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NON-COMMUTATIVE STOCHASTIC DISTRIBUTIONS
AND APPLICATIONS TO LINEAR SYSTEMS THEORY

DANIEL ALPAY AND GUY SALOMON

Abstract. In this paper, we introduce a non-commutative space
of stochastic distributions, which contains the non-commutative
white noise space, and forms, together with a natural multiplica-
tion, a topological algebra. Special inequalities which hold in this
space allow to characterize its invertible elements and to develop
an appropriate framework of non-commutative stochastic linear
systems.

1. Introduction

In this paper we introduce and study a non-commutative version of a
space of stochastic distributions, and give applications to mathemat-
ical system theory. To set the problem into perspective, recall that,
in white noise analysis, various spaces of stochastic distributions have
been introduced by Hida, Kondratiev, and others; see [18] and the ref-
erences therein. Among those introduced by Kondratiev, one (denoted
by S−1) plays an important role. It is the dual of a Fréchet nuclear
space, and in particular the increasing union of a countable family of
Hilbert spaces with decreasing norms. S−1 is an algebra when endowed
with the Wick product, and the Wick product satisfies in S−1 an in-
equality, called V̊age inequality. The space S−1 was recently used to
develop a new approach to the theory of linear stochastic systems, when
not only the input is random but also the characteristics of the system.
See [1, 6, 5]. We recently defined a large class of topological algebras,
which also satisfy a V̊age type inequality, and which are furthermore
closed under tensor products. See [7, 8]. For the non-commutative ver-
sion of the white noise and of the white noise space we refer to [28]. The

1991 Mathematics Subject Classification. Primary: 16S99, 60H40, 93B07. Sec-
ondary: 93A25.

Key words and phrases. convolution algebra, non-commutative white noise
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2 DANIEL ALPAY AND GUY SALOMON

non-commutative counterparts of spaces of stochastic distributions, es-
pecially ones which satisfy V̊age type inequalities, do not seem to have
been studied. We begin such a study here, and give applications to
non-commutative linear systems parallel to the one done in [1, 6, 5] for
the Kondratiev space and in [7] for V̊age spaces.

We divide this introduction into three parts. The first two parts are
preliminaries about the commutative case, namely on the white noise
space and on the Kondratiev space S−1 of stochastic distributions. In
the third part we discuss our approach to define a non-commutative
space of stochastic distributions and give an outline of the paper.

1.1. The (commutative) white noise space. To set the framework
of the commutative case we recall the following definitions. Let H be a
separable complex Hilbert space. We consider its n-fold Hilbert spaces
tensor power H⊗n. The symmetric product ◦ is defined by

u1 ◦ · · · ◦ un =
1

n!

∑

σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n),

and the closed subspace of H⊗n generated by all vectors of this form is
called the n-th symmetric power of H, and denoted by H◦n. See [24].
We make the convention H⊗0 = C, and the element 1 ∈ C is called the
vacuum vector and denoted by 1. Two inner products are defined on
H◦n. The first is called the symmetric inner product, and defined by

〈u1 ◦ · · · ◦ un, v1 ◦ · · · ◦ vn〉◦ = per(〈ui, vj〉),

where per(A) is called the permanent of A and has the same definition
as a determinant, with the exception that the factor sgn(σ) is omitted.
The second is called the tensor inner product. It is induced by the
tensor inner product on H⊗n

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉⊗ =
n∏

i=1

〈ui, vi〉.

Therefore, the tensor inner product on H◦n is simply

〈u1 ◦ · · · ◦ un, v1 ◦ · · · ◦ vn〉⊗ =
1

n!2

∑

σ,τ∈Sn

〈uσ(1), vτ(1)〉 · · · 〈uσ(n), vτ(n)〉.

It is clear that ‖ · ‖⊗ = 1
n!
‖ · ‖◦. Assuming (ei)i∈I is an orthonormal

basis of H where I ⊆ N, for α : I → N0 (for simplicity, we denote αi
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instead of α(i)) with a support {i1, . . . , im} (i1 < · · · < im) such that
|α| =∑m

j=1 αij = n, we denote

eα = e
◦αi1
i1

◦ · · · ◦ e◦αim

im
∈ H◦n.

(eα) is clearly an orthogonal basis of H◦n. The squared symmetric
norm of eα is α! = αi1 !αi2! · · ·αim !, and the squared tensor norm is α!

n!
.

The symmetric Fock space over H is the Hilbert space

Γ◦(H) = ⊕∞
n=0H◦n,

with the corresponding symmetric inner product.

For the definition of the white noise space, one usually takes H =
L2(R). Let (en)n∈N be an orthonormal basis of L2(R) (for example, the
Hermite functions). We define the (commutative) white noise space W
as the symmetric Fock space of H = L2(R). Thus, denoting by ℓ the
free commutative monoid generated by N0, that is,

ℓ = N
(N)
0 =

{
α ∈ N

N

0 : supp(α) is finite
}
,

and setting ν(α) = α! we conclude that

W = Γ◦(H) =

{
∑

α∈ℓ

fαeα :
∑

α∈ℓ

|fα|2α! < ∞
}

= L2(ℓ, ν).

For more information on symmetric and non-symmetric Fock spaces
we refer to [23, 24].

In this paper, we do not use any realization of the white noise space.
Nevertheless, it is worth to mention that the classical realization is as
the L2-space of Gaussian white noise. More precisely, given a nu-
clear countably Hilbert space E which is densely and continuously
imbedded in L2(R), the Bochner-Minlos theorem insures the existence
of a probability measure P on the Borel σ-algebra of E ′ such that

e−
1
2
‖ϕ‖2

L2 =
∫
E′ e

i〈f,ϕ〉dP (f). The space L2(E
′,B, P ) is called the Gauss-

ian white noise space, and it is isomorphic to the symmetric Fock space
Γ◦(H), via the Wiener-Itô-Segal isomorphism. For more information,
see for instance [19, pp 162-163].

1.2. The Wick product and the (commutative) Kondratiev
space of stochastic distributions. The standard multiplication of
two elements in the white noise space is called the Wick product.
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Definition 1.1. The Wick product is defined by (f, g) 7→ f◦g whenever
it make sense. In terms of the basis, we obtain that

f ◦ g =

(
∑

α∈ℓ

fαeα

)
◦
(
∑

α∈ℓ

gαeα

)
=
∑

α∈ℓ

(
∑

β≤α

fβgα−β

)
eα.

As it is obvious from its definition, the Wick product is actually a
convolution of functions over the monoid ℓ. It is well known that W
is not closed under it; see Remark 2.6. On the other hand, the dual
of the Kondratiev space S1 of stochastic test functions, namely the
Kondratiev space S−1 of stochastic distributions, is closed under the
Wick product. The space S1 is defined as follows:

S1 =

{
∑

α∈ℓ

fαeα :
∑

α∈ℓ

|fα|2(2N)αp(α!)2 < ∞ for all p ∈ N

}
,

where (2N)α = 2α1 ·4α2 ·6α3 · · · . It is a countably normed Hilbert space
(in the language of Gelfand) which is a subspace of the white noise
space W. Its dual with respect to the center space W, namely, the
Kondratiev space of stochastic distributions S−1, can be viewed as

S−1 =

{
∑

α∈ℓ

fαeα :
∑

α∈ℓ

|fα|2(2N)−αp < ∞ for some p ∈ N

}

=
⋃

p

L2(ℓ, µ−p),

where µ−p is the point measure defined by

µ−p(α) = (2N)−αp.

Together with the white noise space these two spaces form the Gelfand
triple (S1,W,S−1). These two spaces S1 and S−1 are both nuclear
(the latter when endowed with the strong topology), a property which
allows to consider Hom(S1,S−1) as an appropriate framework for the
theory of stochastic linear systems thanks to Schwartz’ kernel theorem;
see [29, 30] for applications of the latter to the theory of non random
linear systems. Furthermore, S−1 is closed under the Wick product.
More precisely, the following result holds (see [18]):

Theorem 1.2 (V̊age, 1996). In the space S−1 =
⋃

p L
2(ℓ, µ−p) it holds

that,

(1.1) ‖f ◦ g‖q ≤ Aq−p‖f‖p‖g‖q,
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(where ‖ · ‖p denotes the norm of L2(ℓ, µ−p)) for any q ≥ p + 2, and
for any f ∈ L2(ℓ, µ−p), g ∈ L2(ℓ, µ−q), with

Aq−p =

(
∑

α∈ℓ

(2N)−α(q−p)

) 1
2

< ∞

We note that the finiteness of Aq−p was proved by Zhang in [31]. It
follows from (1.1) that the multiplication operator

Mf : g 7→ f ◦ g
is bounded from the Hilbert space L2(ℓ, µ−q) into itself where f ∈
L2(ℓ, µ−p) and q ≥ p + 2. This also allows us to consider power series.
If
∑∞

n=0 anz
n converges in the open disk with radius R, then for any

f ∈ L2(ℓ, µ−p) with ‖f‖p < R
A2
, we obtain

∞∑

n=0

|an|‖f ◦n‖p+2 ≤
∞∑

n=0

|an|(Aq−p‖f‖p)n < ∞,

and hence
∑∞

n=0 anf
◦n ∈ L2(ℓ, µ−(p+2)). In this way we are also able to

consider the invertible elements of the algebra S−1. These properties
among others, which follows by V̊age inequality, are the key tools for
the applications described at the beginning.

1.3. The non-commutative case and an outline of the paper.
In a similar way, the non-commutative white noise space is defined by
the full Fock space

Γ(H) = ⊕∞
n=0H⊗n,

where again, one takes H0 = L2(R), but other choices of H0 are pos-

sible. Denoting by ℓ̃ the free (non-commutative) monoid generated by

N, the space W̃ is isometrically isomorphic to L2(ℓ̃, ν), where ν is now
the counting measure (the α! disappeared since we are no longer in
the symmetric case). The non-commutative Wick product is defined

by (f, g) 7→ f ⊗ g, and in view of proposition 2.5, W̃ is not closed

under it. The counterpart of S−1 is now of the form
⋃

p L
2(ℓ̃, µ̃−p)

where the measures µ̃−p are defined by (2.1). In the construction of
the non-commutative version of the Kondratiev space of stochastic dis-
tributions, an inequality similar to the one presented in Theorem 1.2
will be seen to hold.

The outline of the paper is as follows: In Section 2 we construct the

non-commutative version of the Kondratiev space, S̃−1. In Section
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3, we discuss about second quantization, and present an inequality

which holds in S̃−1. Power series, invertible elements and some other

properties presented in Section 4. In Section 5, we consider S̃−1 as an
appropriate framework to stochastic linear systems.

2. The white noise space and the Kondratiev space of

stochastic distributions - the non-commutative case

To define the non-commutative version of the Gelfand triple (S1,W,S−1),
two approaches are possible. In the first one, we replace the free
commutative monoid generated by N, namely ℓ, with the free non-

commutative monoid ℓ̃ generated by N. To ease the notation, we in
fact consider a family of (pairwise distinct) symbols (zn)n∈N indexed
by N, and consider equivalently the free non-commutative monoid they
generate:

ℓ̃ = N
∗

∼= {zα1
i1
zα2
i2

· · · zαn

in : n ∈ N, i1 6= i2 6= · · · 6= in ∈ N, α1, . . . , αn ∈ N} ∪ {1}
∼= {zi1zi2 · · · zim : m ∈ N, i1, . . . , in ∈ N} ∪ {1}.

We also consider the induced partial order, that is for α, β ∈ ℓ̃, we

define α ≤ β if there exists γ ∈ ℓ̃ such that αγ = β.

For α = zα1
i1
zα2
i2

· · · zαn

in ∈ ℓ̃ (where i1 6= i2 6= · · · 6= in) we define

(2N)α =
n∏

k=1

(2ik)
αk =

∏

j∈{i1,...,in}

(2j)(
∑

k:ik=j αk).

We define the measures ν̃(α) = 1 for every α ∈ ℓ̃ and for p ∈ Z,

(2.1) µ̃p(α) = (2N)αp.

Definition 2.1. We call L2(ℓ̃, ν̃) the non-commutative white noise

space and we denote it by W̃. Similarly, S̃1 =
⋂

p∈NL
2(ℓ̃, µp) and

S̃−1 =
⋃

p∈NL
2(ℓ̃, µ−p), topologized as a countably Hilbert space and

as its strong dual respectively, will be called the non-commutative Kon-
dratiev space of stochastic test functions and the non-commutative Kon-
dratiev space of stochastic distributions respectively.

In the second approach to consider the non-commutative version of the
triple (S1,W,S−1) we replace the symmetric Fock space with the full
Fock space. Recall that the full Fock space over H is the Hilbert space

Γ(H) = ⊕∞
n=0H⊗n.
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Assuming (ei)i∈I is an orthonormal basis of H, for α = zα1
i1
zα2
i2

· · · zαm

im

(where i1 6= i2 6= · · · 6= im ∈ I), such that |α| =
∑m

j=1 αj = n, we
denote

eα = e⊗α1
i1

⊗ · · · ⊗ e⊗αm

im
∈ H⊗n.

(eα) is clearly an orthonormal basis of H⊗n (with respect to the tensor
inner product 〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 =

∏n
i=1〈ui, vi〉).

As in the commutative case we make the choice H = L2(R) and denote
by (en)n∈N an orthonormal basis of it (e.g. the Hermite functions). For
any p ∈ Z, we denote

Hp =

{
∞∑

n=1

fnen :
∞∑

n=1

|fn|2(2n)p < ∞
}

∼= L2(N, (2n)p).

Remark 2.2. We note that

· · · ⊆ H2 ⊆ H1 ⊆ H0 ⊆ H−1 ⊆ H−2 ⊆ · · · ,

and that
⋂

pHp is the Schwartz space of rapidly decreasing complex

smooth functions (in case we indeed choose (en) to be the Hermite
functions) and

⋃
pHp is its dual, namely the Schwartz space of complex

tempered distributions.

Theorem 2.3. It holds that

S̃1 =
⋂

p∈N

Γ(Hp), W̃ = Γ(H0), and S̃−1 =
⋃

p∈N

Γ(H−p).

Proof. Clearly ((2n)−p/2en) is an orthonormal basis of Hp. Hence,

e(p)α = ((2i1)
−p/2ei1)

◦αi1 ◦ · · · ◦ ((2im)−p/2eim)
◦αim

=

m∏

j=1

(2ij)
−αij

p/2eα

= (2N)−αp/2eα

is an orthonormal basis of Γ(Hp). Thus,

Γ(Hp) =




∑

α∈ℓ̃

fαeα :
∑

α∈ℓ̃

|fα|2(2N)αp < ∞



 ,
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and so

⋂

p∈N

Γ(Hp) =




∑

α∈ℓ̃

fαeα :
∑

α∈ℓ̃

|fα|2(2N)αp < ∞ ∀p ∈ N





=
⋂

p

L2(ℓ̃, µp)

= S̃1,

Γ(H0) =




∑

α∈ℓ̃

fαeα :
∑

α∈ℓ̃

|fα|2 < ∞



 = L2(ℓ̃, ν) = W̃ ,

and

⋃

p∈N

Γ(H−p) =




∑

α∈ℓ̃

fαeα :
∑

α∈ℓ̃

|fα|2(2N)−αp < ∞ for some p ∈ N





=
⋃

p

L2(ℓ̃, µ−p)

= S̃−1.

�

As was mentioned in the commutative case, we do not use in this paper
any realization of the white noise space. Similarly to the commutative
case, there is an isomorphism between the full Fock space Γ(H0) (i.e.
the non-commutative white noise space) and the L2-space of the free
white noise, namely L2(τ), where τ is a free expectation. For more
information, we refer to the paper [11] of M. Bożejko and E. Lytvynov.

Definition 2.4. The Wick product is defined by (f, g) 7→ f ⊗ g when-
ever it make sense. In terms of the basis we obtain

f ⊗ g =


∑

α∈ℓ̃

fαeα


⊗


∑

α∈ℓ̃

gαeα


 =

∑

α∈ℓ̃

(
∑

β≤α

fβgβ−1α

)
eα,

where β ≤ α means that there exists there exists (a unique) γ ∈ ℓ̃ such
that α = βγ, and β−1α stands for γ.

Thus, the Wick product is the convolution of functions over the monoid

ℓ̃.

Proposition 2.5. W̃ is not closed under the Wick product.
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Proof. Let ι : ℓ2(N) → W̃ be the embedding defined by

〈ι(f), eα〉 =
{
fn if α = zn1
0 otherwise

(where f = (fn) ∈ ℓ2(N)), and let f, g ∈ ℓ2(N) such that ‖f ∗ g‖ = ∞,
where ∗ denotes the standard convolutions of two elements in ℓ2(N).
Then,

‖ι(f)⊗ ι(g)‖ = ‖f ∗ g‖ = ∞.

�

Remark 2.6. The reason why the commutative white noise space is
not closed under the symmetric Wick product is similar. We can simply
define η : ℓ2(N) → W by

〈η(f), eα〉 =
{
fn/

√
n! if α = (n, 0, 0, . . .)

0 otherwise

(where f = (fn) ∈ ℓ2(N)). Thus, for non-negative sequences f, g ∈
ℓ2(N) such that ‖f ∗ g‖ = ∞,

‖η(f)⊗ η(g)‖2 =
∑

n

(
n∑

k=1

1√
k!(n− k)!

fkgn−k

)2

n!

≥
∑

n

(
n∑

k=1

fkgn−k

)2

= ‖f ∗ g‖2

= ∞.

Similar to the commutative case, it will be shown in the sequel that

S̃−1 is closed under the Wick product, and moreover it satisfies an
inequality similar to the one that was presented in Theorem 1.2.

3. Second quantization and an inequality of tensor

product

Let K0 be a separable Hilbert space, and let (en)n∈N be an orthonormal
basis of K0. Furthermore, let (an)n∈N be a sequence of real numbers
greater than or equal to 1. For any p ∈ Z, we denote

Kp =

{
∞∑

n=1

fnen :
∞∑

n=1

|fn|2apn < ∞
}

∼= L2(N, apn).
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We note that

· · · ⊆ K2 ⊆ K1 ⊆ K0 ⊆ K−1 ⊆ K−2 ⊆ · · · ,
where the embedding Tq,p : Kq →֒ Kp satisfies

‖Tq,pa
−q/2
n en‖p = a−(q−p)/2

n ‖a−p/2
n en‖q,

and hence

‖Tq,p‖HS =

√∑

n∈N

a
−(q−p)
n .

The dual of a Fréchet space is nuclear if and only if the initial space is
nuclear. Thus,

⋃
p∈NK−p is nuclear if and only if

⋂
p∈N Kp is nuclear.

This is turn will hold if and only if for any p there is some q > p such
that ‖Tq,p‖HS < ∞, that is, if and only if there exists some d > 0 such
that

∑
n∈N a

−d
n converges. We note that in this case, d can be chosen

so that ∑

n∈N

a−d
n < 1.

We call the smallest integer d which satisfy this inequality the index of⋃
p∈NK−p. In this section we show that if

⋃
p∈NK−p is nuclear of index

d, then
⋃

p∈N Γ(K−p) has the property that

‖f ⊗ g‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q and ‖g ⊗ f‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q
for all q ≥ p + d, where ‖ · ‖p is the norm associated to Γ(K−p), and
‖Γ(Tq,p)‖HS is finite. The case an = 2n (and hence d = 2) corresponds
to the non-commutative Kondratiev space, and is discussed in the next
section.

Definition 3.1. Let T : H1 → H2 be a bounded linear operator between
two separable Hilbert spaces. Then T⊗n : H⊗n

1 → H⊗n
2 , defined by

T⊗n(u1 ⊗ · · · ⊗ un) = Tu1 ⊗ · · · ⊗ Tun,

is a bounded linear operator between H⊗n
1 and H⊗n

2 . When T is a con-
traction, it induces a bounded linear operator Γ(H1) → Γ(H2), denoted
by Γ(T ), and called the second quantization of T .

Let (λn) be a sequence of non-negative numbers. For α = zα1
i1
zα2
i2

· · · zαn

in ∈
ℓ̃ (where i1 6= i2 6= · · · 6= in) we denote

λα
N
=

n∏

k=1

λαk

ik
=

∏

j∈{i1,...,in}

λ
(
∑

k:ik=j αk)
j .
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We recall that if T : H1 → H2 is a compact operator between two
separable Hilbert spaces, then

Tf =

∞∑

n=1

λn〈f, en〉hn

where (en)n∈N and (hn)n∈N are orthonormal basis of H1 and H2 re-
spectively and where (λn) is a non-negative sequence converging to
zero. Conversely, any such a decomposition defines a compact opera-
tor H1 → H2 (see for instance [25]).

Theorem 3.2. Let T : H1 → H2 be a compact contraction operator
between two separable Hilbert spaces with

Tf =
∞∑

n=1

λn〈f, en〉hn

where (en)n∈N and (hn)n∈N are orthonormal basis of H1 and H2 respec-
tively and where (λn) is a non-negative sequence converging to zero.
Let Γ(T ) be its second quantization as in Definition 3.1. Then,

(a) It holds that

Γ(T )f =
∑

α∈ℓ̃

λα
N
〈f, eα〉hα,

where (eα)α∈ℓ̃ and (hα)α∈ℓ̃ are orthonormal basis of Γ(H1) and
Γ(H2) respectively.

(b) If furthermore T is an Hilbert-Schmidt operator, i.e. (λn) ∈ ℓ2(N),
then

‖Γ(T )‖2HS =
∞∑

n=0

‖T‖2nHS.

In particular, Γ(T ) is a Hilbert-Schmidt operator if and only if T
is a Hilbert-Schmidt operator with ‖T‖HS < 1 and in this case we
obtain

‖Γ(T )‖HS =
1√

1− ‖T‖2HS

Proof. For any α ∈ ℓ̃ let eα = e⊗α1
i1

⊗ · · ·⊗ e⊗αm

im and hα = h⊗α1
i1

⊗ · · · ⊗
h⊗αm

im
. Then, (eα)α∈ℓ̃ and (hα)α∈ℓ̃ are orthonormal basis of H1 and H2

respectively.

(a) We have that

Γ(T )eα = (Tei1)
⊗α1 ⊗ · · · ⊗ (Teim)

⊗αm

= (λi1hi1)
⊗α1 ⊗ · · · ⊗ (λimhim)

⊗αm

= λα
Nhα.
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Thus, by the linearity and continuity of Γ(T ),

Γ(T )f =
∑

α∈ℓ̃

λα
N
〈f, eα〉hα.

(b) We have that

‖Γ(T )‖2HS =
∑

α∈ℓ̃

‖Γ(T )eα‖2

=

∞∑

n=0

∑

α∈ℓ̃,|α|=n

‖T⊗neα‖2

=

∞∑

n=0

∑

α∈ℓ̃,|α|=n

∞∏

i=1

‖Tei‖2αi

=

∞∑

n=0

∑

α∈ℓ̃,|α|=n

n!

α!

∞∏

i=1

‖Tei‖2αi .

Considering an experiment with N results, where the probability of
the result i is pi = ‖T‖−2

HS‖Tei‖2 (and so
∑

pi = 1), the probability
that repeating the experiment n times yields that the result i occurs
αi times for any i is

n!

α!

∞∏

i=1

pαi

i = ‖T‖−2n
HS

n!

α!

∞∏

i=1

‖Tei‖2αi .

Thus,
∑

α∈ℓ̃,|α|=n

n!

α!

∞∏

i=1

‖Tei‖2αi = ‖T‖2nHS,

and we obtain the requested result.

�

Theorem 3.3. If
⋃

p∈NK−p is nuclear of index d, then
⋃

p∈N Γ(K−p) is
nuclear and has the property that

‖f ⊗ g‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q and ‖g ⊗ f‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q
for all q ≥ p + d, where ‖ · ‖p is the norm associated to Γ(K−p), and
where

‖Tq,p‖HS =
∑

α∈ℓ̃

a
−α(q−p)
N

=
1√

1−
∑

n∈N a
−(q−p)
n

.
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Proof. Denoting bα = aα
N
, we have that

Γ(K−p) =



(fα)α∈ℓ̃ :

∑

α∈ℓ̃

|fα|2b−p
α < ∞



 .

Since
⋃

p∈N K−p is nuclear of index d,

‖Tq,p‖2 =
∑

n∈N

a−(q−p)
n < 1 for any q ≥ p+ d

In view of Theorem 3.2, Γ(Tq,p) is Hilbert-Schmidt and

∑

α∈ℓ̃

b−(q−p)
α =

∑

α∈ℓ̃

a
−α(q−p)
N

= ‖Γ(Tq,p)‖2HS =
1

1− ‖Tq,p‖2HS

< ∞.

Since for any α = zα1
i1
zα2
i2

· · · zαn

in
∈ ℓ̃ and β = zβ1

j1
zβ2

j2
· · · zβm

im
∈ ℓ̃ it holds

that

bαbβ = aα
N
aβ
N
=

n∏

k=1

aαk

ik
·

m∏

l=1

aβl

il
= aαβ

N
= bαβ ,

for any f ∈ Γ(H−p) and g ∈ Γ(H−q) we obtain

‖f ⊗ g‖2q =
∑

γ∈ℓ̃

∣∣∣∣∣
∑

α≤γ

fαgα−1γb
−q/2
γ

∣∣∣∣∣

2

≤
∑

γ∈ℓ̃

(
∑

α≤γ

|fα|b−q/2
α |gα−1γ |b−q/2

α−1γ

)2

=
∑

γ∈ℓ̃

(
∑

α,α′≤γ

|fα|b−q/2
α |fα′ |b−q/2

α′ |gα−1γ|b−q/2
α−1γ |g(α′)−1γ |b−q/2

(α′)−1γ

)

≤
∑

α,α′∈ℓ̃

(
|fα|b−q/2

α |fα′ |b−q/2
α′

∑

γ≥α,α′

|gα−1γ|b−q/2

α−1γ |g(α′)−1γ|b−q/2

(α′)−1γ

)

≤


∑

β∈ℓ̃

|fβ|b−p/2
β




2
∑

β∈ℓ̃

|gβ|2b−q
β




1
2

∑

β∈ℓ̃

|gβ|2b−q
β




1
2

≤


∑

β∈ℓ̃

b
−(q−p)
β




∑

β∈ℓ̃

|fβ|2b−p
β




∑

β∈ℓ̃

|gβ|2b−q
β




= ‖Γ(Tq,p)‖2HS‖f‖2p‖g‖2q.
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The second inequality is obtained in the same manner since

(f ⊗ g)γ =
∑

α,β∈ℓ̃
αβ=γ

fαgβ =
∑

α,β∈ℓ̃
βα=γ

fβgα.

�

4. The algebra of the non-commutative Kondratiev space

of stochastic distributions

We now specialize the results of the preceding section to an = 2n, and
denote by Hp the corresponding spaces:

Hp =

{
∞∑

n=1

fnen :

∞∑

n=1

|fn|2(2n)p < ∞
}

∼= L2(N, (2n)p),

Denoting by Tq,p the embedding Hq →֒ Hp, it holds that

‖Tq,p‖2HS =
∑

n∈N

(2n)−(q−p) = 2−(q−p)ζ(q − p),

where ζ denotes Riemann’s zeta function. Since for any s ≥ 2, ζ(s) <
2s, for any q ≥ p + 2, ‖Tq,p‖HS < 1. In view of Theorems 3.2 and 3.3
we obtain the following result:

Theorem 4.1. (a) The non-commutative Kondratiev spaces S̃1 and

S̃−1 are both nuclear spaces.
(b) For any q ≥ p+ 2,

B2
q−p =

∑

α∈ℓ̃

(2N)−α(q−p) =
1

1− 2−(q−p)ζ(q − p)
,

where Bq−p = ‖Γ(Tq,p)‖HS.
(c) For any q ≥ p+ 2 and for any f ∈ Γ(H−p) and g ∈ Γ(H−q)

(4.1) ‖f ⊗ g‖q ≤ Bq−p‖f‖p‖g‖q and ‖g ⊗ f‖q ≤ Bq−p‖f‖p‖g‖q
where ‖ · ‖p is the norm associated to Γ(H−p).

We now show that the non-commutative Wick product is continuous.
We first need the following proposition.

Proposition 4.2. Let f ∈ S̃−1. Then the linear mappings La : x 7→ ax,
Ra : x 7→ xa are continuous.
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Proof. Suppose that f ∈ Γ(H−p), and let La|Γ(H−r) : Γ(H−r) → S̃−1

be the restriction of the map La to Γ(H−r). If B is a bounded set of
Γ(H−r) then in particular we may choose q ≥ p+2 such that q ≥ r, so
B ⊆ {g ∈ Γ(H−q) : ‖g‖q < λ}. Thus, for any g ∈ B

‖La|Γ(H−q)(g)‖q ≤ Bq−pλ‖g‖q.
Hence, La|Γ(H−q)(B) is bounded in Γ(H−q) and hence in S̃−1. Thus,

for any r, La|Γ(H−r) : Γ(H−r) → S̃−1 is bounded and hence continuous.

Since S̃−1 =
⋃

p∈N Γ(H−p) is a strong dual of the reflexive Fréchet space

S̃1 =
⋂

p∈N Γ(Hp), it is the inductive limit of the Hilbert spaces Γ(H−p)

(see [10, IV.23]). So by the universal property of inductive limits, La

is continuous. The proof for Ra is similar. �

Theorem 4.3. The Wick product is a continuous function S̃−1×S̃−1 →
S̃−1 in the strong topology. Hence (S̃−1,+,⊗) is a topological C-algebra.

This follows immediately from Proposition 4.2 together with the fol-
lowing theorem, proved in [10, IV.26].

Theorem 4.4. Let E1 and E2 be two reflexive Fréchet spaces, and
let G a locally convex Hausdorff space. For i = 1, 2, let Fi be the
strong dual of Ei. Then every separately continuous bilinear mapping
u : F1 × F2 → G is continuous.

As a matter of fact, the topology of the space S̃−1 itself is hardly used,
and most of the applications only its “local topology”, i.e. the topology
of the Hilbert spaces Γ(H−p). Nonetheless, we give here, as a remark,
a brief discussion about its topology and about the relations of this
topology to the topologies of the Hilbert spaces Γ(H−p).

Remark 4.5. S̃−1 carries out a priori two natural topologies. The

first is its topology as a strong dual of Fréchet space (namely, S̃1).
This topology was in our mind during our discussion up to now (see
Definition 2.1). Two of the main properties of this topology is that

any bounded set of S̃−1, is bounded in some Hilbert space Γ(H−p), and
that if the Fréchet space is nuclear (as in our case), then so is its strong
dual (see Theorem 4.1(a) and (see [10, IV.21-26, §3] and [15, §5] for
references on this fact).

The second topology is its topology as an inductive limit of the locally
convex spaces (which are actually Hilbert spaces) Γ(H−p), i.e. the finest

locally convex topology such that the embeddings Γ(H−p) →֒ S̃−1 are
continuous. There are two main properties of this topology which are
worth mentioning. The first is that it satisfies the universal property



16 DANIEL ALPAY AND GUY SALOMON

of an inductive limit, i.e. any linear map from an inductive limit of
a family of locally convex spaces to another locally convex space is
continuous if and only if the restriction of the map to any of members
of the family is continuous (see [10, II.29]). The second property is that
in case the inductive limit is of Banach spaces (recall that in our case
they are Hilbert spaces), then the inductive limit is bornological (see
[10, III.11-13, §2]) and barreled (see [10, III.24-25, §4]). In our case,
where the “building block” spaces Γ(H−p) are Hilbert spaces (actually,
reflexive Banach spaces is enough), these two topologies coincide (see
the proof of [10, IV.23, Proposition 4.]). Furthermore, a nice property
holds: since the embeddings of Γ(H−p) in Γ(H−q) for any q ≥ p + 2
are compact (see Theorem 4.1(b), where it is stated that they are

nuclear, so in particular compact), the topology of S̃−1 is the finest
topology (rather than the finest locally convex topology) such that the

embeddings Γ(H−p) →֒ S̃−1 are continuous (see [10, III.6, Lemma 1.]).

Note that the topological C-algebra (S̃−1,+,⊗) is unital, where the

unit element is e0 = 1 which is also the vacuum vector of W̃ embedded
in S̃−1.

Definition 4.6. Let f =
∑

α∈ℓ̃ fαeα ∈ S̃−1. Then, f0 ∈ C is called the
generalized expectation of f and is denoted by E[f ].

From this definition we have

E[f ⊗ g] = E[f ]E[g] and E[1] = 1 ∀f, g ∈ S−1.

Thus, E : S̃−1 → C is a unital algebra homomorphism. In the sequel,
we will see it is the only homomorphism with this property (see Propo-
sition 4.11). Note also that for any p ∈ F, |E(f)| = |f0| ≤ ‖f‖p. Since
as the strong dual of the reflexive Fréchet space S̃1 =

⋂
p∈N Γ(Hp) ,S̃−1

is the inductive limit of the Hilbert spaces Γ(H−p), by the universal
property of inductive limits, E is continuous.

Proposition 4.7. For any f ∈ S̃−1 such that E[f ] = 0, it holds that
limq→∞ ‖f‖q = 0.

Proof. Let f =
∑

α∈ℓ̃ fαeα ∈ Γ(H−p) with f0 = 0. Then for all α ∈ ℓ̃
we have

lim
q→∞

|fα|2(2N)−qα = 0,

and for all q > p,

|fα|2(2N)−qα ≤ |fα|2(2N)−pα,
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where
∑

α∈ℓ̃ |fα|2a−p
α = ‖f‖2p < ∞. Thus, the dominated convergence

theorem implies

lim
q→∞

‖f‖2q = lim
q→∞

∑

α∈ℓ̃

|fα|2(2N)−qα =
∑

α∈ℓ̃

lim
q→∞

|fα|2(2N)−qα = 0.

�

Proposition 4.8. Let f be in Γ(H−p). Then

f⊗n ∈ Γ(H−(p+2)) ∀n ∈ N.

Moreover,

‖f⊗n‖p+2 ≤ Bn
2 ‖f‖np .

Proof. Obviously, f 0 = 1 ∈ Γ(H−(p+2)), and ‖f 0‖p+2 = A(2)0‖f‖0p.
By induction,

‖f⊗(n+1)‖p+2 = ‖f ⊗ f⊗n‖p+2

≤ B2‖f‖p‖f⊗n‖p+2

≤ Bn
2 ‖f‖n+1

p < ∞
�

More generally, given a polynomial p(z) =
∑N

n=0 pnz
n (pn ∈ C), we

define its Wick version p : S̃−1 → S̃−1 by

p(f) =
N∑

n=0

pnf
⊗n

By Proposition 4.8, we have that p(f) ∈ S̃−1 for f ∈ S̃−1. The following
proposition considers the case of power series.

Proposition 4.9. Let φ(z) =
∑∞

n=0 φnz
n be a power series (with com-

plex coefficients) which converges absolutely in the open disk with radius

R. Then for any f ∈ S̃−1 such that |E[f ]| < R
B2

it holds that

φ(f) =
∞∑

n=0

φnf
⊗n ∈ S̃−1.

Proof. Applying Proposition 4.7, there exists q such that

‖f − E(f)‖q <
R

B2

− |E[f ]|.

Therefore,

‖f‖q ≤ ‖f − E(f)‖q + |E(f)| < R

B2

.
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By Proposition 4.8, for all p ≥ q + 2,

∞∑

n=0

|φn|‖f⊗n‖p ≤
∞∑

n=0

|φn|Bn
2 ‖f‖nq

=

∞∑

n=0

|φn|(B2‖f‖q)n

< ∞.

Since Γ(H−p) is a Hilbert space, φ(f) =
∑∞

n=0 φnf
⊗n ∈ Γ(H−p). Thus,

φ(f) ∈ S̃−1. �

Proposition 4.10. An element f ∈ Γ(H−p) is invertible if and only if
E[f ] is invertible.

Proof. If E[f ] 6= 0, we can assume that E[f ] = 1. By Proposition 4.9

we have that
∑∞

n=0(1− f)⊗n ∈ S̃−1. Furthermore,

f ⊗
(

∞∑

n=0

(1− f)⊗n

)
= 1.

Conversely, assume f invertible. Then there exists f−1 ∈ S̃−1 such that
f ⊗ f−1 = 1. Hence, E[f ]E[f−1] = E[f ⊗ f−1] = 1. �

Proposition 4.11. The following properties hold:

(a) The set of all invertible elements in S̃−1, denoted by GL(S̃−1), is
open.

(b) The spectrum of f ∈ S̃−1, σ(f) = {λ ∈ C : f −λ is not invertible }
is the singleton {E[f ]}.

(c) E is the only homomorphism S̃−1 → C which is unital.

Proof.

(a) By Proposition 4.10, we have that {f ∈ S̃−1 : E[f ] 6= 0} is the set

of all invertible elements in S̃−1. In other words, GL(S̃−1) is the
inverse image of GL(C) under the generalized expectation E. In

particular, since E is continuous, GL(S̃−1) is open.
(b) Clearly, f − λ1 does not have an inverse if and only if λ = E(f).

(c) Let ϕ : S̃−1 → C be a homomorphism mapping 1 to 1, and let

f ∈ S̃−1. Since ϕ (f − ϕ(f)) = 0, ϕ(f) ∈ σ(f), that is ϕ(f) = E[f ].

�
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5. Applications to non-commutative linear systems

We refer to [13, 17, 22, 26] for general information on the theory of
linear systems, including over commutative rings, and to the papers
[16, 27] for more information on linear system on non-commutative
rings, and in particular for the notions of controllable and observable
pairs. In the present setting an input-output system will be a map of
the form now an input-output relation of the form

(5.1) yn =

n∑

m=0

hm ⊗ un−m, n ∈ N0,

where the input sequence (un)n∈N0 , the impulse response (hn)n∈N0 be-

long to S̃q×1
−1 and S̃p×q

−1 respectively. Then, the output sequence belongs

to S̃p×1
−1 . When the impulse response (hn) or the input sequence (un)

are not random, the Wick product reduces to the pointwise product of
complex numbers, and we recover classical convolution systems. The
transfer function of the system (5.1) is (the possibly divergent) series
defined by

H (z) =

∞∑

n=0

hnz
n,

where z is a complex variable. The realization problem in this setting
is to find, when possible, realization of H in the form

(5.2) H (z) = D + zC ⊗ (I − zA)−1B,

where A,B,C and D are matrices of appropriate entries and with en-

tries in S̃−1, and

(I − zA)−1 =
∞∑

k=0

zkA⊗k.

The series converges in a neighborhood of the origin thanks to Propo-
sition 4.9.

The results presented in [1, 6, 5] for the case of the commutative Kon-
dratiev space S−1 of stochastic distributions still hold for the non-
commutative case because of the underlying structure and in particular
of inequality (4.1). We will present here one representative result, see
Theorem 5.2. Note that the arguments in [1, 6, 5] are in the setting of
power series (because one considers there the Hermite transform of the
Kondratiev space rather than the Kondratiev space itself), and make
use of derivatives. For the general case, when no power series are avail-
able, we need to introduce and prove the continuity, of the operators
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Dm, m = 1, 2, . . . defined by

Dm(z
α1
i1
zα2
i2

· · · zαn

in
) =

∑

{j:ij=m,αj>0}

αjz
α1
i1
zα2
i2

· · · zα(j−1)

i(j−1)
z
αj−1
ij

z
α(j+1)

i(j+1)
· · · zαn

in
,

where, to ease the notation, we write zα1
i1
zα2
i2

· · · zαn

in
instead of ezα1

i1
z
α2
i2

···zαn
in
,

and extend by linearity to any finite linear combination of such ele-
ments, and prove that these operators are continuous.

Proposition 5.1. Dm is a well defined continuous linear operator

S̃−1 → S̃−1 and it holds that

Dm(f ⊗ g) = Dm(f)⊗ g + f ⊗Dm(g)

for any f, g ∈ S̃−1.

Proof. Let f =
∑

α∈ℓ̃ fαeα ∈ S̃−1. Then there exists p ∈ N such that
∑

α∈ℓ̃

|fα|2(2N)−αp < ∞.

For any 0 ≤ j ≤ n, let rj be defined by

rj : {α ∈ ℓ̃ : |α| = n} → {α ∈ ℓ̃ : |α| = n+ 1}
defined by

rj(zi1zi2 · · · zin) = zi1zi2 · · · zijzmzij+1
· · · zin .

Since m is fixed, we do not write the dependence of rj on m. Further-

more, we now allow ik = ik+1. Let β ∈ ℓ̃. Then for any α ∈ ℓ̃ and for
any 0 ≤ j ≤ |α| such that rj(α) = β, we have |α|+ 1 = |β| and

(2N)α =

|α|∏

l=1

(2i
(α)
l ) = (2m)−1

|β|∏

l=1

(2i
(β)
l ) = (2m)−1(2N)β.

Moreover,

|{(α, j) : α ∈ ℓ̃, 0 ≤ j ≤ |α|, rj(α) = β}| =
= |{1 ≤ k ≤ |β| : β = zi1 · · · zi|β|

, ik = m}| ≤ |β|.

Thus, denoting ℓ̃m = {β ∈ ℓ̃ : β = zi1 · · · zi|β|
, ik = m for some k}

‖Dmf‖2q =
∑

α∈ℓ̃

∣∣∣∣∣∣

|α|∑

j=0

frj(α)

∣∣∣∣∣∣

2

(2N)−αq

≤
∑

α∈ℓ̃

(|α|+ 1)2
|α|∑

j=0

∣∣frj(α)
∣∣2 (2N)−αq
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=
∑

β∈ℓ̃m

∑

{(α,j):α∈ℓ̃,0≤j≤|α|,rj(α)=β}

(|α|+ 1)2
∣∣frj(α)

∣∣2 (2N)−αq

=
∑

β∈ℓ̃m

∑

{(α,j):α∈ℓ̃,0≤j≤|α|,rj(α)=β}

|β|2 |fβ|2 (2m)q(2N)−βq

≤
∑

β∈ℓ̃m

|β|3 |fβ|2 (2m)q(2N)−βq.

By induction it can be easily checked that for any n ∈ N, 23(n−1) ≥ n3.

Thus, for any q ≥ p+ 3 and for any β ∈ ℓ̃m,

(2m)−(q−p)(2N)(q−p)β = (2m)−(q−p)(2i1 · · · 2m · · · 2i|β|)q−p ≥ 23(|β|−1) ≥ |β|3.
Therefore,

|β|3(2m)q(2N)−βq ≤ (2m)p(2N)−βp,

and we obtain

‖Dmf‖2q ≤ (2m)p‖f‖2p.
Hence, Dm|Γ(H−q) : Γ(H−p) → S̃−1 is bounded and therefore continu-

ous. Since as a strong dual of a reflexive Fréchet space S̃−1 the inductive
limit of the Hilbert spaces Γ(H−p), and by the universal property of
inductive limits, we obtain that Dm is continuous.

It is now easy to check that for any f, g ∈ S̃−1 which are finite linear
combinations of the basis (eα), Dm(f ⊗ g) = Dm(f)⊗ g + f ⊗Dm(g).

By continuity it holds for any f, g ∈ S̃−1. �

We recall that for a unital (associative) ring R a pair (C,A) ∈ Rp×N ×
RN×N is called observable if there exists some p ≥ 0 such that

(
C CA CA2 · · · CAq−1

)

is left invertible. If furthermore, we may choose q = N , then we the
pair (C,A) is called strongly observable.

In the following theorem and its proof we omit the symbol ⊗ for sim-
plicity.

Theorem 5.2. Let (C,A) ∈ S̃p×N
−1 ×S̃N×N

−1 . If the pair (E[C], E[A]) is
observable, then the pair (C,A) is observable.

Proof. Let q ≥ 0 be such that
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
is

left invertible. We show that for any f ∈ (S̃−1)
qN such that

(
C CA · · · CAq−1

)
f = 0
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it holds that f = 0.

First, we note that for such f ,
(
E[C] E[C]E[A] · · · E[CAq−1]

)
E[f ] =

0. Hence, f0 = E[f ] = 0.
Now,

0 = (EDm)(
(
C CA · · · CAq−1

)
f)

= (EDm)
(
C CA · · · CAq−1

)
E[f ]

+
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
(EDm)f

=
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
fzm.

implies fzm = 0.
Furthermore, by a simple induction since there exist some {Uk}k<n such
that

Dn
m(
(
C CA · · · CAq−1

)
f) =

∑

k<n

UkD
n
mf+

(
C CA · · · CAq−1

)
Dn

mf

we conclude

0 = (EDn
m)(
(
C CA · · · CAq−1

)
f)

=
∑

k<n

E[Uk]E[Dn
mf ] +

(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
(EDn

m)f

=
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
fznm .

Thus, fznm = 0, for any n and m.
The next step is to show that fzlzm = 0. Since,

0 = (EDlDm)(
(
C CA · · · CAq−1

)
f)

= (EDl)(
(
C CA · · · CAq−1

)
E[Dmf ]

+ (
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
E[DlDmf ]

+ (EDlDm)(
(
C CA · · · CAq−1

)
E[f ]

+ (EDm)(
(
C CA · · · CAq−1

)
E[Dlf ]

=
(
E[C] E[C]E[A] · · · E[C]E[Aq−1]

)
fzlzm

we conclude that fzlzm = 0.

In the same manner it is easy to complete the proof and showing that

fα = 0 for any α ∈ ℓ̃. �

In the approach outlined here to non-commutative linear systems we
replaced the complex numbers by a non-commutative algebra with a
special topological structure. Other approaches are possible. We men-
tion in particular the work of Fliess [14]. We also mention [4, 9, 20, 21].
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Furthermore, using the setting developed in the present paper, one can
study non-commutative versions of stationary increments stochastic
processes and associated stochastic integrals in a way similar to [2, 3].
This will presented in a future publication. For related work on free
stationary increments stochastic processes, we refer to [11, 12].
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Yuri Kondratiev for comments on this paper. Finally we thank the
referee for her/his comments.

References

[1] D. Alpay and H. Attia. An interpolation problem for functions with values in
a commutative ring. In A Panorama of Modern Operator Theory and Related
Topics, volume 218 of Operator Theory: Advances and Applications, pages
1–17. Birkhäuser, 2012.
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[11] M. Bożejko and E. Lytvynov. Meixner class of non-commutative general-
ized stochastic processes with freely independent values. I. A characterization.
Comm. Math. Phys., 292(1):99–129, 2009.



24 DANIEL ALPAY AND GUY SALOMON
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