number Red ρdUud/μu 5.4–540
Reynolds number Re f ρ f Uf d/μu 5.4–1060
Archimedes number Ar f g(ρ f − ρd )ρ f d3/μ2

u 140–700,000
Froude number Fr Uu/(Nd ) 0.38–4.2
Prandtl number Pr ν/κ ∼600
Relative density �ρu (ρu − ρd )/ρu 0.0045–0.061
Relative layer thickness – h/d 4.5–52

The present work aims to quantify and explain the retention of single oil droplets at the transition
between two homogeneous-density fluids by a methodical study of two new timescales describing a
droplet’s delay, as well as the forces contributing to those delays. Using laboratory experiments, we
examine motion and retention for a range of drop sizes, drop densities, and ambient stratification
profiles. In Sec. II, we discuss the nondimensional parameters relevant to this problem. In Sec. III,
we will describe the experimental setup and measurements taken. We will discuss our results in
Sec. IV, beginning with analysis of the drop’s position and velocity, the timescale associated with
the drop’s initial deceleration, and then introduce two timescales relating to fluid entrainment and
droplet retention. We find that these entrainment and retention timescales are related, and that they
are dependent upon the Froude and Reynolds numbers of the system, but largely uncorrelated with
the timescale associated with deceleration. Further, significant fluid entrainment or drop retention
only occurs for Fr � 1. In Sec. V, we develop a theoretical formulation for the force enhancement,
�, induced by stratification. The scaling of � compares very favorably to the work of Zhang et al.
[26] and provides the first experimental evidence supporting their approach of decomposing the
stratification forces into modified buoyancy and baroclinic torque-induced shear. Finally, we will
close with a discussion of the implications of this work and future directions in Sec. VI.

II. NONDIMENSIONAL PARAMETERS

Given the importance of density stratification in both environmental and industrial processes, we
covered a range of the parameter space relevant to this problem, particularly in the intermediate
Reynolds number regime. Table I lists the parameter definitions and ranges covered in this study,
which spanned 179 different droplet experiments. Nondimensional parameters with the subscript
f , such as Re f , encompass two separate nondimensional numbers for a single drop’s behavior in
the upper and lower layers of ambient fluid, Reu and Rel . The subscript f in the given definition
is thus replaced by the corresponding upper (u) or lower (l) layer quantity. The subscript d
represents the corresponding nondimensional number or parameter for the drop fluid properties.
In these definitions, ρ f represents fluid density, Uf represents the terminal drop velocity in a given
homogeneous-density region, d is the drop diameter, μ is the dynamic viscosity of the fluid, ν is the
kinematic viscosity of the fluid, and h is the thickness of the transition region, computed as the height
encompassing 95% of the density variation between the upper and lower layers. The buoyancy
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FIG. 2. Schematic of experimental setup for (a) tracking drop motion and measuring density profiles and
(b) combined shadowgraph-tracking experiments.

frequency, N , is defined as N = √−g/ρu(∂ρ/∂z), where ∂ρ/∂z is computed as the least-squares
slope of a 0.6 cm-wide region in the transition region of the density profile at rest, centered at z = 0.

Following the definitions given in Table I, the Reynolds number (Re f or Red ) represents the
ratio of inertial to viscous forces. The Archimedes number (Ar f ) is the ratio of buoyant forces to
viscous forces. The Froude number (Fr) can be thought of in several ways: (1) as the ratio of flow
inertia to external gravitational forces; (2) as the ratio of the buoyancy timescale (1/N) to the drop
motion timescale (d/Uu); or (3) as a ratio of the speeds at which various information about the
flow is propagating, i.e., the ratio of droplet speed to an internal wave speed. In experiments, these
parameters were varied by changing the drop diameter, the drop density, and the transition region
thickness (which in turn changes N). In particular, by varying the transition region thickness, we
are able to vary the Froude number independently of the Reynolds number. The Prandtl number, the
ratio of momentum diffusivity (i.e., kinematic viscosity ν) to salt diffusivity (κ), remained fixed at
approximately 600 for all experiments.

III. EXPERIMENTAL APPROACH

A. Experimental setup

Experiments were conducted in a 61 cm tall acrylic tank with a width and depth of 30.5 cm
by 30.5 cm. A schematic of this tank is shown in Fig. 2(a). Sodium chloride (Morton Canning &
Pickling Salt) was used as the stratifying medium. Fluids for the two layers were prepared in two
35-gallon tanks with recirculating pumps, which were filled with reverse osmosis water. Salt was
added to one tank and dissolved. Both tanks were left to circulate at room temperature to eliminate
convection in the filled experimental tank.

The experimental tank was filled using two methods: (1) a two-layer filling method that yielded
error function-type density profiles, and (2) a computer-controlled method, yielding linear density
profiles in the transition region. For the first method, the tank was filled first with salt water (ρl =
1.106 to 1.117 g/cm3) and then with fresh water (ρu = 0.9972 to 0.9981 g/cm3), with a sponge
float acting as a diffuser to reduce mixing between the two layers. To obtain a thin transition region
(3–4 cm), the tank was allowed to sit and diffuse for 2–3 h, until the optical distortion caused by the
difference in refractive indices between the two layers had reduced. To obtain a thicker transition
region (7–8 cm), the tank was allowed to diffuse another 18 h. This two-layer filling method yielded
error-function shaped density profiles, as seen in Figs. 3(a) and 3(b). The second filling method
allowed more precise control of layer thickness. For this method, two computer-controlled peristaltic
pumps (New Era Pump Systems NE-9000) feeding from a fresh water bucket and a salt water bucket
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FIG. 3. Representative density profiles from experimental realizations for thinner and thicker stratified
layers. The gray shading represents the transition region encompassing 95% of the density variation between
the upper and lower layers, denoted by the distance h. (a) The stratified layer was generated by filling the two
layers directly with a sponge diffuser and then left to diffuse for 3–4 hrs. (b) The layer was generated as for
(a), then allowed to diffuse for 18 hrs. (c), (d) The layer thickness was precisely controlled using pumps.

were linearly ramped up and down to generate a linear stratification between the upper and lower
layers. These could be programed to yield a range of transition layer thicknesses. Examples of such
density profiles are shown in Figs. 3(c) and 3(d). The gray region in these density profiles represents
the layer thickness h, where 95% of the density variation between the upper and lower layers occurs.

Oil droplets were composed of a mixture of 10 cSt silicone oil (Clearco Products Co.) and
halocarbon oil (Sigma Life Science Halocarbon oil 27) to study a range of drop densities ρd , from
0.9375 to 0.9927 g/cm3. Oil fluorescent tracer (Risk Reaction DFSB-K175 UV Orange) was also
added for contrast. Drops were released individually by dispensing a small amount of oil using a
syringe pump or handheld syringe, which fed into a 19 gauge needle inserted through a flange in the
base of the tank. A waiting time of at least 15 min between drop releases was chosen to ensure the
tank was quiescent for each experiment.

B. Experimental measurements

Physical characteristics of the ambient fluid and oil droplets were measured prior to experiments.
An Anton Paar Lovis 2000 ME microviscometer and DMA 4100 M densitometer were used
to measure the viscosities and densities of the fresh water, salt water, and droplet fluid. The
densitometer also provided direct measurements of the fluid’s temperature.

During experiments, images of the injected drops were captured at 120 to 125 fps using a high-
speed camera (Photron FASTCAM SA3 at 1 MP, Point Grey Grasshopper3 at 5 MP) aligned with
the plane of drop motion. A panel of light emitting diodes (LEDs) was placed behind the tank, along
with a diffusive screen of vellum paper between the tank and lights, to increase the contrast between
drops and the background. Before each drop was released, an image was taken of the field of view,
including a calibration ruler placed in line with the needle and plane of droplet motion. Because
of the tank’s density stratification, the refractive index encountered by a light ray changes as light
passes through the tank. The images captured by the camera thus have refractive distortion. This
distortion was corrected by calibrating the drop position relative to the refracted ruler image, as
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FIG. 4. (a) Example ruler image used for remapping images to remove refractive distortion. (b) Plot of
centimeter reading on ruler versus pixel location.

shown in Fig. 4. In some cases, the drops exhibited slight out-of-plane motion, which we estimate
to contribute 1% or less error in measured vertical position, based on a camera distance of ∼1 m
and out-of-plane motion on the order of 1 cm.

Following distortion correction and subtraction of a mean background image, drop position over
time was then tracked using the Trackpy software package [45], which uses center-of-mass detection
to determine droplet position. Example tracked paths and velocities for five drops are shown in
Figs. 5–7. Instantaneous velocities were obtained following the methods of Srdic-Mitrovic et al.
[24], in which a least-squares line was fit to a window of seven points of vertical position (∼0.06 s
of data) and the best-fit slope was assigned as the velocity of the center point in the window. Upper
and lower layer terminal velocities, Uu and Ul , were computed as the least-squares slope of the drop
trajectory in regions with constant speed in the upper and lower layers, respectively.

Drop diameters were measured manually from an image in the lower layer, and calibrated from
pixels to centimeters. For 145 cases, manually measured and calibrated diameters were verified
against images of drops taken using a telecentric lens; telecentric images yielded diameters that var-
ied on average by 0.16 mm from the other method (an average relative difference of less than 5%),
giving an estimate of the error in manual measurement and calibration.

In addition to correcting for refractive distortion, the quantified distortion of the calibration ruler
was also used to determine density profiles using synthetic Schlieren [46,47]. Optical focusing and
spreading of ticks on the ruler within the transition region were compared with the even spacing
in the upper and lower layers, and the apparent displacement �z of these ticks was then converted
to a density gradient following assumptions of linearity, two-dimensionality, and small incident ray
angles, as described in the above references. The full density profile (such as those shown in Fig. 3)
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FIG. 7. Vertical positions (a)–(d) and instantaneous velocities (e)–(h) versus time, and instantaneous
velocities versus vertical position (f)–(l) for four experiments. The shaded area in each represents the transition
region. (a), (e), (i) Tracking data from Shadowgraph A: a relatively small, dense reference droplet passing
through a 4.6 cm transition region; (b), (f), (j) a less dense droplet; (c), (g), (k) a larger droplet; (d), (h), (l) a
small, dense droplet passing through a thicker transition region.

was obtained by integrating the gradient from the known upper layer density using the following
equation:

ρ(z) = ρu + 2ρu

g

1

βL2
ruler

∫ z

zu

�z dz′, (1)

where �z is the measured apparent displacement field (the difference between the curve shown
in Fig. 4(b) and vertical height), and β � 1.88 s2 cm−1 following Ref. [46]. Because precise
measurement of the exact distance between the ruler and the tank side wall, Lruler, was difficult,
and precision was difficult to maintain from experiment to experiment over 179 diffferent runs, this
length was adjusted manually by ±0.8 cm to yield a profile whose constant upper and lower layer
densities matched those measured with the hand-held densitometer.

Finally, for five of the above experimental cases, shadowgraph experiments were performed
to visualize the wakes of droplets. A schematic of this setup is shown in Fig. 2(b). Polyester
drafting film (West Design Polydraw) was placed on one side of the tank, and a camera was placed
facing the drafting paper so that drops and their wakes could be visualized via the focusing and
defocusing of incoming light rays. A collimated light source (Thorlabs M450LP1 450 nm LED, in
conjunction with an Edmund Optics 200 mm diameter, 800 mm focal length PCX condenser lens)
was placed on the opposite side of the tank. The LED light source and collimating optics were
set to angle downwards at about 30 degrees from the horizontal to avoid total internal reflection
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within the transition region, which would have occluded ∼1 cm of the droplet’s path and also
caused oversaturation in images. The images presented here thus show the projected fluid structures
viewed at this angle, rather than a perfectly perpendicular view of the x-y plane. A tracking camera
was placed perpendicularly to the shadowgraph camera, opposite the LED backlighting panel,
which was set to emit green light. Each camera was equipped with a bandpass filter (Thorlabs
FELH0550 long-pass filter with a cut-on wavelength of 550 nm, and Thorlabs FES0500 short-pass
filter with a cut-off wavelength of 500 nm) so that illumination from the backlighting panel and the
450 nm LED could be separated. Both tracking and shadowgraph images were synchronized using
a function generator (Siglent SDG1025) that triggered the two cameras externally. Before a set of
shadowgraph experiments, a calibration image was taken for each camera with a clear acrylic ruler
in the field of view; the ruler was then moved to the edge of the tank and the tank allowed to settle
for approximately 30 min before releasing droplets. Shadowgraph images were post-processed by
correcting for optical distortion and then subtracting a background image.

IV. RESULTS

We begin by discussing basic properties of the droplet motion. We will first demonstrate how
droplet position and velocity vary with experimental conditions. We then present parametrizations
of the terminal velocity of the droplets in the upper and lower layers, which will be useful for
computing stratification-related force enhancement in Sec. V. In the next subsection, we analyze
the timescales over which deceleration, fluid entrainment, and significant droplet retention occur,
discuss their dependence on the nondimensional parameters of the system, and delineate when drops
are significantly retained at the transition region. We then briefly connect these timescales to flow
visualizations of the droplet’s wake.

A. Drop paths and velocities

Shown in Figs. 5 and 6 are a sequence of shadowgraph images for (A) a larger (d = 0.40 cm) and
(B) a smaller (d = 0.28 cm) droplet, both composed of the densest oil mixture (ρd = 0.9927 g/cm3)
and rising through a 4.6 cm transition region. Relative shading indicates variation in the second
derivative of density [48]. As the drops exit the transition region, an internal wave field is generated.
Also shown in each figure are the corresponding vertical drop position, z, and velocity, u, as a
function of time, t , for each set of shadowgraph images. The droplets slow as they pass through
the transition region (snapshots (a)–(c) in both sets of shadowgraph images), and reach a velocity
minimum [snapshots (e)–(f)] just above the transition region. The drop then eventually regains speed
[snapshots (g)–(i)], asymptoting to its upper-layer terminal velocity Uu, indicated as the dashed gray
line in the velocity plots, by about snapshot (j). A complex wake structure can also be observed in
the shadowgraphs, which will be discussed in detail in Sec. IV D.

To demonstrate how varying different experimental parameters affects drop motion, Fig. 7 shows
sample drop paths and velocities over time and drop velocity as a function of vertical position for
four example experimental droplet cases. The first case, shown in Figs. 7(a), 7(e), and 7(i), is the
droplet shown in Fig. 5. We use this small, dense droplet passing through a 4.6 cm transition region
as a reference case for comparison with: (b), (f), (j) a similarly sized, lighter droplet in similar
ambient stratification; (c), (g), (k) a larger, dense droplet in similar stratification; and (d), (h), (l)
a small, dense droplet passing through a thicker transition region of 7.1 cm. It can be seen that
lighter droplets have significantly higher terminal velocities in the upper layer, and that small, dense
droplets take significantly longer to traverse the field of view of the camera. The denser drops (e),
(g), (h) and (i), (k), (l) also remain at a speed lower than their upper layer terminal velocity Uu for an
extended period of time, indicating that entrained ambient fluid plays a role in delaying the drop’s
upward motion. Analysis of these delays will be presented in Sec. IV C.
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FIG. 8. Reynolds number versus Archimedes number for terminal drop behavior in the upper and lower
layers, shown on (a) logarithmic and (b) linear scale. Experimental data from this study are shown as black
circles and blue squares. Also plotted are the Reynolds-Archimedes values reconstructed by Verso et al.
[32, Tables 4–8] for their solid particles and the particles of Srdic-Mitrovic et al. [24]. Empirical equations
from Ref. [49] are shown for the terminal velocity of solid spheres as the gray dot-dashed line, and for the
terminal velocity of liquid drops in air as the gray dotted line.

B. Terminal velocity

Droplets reach a constant, terminal velocity in both the upper and lower layers, and a parametriza-
tion of this terminal behavior will be useful when considering the force balance in stratification in
Sec. V. This terminal velocity is governed by buoyancy, viscosity, and inertia. The drop’s Reynolds
number in the upper and lower layer is plotted versus its Archimedes number in each layer in
Figs. 8(a) and 8(b). As noted in Table I, the definitions of these two nondimensional numbers is as
follows:

Ar f = g
(ρ f − ρd )ρ f d3

μ2
u

, (2)

Re f = ρ f Uf d

μu
, (3)

where the Archimedes number is the ratio of buoyant to viscous forces and the Reynolds number is
the ratio of inertial to viscous forces. As before, the subscript f represents either the upper (u) or
lower (l) layer property, and Uf represents the terminal drop speed in that corresponding layer. Each
drop thus yields two data points of Ar f and Re f . Measurements of Arl and Rel are represented as
black circles, while values of Aru and Reu are shown as blue squares.

In Fig. 8, as well as in later figures, we assessed deviation between data and empirical fits using
coefficient of determination (R2) and the mean absolute percent error (MAPE). A definition of
this error metric, as well as statistics on all fits presented in this paper, are given in Appendix A.
A power-law fit was found that describes the relationship between the Archimedes and Reynolds
numbers from experimental measurements:

Re f = αArβf , (4)

where α = 0.61 and β = 0.57, with R2 = 0.99. The value of this power-law coefficient β relates
to the scaling of the drag force with Reynolds number. As we will see in Sec. V, the drag force

124803-12



RETENTION OF RISING DROPLETS IN DENSITY …

FIG. 9. Definition of time, tmin, for a droplet to decelerate to its minimum velocity, Umin, following Ref. [24].

scales with U 1/β . From Stokes’ law, for Re � 1, the drag force is proportional to U 1, so β = 1 [the
leftmost sloped line on Fig. 8(a)]. For fully turbulent flow, the drag force follows the quadratic drag
law, and is proportional to U 2. Thus, for high Re, β = 1/2, shown as the rightmost sloped line on
Fig. 8(a). Our data fall in the intermediate Reynolds number regime, so a scaling result of β = 0.57,
in between 0.5 and 1, is expected.

In Fig. 8, we have also plotted the Reynolds and Archimedes number data for solid particles
(of different densities and diameters, classified by P1–P4) presented in Verso et al. [32] and Srdic-
Mitrovic et al. [24], all of which are summarized in Tables 4–8 of Ref. [32]. These data agree well
with our interpretation that particles or droplets at lower Reynolds number have a value of β closer
to 1, shown as the slope in the leftmost portion of Fig. 8(a) which lies primarily near those data
points.

This power-law fit compares reasonably well with the relationship for solid spheres in the range
435 < Ar � 1.16 × 107 and 12.2 < Re � 6.35 × 103 ([49], Table 5.3):

log10 Re = −1.81391 + 1.34671W − 0.12427W 2 + 0.006344W 3, (5)

where W = log10((4/3)Ar), shown as the dot-dashed line in Figs. 8(a) and 8(b). A similar equation
for liquid drops in air from [50] and [49] (Eq. 7-1) is also plotted, which in the regime studied here
behaves almost identically to that for solid spheres.

In summary, for drops in the parameter space studied here, if the viscosity and density of the
ambient fluid, as well as density and diameter of the drop are known, then the drop’s terminal speed
can be predicted with reasonable accuracy using the relation given in Eq. (4). This relationship,
whose exponent β is determined by the drop’s Reynolds number and describes the drag force scaling
with velocity, will be used later in Sec. V for our theoretical formulation of force enhancement in
stratification.

C. Timescales characterizing droplet slowdown and delay

As shown in Figs. 5–7, some droplets experienced a significant slowdown as they passed through
the transition region. First, we will look at a timescale that reflects the deceleration of the droplet as
it enters the transition region. In their studies of solid particles, Srdic-Mitrovic et al. [24] defined a
timescale tmin as the time between a particle’s entrance into the stratified layer, and when it achieves
its minimum velocity, as shown in Fig. 9. This deceleration happens quite rapidly, and in general
tmin is less than 2 s (true for > 86% of experimental cases). Following Srdic-Mitrovic et al., we
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FIG. 10. Nondimensional time to velocity minimum, τmin = tmin/(d2ν ), versus lower-layer Froude and
Reynolds numbers.

nondimensionalize tmin as τmin = tmin/(d2/ν), which reflects the importance of viscous forces in this
deceleration process. The behavior of this nondimensional timescale with both lower-layer Froude
number [Frl = Ul/(Nd )] and lower-layer Reynolds number (Rel ) is shown in Fig. 10.

In Fig. 10(b), we observe the same Re−1.7
l scaling as has been observed in solid particles

[24,32], in which the timescale of deceleration was primarily determined by the properties of the
homogeneous layer the particle was exiting (in our case, the lower layer). Interestingly, Verso
et al. [32] observed two power laws in their data: −1.7 and −3.4, and attributed this to other
dimensionless quantities. It is unclear what physical process led to the −3.4 scaling observed in
Verso et al., and we do not observe that power law in the data studied here.

The deceleration timescale tmin collapses when scaled with a viscous diffusion timescale, d2/ν,
indicating the importance of viscous processes in this deceleration. As shown in Figs. 10(a) and
10(c), this timescale is uncorrelated with the Froude number, indicating that the characteristics of
the ambient stratification, i.e., N , do not control this deceleration process. Further, the power law
scaling of Rel stays more or less constant (≈ −1.7) when fitting alone or with Frl [Fig. 10(b) vs.
Fig. 10(c)]. Thus, tmin provides an incomplete picture of overall retention effects.

To get a complete understanding of droplet trapping due to stratification, it is therefore useful to
look at metrics of drop retention that measure both the duration of time that the drop’s motion is
affected by stratification, as well as the duration of time that the drop is physically retained by the
transition layer. These net retention effects are particularly important for the environmental, oceanic,
and industrial processes discussed earlier.

We will consider the first metric to be the entrainment time, te. This timescale is demonstrated
in Figs. 11(a) and 11(b), using both vertical drop position and drop velocity. The entrainment time
measures the duration of time the drop spends below its upper layer terminal velocity Uu, i.e.,
the time span over which interactions with the ambient stratification are appreciably slowing the
droplet’s motion. It is computed as the time between when the drop first slows to Uu [first blue
triangle in Figs. 11(a) and 11(b)], and when the drop again speeds up to this upper-layer terminal
velocity [second blue triangle in Figs. 11(a) and 11(b)]. The point where the drop has asymptotically
reached Uu again was chosen as the point at which the distance between the drop position [the black
line in Fig. 11(a)] and a line representing the upper layer terminal speed [the gray dashed line in
Fig. 11(a)] is less than 5% of the drop diameter. This timescale is very similar to the delayed settling
time (DST) used by Prairie et al. [11].

The second metric is a retention time, tr , the time duration that the droplet is retained and slowed
from rising to the surface. This time is shown in Fig. 11(c), and is computed as the time between
when the drop actually passes an upper threshold (z ≈ 10 cm, where z = 0 is the center of the
transition region), and when it would have passed the upper threshold if it had not slowed down
once it first reached Uu [i.e., if the drop had instead followed the dot-dashed path after the blue
triangle in 11(c)].
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FIG. 11. (a), (b) Definition of drop entrainment time, te, using (a) vertical drop position and (b) drop
velocity. (c) Definition of drop retention time tr and retention distance dr . In all, the solid black line represents
the experimental measurement. The gray dashed line shows Uu, either as (a), (c) the slope of the position or
(b) as a velocity threshold. The gray dot-dashed line in (a), (c) is a tangent line with a slope of Uu, used to find
the point where the drop’s velocity first reaches this value, and the gray dotted line in (b) shows the minimum
velocity, Umin.

To understand the physical relationship between te and tr , a physical and geometrical argument
can be constructed using the scaling of the retention distance dr [shown in Fig. 11(c)], the extra
distance the droplet would have traveled had it not been retained. By definition, the area of the blue
shaded region in Fig. 11(b) between Uu and u(t ) is equal to the retention distance dr :

dr = �Ute −
∫ t0+te

t0

(u − Umin)dt, (6)

where t0 is the time marked by the first blue triangle in Fig. 11(b), and �U = Uu − Umin. Dividing
both sides by te�U , we obtain

dr

te�U
= 1 −

∫ t0+te
t0

(u − Umin)dt

te�U
. (7)

By definition in Fig. 11(c),

tr = dr

Uu
= te

�U

Uu

dr

te�U
. (8)

This factor, dr/(te�U ), is a key parameter with a physical interpretation as the ratio of the actual
retention distance to the retention distance had the droplet traveled at a speed Umin for the duration
of te. In our data, this parameter appears to be approximately constant, with a mean value of 0.47
[Fig. 12(a)]. We can examine the area of the blue shaded region in Fig. 11(b) that was represented
by dr , and imagine drawing a rectangle of length te and height �U [Fig. 12(b)]. The fact that this
parameter is equal to approximately 1/2 across all experiments, and that Umin is reached quickly
(i.e., tmin is small compared to te), implies there is an approximately universal behavior in the
recovery from to Umin to Uu.

We can now return to Eq. (8), and plug in our mean value for dr/(te�U ), c = 0.47:

tr = te

(
0.47

�U

Uu

)
. (9)

The retention time is, therefore, the entrainment time multiplied by the constant, c = 0.47, which
represents the universal form of the recovery of the drop’s velocity, and by a factor representing
the relative magnitude of the drop’s slowdown, �U/Uu. Note that this does not imply a linear
relationship between te and tr , as �U/Uu varies with the experimental parameters as well. This
relationship is shown in Fig. 13. The physical retention of a drop at the transition region is thus
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FIG. 12. (a) Histogram of experimental measurements of dr/(te�U ). Two datapoints that are outliers, with
values of 2.4 and 23, are not shown in the histogram and are neglected in the mean and standard deviation.
(b) Geometry of Eqs. (6) and (7). The blue filled area, dr , occupies approximately half of a rectangle with area
te�U .

determined by the duration of time that denser fluid is appreciably entrained, te, and the relative
drop slowdown, �U/Uu, which may be due to the amount of dense fluid entrained as well as any
other contributions due to the distortion of isopycnals.

To understand how environmental conditions affect these timescales, the retention and entrain-
ment times were then compared against nondimensional parameters governing the drop’s rise.
Figures 14 and 15 show the nondimensional entrainment time, τe = teN , and nondimensional
retention time, τr = trN , as a function of the Froude number and Reynolds number in the upper
layer. These timescales are more strongly correlated with the Froude number than the Reynolds
number [see panels (a) and (b) in Figs. 14 and 15], indicating the importance of stratification in
drop retention. Since the timescales show significant correlation to both Reu and Fr, we conclude
that a scaling that includes both, shown in panel (c) of Figs. 14 and 15, is most appropriate.
Other nondimensional numbers, including Rel , h/d , and a lower-layer Froude number, were also
compared but did not yield significant collapse of the data and so are not presented here.

Nondimensional entrainment and retention times, with their associated Reynolds scaling from
Figs. 14(c) and 15(c), are plotted versus Fr in Fig. 16. Both of these temporal metrics have a power
law relationship with Froude number, with larger nondimensional retention and entrainment times
occurring for small Fr. A delineation can be drawn at Fr ≈1 (shown as the dotted lines in Fig. 16),
and using the definition of the Froude number as the ratio of inertial to buoyancy forces, we can
split droplet behavior into two regimes:
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FIG. 13. (a) Best-fit for the relationship dr = 0.47te�U . (b) Equation (9). The dashed gray line indicates a
1:1 relationship.
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FIG. 14. Nondimensional drop entrainment time, τe, versus Fr and Reu. Shading indicates the drop’s
relative density to the upper layer, �ρu.

(1) For Fr � 1, the drop is rising on a timescale (d/Uu) less than the buoyancy timescale (1/N),
and the drop’s motion is not significantly impacted by interactions with the ambient stratification.
Retention times are close to zero, as inertial forces dominate over buoyant forces.

(2) For Fr < 1, significant drop retention is observed. As the buoyancy timescale (1/N) becomes
less than the inertial timescale (d/Uu), the drop is more significantly retained in the transition
region. This corresponds to buoyancy forces being strong enough to counter the drop’s inertial
forces. Conceptually, one may also consider that for Fr < 1, the drop’s velocity is less than a
characteristic internal wave velocity, Nd , and the drop does not have the kinetic energy required
to “punch through” the transition region.

These results demonstrate that in the regime covered by our experiments, the dynamics of droplet
trapping are primarily governed by a balance between buoyancy and inertia, and that the upper-layer
Froude number is an important parameter to consider when predicting trapping or slowdown in a
two-layer stratification.

Finally, we have compared the timescale of deceleration used in previous literature, τmin, with
the two timescales developed in this work, τe and τr . Figures 17(a) and 17(b) show little correlation
between τmin and our approach, while as demonstrated in the preceding discussion, τe and τr are
strongly related [Fig. 17(c)]. In effect, the processes of fluid entrainment and drop retention are
not a function of how long it takes for a droplet to slow down. τe and τr are functions of the
Reynolds and Froude numbers of the upper layer (i.e., the layer the droplet is entering); τmin

is a function of Reynolds number of the lower layer (the layer the droplet is exiting), and is
independent of the Froude number (and therefore properties of the ambient stratification). Thus,
these two approaches to studying the timescales of drop motion are capturing significantly different
physics. The deceleration time τmin captures viscous effects, including how long it takes for the
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FIG. 15. Nondimensional drop retention time, τr , versus Fr and Reu. Shading indicates the drop’s relative
density to the upper layer, �ρu.
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FIG. 16. Nondimensional entrainment and retention times versus Reynolds and Froude number. Shading
indicates the drop’s relative density to the upper layer. Best-fit power laws are shown as the black lines, which
are simply rearrangements of the equations in Figs. 14(c) and 15(c).

droplet to respond to entering the transition region, and generally happens quite rapidly. The
entrainment and retention times capture the other half of droplet behavior that had largely remained
unquantified: the overall effect of entrained fluid and interaction with the ambient stratification on a
droplet’s rise, occurring over a longer timescale. Our overarching goal in this work was to quantify
net trapping effects. In environmental or engineering applications where the overall rise time is
of interest, the new timescales and their parametrizations developed here capture the physics of
stratification-related retention well.

D. Fluid entrainment

Above, we have given a conceptual model of how stratification ultimately affects the residence
time of droplets at a density transition. Here, we briefly discuss visualizations of the wakes of the
droplets first shown in Figs. 5 and 6.

Figures 5 and 6 showed a sequence of shadowgraph images for (A) a larger and (B) a smaller
droplet, both composed of the densest oil mixture (ρd = 0.9927 g/cm3) and rising through a 4.6 cm
transition region. The most obvious difference between these two cases is the asymmetry of the
droplet’s wake. The larger droplet shown in case A, with Rel = 370, appears to be shedding vortices
in a zigzag pattern, while the smaller droplet with Rel = 196 has a highly symmetric wake structure.
This aligns with the delineation of the effect of Reynolds number on the wakes of rising and falling
spheres in a homogeneous fluid presented by Horowitz and Williamson [19], who found that wake
structures transition from vertical to oblique at Re = 210, and from oblique to zigzag at Re = 260.
The results are also qualitatively very similar to those for spheres in a linear stratification [34]; in
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FIG. 17. (a), (b) Nondimensional entrainment and retention times, τe = teN and τr = trN , versus nondi-
mensional deceleration time, τmin = tmin/(d2/ν ). (c) Nondimensional entrainment time versus nondimensional
retention time. Shading indicates the drop’s relative density to the upper layer, �ρu.
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our experiments, the finite transition between two homogeneous-density fluids appears to constrain
the wake structure to the transition region.

While the vortex structures shed by the drop as it leaves the homogeneous lower layer vary
significantly between these two experimental cases, the two cases have very similar Froude numbers
(0.55 and 0.53), and indeed very similar entrainment and retention times (for example, te = 4.95
and 4.18 s; τe = 29.5 and 24.9, respectively). This variation in wake structure when entering and
initially exiting the transition region thus appears to have little effect on fluid entrainment and drop
retention. In Appendix B, we present some preliminary measurements of the local wake diameter
from these shadowgraph images, which suggest that there is correlation between the decay of the
trailing denser fluid and the entrainment timescale.

V. FORCE ENHANCEMENT BY STRATIFICATION

In this section we will discuss the forces acting on the droplets and how they scale with the
parameters of the problem. In particular, we wish to estimate the stratification force on the droplet,
Fs, which is the excess force experienced by the droplet in a stratified fluid, relative to the force on
a droplet in a homogeneous fluid. The timescales developed above measure the duration of delay,
and this stratification force is what causes this delay. Here, we will present a theoretical formulation
for this force enhancement due to stratification and compare it to the parameter space and force
balances presented by Zhang et al. [26] for numerical studies of rigid spheres.

The forces acting on particles or droplets passing through a stratified fluid are typically decom-
posed into several different terms [24,32,49]:

Ftot = m
Du

Dt
= Fb + Fd + Fa + Fh + Fs, (10)

where Fb is the buoyancy force, Fd is the drag force, Fa is the added mass force, Fh is the
Basset history force, and Fs is any additional force attributable to interactions with the ambient
stratification, including the modified buoyancy force, the baroclinic vorticity force, and potentially
Marangoni forces (the latter discussed in more detail in Sec. VI and Appendix C). Here, we assume
Fb and Fd correspond to the buoyancy and drag forces, respectively, which would be experienced by
a droplet moving through the undisturbed ambient fluid. (Therefore, the density corresponds to the
value for the undisturbed background fluid at the current location of the droplet.) Other experimental
work in a similar parameter regime has shown the added mass and history forces are typically
much weaker than other forces in the system, and can be neglected [32]. This behavior was further
observed in numerical studies in linear stratification, where the history force was negligible for all
time, and the added mass force was generally small [25]. In Appendix C, we provide a thorough
estimate of the order of magnitude of each of these forces to support our assumption that they are
negligible throughout most of the droplet’s motion.

First, we will examine the functional form of the buoyancy and drag forces in a homogeneous
fluid, Fb and Fd , far away from the transition region. The buoyancy force can be computed as a
function of the local fluid density ρ f , which varies with depth z [24]:

Fb(ρ f ) = π

6
(ρ f − ρd )gd3 = F0Ar f , (11)

where F0 = πμ2

6ρ f
. We can relate this buoyancy force to the local terminal velocity, Uf (z), using the

relationship measured in Sec. IV B,

Re f ≈ αArβf , (12)
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and the definition of Reynolds number, Re f = ρ f Uf d/μ, and rearrange to obtain an expression for
the Archimedes number in terms of the local droplet velocity,

Ar f (Uf ) =
(

Uf

U0

)1/β

, (13)

where U0 = αμ

ρ f d is the characteristic velocity if Ar f = 1, and the empirical measurements discussed
in Sec. IV B gave α = 0.61 and β = 0.57.

In a homogeneous fluid, a droplet will reach its terminal velocity when Fd = −Fb. Using this
relation and Eqs. (11) and (13) we can obtain a drag law for the drag force in a homogeneous fluid
as

Fd (Uf ) = −F0

(
Uf

U0

)1/β

. (14)

As mentioned in Sec. IV B, we expect this exponent, 1/β, to range between 1 at low Reynolds
number (where drag scales as U ) and 2 for high Reynolds number, turbulent flow, where drag scales
as U 2. As expected, in the intermediate Reynolds number regime studied here, this exponent falls
between these two limiting values, with 1/β = 1.75.

When considering the full force balance, including the stratification force Fs, we will focus on
the point of minimal velocity (t = tmin, u = Umin), which previous studies have shown is when the
stratification force is at its maximum [25,32]. This approach is similar to that of Doostmohammadi
et al. [25], who examined the force balance on a particle at its peak velocity in a linear stratification.
In addition to being more tractable at this single point in time, the instantaneous acceleration cannot
be accurately measured from the experimental data due to error propagation in the second derivative,
so the time dependence of the inertial, added mass, and history forces is difficult to compute.
Regardless, at this point of velocity minimum, Du

Dt = 0, the added mass is defined using the accel-
eration (Fa = − 1

2CAρ f Vp
Du
Dt ) and so is also zero, we assume Fh is negligible [25,32, Appendix C],

and the droplet is usually entirely in the upper fluid layer (see, e.g., Figs. 5–7). The force balance
from Eq. (10) can thus be assumed to simplify to

Fs,max = −Fb − Fd , (15)

where Fb and Fd are the local buoyancy and drag forces when the droplet has just entered the upper
layer, and is moving at its minimum velocity Umin.

This local buoyancy force is computed for a droplet that has fully entered the upper layer using
Eqs. (11) and (13),

Fb(ρu) = F0Aru = F0

(
Uu

U0

)1/β

. (16)

Using Eq. (14), the local drag force scales with the local velocity to the power of (1/β ),

Fd (Umin) = −F0

(
Umin

U0

)1/β

. (17)

Thus, we can write a force enhancement ratio, �, which compares the maximum stratification
force experienced by the droplet to the drag force, and allows for direct comparison to previous
results on solid particles,

� = Fs,max

Fd
= −Fb − Fd

Fd
=

(
Uu

Umin

)1/β

− 1. (18)

This quantity can be understood in the following manner: When the droplet speed is at a
minimum, i.e., a velocity deficit relative to the upper layer terminal velocity, the absolute value
of the drag force Fd is less than that of the buoyancy force Fb. However, at the velocity minimum,
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FIG. 18. The drag enhancement at the point of the velocity minimum, � = Fs,max
Fd

, versus upper-layer
Reynolds number and Froude number.

the droplet is not accelerating, so an additional force must be provided by the the stratification force,
given in Eq. (18).

For our data, a power-law best fit was found as a function of Fr and Reu, with � = 19 Fr−0.89

Re−0.56
u (Fig. 18). These exponents agree remarkably well with the dependence of the drag force

due to vorticity induced by baroclinic torque, Fρω, proposed by Zhang et al. [26]. In their Regimes
2 and 3 (Pr1/3 � Fr, in which all of our experimental measurements fall), they found that

Fρω ∼ Fr−1Re−1/2. (19)

Some of our data fall toward the border of Zhang et al.’s Regime 1; for large Re and Pr, Regime
1 is delineated as Fr � Pr−1/6, or Fr � 0.34 in our case. Our smallest Froude number is 0.38 (Fr is
indicated by the colorbar in Fig. 18). It appears that even at the lower limit of this regime, there is
fairly good agreement.

In summary, we see that the governing velocity scales relating to the droplet slowdown (Uu and
Umin), which govern the behavior of te and tr , are also the primary variables in a measurement of the
force enhancement due to stratification, (Uu/Umin)1/β − 1. These experimental and analytical results
regarding the force enhancement show that the baroclinic vorticity contribution is likely important in
our work, and provide the first experimental data supporting the approach of Zhang et al. [26]. Both
of the relevant forces that contribute to “stratification drag” discussed by Zhang et al.—the force due
to relative buoyancy of entrained fluid (Fρρ), and the force due to modification of the local vorticity
field due to baroclinic torque (Fρω)—are predicted to scale with Fr−1 in the parameter space covered
by our experiments; moreover, Fρρ does not vary with Reynolds number, but Fρω does. Zhang et al.
showed that Fρω should dominate in the Reynolds number regime studied here, which results in our
observed scaling of � with both Fr and Reu. We do expect Fρρ to play a role in this regime based on
our timescale results and flow visualization of the droplet wake; however, its contribution is likely
less than that of Fρω. It should be noted that the simulations of Zhang et al. were conducted in a
linear stratification, so their definitions of Reynolds and Froude numbers vary from the definitions
used in this study. Regardless, these experimental results demonstrate that the baroclinic vorticity
force Fρω is very likely significant in the regime studied here, and that experimental measurements
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of the velocity and vorticity fields surrounding drops and particles in stratification are warranted to
confirm this.

VI. DISCUSSION

We have studied the retention and entrainment dynamics of droplets in the regime 0.38 < Fr
< 4.2, 59 < Rel < 1060, 5.4 < Reu < 580, with relative drop densities �ρu ranging from 0.0045
to 0.061, and h/d ranging from 4.5 to 52. Counter to the results of Srdic-Mitrovic et al. [24], who
found that experiments at higher Reu (>15) showed no significant change in drag as a sphere settled
through a density gradient, we observed significant drop retention and slowdown, with τe > 10
observed for Reu up to 300, and over a wide range of Rel . As noted in previous work [32,33],
the parameters of the layer that a spheroid is entering appear to be the most critical for observing
“levitation” or significant delay. This holds true in our study, in which Froude number and Reynolds
numbers based on the upper layer terminal velocity are the governing parameters.

Significant retention was primarily observed for Fr � 1 and and �ρu � 0.035. Within existing
literature that has examined deceleration and retention of particles and solid spheres in linear or
sharp stratification, the parameter regime in which a significant delay occurs has not been well
quantified. Srdic-Mitrovic et al. [24] only observed significant slowdown for Reynolds numbers
(based on the velocity on entry into the stratified layer) between 1.5 and 15. The numerical
simulations of Torres et al. [51] at intermediate Reynolds number found drag to strongly increase
with Fr−1 for Fr < 20; however, it was found that this increase in drag was due to a rear buoyant jet
that persists in a continuous stratification, and may not be applicable to the relatively sharp two-layer
stratification studied here. Other work, including Yick et al. [37], found that enhanced drag scales
with Ri0.51 in the very small Reynolds number regime (where the Richardson number Ri = Re/Fr2,
implying the same Fr−1 scaling). We also explored only a certain Froude and Reynolds number
regime in this study; it remains to be seen whether this scaling applies to drops that are in the Stokes
regime, or for extremely high Reynolds number spheroids, such as rising bubbles.

Finally, we have not systematically varied the Marangoni forces in this study. A brief order-
of-magnitude estimate of this force is given in Appendix C. More importantly, because we are
treating the stratification-related force Fs as the remainder of our force balance, any Marangoni
force effects due to the ambient stratification are captured in our measurement of the stratification
drag enhancement �. Our results regarding the scaling of force enhancement with Reynolds and
Froude number are comparable to the literature from solid particles, suggesting that this is a valid
approach.

The dynamics explored in this study are applicable to a range of environmental scenarios,
including oil spills and natural oil seeps. Although our results are for liquid droplets in an ambient
stratification, we expect some of these findings to hold for solid particles as well, and may have
applications in sediment suspension in benthic boundary layers [52] and dispersal of pollutants in
the atmosphere [1].

VII. CONCLUSIONS

In this study, we characterized the dynamics governing retention of a single droplet at a transition
in density between two homogeneous fluids, focusing on timescales that describe the net retention
effects, and the excess force causing this retention. We examined fluid flow and droplet retention for
a range of drop sizes, drop densities, and ambient stratification profiles, allowing us to characterize
drop behavior for a range of Reynolds and Froude numbers. We found that far from the density
transition, within the homogeneous fluid layers, the droplets followed a balance between buoyancy,
inertial, and viscous forces, and that Re f ∼ Arβ

f , where β = 0.57.
We first studied the timescale to velocity minimum, tmin, which has been the focus of previous

work [24,32] but only captures the initial rapid deceleration process. We developed two metrics
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measuring the timescale of drop delay at a density transition which focus on the velocity deficit
and overall recovery to terminal velocity. The first metric, the entrainment time te, measures the
amount of time that denser fluid is appreciably entrained, reducing the drop’s speed. The second,
the retention time tr , measures the degree to which the droplet’s rise is delayed. The retention time is
related to the entrainment time by a simple linear relation involving the magnitude of the slowdown
the droplet experiences and a constant (approximately 1/2) that describes the universal form of
the recovery of droplet velocity, tr = 0.47te(�U/Uu), where �U = Uu − Umin. The timescales
and simple scaling arguments from our data lend themselves particularly well to experimental
quantification of the trapping dynamics, as they are readily measurable from kinematic data and
do not require taking derivatives or quantifying various forces at all points in time.

In the regime covered by our experiments (0.38 < Fr < 4.2, 59 < Rel < 1060, 5.4 < Reu < 580,
0.0045 < �ρu < 0.61), nondimensional entrainment and retention times were found to depend on
the Froude number and Reynolds number. Significant retention with either timescale only occurred
for Fr � 1, suggesting that retention is primarily a function of the ratio of the buoyancy timescale
(1/N) to the inertial timescale (d/Uu), and that trapping dynamics are dominated by the effects of
stratification. We also found that stratification-related retention appears to be independent of the
type of large-scale wake (zigzagging or vertical) the droplet has when first entering the transition
region.

Finally, we examined the forces that drive the entrainment and retention time metrics developed
here. Based on a force balance at the point of the droplet’s minimum velocity, we derived a force
enhancement ratio � = Fs,max

Fd
= (Uu/Umin)1/β − 1, and found a power-law fit to our experimental

data that compares very favorably with the behavior of the baroclinic vorticity force proposed by
Zhang et al., � ∼ Fρω ∼ Fr−1 Re−1/2

u . This suggests that forces generated by the baroclinic torque,
likely in addition to the more traditionally studied entrainment-related modified buoyancy forces,
are important in this problem and in the regimes studied here.
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APPENDIX A: STATISTICS

In this section we briefly summarize the statistical fits in the main text of the paper (Table II).
In addition to the coefficient of determination (R2), mean absolute percent error (MAPE) is used to
assess goodness of fit and is defined as

MAPE = 100%

M

M∑
i=1

∣∣∣∣yi,data − yi,fit

yi,data

∣∣∣∣, (A1)

where y is the variable on the vertical axis and M is the number of experimental cases (M = 179).

APPENDIX B: DECAY OF ENTRAINED FLUID

In Sec. IV D, we showed that the far-field wake of the drop seems to have minimal impact on
retention and droplet delay. Instead, the gradual bleeding away of the local tail of fluid carried by
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TABLE II. Statistical goodness-of-fit of the correlations and power law relationships found in this study.

Relevant quantity Best-fit relationship R2 MAPE In text

Terminal velocity Re f = 0.61 Ar0.57
f 0.99 16% Fig. 8, Eq. (4)

Deceleration timescale τmin = 2.7 × 106Re−1.7
l 0.89 31% Fig. 10(b)

Retention distance dr = 0.47te�U 0.80 19% Fig. 13(a)
Retention, entrainment times tr = te(0.47�U/Uu ) 0.91 22% Fig. 13(b), Eq. (9)
Entrainment timescale τe = 38Fr−0.81 Re−0.21

u 0.77 34% Fig. 14(c), Fig. 16(a)
Retention timescale τr = 13Fr−1.5 Re−0.38

u 0.82 47% Fig. 15(c), Fig. 16(b)
Retention, entrainment times τr = 0.028τ 1.6

e 0.95 36% Fig. 17(c)
Max. stratification force � = 19Fr−0.89Re−0.56

u 0.79 44% Fig. 18

the drop may play a dominant role in drop retention. In Figs. 5 and 6, the width of the tail of
fluid dragged by the drop (denoted by changes in ambient illumination in the shadowgraph) slowly
decreases over time. Although shadowgraphs are generally a qualitative tool for understanding
density variations, we were able to estimate the approximate diameter of the trailing fluid carried
by the drop as it rises through and past the transition region. These values were measured manually
for the two cases shown here—as well as three others for which tracking and shadowgraph data
were available—approximately one diameter below the bottom of the drop as it rises, as shown in
Fig. 19(a). Because bright and dark regions of the shadowgraph indicate regions of strong concavity
in the density field (i.e., large values of ∇2ρ), actual perturbations in the density field persist slightly
farther than can be observed in the shadowgraph. The estimated diameter is thus some fixed fraction
of the actual wake diameter; however, we believe this is an adequate analog to examine trends in
the wake over time. The ratio of wake diameter to drop diameter is plotted in Fig. 19(d) versus time
nondimensionalized by the buoyancy frequency N . Nondimensionalized position and velocity for
each case are also included in (b) and (c) for easy comparison. Time series of wake diameter are
shorter than those of tracked position, as the shadowgraphs images were zoomed in closer to see
fine details and the drop thus remained in the field of view of the camera for a shorter period of
time.

An exponential decay can be fit to all five sets of data. Each time series was fit to a function of
the form

dwake

d
∝ exp (kNt ), (B1)

yielding an average best-fit decay coefficient of k = −0.60 ± 0.06 across all five cases. The time
at which the drops have asymptoted to their upper-layer terminal velocity, denoted by the vertical
colored lines in Figs. 19(b)–19(d), coincides with when the wake diameter is equal to between 1/4
and 1/2 of the drop diameter. Once the tail has become about two to four times smaller than the
droplet, the drop reaches its homogeneous upper-layer behavior. The decay of this tail of denser
fluid correlates well with the measured entrainment timescale for each case (i.e., the time between
the vertical dotted gray lines in Figs. 19(b)–19(d) and the vertical lines of different shading), and
supports our interpretation of this timescale as an indicator of fluid entrainment, albeit for a narrow
range of Fr. While these visualization results are preliminary and limited to only a single drop
density, we find that this is a promising path to explore further. We hope that a similar approach,
over a wider range of Fr and Reu, could be used to physically understand the forces due to entrained
fluid studied previously (including modified buoyancy force, as well as baroclinic vorticity force)
[24–26,32,37,51], the majority of which have focused on the deceleration timescale tmin and have
not quantified the diameter of the trailing entrained fluid over time.
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FIG. 19. Nondimensionalized tracking and wake diameter data for the shadowgraph experiments shown
in Figs. 5 and 6 (red lines), as well as three other experiments (blue lines). Solid red lines correspond to
Shadowgraph A, and dashed light red lines correspond to Shadowgraph B. (a) An example of wake diameter
measurement. (b), (c) Drop position and velocity versus time. (d) Normalized wake diameter versus time, with
exponential fits (average R2 = 0.97). The vertical dotted gray lines on (b)–(d) show when the drops first reach
Uu; the time span between this and the vertical lines of different shading indicate τe for each case.

APPENDIX C: ORDER-OF-MAGNITUDE ESTIMATES OF ADDED MASS, HISTORY,
AND MARANGONI FORCES

In Sec. V, we presented a simplified force balance at the point of velocity minimum, and used
the scaling of the drag and buoyancy forces with velocity to estimate the excess force acting on
the droplet due to interactions with the ambient stratification. Here, we develop order-of-magnitude
estimates of the forces we neglected (the added mass and history forces) or incorporated into the
stratification force (the Marangoni force).

The added mass and history forces result from the unsteady acceleration of the fluid surrounding
the droplet as it changes velocity. These two forces depend on the acceleration of the droplet; the
instantaneous acceleration cannot be accurately measured from our experimental data, and so the
time dependence of these quantities is difficult to compute. While the added mass force should by
its definition be zero at the point of velocity minimum (our focus in Sec. V), it is difficult to separate
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the added mass and history forces, and so here we give an order-of-magnitude estimate of their
sum in two phases: in the deceleration preceding Umin, and the more gradual acceleration following
the velocity minimum. We focus on behavior surrounding the velocity minimum as this is where
previous studies have shown the stratification force is at its maximum [25,32].

To estimate the orders of magnitude for various forces at the velocity minimum, we will use the
experimental run shown in Fig. 5 as a reference case. For this run, we have h = 4.6 cm, d = 0.40 cm,
ρd = 0.9927 g/cc, ρu = 0.9972 g/cc, ρl = 1.054 g/cc. In general, we will assume ρ f = ρu where
needed, as the relevant dynamics take place when the drop is in the upper layer. We can estimate the
magnitude of these forces following previous work [24,32,49],

Fa + Fh = −Ca
πρ f d3

12
U̇ − Ch

3d2

2
√

πρ f μ f

∫ t

−∞
U̇ (s)

ds√
t − s

(C1)

≈ −0.55ρ f d3 �U

�t
− 2.6d2�U

√
ρ f μ f

�t
, (C2)

where the dimensionless acceleration parameter Ma used in Refs. [24,32,49] is � 0.1, so we have
assumed the parameter values Ca ≈ 2.1 and Ch ≈ 0.48. In Eq. (C2), we have assumed the particle
decelerates at a constant rate for a finite time, �t , for a total velocity change of �U . Significant
acceleration occurs in two phases:

(a) Phase 1: As the particle passes through the transition region, it decelerates rapidly
(t = 2.5–3.5 s in Fig. 5, indicated by the shaded region). For our reference drop in this phase,
we can estimate that �U ∼ −8 cm/s and �t ≈ 1 s, resulting in Fa + Fh ≈ 0.6 dyn. Although this
is larger than the buoyancy force in the upper layer (0.14 dyn), the buoyancy force in the lower layer
is much larger, 1.95 dyn.

(b) Phase 2: Just after the particle passes through the transition region, it reaches its minimum
velocity and slowly returns to the upper layer terminal velocity (t = 4–8 s in Fig. 5); this was the
primary delay process that the entrainment and retention times quantified (Sec. IV C). Here we
estimate that �U ≈ 1 cm/s and �t ≈ 4 s, resulting in Fa + Fh ∼ −0.03 dyn.

Thus, the added mass and history forces are comparable to the buoyancy force only during the
initial deceleration regime, as the droplet first interacts with the transition region. After the droplet
passes through the transition region it slowly returns to the upper layer terminal velocity; here the
acceleration is 1–2 orders of magnitude lower, and so the added mass and history forces are much
smaller than other forces in the problem. Since the entrainment and retention times are primarly
related to the gradual velocity recovery (Sec. IV C), we do not expect the added mass or history
forces to have a significant effect on the overall retention or delay studied here.

We note three limitations when using these formulas: (1) these forces have previously been
computed for solid particles, not droplets, (2) the forces are computed assuming homogeneous back-
ground fluids, and (3) the above equations are for somewhat lower Reynolds number, 0 < Re < 62.
However, as we are not aware of any work on liquid droplets in this moderate Reynolds number
regime, we believe this is the best estimate currently available. Due to the fact that the droplets are
nearly spherical (e.g., Figs. 5 and 6), we believe the order of magnitude should at least be correct.
Additionally, this analysis is consistent with previous work on solid particles passing through
stratification layers, which have found the added mass and history forces are negligible, especially
after the droplet has entered the final fluid layer [32], as well as previous work on solid particles
in a linear stratification [25]. Finally, we find good agreement between our force enhancement ratio
� and the scaling of Zhang et al.’s baroclinic vorticity force Fρω, suggesting that we are indeed
capturing primarily stratification-related forces in our estimate of �.

The above estimates are for forces that occur for both solid particles and droplets. For liquid
drops, the Marangoni force—due to the variation of interfacial tension between the droplet and
surrounding fluid with salt concentration—can also play a role. In Sec. V we are treating Fs as
the remainder of the force balance; therefore, Marangoni forces are implicitly included in our
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measurements of Fs, and in turn, �. Nonetheless, we give an order-of-magnitude estimate of this
force, with the caveat that this will vary depending on the salt used or the presence of surfactants.

In general, we expect different interfacial tension between the drop and the ambient fluid
in the upper and lower layers, but these small changes are difficult to measure directly, and
have not previously been characterized for silicone oil/salt water solutions. For hydrocarbon oils,
the interfacial tension γ typically increases with NaCl concentration, m, at a rate of dγ /dm ∼
1.5 dyne/cm/mol/L (although caution is warranted; the exact rate depends on chemical species,
and in rare cases the interfacial tension can actually decrease) [53]. Assuming linear stratification,
the Marangoni force is FM = (−dγ /dz)(πd2), and so the maximum force can be estimated as

FM,max ≈
(

1.5
dyn

cm

/
mol

L

)(
ml − mu

h

)
(πd2) ≈ 0.16 dyn, (C3)

where for our salt water solutions, the NaCl concentration in the lower layer is ml ≈ 1 mol/L (and
mu ≈ 0 mol/L), and the above force is estimated for the reference case. This indicates that when
the drop is in the transition region, the Marangoni forces can be comparable to or even slightly
larger than the buoyancy. Note that (assuming the interfacial tension increases with concentration,
which is true for hydrocarbon oils in NaCl solutions) this force would act in the same direction as
buoyancy. Thus, it should decrease the retention time of the droplet. Regardless, the net effect of
Marangoni forces, if they are significant, are included in the force enhancement �. Unfortunately,
the experimental setup did not allow for systematic variation of the surface tension gradient. Thus,
we were not able to isolate the effect of Marangoni forces on the dynamics of the droplet, and
exploration of this effect will be left for future work.
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