
Chapman University Digital Chapman University Digital 

Commons Commons 

Mathematics, Physics, and Computer Science 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

2008 

Rational Functions Associated To the White Noise Space and Rational Functions Associated To the White Noise Space and 

Related Topics Related Topics 

Daniel Alpay 
Chapman University, alpay@chapman.edu 

David Levanony 
Ben Gurion University of the Negev 

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles 

 Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the Other 

Mathematics Commons 

Recommended Citation Recommended Citation 
D. Alpay and D. Levanony. Rational functions associated to the white noise space and related topics. 
Potential Analysis, vol. 29 (2008) pp. 195-220. 

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and 
Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and 
Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital 
Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Rational Functions Associated To the White Noise Space and Related Topics Rational Functions Associated To the White Noise Space and Related Topics 

Comments Comments 
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Potential 
Analysis, volume 29, in 2008 following peer review. The final publication is available at Springer via DOI: 
10.1007/s11118-008-9094-4 

Copyright 
Springer 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/scs_articles/
420 

http://dx.doi.org/10.1007/s11118-008-9094-4
http://dx.doi.org/10.1007/s11118-008-9094-4
https://digitalcommons.chapman.edu/scs_articles/420
https://digitalcommons.chapman.edu/scs_articles/420


ar
X

iv
:0

80
2.

23
73

v1
  [

m
at

h.
PR

] 
 1

7 
Fe

b 
20

08

Rational functions associated with the white

noise space and related topics

Daniel Alpay and David Levanony

Abstract

Motivated by the hyper-holomorphic case we introduce and study

rational functions in the setting of Hida’s white noise space. The

Fueter polynomials are replaced by a basis computed in terms of the

Hermite functions, and the Cauchy-Kovalevskaya product is replaced

by the Wick product.

Mathematical Subject Classification (2000). Primary: 30G35, 26C15,
60H40; Secondary: 47A99, 32A05.

Keywords: rational functions, Hida’s white noise space, Gleason’s problem,
Wick product, hyperholomorphic functions.

1 Introduction

Consider a K-vector space V spanned by a family of functions (fα)α∈ℓ, where
ℓ is a countable set of indices, and where K denotes either R, C, or the skew
field of quaternions H (in this latter case we assume that V is a right vector
space, to fix the ideas). Define on V an operation by

fα ◦ fβ = fα+β , α, β ∈ ℓ. (1.1)

In general, such a product depends on the basis and need not carry any struc-
ture related to V . There are at least two cases we are aware of, where the
multiplication-like law (1.1) carries much information. The first is the case of
hyper-holomorphic functions. This case corresponds to K = H and ℓ = N3.
The (fα) are the Fueter monomials and ◦ is the Cauchy-Kovalevskaya prod-
uct; see [20], [33]. The second case, which is the topic of the present work,
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corresponds to K = R, and ℓ the space of sequences (αn)n∈N of integers
for which αn = 0 for n sufficiently large; the space V is Kondratiev’s space
(which includes Hida’s white noise space and Hida’s space of distributions),
with the (fα) forming an orthonormal Hilbert space basis of the white noise
space built in terms of the Hermite functions, and ◦ is the Wick product. All
these notions will be reviewed in the sequel.

The notions of rational functions, de Branges Rovnyak spaces and Schur-
Agler classes were introduced for the case of hyper-holomorphic functions in
the papers [8], [9], [10], [11], [12]. The case of Clifford algebra valued func-
tions has been considered in [2]. In the approach developed in these papers,
important tools were the study of the Gleason problem and the introduction
of counterparts of the Leibenzon operators for hyper-holomorphic functions.
The purpose of this paper is to make a similar study within the white noise
space setting. Results obtained in this paper are to be applied to problems
in stochastic system theory, a work to be summarized in a future publication.

To provide further motivation, it is best to first take a detour via several com-
plex variables, and discuss Gleason’s problem and the Leibenzon operators.
Recall that the backward shift operator

R0f(z) =
f(z) − f(0)

z

plays an important role in operator theory and in the theory of linear systems;
see [31], [17]. It has counterparts in several complex variables, as we now
recall: Let f be a function of N complex variables, analytic in a neighborhood
of the origin. Then (see e.g. [34, p. 151]), it holds that

f(z) − f(0) =

∫ 1

0

d

dt
f(tz)dt =

N∑

j=1

zj(Rjf)(z) (1.2)

where Rj denotes the Leibenzon’s backward shift operator (see [30, p. 117-
118])

Rjf(z) =

∫ 1

0

∂f(tz)

∂zj

dt =
∑

α∈NN

αj

|α|cαzα−uj , (1.3)

with
f(z) =

∑

α∈NN

cαzα. (1.4)

2



In (1.3)–(1.4), we have used the the multi-index notation, and, for j =
1, . . . , N , the symbol uj denotes the index with all components equal to
0, with the exception of the k-th, equal to 1. Moreover, α − uj is defined to
be (0, 0, . . . , 0) when one of its entries is strictly negative.

Comparing the definition of R0 with (1.2), suggests that the operators Rj

are a generalization of the backward–shift operator R0. This is indeed the
case, but the situation is more complex: Gleason’s problem for a space M of
functions analytic in a neighborhood of the origin, asks the following: Can
we write for f ∈ M

f(z) − f(0) =

N∑

j=1

zjfj(z)

where fj ∈ M? The operators Rj allow to solve Gleason’s problem in vari-
ous spaces of power series. We refer to [4] for a study of these operators and
to [3] for an extension of the Beurling–Lax theorem using Gleason’s problem
in the setting of the ball.

The paper is written with three different audiences in mind, namely re-
searchers in multi-dimensional system theory, hyper-holomorphic functions
and stochastic analysis. It consists of seven sections besides the introduc-
tion and is organized as follows: In Section 2 we briefly review the hyper-
holomorphic case. This is important because we want to specify the similar-
ities between the Cauchy-Kovalevskaya product and the Wick product. In
Section 3 we review the main properties of Hida’s white noise space. Ratio-
nal functions in the white noise space are defined and studied in Section 4.
In Sections 5 and 6 we study several counterparts of classical spaces in the
stochastic setting. Section 5 is devoted to the Arveson space and its multipli-
ers, while Section 6 is devoted to the counterpart of the Schur-Agler classes
of the polydisk. In the last section we prove a uniqueness result related to the
Leibenzon operators in certain spaces of power series in a countable number
of variables.

A table showing the parallels between the hyper-holomorphic case and the
case of the white noise space is provided at the end of the paper.
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2 The hyper-holomorphic case: a short re-

view

We review the main features of the hyper-holomorphic case relevant to the
present paper. First recall that the skew-filed of quaternions consists of
elements of the form

x = x0e0 + x1e1 + x2e2 + x3e3,

where the xi ∈ R and the ei satisfy the Cayley multiplication table

e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 −e0 e3 −e2

e2 e2 −e3 −e0 e1

e3 e3 e2 −e1 −e0

We set e0 = 1.

The function f : Ω ⊂ R4 → H is called left hyper-holomorphic if

Df :=
∂

∂x0

f + e1

∂

∂x1

f + e2

∂

∂x2

f + e3

∂

∂x3

f = 0. (2.5)

Write f = f0 +e1f1 +e2f2 +e3f3. The components fj of f satisfy the system
of equations

∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
= 0,

∂f0

∂x1
+

∂f1

∂x0
− ∂f2

∂x3
+

∂f3

∂x2
= 0,

∂f0

∂x2
+

∂f1

∂x3
+

∂f2

∂x0
− ∂f3

∂x1
= 0,

∂f0

∂x3
− ∂f1

∂x2
+

∂f2

∂x1
+

∂f3

∂x0
= 0.

(2.6)

One can apply to this system of partial differential equations the Cauchy–
Kovalevskaya theorem: Let ϕ(x1, x2, x3) be a real analytic function from some
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open domain of R3 into H, that is, ϕ is given by four coordinate real-analytic,
real–valued functions

ϕ(x1, x2, x3) = ϕ0(x1, x2, x3) +

3∑

1

eiϕi(x1, x2, x3).

The Cauchy–Kovalevskaya theorem, see [28, Section 1.7], implies that the
system of equations (2.6), with initial conditions

fi(0, x1, x2, x3) = ϕi(x1, x2, x3)

admits a unique real analytic solution in a neighborhood of the origin in R4.
This solution

f(x0, x1, x2, x3) = f0(x0, x1, x2, x3) +

3∑

1

eifi(x0, x1, x2, x3)

is hyper-holomorphic by definition and is called the Cauchy–Kovalevskaya
extension of the function ϕ. We will use the notation

f = CK(ϕ).

Let α = (α1, α2, α3) ∈ N
3 and let ϕ(x) = xα1

1 xα2
2 xα3

3
def.
= xα. The correspond-

ing hyper-holomorphic function is the Fueter monomial ζα. The case where
ϕ(x) = xℓ (ℓ = 1, 2, 3) leads to the hyper-holomorphic variables

ζℓ(x) = xℓ − eℓx0, ℓ = 1, 2, 3,

that is ζℓ = CK(xℓ). The notations

ζ(x) =
(
ζ1(x) ζ2(x) ζ3(x)

)
(2.7)

and
ζ (N)(x) =

(
ζ1(x)IN ζ2(x)IN ζ3(x)IN

)
(2.8)

will prove useful.

The point-wise product of two hyper-holomorphic functions, say f and g,
need not be hyper-holomorphic. Their Cauchy-Kovalevskaya product f ◦ g

5



has been introduced in 1981 by F. Sommen in [33] and is defined as the
Cauchy-Kovalevskaya extension of

f(0, x1, x2, x3)g(0, x1, x2, x3).

It is a hyper-holomorphic function. We set R to be the restriction of a
hyper-holomorphic function to x0 = 0. Then, with x =

(
x1 x2 x3

)
we

have
f ◦ g = CK(R(f)R(g)).

Hence, we have that f ◦ g = g ◦ f if and only if the quaternionic-valued
functions R(f) and R(g) commute.

Note that for the Fueter monomials we have

ζα ◦ ζβ = ζα+β, α, β ∈ N
3.

Every function f hyper-holomorphic in a neighborhood of the origin can be
written as a power series expansion using the Fueter monomials ζα

f =
∑

α∈N3

ζαfα, fα ∈ H,

and the Cauchy-Kovalevskaya product has a nice interpretation in terms of
these expansions: It is a convolution product, also called the Cauchy product:

f ◦ g =
∑

α∈N3

ζα

(
∑

β≤α

fβgα−β

)
.

To define rational functions we first need another definition and a result: If
g is a HN×N–valued hyper-holomorphic function, we denote

gn◦ = g ◦ · · · ◦ g (n times).

If moreover, g(0) = 0, then the series

(IN − g)−◦ def.
=

∞∑

n=0

gn◦ (2.9)

converges in a neighborhood of the origin to a hyper-holomorphic function.
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Theorem 2.1 The following conditions are equivalent:

1. The function f(0, x1, x2, x3) is a rational function of the three real vari-
ables x1, x2 and x3 with values in H (that is, each of its real components
is a rational function of the three real variables x1, x2 and x3 ), and an-
alytic at the origin.

2. We can write

f(x) = D + C ◦ (IN − ζ (N)(x)A)−◦ ◦ ζ (N)(x)B (2.10)

where A, B, C and D are matrices with entries in H of appropriate
dimensions.

3. f is obtained from the Fueter monomials and the quaternions after a
finite number of additions, Cauchy-Kovalevskaya multiplications and
inversions (the latter defined by (2.9)).

Expression (2.10) is called a realization of f centered at the origin, and comes
from system theory; see [17], [24], [25]. Using the abuse of notation

ζ (N)(x) = ζ,

we will write this expression as

f(x) = D + C ◦ (I − ζA)−◦ ◦ ζB.

More explicitly, one can also write (2.10) as

f(x) = D + C(IN − ζ1A1 − ζ2A2 − ζ3A3)
−◦ ◦ (ζ1B1 + ζ2B2 + ζ3B3)

for matrices A1, B1, · · · of appropriate dimensions. Note also that

R(D + C ◦ (I − ζA)−◦ ◦ ζB) = D + C(I − xA)−1xB, (2.11)

and

CK(D + C(I − xA)−1xB) = D + C ◦ (I − ζA)−◦ ◦ ζB. (2.12)
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Definition 2.2 A Hp×q-valued function f hyper-holomorphic in a neighbor-
hood of the origin, is called rational if any of the equivalent conditions in the
previous theorem is in force.

Theorem 2.1 is proved in the above mentioned papers. Here we will give a
short and slightly different proof, both for completeness and because similar
arguments will be used in Section 4.

Proof of Theorem 2.1: We begin by proving the equivalence between the
first two conditions. We recall that any rational Cp×q-valued function W (z)
of N complex variables z1, . . . , zM can be written as

W (z) = D + C(IN − zA)−1zB. (2.13)

In this expression, D = W (0) ∈ Cp×q, N ∈ N and C ∈ Cp×N . Furthermore,
zA = z1A1 + · · ·+ zMAM and zB = z1B1 + · · · zMBM , where the Aj ∈ CN×N

and the Bj ∈ CN×q. This result originated with [19, Theorem 5, p. 107].
A different proof, based on Gleason’s problem, has been recently given in
[5]. The realization (2.13) still holds for real-valued functions of three real
variables. Identifying the quaternions with R4, it is also seen that the realiza-
tion result still holds for quaternionic-valued rational functions of three real
variables. Equation (2.10) then follows directly from (2.12). The converse
follows from (2.11).

To study the equivalence with the third condition we note the following: Since
the first condition is invariant under summation, pointwise multiplication and
pointwise inversion, the sum and product of two hyper-holomorphic functions
of compatible dimensions and the inverse (in the sense of (2.9)), are still
rational. The equivalence with the third condition follows then from the fact
that a rational function of three real variables with quaternionic entries is
obtained after a finite number of sums, products and divisions of monomials
xα. ✷

3 The white noise space and Kondratiev’s space

In the previous section the underlying space was the space of functions hyper-
holomorphic in a neighborhood of the origin. In the setting we will now
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review, the situation is more complex (at least in the present stage of the
theory). The first step is to build the white noise space, and then to go
beyond, to a space of distributions.

To define Hida’s white noise space first set S to be the Schwartz space of
rapidly decreasing functions, and S ′ its topological dual (the space of tem-
pered distributions). We denote by F the σ-algebra of the Borel sets of S ′.
Hida’s white noise space is constructed as follows, using the Bochner-Minlos
theorem. First note that the function

K(s1 − s2) = exp(−‖s1 − s2‖2
L2(R)/2),

is positive in the sense of reproducing kernels in S. Since S is nuclear, there
exits a probability measure P on (S ′,F) such that, for all s ∈ S,

E(eiQs) = e−
‖s‖2

L2(R)
2 , (3.14)

where Qs denotes the linear functional Qs(s
′) = 〈s′, s〉S′,S . See for instance

[26, Théorème 2, p. 342]. Equation (3.14) implies in particular that

E(Qs) = 0 and E(Q2
s) = ‖s‖2

L2(R). (3.15)

W def.
= L2(S ′,F , P ) is the white noise probability space. In accordance with

the notation standard in probability theory, we set Ω = S ′. Thus,

W = L2(Ω,F , P ).

The white noise space W admits a special orthonormal basis (Hα), indexed
by the set ℓ of finite sequences of NN, and is built in terms of the Hermite
functions (which themselves, are constructed by the Hermite polynomials).
We refer the reader to [27, Chapter 2] and to the papers [18], [22, p. 305],
where the main features of the theory are reviewed. Because of the forth-
coming definition of the Wick product (see (3.17) below), it suffices to briefly
recall the definition of the Hα when α = ek, k = 1, 2, . . .. Here, we have de-
noted by ek the element of ℓ with all entries equal to 0, with the exception of
the k-th, being equal to 1. To define Hek

, let ζk be the k-th Hermite function
(which itself is computed in terms of the k-th Hermite polynomial hk). Then,
ζk ∈ S and

Hek
(ω) = hk(〈ω, ζk〉Ω,S).

9



Every F ∈ L2(Ω,F , P ) admits a representation

F =
∑

α∈ℓ

cαHα, (3.16)

with ∑

α∈ℓ

c2
αα! < ∞,

called Wiener-Itô chaos expansion; see [27, Theorem 2.2.4 p. 23].

The Wick product is defined by

Hα♦Hβ = Hα+β, (3.17)

which is reminiscent of the Cauchy–Kovalevskaya product, used in [8], [10]
and [11] to define rational hyper-holomorphic functions, as we have discussed
in the previous section. The Wick product of two elements in the white noise
space need not be in the white noise space; for an example due to Gjessing,
see [27, Example 2.4.8 p. 45]. There is therefore a need to go beyond the
white noise space. Appropriate settings are Kondratiev’s space S−1 and
Hida’s space of distributions. These spaces are defined below (see also [27,
pp. 35-36]), where the notation

(2N)−qα =
∏

j

(2j)−qαj

is used.

Definition 3.1 The Kondratiev space S−1 consists of all formal power series
(3.16) such that ∑

α

c2
α(2N)−qα < ∞ (3.18)

for some q ∈ N.
The Hida space S∗ consists of formal power series (3.16) such that

sup
α

c2
α(2N)−qα < ∞ (3.19)

for some q ∈ N.
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We now introduce two spaces which are the counterparts of the Hardy space
of the polydisk and of the Arveson space, respectively. The case of the
Arveson space is considered in Section 6 and the polydisk case in Section 7.

Definition 3.2 The space P consists of all formal power series (3.16) for
which ∑

α∈ℓ

c2
α < ∞. (3.20)

The Arveson space A consists of all formal power series (3.16) for which

∑

α∈ℓ

α!

|α|!c
2
α < ∞. (3.21)

It is clear that P is included in the Hida space. We will show in Theorem
6.1 below that A is included in the Kondratiev space.

The notion of the Wick product has been used in the development of an Ito-
like calculus for the fractional Brownian; see [18], [21]. The main properties
of the Wick product are listed in [27, p. 43]. We note in particular the
following:

1. The Wick product is independent of the basis; see [27, Appendix D, p.
209].

2. The Wick product differs in general from the point-wise product. They
coincide when at least one of the factors is deterministic (see [27, Ex-
ample 2.4.6, p.43]).

3. The Wick product is not local. See [27, 2.4.10, p.45].

A key property of the basis (Hα) is the following: define a map I such that

I(Hα) = zα,

where α = (α1, α2, . . .) ∈ ℓ, where z = (z1, z2, . . .) ∈ CN and where we use
the classical multi-index notation

zα = zα1
1 · · ·

11



Then,
I(Hα♦Hβ) = I(Hα)I(Hβ) = zα+β

The map I is called the Hermite transform; it exhibits an isomorphism be-
tween the white noise probability space and a certain reproducing kernel
Hilbert space, namely the space of powers series

f(z) =
∑

α

zαfα, with norm ‖f‖2 =
∑

α∈ℓ

|fα|2
α!

.

This space, called the Fock space, has been studied for a long time, see for
instance the 1962 paper of V. Bargmann [16]. It is the reproducing kernel
Hilbert space with reproducing kernel

K(z, w) =
∑

α∈ℓ

zαwα

α!
= e〈z,w〉ℓ2 , z, w ∈ ℓ2. (3.22)

See [16, (10), p. 201].

The analogue of the Cauchy-Kovalesvkaya extension theorem is the following
result; see [27, Theorem 2.6.11, p. 62]. In the statement, (CN)c denotes the
space of finite sequences of complex numbers indexed by the integers, and
(see [27, Definition 2.6.4 p. 59])

Kq(δ) =

{
z ∈ C

N :
∑

α6=0

|z|α(2N)qα < δ2

}
.

Theorem 3.3 [27] Let g(z) =
∑

α∈ℓ gαzα be a power series defined in (CN)c,
and assume that g is absolutely convergent in a domain Kδ

q for some q < ∞
and δ > 0. Then g is the Hermite transform of the element G =

∑
α∈ℓ gαHα,

which belongs to S−1.

For F = (Fℓj) ∈ (S−1)
p×q we define I(F ) = (I(Fℓj)). The following propo-

sitions will be used in the next section. The first claim is [27, Proposition
2.2.6 p. 59], when F is a row-valued function and G is a column-valued func-
tion. The result still holds for matrices of appropriate dimensions, as is seen
by taking component by component. A similar remark holds for the second
claim, which is a consequence of Kondratiev’s theorem (Theorem 3.3 above),
and corresponds to the function f(x) = 1−x in [27, Definition 2.6.14 p. 65].

12



Proposition 3.4 [27] Let F and G be two matrix-valued functions with en-
tries in the Kondratiev space. Then

I(FG) = I(F )I(G) and I(F + G) = I(F ) + I(G),

where in each case, F and G are assumed to be of compatible dimensions.

Proposition 3.5 For F ∈ S−1
p×p

F =
∑

α

HαFα, Fα ∈ R
p×p

such that the constant coefficient is F0 = 0p×p, the von Neumann series

(I − F )−♦ =

∞∑

k=0

F k♦

converges in the Kontratiev space and

I((Ip×p − F )−♦) = (Ip×p − I(F ))−1.

Finally we recall that the Hermite transform allows to reduce convergence in
the Kondratiev space into convergence in terms of power series. The following
result holds (see [27, Theorem 2.8.1 p. 74]).

Theorem 3.6 [27] A sequence of elements F (n) in the Kondratiev space S−1

converges to F ∈ S−1 if there exists δ > 0 and q < ∞ such that I(F (n))
converges to I(F ) pointwise boundedly, or equivalently, uniformly, in Kq(δ).

As a corollary we give a direct application of this theorem. Recall first that
a Hilbert space H is called a sub-Hilbert space of a topological vector space
V if it is included in V and if, moreover, the inclusion is continuous. See [32].

Corollary 3.7 Let H be a reproducing kernel Hilbert space of functions
K(z, w) defined in a neighborhood Kq(δ) and assume that K(z, z) is uni-
formly bounded there. Then, H is a subHilbert space of S−1.

Proof: It suffices to show that the inclusion map is continuous. Let (fk)
be a sequence of elements of H converging to f in the topology of H. The
reproducing kernel property and the hypothesis on K(z, z) implies that the
pointwise convergence is uniform in Kq(δ). ✷
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4 Rational functions

We now define and characterize rational functions in the white noise space.
We follow the methodology of the previous section. As we have already men-
tioned, in the hyper-holomorphic case, the Cauchy-Kovalevskaya theorem
ensures that every H–valued function real analytic in a neighborhood of the
origin, leads to a hyper-holomorphic function. This result applies in partic-
ular when the function is rational. In the stochastic setting, we will define
rational functions in terms of Hermite transforms. The Cauchy-Kovalevskaya
theorem is now replaced by Kondratiev’s theorem (Theorem 3.3 above), and
we need to show that a rational function satisfies the hypothesis of Theorem
3.3. This is done in the first theorem of this section. In the statement we
have set

Hk = Hek
(4.1)

where ek = (0, 0, . . . , 1, 0, 0, . . .) is the element of ℓ with all entries 0, at the
exception of the k-th entry, which is equal to 1.

Theorem 4.1 Let f be a Cp×q-valued rational function, analytic in a neigh-
borhood of the origin. Then f is the image under the Hermite transform of
an element F ∈ (S−1)

p×q. If

f(z) = D + C(IN −
M∑

k=1

zkAk)
−1(

M∑

k=1

zkBk)

is a realization of f , then

F = D + C(IN −
M∑

k=1

HkAk)
−♦♦(

M∑

k=1

HkBk). (4.2)

Proof: The function f is analytic in a neighborhood of the closed ball

Bk,ǫ =

{
(z1, . . . , zM) ∈ C

M ;

M∑

k=1

|zk|2 ≤ ǫ2

}

for some ǫ > 0. Fix r0 > 0. We claim that for q large enough, it holds that

Kq(R0) ⊂ Bk,ǫ. (4.3)
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Indeed, let z ∈ Kq(r0). Then

∑

α6=0

|z|α(2N
qα) < r2

0.

In particular,
M∑

k=1

|zk|2(2k)4qk < r2
0,

and so
M∑

k=1

|zk|2 <
r2
0

24q
.

For q large enough,
r2
0

24q ≤ ǫ2. The first claim of the theorem follows then
from Theorem 3.3, and the second claim follows from Proposition 3.5. ✷

We now present the counterpart of Theorem 2.1. First a remark: The range
of the Hermite functions consists of functions which depend on a countable
number of variables. We say that such a function is rational if it depends only
on a finite number of these variables and is, moreover, a rational function of
these variables.

Theorem 4.2 Let F ∈ (S−1)
p×q. The following are equivalent:

1. I(F ) is a rational function, analytic at the origin.

2. There are N, M ∈ N and matrices D ∈ Rp×q, C ∈ Rp×N , A1, . . . , AM ∈
RN×N and B1, . . . , BM ∈ RN×q such that F is of the form (4.2).

3. F is obtained from the (Hα) after a finite number of additions, Wick
multiplications and inversions (the latter defined as in Proposition 3.5).

Proof: Assume that I(F ) is rational and analytic in a neighborhood of the
origin. By the previous theorem, F is then of the asserted form. The converse
follows by applying the Hermite transform on F . The equivalence with the
third statement follows from the fact that a rational function is obtained
after a finite number of sums, products and divisions of monomials ✷
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Definition 4.3 A function in the white noise space will be called rational if
any of the equivalent conditions in Theorem 4.2 holds.

Theorem 4.4 The Wick product and sum of two rational functions of com-
patible dimensions are rational. If F is rational and invertible at the origin,
then F−1 is also rational.

Proof: This follows from the first definition, since the corresponding prop-
erties for rational functions hold. ✷

5 Realizable functions

We now widen the class of rational functions.

Definition 5.1 An element F =
∑

α cαHα in the white noise space will be
called realizable if its Hermite transform can be written as

I(F )(z) = D + C(I − zA)−1zB

where D = I(F )(0), z = (z1, z2, . . .) and

A =




A1

A2
...


 , B =




B1

B2
...


 ,

and where, moreover, the Aj are operators acting on a common Hilbert space
H and the Bj are bounded operators from C into H. We will say that F is
finitely realizable if H is finite dimensional.

Example 5.2 Let a ∈ ℓ2 of norm strictly less than one, the function

ba(z) =
(1 − |a|2ℓ2)1/2

1 − 〈z, a〉ℓ2
(z − a)(Iℓ2 − a∗a)−1/2 (5.4)

is realizable.
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Indeed,

ba(z) = −(1−|a|2ℓ2)
1/2a(Iℓ2−a∗a)−1/2+(1−|a|2ℓ2)

1/2(1−〈z, a〉ℓ2)−1z(Iℓ2−a∗a)1/2.

The function (5.4) is the infinite dimensional version of the Blaschke factors
in the ball; it satisfies

1 − 〈ba(z), ba(w)〉ℓ2
1 − 〈z, w〉ℓ2

=
1 − |a|2ℓ2

(1 − 〈z, a〉ℓ2)(1 − 〈a, w〉ℓ2)
.

See [30, p. 26], [7, pp. 11-13] for a proof in the unit ball of CN . The proof
presented in this last reference still holds in ℓ2.

Theorem 5.3 The product and sum of two realizable functions of compatible
dimensions are realizable. If F is realizable and invertible at the origin, then
F−1 is also realizable.

Proof: For non square matrices, addition is a special case of multiplication
since

M + N =
(
M Ip

)(Iq

N

)
,

where M and N are p × q matrices. To check that the product of two
realizable functions is still realizable we proceed as follows: let

I(F (k)) = D(k) + C(k)(I − zA(k))−1zB(k), k = 1, 2

be two realizable functions such that the product I(F (1))I(F (2)) makes sense.
Then,

I(F (1))I(F (2)) = (D(1) + C(1)(I − zA(1))−1zB(1))(D(2) + C(2)(I − zA(2))−1zB(2))

= D(1)D(2) +
(
C(1) D(1)C(2)

)(I − zA(1) −zB(1)C(2)

0 I − zA(2)

)−1(
zB(1)D(2)

zB(2)

)

= D + C(I − zA)−1zB,

where A, B, C and D are defined as follows: A =
(
A1 A2 · · ·

)
with

Aℓ =

(
A

(1)
ℓ B

(1)
ℓ C(2)

0 A
(2)
ℓ

)
, ℓ = 1, 2, . . . ,
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and

B =




B1

B2
...


 , where Bℓ =

(
B

(1)
ℓ D(2)

B
(2)
ℓ

)
, ℓ = 1, 2, . . .

These formulas follow from

(
zA(1) zB(1)C(2)

0 zA(2)

)
=

(
z1A

(1)
1 + z2A

(1)
2 + · · · z1B

(1)
1 C(2) + z2B

(1)
2 C(2) + · · ·

0 z1A
(2)
1 + z2A

(2)
2 + · · ·

)

= z1A1 + z2A2 + · · · ,

with the Aℓ as above. A similar argument holds for B. Moreover, C and D
are given by the formula

C =
(
C(1) D(1)C(2)

)
, D = D(1)D(2).

The claim on the inverse follows from the formula

(D + C(I − zA)−1zB)−1 = D−1 − D−1C(I − z(A − BD−1C))−1zBD−1.

This formula is easily verifiable through direct computation. ✷

At present we do not have necessary and sufficient conditions characterizing
realizable functions. Two examples are provided in the next two sections.

6 The Arveson space and multipliers

We study here the Arveson space (see Definition 3.2). Its classical counter-
part plays an important role in multi-dimensional system theory. See [15],
[29].

Theorem 6.1 The Arveson space is a subHilbert space of the Kondratiev
space.

Proof: The Hermite transform of A is the classical Arveson space, the re-
producing kernel Hilbert space with reproducing kernel

kw(z) = (1 − 〈z, w〉ℓ2)−1 =
∑

α∈ℓ

|α|!
α!

zαwα, (6.5)
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where z and w are in the unit ball of ℓ2

B =

{
z ∈ ℓ2 ;

∞∑

k=1

|zk|2 < 1

}
.

At this stage we wish to apply Corollary 3.7. We note that K(z, z) is uni-
formly bounded in the closed ball of radius 1/

√
2

{
z ∈ ℓ2 ;

∞∑

k=1

|zk|2 ≤ 1/2

}
.

But this closed ball is in turn included in Kq(1/
√

2) for any q ≥ 1, and the
proof is easily concluded. ✷

Definition 6.2 A function s, defined in the open unit ball of ℓ2, is a Schur
multiplier if, by definition, the operator of multiplication by s is a contraction
from the classical Arveson space into itself.

Equivalently, s is a Schur multiplier if and only if the kernel

Ks(z, w) =
1 − s(z)s(w)∗

1 − 〈z, w〉ℓ2
is positive in the unit ball of ℓ2. We will denote by H(s) the corresponding
reproducing kernel Hilbert space and Γs = I − MsM

∗
s , where Ms is the

operator of multiplication in the Arveson space. We have

Ks(z, w) = (Γs(kw))(w),

and the range of Γs is dense in H(s), as follows from general results on
operator ranges and reproducing kernel spaces; see for instance [23].

Theorem 6.3 A Schur multiplier is the image under the Hermite transform
of a realizable function in the Kondratiev space.

Proof: A number of related proofs hold for this result in the case where only
a finite number of variables are involved; see for instance [15], [3]. Here we
briefly outline the method of [10, Théorème 2.1], suitably adapted to the case
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of a countable number of variables. We consider the case of a scalar-valued
Schur multiplier (the general case is treated in the same way). We proceed
with the following steps:

STEP 1: The operators of multiplication by the variables Mzk
are bounded

in A and it holds that

∞∑

k=0

Mzk
M∗

zk
= I − C∗C, (6.6)

where Cf = f(0).

One first verifies that M∗
zk

= Rk. The identity (6.6) is then obvious.

STEP 2: Let H(s)∞ be the closure in H(s) ⊕H(s) ⊕ · · · of the functions

wy =




ΓsM
∗
z0

ky

ΓsM
∗
z1

ky
...




where y runs through the open unit ball of ℓ2, and where ky is defined by

(6.5). The formulas

G̃(1) = Ks(z, 0), H̃(1) = s(0)∗

and

T̃ (wy) = Ks(z, y) − Ks(z, 0), F̃ (wy) = s(y)∗ − s(0)∗

define an isometric relation on H(s)∞⊕C into H(s)⊕C with a dense domain.

The proof is as in [10], and uses equality (6.6).

Since the linear relation in the previous step is isometric and densely defined,
it is the graph of an isometric operator. We denote by

(
T F
G H

)

its adjoint.
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STEP 3: It holds that

s(z) = H + G(I −
∞∑

k=0

zkTk)
−1(

∞∑

k=0

zkFk).

As in [10], one first proves that

∞∑

k=0

zk(Tkf)(z) = f(z) − f(0)

∞∑

k=0

zk(Fkf)(z) = s(z) − s(0).

The formula for s is then a direct consequence of these equations. ✷

7 The space P and Schur-Agler classes

We now present another class of realizable functions, related to the space P.
Recall that this space was defined Definition 3.2. As in the previous section,
we consider the scalar case to simplify notation.

Definition 7.1 A function s is in the Schur-Agler class if there exist a family
k1(z, w), k2(z, w), . . . of functions positive in

∏∞
k=1 D, where D denotes the

open unit disk, and such that

1 − s(z)s(w)∗ =

∞∑

ℓ=1

(1 − zℓw
∗
ℓ )kℓ(z, w) (7.1)

there.

In the case of the finite polydisk, these classes originate with the work of
Agler and have been much studied; see [1], [13], [14].

Theorem 7.2 A Schur-Agler multiplier is the Hermite transform of a real-
izable element in the Kondratiev space.
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Proof: We follows the proof given in [12, Section 4.2]. Let H(kℓ) be the
reproducing kernel Hilbert space of functions with reproducing kernel kℓ and
let

H = ⊕∞
ℓ=1H(kℓ),

with norm (
∑∞

ℓ=1 ‖fℓ‖2
H(kℓ)

)1/2. One defines a linear relation on H⊕C×H⊕C

via the formula

Â




w∗
1k(·, w1)

w∗
2k(·, w2)

...


 =




w∗
1(k(·, w1) − k(·, 0))

w∗
2(k(·, w2) − k2(·, 0))

...


 , B̂




w∗
1k(·, w1)

w∗
2k(·, w2)

...


 = s(w)∗−s(0)∗,

and

Ĉ(1) =




k1(·, 0)
k2(·, 0)

...


 , D̂ = s(0)∗.

Then (
Â Ĉ

B̂ D̂

)

extends to an isometric relation, which is the graph of an operator. We
denote by (

A B
C D

)

its adjoint. We have the formula

z(Af)(z) =

∞∑

ℓ=0

(fℓ(z) − fℓ(0)), z(B(z)) = s(z) − s(0),

and

Ch =

∞∑

ℓ=0

fℓ(0), D = s(0).
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We note that the infinite sums above converge because of the Cauchy-Schwartz
inequality. For instance

|
∞∑

ℓ=0

fℓ(0)| = |
∞∑

ℓ=0

〈fℓ, kℓ(·, 0)〉H(kℓ)

≤
∞∑

ℓ=0

‖fℓ‖H(kℓ)

√
kℓ(0, 0)

≤ (
∞∑

ℓ=0

‖fℓ‖2
H(kℓ)

)1/2(
∞∑

ℓ=0

kℓ(0, 0))1/2.

Finally, one has the realization

s(z) = D + C(I −
∞∑

ℓ=1

zℓAℓ)
−1(

∞∑

ℓ=1

zℓBℓ),

where Aℓ = πℓA and Bℓ = πℓB, with πℓ being the orthogonal projection from
H onto Hℓ. ✷

8 The Gleason problem in certain spaces of

power series

Consider a power series in a countable number of variables f(z) =
∑

α∈ℓ zαfα,
convergent in a neighborhood of the origin. The Leibenzon’s operators Rj

can still be defined as power series as in (1.3), and we have:

f(z) − f(0) =
∞∑

j=0

zjRjf(z). (8.1)

We will say that a space of power series in the zj is resolvent-invariant if
Gleason’s problem is solvable with bounded operators Aj :

f(z) − f(0) =

∞∑

j=0

zj(Ajf)(z).
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The space will be called backward-shift invariant if the Aj commute.

We now prove a uniqueness theorem in a collection of spaces of functions
depending on a countable number of variables, which includes in particular
the Fock space, the Arveson space and the infinite polydisk space. The
argument follows the one given in the hyper-holomorphic setting in [12]. For
an earlier result in the setting of power series in finite number of variables, see
[6]. Note that in the theorem we do not assume the operator of multiplication
by zk to be bounded. The theorem holds in particular in the Arveson space
and in the Fock space. In the Fock space the operators of multiplication by
the variables are not bounded.

Theorem 8.1 Let H be a reproducing kernel Hilbert space of functions de-
pending on a countable number of variables z1, . . . , defined in a neighborhood
of the origin, and assume that the Leibenzon operators Rj are uniformly
bounded in H. Any other uniformly commuting solution to Gleason’s prob-
lem, coincides with the Rj.

Proof: Let A1, . . . be a family of commuting and uniformly bounded opera-
tors in H such that

f(z) − f(0) =
∞∑

n=0

zn(Anf)(z).

Since the Aj commute and are uniformly bounded, we can reiterate this
equation and obtain

f(z) =
∑

α∈ℓ

zαCAαf = C(I − zA)−1f,

where C is the operator of evaluation at the origin. In particular,

C(I − zA)−1f ≡ 0 =⇒ f = 0, (8.2)

and replacing f by Akf we have:

(Akf)(z) = C(I − zA)−1Akf.

On the other hand by definition of Rk,

(Rkf)(z) =
∑

α≥ek

zα−ek
αk

|α|CAαf = C(I − zA)−1Akf,
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and so Ak = Rk in view of (8.2). ✷

As a corollary of the preceding theorem we have:

Theorem 8.2 The Leibenzon operators are bounded in the Fock space, in
the Arveson space and in the infinite polydisk space. In particular, they are
the only commutative solution of Gleason’s problem in these spaces.

Proof: Let f(z) =
∑

α∈ℓ zαfα be in the Fock space F . By definition of Rj

and of the norm in the Fock space, we have:

‖Rjf‖F =
∑

α≥ej

α2
j

|α|2f 2
α(α − ej)!

≤
∑

α≥ej

f 2
αα!

≤ ‖f‖2
F .

✷

25



We now give the table presenting the parallels between the hyper-holomorphic
case and the stochastic case.

The setting Hyper-holomorphic case Stochastic case

The underlying space Functions hyper-holomorphic The Kondratiev’s space S−1

at the origin

The building blocks The hyperholomorphic The functions Hek
, k ∈ N

variables ζj, j = 1, 2, 3
Power series expansions
in terms of the Fueter polynomials the functions Hα

The product Cauchy-Kovalesvkaya Wick product

Commutativity When the restrictions to Always commutes
of the product to x0 = 0 commute
Convolution on ”power series”
expansions f ◦ g =

∑
α ζα(

∑
β≤α fβgα−β) f♦g =

∑
α∈ℓ Hα(

∑
β≤α fβgα−β)

Going to the classical case from Restriction to The Hermite transform
the hyper-holomorphic/stochastic the hyperplane x0 = 0
case
From the classical case to the
hyper-holomorphic/stochastic CK extension Kontradiev’s theorem
case (see Theorem 3.3)
Uniqueness theorem for In particular In particular
the Leibenzon’s operators in the Arveson space in the Fock space
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