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Modeling action potential reversals in tunicate hearts

John W. Cain * and Luran He
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA

Lindsay Waldrop
Department of Biological Sciences, Chapman University, Orange, California 92866, USA

(Received 7 August 2020; revised 12 November 2020; accepted 30 November 2020; published 23 December 2020)

Tunicates are small invertebrates which possess a unique ability to reverse flow in their hearts. Scientists have
debated various theories regarding how and why flow reversals occur. Here we explore the electrophysiological
basis for reversals by simulating action potential propagation in an idealized model of the tubelike tunicate
heart. Using asymptotic formulas for action potential duration and conduction velocity, we propose tunicate-
specific parameters for a two-current ionic model of the action potential. Then, using a kinematic model, we
derive analytical criteria for reversals to occur. These criteria inform subsequent numerical simulations of action
potential propagation in a fiber paced at both ends. In particular, we explore the role that variability of pacemaker
firing rates plays in generating reversals, and we identify various favorable conditions for triggering retrograde
propagation. Our analytical framework extends to other species; for instance, it can be used to model competition
between the sinoatrial node and abnormal ectopic foci in human heart tissue.

DOI: 10.1103/PhysRevE.102.062421

I. INTRODUCTION

Tunicates (Chordata:Urochordata) are marine invertebrate
animals named for their tuniclike outer coverings. They are
our closest living invertebrate relatives [1] and serve as a
model for development of vertebrate chambered hearts [2–4].
Species such as Ciona intestinalis and Ciona savignyi, com-
monly known as “sea squirts,” may have body lengths of
10 cm or more, and their tubular hearts have lengths on the
order of 3 cm. The tunicate heart consists of a tube of contrac-
tile myocardium surrounded by an outer, stiff, noncontractile
pericardium [5]. The myocardium is a single layer of my-
ocardial cells wrapped around an inner lumen and fused at
the raphe, which extends longitudinally along the heart [5,6].
The myocardium contracts to reduce the diameter of the inner
lumen and drive fluid longitudinally through the lumen.

Tunicates are peculiar organisms in that their hearts oc-
casionally reverse the direction of blood flow. Often, time
intervals between consecutive reversals are on the order of
minutes. Some scholars [7] have speculated that heart re-
versals help tunicates more effectively distribute oxygen and
nutrients throughout their entire bodies. This remains one of
the most accepted ideas of why reversals may occur. Here we
explore mechanisms for how reversals may occur and identify
conditions favorable for generating reversals.

Among the many early theories regarding mechanisms
for reversals, just over half a century ago, two dominant
ideas emerged. Haywood and Moon [8,9] advocated a then-
century-old “back-pressure theory” that reversals occur due to
a congestion-induced buildup of pressure. Subsequent exper-

*jcain2@math.harvard.edu

iments of Krijgsman [10] showed that reversals still occur in
isolated hearts, suggesting that blood pressure is not necessary
for reversals. Krijgsman’s study focused on the role of fatigue
of the small clusters of specialized pacemaker cells located
at opposite ends of the heart. He argued that reversals may
occur due to “pacemaker fatigue,” an increase in the excitation
threshold for cells over the time course of a train of electrical
stimuli. If pacemaker A fires more slowly than pacemaker
B, then pacemaker B may “overdrive” pacemaker A, estab-
lishing sustained unidirectional propagation from B toward
A. Pacemaker slowdown is one of the reversal mechanisms
that we explore below; we also consider the role of stochastic
variability in the interstimulus intervals of both pacemakers.

In this article, we propose a mathematical model for rever-
sal of propagation in tunicate hearts, and we derive simple,
analytical criteria for reversals to occur. We adopt a two-
current model [11] of cardiac action potentials (Sec. II B),
treating the tubular tunicate heart as a one-dimensional
excitable medium paced at both ends. Highly accurate asymp-
totic approximations of action potential duration (APD)
and conduction velocity (CV) are readily available for the
two-current model, enabling us to predict the locations of
wavefronts and wavebacks of each propagating action po-
tential (AP). Tracking wavefronts and wavebacks is essential
in the present context, as we must detect whether the heart
exhibits sustained unidirectional propagation, intermittent re-
versals, repeated collisions of APs propagating in opposite
directions, or some combination of all of these responses.
The ability to observe reversals hinges on an appropriate
balance among (i) the length of the heart, (ii) the firing rates
of the pacemakers at both ends of the heart, and (iii) the
APD and CV of the propagating APs. The fully kinematic
model of wave propagation presented in Sec. II D gives rise to
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analytical criteria for reversal of propagation (Sec. II E). A
similar approach has been used previously [12] for the pur-
pose of predicting AP propagation failure at a distance from a
single pacing site; here, however, there are two pacing sites.

In Sec. III, we illustrate our model’s ability to exhibit rever-
sals in simulated tunicate hearts, comparing our simulated and
experimentally observed reversals. Combining our own exper-
imental observations with previously published data [13,14],
the asymptotic formulas for APD and CV allow us to esti-
mate tunicate-specific model parameters (Sec. III A). With the
model parameters suitably tuned, we demonstrate reversals
generated via two different mechanisms: Gradual variability
of pacemaker firing rates and stochastic variability of inter-
stimulus intervals of the two pacemakers with the same mean
firing rate (Sec. III B). While it is certainly noteworthy that
stochastic variability alone can elicit a reversal even if the
mean interstimulus intervals of the two pacemakers are iden-
tical, our simulations of gradual pacemaker variability exhibit
dynamical behavior far more reminiscent of experimental
observations. Through additional numerical simulations, we
demonstrate excellent quantitative agreement between the an-
alytical criteria for reversals put forth in Sec. II E and the
results of numerical simulations with two-current, PDE-based
model. Section III C surveys our general observations regard-
ing favorable conditions for generating reversals.

We believe that our results are interesting beyond the con-
text of tunicate heart phenomena. In human hearts, the native
pacemaker cells in the sinus node drive the normal contraction
of heart muscle. When ectopic automaticity foci exist within
the tissue, they may compete with the sinus node for control of
rhythm. The mechanisms and modeling framework described
here could be of importance in understanding mode transitions
between competing automaticity foci in many organisms.

II. METHODS AND MATHEMATICAL MODELING

A. Experimental observation of reversals

Adult solitary tunicates (Ciona savignyi Herdman, 1882)
were acquired from the University of California, Santa Bar-
bara, Ciona Stock Center via overnight shipment. These
animals were kept in a recirculating seawater system at 15◦C
in a 12-h light-dark cycle maintained with artificial seawater
(Instant Ocean, Spectrum Brands, Madison, WI) of salinity
30–34 parts per thousand (ppt).

Adult tunicates were spawned using a dark-box technique
to collect gametes, which were then combined in ultrafiltered
seawater (Instant Ocean) at 32 ppt. Fertilized eggs were kept
in Petri dishes at room temperature overnight to speed devel-
opment, and then swimming larvae were transferred to clean,
ultrafiltered seawater via pipette and floated in the recirculat-
ing tank held at 15◦C. Twenty-four hours after fertilization,
larvae settled on the surface of water to begin metamorphosis.
These larvae were transferred to sterilized glass slides by
dipping each slide into the surface of the water. Slides were
then hung with larvae on the underside of the slide in the main
recirculating tank and observed every second day.

Juvenile tunicates were observed using a Leica (Wetzlar,
Germany) M165FC stereo dissecting scope using a dark field
by placing the glass slide in a Petri dish containing filtered

seawater. Videos were taken using Celestron SKYRIS 132C
CMOS (Celestron, Torrance, CA) camera at 60 fps at 40×
magnification. One such video is provided among the supple-
mental materials [15]. Examples of reversals occur at times
00:10, 02:20, and 02:50. A detailed discussion of the behav-
iors shown in the video appears in Sec. IV below.

B. Two-current ionic model

Readers seeking a more detailed overview of tunicate heart
physiology and an experimentally informed electromechani-
cal model of contraction are encouraged to read the article of
Waldrop and Miller [16]. For our purpose of simulating mode
competition between two pacemakers, it is not necessary to
use a detailed cell membrane model accounting for how var-
ious ions are transported, exchanged, sequestered, etc. We
modeled the tubular tunicate heart as a one-dimensional fiber
of total length L and used the two-current model of Mitchell
and Schaeffer [11] to simulate cardiac action potential prop-
agation. The Mitchell-Schaeffer model is an attractive choice
because previous studies [11,17,18] have reported highly ac-
curate asymptotic approximations expressing both speed and
duration of action potentials as functions of the model parame-
ters (see next subsection). Those formulas guide our selection
of parameters so as to observe reversals of propagation direc-
tion.

The two-current model equations are given by

∂v

∂t
= κ

∂2v

∂x2
+ h

τin
v2(1 − v) − v

τout
, (1)

∂h

∂t
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − h

τopen
if v � vcrit

− h

τclose
if v > vcrit

, (2)

on the spatial domain 0 < x < L. The dynamic variables v =
v(x, t ) and h = h(x, t ) are scaled to vary between 0 and 1,
and they represent transmembrane voltage and an inactivation
gate, respectively. Position x along the fiber and time t are
measured in centimeters and milliseconds, respectively, unless
otherwise noted. Regarding other notation within the model
equations, κ is a diffusion coefficient, and τin, τout, τopen, and
τclose are time constants associated with different phases of the
action potential. The constant vcrit determines the threshold
voltage above which h decays exponentially [shutting off the
“inward current” term in (1)] and below which (1 − h) decays
exponentially. Homogeneous, no-flux boundary conditions
vx(0, t ) = vx(L, t ) = 0 are imposed at both ends of the fiber.
Stimuli are applied impulsively, instantaneously increasing v

by 0.5 among all cells within 0.05 centimeters of an end of the
fiber. None of the results reported below were affected when
we repeated the simulations using a constant current (1 ms
duration) to activate cells within 0.05 cm of the ends of the
fiber.
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FIG. 1. Schematic action potentials. Bold dots indicate stimuli.

C. Restitution of action potential duration and conduction
velocity

Repeated electrical stimulation of a cell, or pacing, elicits a
sequence of action potentials. Action potential duration (APD)
is defined as the amount of time for which v remains above
some threshold, and for the Mitchell-Schaeffer model it is
convenient to use vcrit as that threshold. The diastolic interval
(DI) is defined as the amount of time over which v � vcrit

between consecutive action potentials. We will denote by An

the APD following the nth stimulus which succeeds [19] in
eliciting an action potential, and Dn will denote the subsequent
DI (see Fig. 1). Action potentials propagate spatially, due
to gap junctional coupling of neighboring cells. Conduction
velocity (CV) refers to the speed with which action potentials
propagate through tissue. By restitution of APD (or CV), we
mean the dependence of APD (or CV) on the (local) DI.
Typically, longer DI (i.e., more rest for the cells) leads to
longer APD and faster CV, at least up to some plateau.

The simplicity of the two-current model equations (1) and
(2) allows one to derive accurate asymptotic approximations
for restitution of APD and CV. Within physiological parame-
ter regimes, the time constants are well separated in that

τin � τout � τopen, τclose.

Now let hmin = 4τin/τout and ε = τout/τclose, and define

h(Dn) = 1 − (1 − hmin)e−Dn/τopen .

Then using singular perturbation theory, one may show that

An+1 ∼ f (Dn) = τclose ln

[
h(Dn)

hmin

]

+ ζ τcloseε
2/3

[
1 − e−Dn/τopen

h(Dn)

]
, (3)

where ζ = 2.33811 . . . is a root of the Airy function Ai(−x);
see Ref. [17] for details. A similar formula expressing CV as
a function of DI may be derived by seeking periodic traveling
wavetrain solutions of (1) and (2). If

V±(Dn) = 1

2

[
1 ±

√
1 − hmin

h(Dn)

]
,

then in leading-order asymptotics CV is approximated by

c(Dn) =
[

V+(Dn)

2
− V−(Dn)

]√
2κh(Dn)

τin
. (4)

For details, refer to the Appendix of Ref. [18]. One caveat:
Formulas (3) and (4) cannot be applied for DI so small that
eliciting an action potential is impossible, i.e., for which the

fiber has not recovered its excitability. In fact, for very small
DI, Eq. (4) may return (unphysiological) negative values.

Importantly, formulas (3) and (4) explain how the speed
and duration of action potentials are influenced by the diffu-
sion constant κ and the four time constants associated with the
phases of the action potential.

D. Kinematic model

In order to explain the reversal phenomenon, we recall a
kinematic model of action potential propagation, using in-
formation encapsulated by the restitution functions (3) and
(4). Figure 2(a) is a color-coded space-time plot of action
potentials propagating left-to-right in a one-dimensional fiber,
with stimuli repeatedly applied at the x = 0 end. Figure 2(b)
indicates the progress of wavefronts (solid curves) and wave-
backs (dashed curves) of the propagating action potentials. Let
φn(x) and βn(x) denote the times at which the nth wavefront
and waveback (respectively) arrive at position x along the
fiber. If An(x) and Dn(x) indicate APD and DI at position x,
then observe from the figure that

An(x) + Dn(x) = φn+1(x) − φn(x).

Applying the APD restitution function (3) locally [20] at
each position x, we obtain

f (Dn−1(x)) + Dn(x) = φn+1(x) − φn(x).

Differentiating with respect to x and using the CV restitu-
tion function in Eq. (4) yields

d

dx
[ f (Dn−1(x)) + Dn(x)] = 1

c(Dn(x))
− 1

c(Dn−1(x))
. (5)

Given a sequence of stimulus times at the x = 0 boundary
together with an initial profile of DI values, D0(x), one may
solve the sequence of differential equations (5) recursively.
Combining the recursively obtained formulas for Dn(x) with
the restitution relationship An(x) = f (Dn−1(x)), one may gen-
erate Fig. 2(b) from a purely kinematic model.

Although APD and CV restitution functions may have
nonmonotone dependence on DI, it is often the case that both
f and c are increasing functions which plateau in the limit of
large DI. For instance, APD restitution curves are commonly
fit by functions of the form f (Dn) = α − β exp(−Dn/τ ) for
constants α, β, and τ (see Ref. [21]). If f is monotone increas-
ing and a cell is paced with appropriately large period B, then
there is a unique DI (call it D∗) for which D∗ + f (D∗) = B.
Indeed, provided that pacing is not too rapid (i.e., B is not
too small) the generic steady-state behavior is a one-to-one
response in which each DI equals D∗ and each APD equals
f (D∗).

E. Conditions for reversal of propagation

Using the kinematic model in the previous subsection, let
us derive criteria for the sudden reversal of left-to-right uni-
directional propagation, assuming that the proximal (x = 0)
pacemaker fires periodically with period B. The idea is that if
a stimulus is applied at the distal (x = L) pacemaker within
some “vulnerable time window,” retrograde propagation will
ensue. Depending on timing related issues that we shall ex-
plain, the right-to-left propagating action potential may either
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Dn(x)

An+1(x)

A (x)n
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φn (x)
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φn+1 (x)

βn+1 (x)

B

st
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ul
i

(a) (b)

x x

FIG. 2. (a) Color map of v(x, t ) obtained via numerical solution of Eqs. (1) and (2) for some choice of parameters and initial data. Blue
(dark) regions indicate that v is close to the resting potential, while red and yellow (brighter) regions indicate elevated v. Stimuli at the left
boundary are indicated and induce left-to-right propagation. (b) Schematic space-time plot of the wavefronts (solid curves) and wavebacks
(dashed curves) in panel (a).

(i) traverse the entire fiber uninterrupted or (ii) collide with
a subsequent left-to-right action potential generated by the
proximal pacemaker.

Suppose that a fiber has achieved (approximate) steady
state in which action potentials propagate left-to-right, with
spatially uniform APD and CV. In such a case, a space-time
plot of wavefronts and wavebacks [as in Fig. 2(b)] would
appear as a collection of parallel lines, with Dn(x) = D∗ and
An(x) = f (D∗) for each n and for 0 � x � L. Suppressing the
subscripts, let φ(x) and β(x) represent positions of the final
wavefront and waveback to traverse the entire fiber left-to-
right, prior to the initiation of a right-to-left propagating action
potential (see Fig. 3). For convenience, let t = 0 correspond to
the firing time of the x = 0 pacemaker, so that φ(0) = 0. Then
φ satisfies a trivial initial value problem:

dφ

dx
= 1

c(D∗)
, φ(0) = 0 ⇒ φ(x) = x

c(D∗)
. (6)

It follows that

β(x) = φ(x) + f (D∗) = x

c(D∗)
+ f (D∗). (7)

The vulnerable window for triggering a right-to-left propa-
gating action potential begins (approximately) at time β(L) =
f (D∗) + L/c(D∗), when the final left-to-right waveback
reaches the distal end of the fiber. The vulnerable window
ends at time B + φ(L) = B + L/c(D∗), the time at which a
subsequent left-to-right wavefront (triggered by the firing of
the x = 0 pacemaker at time t = B) is due to reach the distal
boundary.

Depending on B and the firing time of the distal pacemaker
during the vulnerable window, the resulting right-to-left action
potential may either block a left-to-right action potential in
the middle of the fiber [Fig. 3(a)] or traverse the entire fiber
uninterrupted [Fig. 3(b)]. In order for the latter to occur, the
right-to-left propagating wavefront must arrive at the x = 0
boundary by time t = B. To derive conditions for this, let us
establish the following notation:

L

t

0 x

β (x)

(x)φ

β (x)

B

collision stimulus

(a)

L

t

0 x

B

(b)

(x)φ

φ (x)ret

FIG. 3. Initiation of retrograde propagation due to firing of a distal pacemaker during a vulnerable time window. (a) The right-to-left
propagating action potential collides with a subsequent left-to-right action potential in the middle of the fiber. (b) The right-to-left propagating
action potential traverses the entire fiber unblocked.
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FIG. 4. Schematic of a retrograde action potential that interrupts
a steady train of (nonretrograde) action potentials.

(i) x̃ = L − x is distance from the distal pacemaker bound-
ary.

(ii) tstim is the time at which the stimulus at x̃ = 0 elicits a
propagating action potential.

(iii) φret denotes the position of the wavefront of the retro-
grade action potential. See Figs. 2(b) and 4.

(iv) D(x̃) = φret (x̃) − β(x̃) is the diastolic interval preced-
ing the arrival of the retrograde wavefront. See also Eq. (7)
and Fig. 4.

Then D(x̃) satisfies an initial value problem

dD(x̃)

dx̃
= 1

c(D(x̃))
+ 1

c(D∗)
,

D(0) = tstim −
[

L

c(D∗)
+ f (D∗)

]
. (8)

Setting x̃ = L in the equation D(x̃) = φret (x̃) − β(x̃), we find
that

φret (x̃)
∣∣∣
x̃=L

= tstim +
∫ L

0

1

c(D(y))
dy.

Thus, the retrograde action potential will traverse the fiber
uninterrupted if

tstim +
∫ L

0

1

c(D(y))
dy < B. (9)

Of course, applying the inequality (9) requires solution of the
(typically nonlinear) initial value problem (8). An alternate,
more intuitive way of stating Condition (9) is via the inequal-
ity

f (D∗) + D(L) < B, (10)

where D(L) is obtained through solving the initial value prob-
lem (8). See also Fig. 4, specifically the behavior at the x̃ = L
boundary.

III. RESULTS AND NUMERICAL SIMULATIONS

We performed numerical simulations of the two-current
model of equations (1) and (2), experimenting with various
mechanisms for reversals. A movie illustrating the reversal
phenomenon is provided in the supplemental material [15].
The movie was generated using the parameters in the second
row of Table I and using the pacing protocol described in
Sec. III B 1 (B = 550 ms, A = 200 ms, δ = 0.1, and P =
60 000 ms). After a brief initial transient, a sustained pattern
of right-to-left propagation is established, with occasional
interruptions due to collisions between APs propagating in
opposite directions. Approximately 1 min, 10 s into the video,
slowdown of the right pacemaker allows the left pacemaker
to establish sustained left-to-right propagation during the next
minute of the video. Approximately 2 min, 13 s into the video,
slowdown of the left pacemaker enables another reversal—
after a brief transient, right-to-left propagation resumes.

Note that in generating this movie, we opted to use model
parameters typical of mammalian APs as opposed to tunicate
APs. As explained in the next subsection, mammals have sub-
stantially shorter APD and faster CV than tunicates, making
it easier to see the waveforms of propagating APs in movies.
Rather than providing movies of simulated tunicate APs, we
find it more instructive to examine space-time plots of wave-
fronts and wavebacks as in all upcoming figures.

A. Parameters

Tunicates and mammals can have an order-of-magnitude
difference both in APD and in CV [13], and in the firing
rates of their pacemaker cells [14]. In low-temperature en-
vironments, tunicate APD may exceed 2 s, whereas 200 ms
would be more typical for human APD. A typical tunicate
CV might be 2 cm/s, easily 20–40 times slower than human
ventricular CV. In some experiments [14], average firing rates
of tunicate pacemakers were measured as 17 beats per minute
at 15◦C, considerably slower than what one observes in most
(nonhibernating) mammals. With these data in mind, equa-
tions (3) and (4) allow us to propose tunicate-specific values of
the parameters appearing in the two-current model equations
(1) and (2). The following observations are important:

(i) the maximum values of APD and CV may be obtained
by taking the limit of large DI in Eqs. (3) and (4);

(ii) increasing τin reduces the maximum values of both
APD and CV, whereas increasing τout increases the maximum
values of both APD and CV;

(iii) varying τopen has no effect on the maximum values of
APD and CV, but sets the time scale over which the APD and
CV restitution functions reach their plateaus;

(iv) increasing τclose increases the maximum APD, but has
no effect on the maximum CV;

TABLE I. Reference parameter sets used in our numerical simulations with the two-current model Eqs. (1)–(2).

τin (ms) τout (ms) τopen (ms) τclose (ms) κ (cm2/ms) vcrit (dimensionless)

Tunicate 0.3 3.0 200 1300 10−5 0.13
Mammal 0.1 2.4 130 150 10−3 0.13

062421-5
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(v) CV is proportional to
√

κ , but κ has no effect on APD;
and

(vi) in order for a cell to be able to produce an action po-
tential, it is necessary that hmin = 4τin/τout be suitably small;
see Ref. [22] for details. Moreover, Eqs. (3) and (4) are de-
rived using asymptotic methods under the presumption that
ε = τout/τclose is small.

Bearing these considerations in mind, we propose the pa-
rameters appearing in the first row of Table I as reference
parameters for models of tunicate cardiac action potentials.
For those parameters, Eqs. (3) and (4) predict a maximum
APD of 1244 ms and a maximum CV of 2.70 cm/s.

Because tunicates exhibit such long APD and short CV,
numerical simulations of their action potential reversals can be
time consuming. For this reason, we have identified a second
set of reference parameters (second row of Table I) which
we use in many of our numerical explorations of the reversal
phenomenon. This second set of parameters leads to APD and
CV akin to what one might expect in mammals—Eqs. (3) and
(4) predict a maximum APD of 291 ms and a maximum CV
of 61.4 cm/s.

B. Numerical simulations of tunicate action potentials

Here we explore two mechanisms for reversals: out-
of-phase, periodic fluctuations in the firing rates of both
pacemakers and reversals due to stochastic variability the
firing rates of two pacemakers with the same mean firing rate.
We also offer numerical evidence of the predictive power of
the reversal criteria in Sec. II E. Almost all of our simuluations
used pacing protocols for which every stimulus elicited a
propagating action potential. As we mention in Sec. III B 4,
it is important to note that rapid pacing can lead to behaviors
such as spatially discordant alternans and conduction block.

1. Periodic fluctuations in firing rates of both pacemakers

Slow, out-of-phase variations in the interstimulus intervals
of both pacemakers can lead to reversals rather easily. This
is reminiscent of the “pacemaker fatigue” scenario described
in Ref. [10]. To illustrate this phenomenon, we solved the
two-current model equations (1) and (2) numerically on a
one-dimensional domain of length L = 3.0 cm using a for-
ward Euler method with �x = 0.01 cm and �t = 0.02 ms.
No-flux boundary conditions were enforced at both ends of
the fiber. Stimuli were applied at both ends of the fiber with
stimulus strength approximately 3 times the threshold needed
to elicit a propagating action potential in a quiescent fiber.
At time t = 0, a stimulus was applied at the left (x = 0)
pacemaker, eliciting a left-to-right propagating AP. For t > 0,
interstimulus intervals for the left and right pacemaker cells
varied according to smoothed, periodic square-wave functions
of opposite phase:

Sl (t ) = B + A arctan(sin(2πt/P)/δ)

arctan(1/δ)
(left pacemaker),

Sr (t ) = B − A arctan(sin(2πt/P)/δ)

arctan(1/δ)
(right pacemaker).

Here B denotes the mean interstimulus interval, A and P
denote the amplitude and period of variation in interstimu-
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FIG. 5. (a) Space-time plot of wavefronts (dark red) and wave-
backs (light blue) of action potentials in simulations of tunicate
heart tissue. After two beats of left-to-right propagation, there are
three collisions between action potentials propagating in opposite
directions before a pattern of right-to-left propagation is established.
(b) Interstimulus intervals for the left pacemaker (solid red curve)
and the right pacemaker (dashed blue curve). See text for details.

lus intervals, and the parameter δ adjusts the abruptness of
the transitions between fast and slow pacing (approximately
square wave as δ → 0 and nearly sinusoidal for large δ).
Figure 5(b) illustrates the variation of interstimulus intervals
for B = 2000 ms, A = 500 ms, P = 60 000 ms, and δ = 0.1.

Figure 5(a) shows results of numerical simulations of (1)
and (2) using the parameters in the first row of Table I and
the pacing protocol described in the preceding paragraph. The
first 20 s of pacing are shown. After two left-to-right propagat-
ing APs traverse the fiber, there are three collisions between
APs propagating in opposition directions before a pattern of
right-to-left propagation is established. This behavior is rea-
sonable given the pacing protocol: Initially, both pacemakers
have interstimulus intervals of approximately B = 2000 ms
but decreasing to 1500 ms at the right pacemaker and in-
creasing to 2500 ms at the left pacemaker. Hence, the right
pacemaker overdrives the left pacemaker and establishes sus-
tained right-to-left propagation. Continuing the simulation
further in time (not shown), the system sustains a pattern
of 15–16 beats of unidirectional propagation, 2–3 beats in
which collisions of action potentials occur within the interior
of the fiber, 15–16 beats of unidirectional propagation in the
opposite direction.

2. Random variations in firing rates of both pacemakers

Cardiac pacemakers may exhibit considerable variability in
interstimulus intervals, due to fluctuations in neurotransmit-
ters such as acetylcholine and norepinephrine which regulate
the firing rates. Clinically, interstimulus intervals are identi-
fied with RR intervals in electrocardiogram (ECG) recordings.
Data from short-term (i.e., several minutes) ECG recordings
in humans suggest that standard deviations of interstimulus
are roughly 10% as large as the mean interstimulus intervals
[23]. Assuming that tunicates exhibit a similar degree of heart
rate variability, we explore the role of such variability in
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FIG. 6. Space-time plot of wavefronts (dark red) and wavebacks
(light blue) of action potentials in simulations of tunicate heart tissue,
presuming that the two pacemakers have the same mean interstimu-
lus interval (2000 ms) and same standard deviation (200 ms). See
text for details.

eliciting reversals of propagation. To this end, we performed
numerical simulations of (1) and (2) using the parameters in
the first row of Table I, but with a different pacing protocol:
The interstimulus intervals for both pacemakers had the same
mean and with the same amount of Gaussian noise affecting
the stimulus times. More precisely, after initiating left-to-right
propagation by stimulating at x = 0 when t = 0, each pace-
maker’s subsequent firing time was chosen according to the
rule

next stimulus time = previous stimulus time + B + noise,

where B = 2000 ms, and the noise was normally distributed
with mean 0 and standard deviation σ = 200 ms. Choosing σ

to be 10% as large as B reflects our previous remarks regarding
heart rate variability.

Figure 6 shows sample results of these numerical sim-
ulations. During the first 62 s, there is a steady pattern of
left-to-right propagation. Between t = 64 s and t = 84 s,
action potentials propagating in opposite directions collide
within the interior of the fiber. Left-to-right propagation is re-
stored for several beats (84 < t < 96), before another cluster
of collisions (96 < t < 124). Finally, sustained right-to-left
propagation is established beyond t = 124 s. These simula-
tions suggest that stochastic variability of pacemaker firing
rates can, by itself, lead to reversals of propagation, even if
both pacemakers have the same mean interstimulus interval.
However, Fig. 6 is not completely consistent with experi-
mental observations of reversals in tunicate hearts. The figure
suggests that many collisions may occur within the interior

of the domain, for tens of seconds before one pacemaker
emerges as dominant. Collisions occur during time windows
in which the two pacemakers are nearly in-phase with one
another. In order for one pacemaker to establish dominance, it
must experience a “lucky streak” of overdriving the competing
pacemaker for several beats in a row (or at least the vast
majority of beats within a given time window). This is the sort
of behavior shown in the interval 108 < t < 124 in Fig. 6.

3. Validating the analytical criteria for reversals

Further numerical simulations confirm that Eqs. (7) and (9)
provide accurate information regarding whether reversals can
occur. To this end, we performed numerical simulations of (1)
and (2) with the parameter choices appearing in the first row
of Table I, using the pacing protocol mentioned in Sec. II E.
The left pacemaker fired periodically with period B, with-
out interference from the right pacemaker, until approximate
steady-state was achieved. Then, a single stimulus was applied
at the right pacemaker, near the beginning of the vulnerable
window for initiation of retrograde propagation.

Figure 7(a) shows the results of applying this pacing proto-
col in a fiber of length L = 3.0 cm with period B = 2000 ms.
The asymptotic formulas (3) and (4) predict that, for this B,
the steady-state values of APD, DI, and CV are 1227 ms,
773 ms, and 2.665 cm/s (respectively), predicting that each
action potential in the wave train should require 1126 ms
to traverse the fiber. Let t = 0 correspond to the final time
at which the the left pacemaker fires prior to the firing of
the right pacemaker. Substituting D∗ = 773 ms into Eqs. (6)
and (7), the above asymptotic approximations predict that the
wavefront and waveback of the resulting action potential will
arrive at the far end of the fiber at times φ(3.0) = 1126 ms
and β(3.0) = 1126 + 1227 = 2353 ms. Thus, a vulnerable
window for triggering right-to-left propagation is expected to
start at t ≈ 2353 ms. These numbers are remarkably close to
those observed in numerical simulations of the PDE model,
using a forward Euler solver with �t = 0.01 ms and �x =
0.0025 cm. In the PDE model simulations, the steady-state
values of APD and DI were 1223 and 777 ms, and the time
required for the left-to-right APs to traverse the fiber was
1123 ms. By firing the right pacemaker at time t = 2400 ms
(see figure), a right-to-left propagating AP was generated.
Despite the fact that this AP was generated very early within
the vulnerable window, a collision with a left-to-right AP
still occurred (t ≈ 2.08 s, x ≈ 2.1 cm). For this particular B
and fiber length L, it is impossible to completely reverse the
direction of propagation with a single stimulus, no matter how
early in the vulnerable window such a stimulus is applied.

In order to accomplish a reversal of propagation using a
single, well-timed stimulus of the right pacemaker, we re-
peated these simulations with a shorter fiber (L = 2.0 cm)
and a longer B for the left pacemaker (B = 3000 ms). The
results are shown in Fig. 7(b). The asymptotic formulas (3)
and (4) predict that, for this B, the steady-state values of
APD, DI, and CV are 1244 ms, 1756 ms, and 2.702 cm/s
(respectively), suggesting that each AP in the wave train
should require 740 ms to traverse the fiber. Substituting D∗ =
1756 ms into Equations (6) and (7), this time the asymptotic
approximations predict that the wavefront and waveback of
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FIG. 7. Space-time plots of wavefronts (dark red) and wavebacks (light blue) of action potentials in simulations of tunicate heart tissue,
assuming that the left pacemaker fires periodically and the right pacemaker fires a single stimulus during the vulnerable time window. Stimuli
are indicated by bold dots. (a) A collision of action potentials on the interior of the fiber. (b) Establishment of retrograde propagation via a
single, well-timed stimulus of the right pacemaker. See text for details.

the resulting action potential will arrive at the far end of the
fiber at times φ(2.0) = 740 ms and β(2.0) = 740 + 1244 =
1984 ms. Thus, a vulnerable window for triggering right-to-
left propagation is expected to start at t ≈ 1984 ms. As before,
there is excellent (less than 1% relative error) agreement be-
tween the times φ(2.0) and β(2.0) predicted by asymptotics
and the times obtained by numerical simulations of the PDE
model. By firing the right pacemaker at t = 2000 ms (i.e.,
almost immediately after the predicted start of a vulnerable
window), a right-to-left propagating AP was generated. This
AP traversed the entire fiber, reaching the x = 0 boundary at
time t = 2820 ms, shortly before the left pacemaker was due
to fire at t = 3000 ms. Because cells in the vicinity of the left
pacemaker had not recovered excitability by t = 3000 ms, a
left-to-right propagating AP was not generated.

4. Discordant alternans and conduction block

Until now, we have considered pacing protocols for which
every stimulus elicited a propagating action potential. Pacing
was sufficiently slow that little spatial variation in DI, APD,
and CV occurred, making it easier for us to study reversals by
establishing the sorts of scenarios depicted in Fig. 3. By con-
trast, rapid pacing can introduce spatial heterogeneity of DI,
APD, and CV, and very rapid pacing can lead to conduction
block due to the fact that cardiac cells present refractoriness.
Figure 8 illustrates the sorts of dynamical behaviors that
one might observe of one of the pacemakers fires rapidly.
Figure 8(a) was generated using precisely the same pacing
protocol as in Fig. 5(a) but with τclose increased to 1500 ms so
as to increase APD. Following an initial transient of several
beats, a pattern of right-to-left propagation is established with
considerable spatial variation in DI. The fiber exhibits spa-
tially discordant alternans: beat-to-beat alternation of APD in
which some cells alternate short-long while others alternate
long-short. Figure 8(b) was generated using a very different
protocol. Starting at t = 0, an initially quiescent fiber was
paced with period 2000 ms at x = 0 and with period 1250 ms
at x = 3. Parameters were taken from the first row of Table I
but with τclose = 1500 ms. After a collision in the middle
of the fiber, the stimuli applied to the right boundary at t =
1250 ms and t = 2500 ms successfully generate right-to-left
propagating APs. Due to restitution of CV, these APs slow

down as the wavefronts closely follow wavebacks of preced-
ing APs, establishing considerable heterogeneity along the
fiber. Half of the remaining stimuli applied at the x = 3 end of
the fiber (stimulus times indicated by arrows in the figure) fail
to elicit APs, because the cells have yet to recover excitability
when those stimuli are applied. A 2:1 stimulus:response pat-
tern is established at the x = 3 boundary, and the arrows in
the figure indicate which stimuli are ignored. This effectively
doubles the pacing period at x = 3 to 2500 ms, allowing
the x = 0 pacemaker to overdrive the x = 3 pacemaker and
establishing left-to-right propagation after roughly 16 s.

C. General observations

Figure 7 helps illustrate some rather intuitive observations
regarding favorable conditions for reversals. Reversals require
a careful interplay among APD, CV, the fiber length L, and

FIG. 8. (a) Changing τclose to 1500 ms and repeating the simula-
tions used to generate Fig. 5(a), discordant alternans occurs after a
brief initial transient. (b) Periodic stimulation of the x = 0 boundary
with period 2000 ms and the x = 3 boundary with period 1250 ms
can lead to a pattern of 2:1 conduction block. Arrows indicate times
at which stimulating the x = 3 boundary failed to elicit a propagating
action potential.

062421-8



MODELING ACTION POTENTIAL REVERSALS IN … PHYSICAL REVIEW E 102, 062421 (2020)

FIG. 9. Space-time plot of wavefronts (dark, red) and wavebacks (light, blue) of simulated APs in a fiber of length L = 3.0 cm. The x = 0
end of the fiber was paced with constant period 650 ms while the x = 3 end of the fiber was paced with constant period 350 ms. (a) Steady-state
response using the parameters in the second row of Table I. (b) Same as in (a) but with τclose reduced to 75 ms. (c) Same as in (a) except that
κ = 10−5. (d) Same parameters as in (c), showing the initial transient response if the x = 3 pacemaker had been turned off prior to time t = 0.
See text for details.

the firing rates of both pacemakers. Here are some concrete
observations:

(i) Small L tends to favor unidirectional propagation, be-
cause each AP is more likely to traverse the fiber without
colliding with an AP propagating in the opposite direction.
Large L increases the likelihood of collisions between APs
traveling in opposite directions.

(ii) When two pacemakers fire with vastly different mean
interstimulus intervals, there is increased likelihood of estab-
lishing unidirectional propagation from the faster pacemaker
toward the slower pacemaker.

(iii) Equations (3) and (4) and the remarks in Sec. III A
elucidate the roles of the two-current model parameters in pro-
moting reversals and/or collisions of APs within the interior
of the spatial domain. Figure 9(a) illustrates the steady-state
response obtained by simulating the two-current model in a
fiber of length L = 3.0 cm paced periodically at both ends
(period 350 ms at x = 0 and period 650 ms at x = 3.0). A
sustained pattern of right-to-left propagation is established,
with an occasional collision whenever the x = 0 pacemaker
supplies a stimulus during a vulnerable window (approxi-
mately once every 4 s). As illustrated in Fig. 9(b), reducing
τclose to 75 ms promotes additional collisions. This makes
sense intuitively—reducing τclose reduces APD but not CV.
The reduction in APD lengthens the vulnerable time windows,
enabling more stimuli at x = 0 to elicit left-to-right propaga-
tion. Figure 9(c) was generated using the same parameters
as Fig. 9(a), but with the diffusion coefficient κ reduced to
10−5. Reduced κ has no effect on APD, but reduces CV. By
reducing CV while maintaining rapid pacing at the x = 3 end
of the fiber, stimuli supplied at x = 0 cannot generate left-to-
right propagating APs which make substantial progress before
being blocked by a right-to-left AP. Figure 9(d) illustrates the

initial transient obtained using the same parameters as Fig.
9(c) but with the x = 3 pacemaker turned off prior to time
t = 0. Due to the slow CV, there is a prolonged transient
(5 beats) required for the x = 3 pacemaker to establish sus-
tained right-to-left propagation.

Given a more physiologically detailed ionic model of the
cardiac action potential, one might undertake a more com-
prehensive survey of how key parameters affect likelihood of
reversals and collisions.

IV. DISCUSSION

In this article, we have proposed a model for heart rever-
sals in tunicates, using previously published data to estimate
model parameters. Using asymptotic approximations for APD
and CV restitution functions [Eqs. (3) and (4)], we derived
criteria for initiating retrograde propagation and/or trigger-
ing a reversal via a single stimulus within the vulnerable
time window [Eqs. (7) and 9)]. Equipped with these resti-
tution functions and reversal criteria, it is easy to identify
heart lengths L and pacing protocols that generate reversals.
Because the restitution functions are derived from an ionic
model, one may explore the roles played by various phys-
iological parameters (such as τin, a time constant loosely
associated with the fast sodium current) in promoting or
inhibiting reversals. Numerical simulations of gradual pace-
maker variability, as illustrated in Fig. 5, produce dynamical
behavior similar to that observed experimentally (see also
the next paragraph). Notably, our numerical simulations also
suggest that variability of pacemaker firing rates may elicit re-
versals (Fig. 6), even if both pacemakers have the same mean
interstimulus interval. However, it is unlikely that such vari-
ability alone could be the primary mechanism for reversals.
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Otherwise, our model would suggest that many collisions of
APs might occur whenever the pacemakers are approximately
in-phase with one another. This may lead to prolonged time
windows (tens of seconds) during which neither pacemaker
is able to establish dominance, thereby preventing the heart
from effectively pumping. It seems plausible that tunicates
experience some hybrid of (i) gradual drift of pacemaker firing
rates and (ii) stochastic heart rate variability, and that the
former is the primary contributor to reversals.

Our mathematical model captures key phenomena appear-
ing in our experimentally obtained video (see the supplemen-
tal material [15]). In that video, there are reversals at times
00:10, 02:20, and 02:50. During the 15 s leading up to the
reversal at 02:50, the period of the pacemaker driving bottom-
to-top propagation is substantially longer than the period of
the pacemaker driving top-to-bottom propagation during the
15 s following the reversal. Regarding collisions, there seem
to be some times (e.g., at times 02:01 and 02:04) at which
two advancing wavefronts clearly collide and annihilate one
another. However, it is difficult to distinguish between actual
wavefronts (those due to advancing electrical waves) and “il-
lusory” wavefronts due to mechanical deformation of the heart
as it relaxes after blood is pumped. For example, throughout
the second full minute of video, top-to-bottom contraction is
sustained. As each downward propagating wavefront reaches
the bottom half of the heart, there is the appearance of what
looks like a much smaller upward propagating wavefront in
the top half of the heart. We believe that this is illusory in
the sense that it is a consequence of mechanical relaxation
of the heart muscle, and has nothing to do with electrical
activity. We also mention that we cannot rule out the possi-
bility that the heterogeneity of the heart muscle tissue and
the three-dimensional structure of a real heart could allow
two APs propagating in opposite directions to find conduction
pathways enabling them to pass around one another, though
we find it highly unlikely that such behavior could occur in a
normal, appropriately large heart.

While tunicates are fascinating creatures in their own
right, one might wonder about the broader importance of
understanding their heart behavior. Tunicates are sometimes
regarded as model organisms for understanding heart de-
velopment in vertebrates: as they are vertebrates’ closest
invertebrate relatives [24], it is believed that aspects of em-
bryonic heart development in vertebrates can be understood
using tunicates as a proxy [1]. There are still more compelling
reasons to understand the dynamics of multiple pacemaker
sites. Ectopic automaticity foci in human hearts can cause
various types of arrhythmia depending on their location within
the heart. Competition between the sinus node (the heart’s
natural pacemaker, an automaticity focus located in the right
atrium) and ectopic foci can cause intermittent transitions
from normal rhythm to arrhythmia.

Given additional resources for experimentation, there are
several areas of further study that we would propose. Here
we have idealized the tunicate heart as a homogeneous, one-
dimensional excitable medium. A more refined model might
incorporate tissue heterogeneity and a more accurate descrip-
tion of tunicate heart geometry. The two-current model of
the membrane potential offers a major advantage in that
it lends itself to asymptotic derivation of restitution func-
tions; however, it lacks the level of detail necessary for
postulating physiological bases for reversals. Asymptotic ap-
proximations for APD restitution functions are available for
more physiologically detailed three-current models [25–27].
More detailed models of the action potential (see Ref. [28],
for instance) might offer insights regarding the ionic basis
for reversals. Although asymptotic formulas for APD and
CV are not available for such models, straightforward nu-
merical solution of the differential equations allows one to
explore the effects of model parameters on APD and CV.
Given the resources to perform additional experiments with
adult tunicates, we hope to complete a careful exploration
of pacemaker firing rates and heart rate variability in adult
tunicates.
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