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Abstract

Axiomatic non-expected utility models are generally more difficult to falsify

than expected utility theory as they are less restrictive (by weakening the in-

dependence axiom). Recent work computes the Vapnik-Chervonenkis (VC)

dimension of a theory to determine the extent to which the theory is falsifiable.

Popular ambiguity theories have VC dimensions that increase exponentially in

the number of states or that are infinite, whereas the VC dimension of expected

utility theory increases linearly in the number of states. In this paper we ax-

iomatically characterize the class of generalized non-extreme outcome expected

utility (NEO-EU) preferences in the Anscombe-Aumann framework and show

that their VC dimension increases linearly in the number of states. Our paper

shows that this popular class of ambiguity preferences which has been broadly

applied provides a counter-example to the conjecture that axiomatic models

of ambiguity attitudes are substantially more difficult to falsify than expected

utility theory.
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1 Introduction

Over a century ago, Knight (1921) and Keynes (1921) recognized that situations of

ambiguity, in which probabilities of events are unknown, play a fundamental role

in decisions and markets. Subjective expected utility (SEU) theory (Savage, 1954;

Anscombe and Aumann, 1963), the workhorse model in theoretical and empirical eco-

nomic applications, can only describe neutral attitudes toward ambiguity, a behavior

violated empirically (Ellsberg, 1961). As noted by Baillon et al. (2018b), Ellsberg’s

paradox “showed that fundamentally new models are needed to handle ambiguity.”

However, it has been shown in a precise sense, that while SEU is in principle falsifi-

able, popular axiomatic ambiguity models are substantially more difficult or are even

impossible to falsify (Basu and Echenique, 2020). It is an open question whether

all popular models of ambiguity preferences are substantially more difficult to falsify

than SEU or whether a popular class of axiomatic ambiguity models is essentially no

more difficult to falsify than SEU.

In this paper we study the foundations of a class of ambiguity preferences that

have seen increasing and broad applications in economics: the class of generalized

non-extreme outcome expected utility (NEO-EU) preferences (Chateauneuf et al.,

2007; Eichberger et al., 2012). In particular, we study the axiomatic foundations and

the complexity of generalized NEO-EU preferences, and establish three main results.

First, we introduce a new weakening of the SEU independence axiom, co-extreme

independence, that imposes independence only between pairs of acts whose best pay-

offs occur in the same state and whose worst payoffs occur in the same state. The

axiom implies that independence holds between pairs of acts for which hedging can-

not change the ranking of which act is more secure or which act has more potential

(in the sense of Frick et al. (2022)). However, the axiom permits violations of inde-

pendence for acts where hedging can change which act is more secure or which act

has more potential. Our first main result is that together with the standard invariant

bi-separable axioms (Ghirardato et al., 2004), co-extreme independence characterizes

the class of generalized NEO-EU preferences.

Second, we consider the complexity and falsifiability of generalized NEO-EU pref-

erences. Basu and Echenique (2020), measure the degree of falsifiability of a decision

theory by computing its Vapnik-Chervonenkis (VC) dimension, which is the largest

sample size for which the theory can always rationalize the data. As observed by
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Chambers et al. (2023), the VC dimension “is a measure of the complexity of a theory

used in machine learning.” Basu and Echenique (2020) show that the VC dimension

increases linearly in the number of states for SEU, but it increases exponentially in

the number of states for Choquet expected utility theory (Schmeidler, 1989), which

weakens SEU independence to co-monotonic independence, and it is infinite when

there are more than two states for the multiple priors model (Gilboa and Schmeidler,

1989; Ghirardato et al., 2004), which weakens SEU independence to certainty inde-

pendence. Popular axiomatic ambiguity models that generalize the multiple priors

model such as invariant bi-separable preferences (Ghirardato et al., 2004), variational

preferences (Maccheroni et al., 2006), mean-dispersion preferences (Grant and Polak,

2013), and α−maxmin preferences (Hartmann, 2023) likewise have infinite VC dimen-

sion when there are more than two states. Basu and Echenique (2020) conclude that

SEU is in principle falsifiable, while the popular ambiguity models appear difficult or

even impossible to falsify. Although co-extreme independence is much less restrictive

than SEU independence as it imposes independence for a considerably smaller class of

acts, our second main result is that the VC dimension of generalized NEO-EU prefer-

ences (and of NEO-EU preferences) increases linearly in the number of states, similar

to SEU. That is, NEO-EU preferences are essentially no more difficult to falsify in

principle than SEU and the two models have similar complexity.

Our third main result is that we introduce an algorithm for identifying and com-

puting the NEO-EU parameters from an arbitrary finite dataset of binary choices.

We provide conditions under which this algorithm runs in polynomial time, and we

observe that it has essentially the same computational complexity as an algorithm de-

signed to identify and compute the parameters of SEU. This result complements the

findings in Chambers et al. (2021) and Chambers et al. (2023) who study, respectively,

a general problem of recovering preferences and utility functions from finite datasets,

but do not introduce polynomial time algorithms for computing the preferences.

The class of generalized NEO-EU preferences includes several popular and famil-

iar ambiguity models as special cases including the ϵ−contamination model (Dow and

da Costa Werlang, 1992), the NEO-EU model (Chateauneuf et al., 2007), Hurwicz

preferences (Hurwicz, 1950; Grant and Polak, 2013), and maxmin preferences (Wald,

1950) as well as SEU.1 The special case of NEO-EU preferences allows for a broad

1Eichberger et al. (2012) formulate generalized NEO-EU preferences in terms of non-additive
probabilities or capacities and study them in a sequential setting of purely subjective uncertainty.
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range of ambiguity attitudes, ranging from extreme ambiguity aversion to extreme

optimism toward ambiguity, and it achieves a separation of preferences into a param-

eter representing the agent’s ambiguity attitude and a parameter representing the

agent’s perceptions of ambiguity.2.

Our paper contributes to the understanding of the foundations and properties of

the NEO-EU model (Chateauneuf et al., 2007; Eichberger et al., 2012), which provides

a compromise between SEU and the more general ambiguity models.3 The NEO-EU

model is perhaps the simplest generalization of SEU that explains two of the most

robust features of observed ambiguity attitudes: (i) an aversion toward ambiguity

for symmetric and negatively skewed ambiguous payoffs (Ellsberg, 1961; Baillon and

Bleichrodt, 2015; Dimmock et al., 2015; Kocher et al., 2018); and (ii) a preference

for ambiguity toward positively skewed ambiguous payoffs (Baillon and Bleichrodt,

2015; Dimmock et al., 2015; Kocher et al., 2018).

While many of the major ambiguity models have an established axiomatic charac-

terization in the standard Anscombe and Aumann (1963) framework, NEO-EU and

generalized NEO-EU lack an established characterization in the Anscombe-Aumann

framework.4 In addition to characterizing generalized NEO-EU preferences in the

Anscombe-Aumann framework, we also introduce a weakening of the “preference

for hedging” axiom that helps characterize the class of ambiguity-averse NEO-EU

preferences (the class of NEO-EU preferences consistent with ambiguity aversion in

Ellsberg’s paradox) in the Anscombe-Aumann framework. This axiom restricts the

simple diversification axiom in Siniscalchi (2009) to a subset of complementary acts

(Siniscalchi, 2009; Chambers et al., 2014), and it does not conflict with ambiguity

They show that convex generalized NEO-EU capacities are “the only capacity for which the core
of the full Bayesian updates of a capacity equals the set of Bayesian updates of the probability
distributions in the core of the original capacity.”

2The ambiguity parameter represents ambiguity in a precise sense as it controls the size of the
agent’s set of prior distributions under the multiple priors representation of the NEO-EU model

3 Wakker (2010) notes that NEO-EU is among the more promising non-expected utility models
and that the interpretation of its parameters is clearer and more convincing than with other models.
He also comments that NEO-EU may reflect an optimal trade-off between parsimony and fit.

4Major ambiguity models that have an established axiomatic characterization in the Anscombe-
Aumann framework include Choquet expected utility theory (Schmeidler, 1989), the maxmin mul-
tiple priors model (Gilboa and Schmeidler, 1989), invariant bi-separable preferences (Ghirardato
et al., 2004), variational preferences (Maccheroni et al., 2006), vector expected utility (Siniscalchi,
2009), the smooth model of ambiguity aversion (Neilson, 2010; Denti and Pomatto, 2022), multiplier
preferences (Strzalecki, 2011), mean-dispersion preferences (Grant and Polak, 2013), and α-maxmin
preferences (Hartmann, 2023).
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seeking behavior toward low-likelihood gains which is ruled out by the standard pref-

erence for hedging axiom.

The importance of better understanding the axiomatic foundations of NEO-EU

is further underscored by the growing number of applications of NEO-EU to diverse

economic problems. For instance, the NEO-EU model has been applied to explain

buying-selling price gaps in markets (Dow and da Costa Werlang, 1992), to reconcile

the simultaneous purchasing of lottery tickets and insurance policies (Chateauneuf

et al., 2007), to generalize the classical Consumption CAPM (Zimper, 2012), to gen-

eralize the life-cycle model of consumption and saving (Groneck et al., 2016), to study

the design of optimal contracts under asymmetric information (Giraud and Thomas,

2017), to explain demand elasticities from state-run lotteries (Lockwood et al., 2021),

to explain time variation in the stock market risk-return tradeoff (Ghazi et al., 2023a),

and to explain momentum in stock returns (Ghazi et al., 2023b).

The remainder of the paper is organized as follows: Section 2 studies the axiomatic

foundations of NEO-EU. Section 3 studies the falsifiability of NEO-EU and presents

an algorithm for the identification of the NEO-EU parameters. Section 4 concludes.

2 NEO-EU Preferences

In this section we use standard axioms and propose new axioms to help characterize

the class of generalized NEO-EU preferences and the class of ambiguity-averse NEO-

EU preferences.

2.1 Preliminaries

We work in the Anscombe and Aumann (1963) framework in which there is both

objective and subjective uncertainty. Let X denote a finite set of outcomes with at

least two elements.5 An objective lottery, p : X → [0, 1], is a probability distribution

over outcomes. Let ∆(X) denote the set of objective lotteries and assume that it is

a mixture space. A von Neumann-Morgenstern (vNM) expected utility function is an

5Assuming that X is finite is without loss of generality because, as standard in the literature,
once a representation has been established for a finite set of outcomes it is not difficult to extend it
to an infinite countable set, which is sufficient for most practical applications.
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application U : ∆(X) → R defined as

U(p) :=
∑
x∈X

p(x)u(x),

where u : X → R is an arbitrary function defined on the set of outcomes (we refer to

this function simply as the utility function).

Let S be a totally ordered finite set with at least two elements (this is to avoid

trivial situations) indexing all states of nature. We define a subjective lottery or act f

as any mapping f : S → ∆(X). The set of probability distributions on S is denoted

by ∆(S). We will use f(s), s ∈ S, to denote the objective lottery assigned by f to

state s. We denote the set of acts by F and assume that it is a mixture space. We

define a constant act f as an act that yields the same objective lottery in every state

of nature, i.e., f(s) = p for all s ∈ S, where p ∈ ∆(X) is an objective lottery. In this

case, abusing notation, we also let p denote the corresponding constant act and write

p ∈ F and ∆(X) ⊂ F.

We assume that there is a binary relation denoted by “≻” ⊂ F × F over F. The

relation ≻ is called a preference relation if it is asymmetric and negatively transitive,

and in that case, we say that f is preferred to g if f ≻ g. Moreover, we say that f

is weakly preferred to g, denoted as f ≿ g, if g ̸≻ f ; and that f is indifferent to g,

denoted as f ∼ g, if f ̸≻ g and g ̸≻ f . Observe that if ≻ is a preference relation,

then for all f and g exactly one of f ≻ g, g ≻ f , or f ∼ g holds; and ≿ is a complete

and transitive relation (Kreps, 1988). Using constant acts, we can then extend a

preference relation to ∆(X) by writing p ≻ q, for p, q ∈ ∆(X), whenever the constant

act yielding lottery p is preferred to the constant act yielding lottery q. Similarly, we

can extend a preference relation to X by writing x ≻ y, for x, y ∈ X, whenever the

constant act yielding lottery p that assigns probability one to x is preferred to the

constant act yielding lottery q that assigns probability one to y. Since X is finite, we

say that ≻ is nontrivial if there exist x, x ∈ X such that x ≿ x ≿ x for all x ∈ X,

and x ≻ x.

2.2 Invariant Bi-Separable and NEO-EU Preferences

We state standard axioms that summarize basic assumptions about the ≻ relation:

Axiom 1 (Preference) ≻ on F is a nontrivial preference relation.
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Axiom 2 (Continuity) For every f, g, h ∈ F, the sets {γ ∈ [0, 1] : γf +(1−γ)g ≿ h}
and {γ ∈ [0, 1] : h ≿ γf + (1− γ)g} are closed.

Axiom 3 (Certainty independence) For every f, g ∈ F, p ∈ ∆(X) and γ ∈ (0, 1], we

have f ≿ g if and only if γf + (1− γ)p ≿ γg + (1− γ)p.

Axiom 3 is introduced in Gilboa and Schmeidler (1989) in their characterization

of the maxmin multiple priors model, and it is the key axiom used to characterize

invariant bi-separable preferences in Ghirardato et al. (2004). Axioms 1 to 3 imply

the classical von Neumann-Morgenstern representation theorem when restricted to

the set ∆(X) of objective lotteries (Kreps, 1988):

Theorem 1 Axioms 1 to 3 are necessary and sufficient for there exists a nonconstant

function u : X → R such that

p ≻ q if and only if U(p) > U(q). (1)

for all p, q ∈ ∆(X). Furthermore, u′ : X → R is a function also representing ≻
in the sense of (1) if and only if there exist real numbers c > 0 and d such that

u′(x) = cu(x) + d for all x ∈ X.

From now on, we assume without loss of generality that the utility function u

from Theorem 1 has been normalized so that

u(x) = 1, u(x) = 0. (2)

This implies that

0 ≤ u(x) ≤ 1 and 0 ≤ U(p) ≤ 1, (3)

for all x ∈ X and p ∈ ∆(X).

Axiom 4 (Monotonicity) For every f, g ∈ F, f(s) ≿ g(s) for all s ∈ S implies

f ≿ g.

We next summarize important classes of preferences that satisfy Axioms 1 through 4:
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1. Subjective Expected Utility Preferences (SEU): Given a distribution

π ∈ ∆(S), the expected utility functional on F with respect to π is defined as

µ(f ; π) :=
∑
s∈S

πsU(f(s)). (4)

When the distribution π is clear from the context, we will simply write µ(f) for

the corresponding functional.

2. Invariant Biseparable Preferences (IB): Ghirardato et al. (2004) show that

Axioms 1 to 4 imply the existence of a nonempty, weak* compact convex set

P ⊂ ∆(S), a nonconstant function u : X → R, and a function a : F → [0, 1]

such that ≻ is represented by:

I(f) = a(f)max
P∈P

µ(f ;P ) + (1− a(f))min
P∈P

µ(f ;P ). (5)

Further, the set P is unique and u is unique up to a positive affine transforma-

tion.

3. α-maxmin preferences: Note that for IB preferences in (5), a depends on the

act f and so could differ across acts. An important special case of IB preferences

is the class of α-maxmin preferences in which a is a constant denoted by α:

I(f) = αmax
P∈P

µ(f ;P ) + (1− α)min
P∈P

µ(f ;P ). (6)

An appealing feature of α-maxmin preferences is that they provide an approach

to separating the decision maker’s perceptions of ambiguity (represented by

the set of priors P), and the decision maker’s attitude toward ambiguity repre-

sented by α ∈ [0, 1], which can be interpreted as the agent’s degree of ambiguity

aversion. These preferences have recently been characterized in the Anscombe-

Aumann framework by Hartmann (2023). A notable limitation of α-maxmin

preferences, however, as noted in Hartmann (2023), is that neither α nor the

set of priors P is uniquely determined from the axioms. Rather, the axioms

imply a continuum of α-maxmin preference representations, each with a poten-

tially different α and set of priors, so that the parameter α cannot be uniquely

identified from choice data. However, Hartmann (2023) shows that α is set

identified in that the bounds on α across different α-maxmin representations
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can be identified from choice data.

4. NEO-EU preferences: While the class of α-maxmin preferences is quite gen-

eral, this generality comes at a cost. For instance, as we observe in Section 3,

α-maxmin preferences are not falsifiable in a sense made precise by Basu and

Echenique (2020). Apart from that issue, for empirical applications it is often

more useful to work with a specific parameterized set of prior distributions.

However, the general α-maxmin model does not provide guidance on which set

of priors to use, leaving any chosen set of priors to be somewhat arbitrary. The

class of NEO-EU preferences (Chateauneuf et al., 2007) are represented by the

functional:

V (f) := ρµ(f ; π) + (1− ρ)

[
λmax

s∈S
U(f(s)) + (1− λ)min

s∈S
U(f(s))

]
, (7)

where λ ∈ [0, 1] represents the decision maker’s degree of optimism toward

ambiguity, while ρ ∈ [0, 1] parameterizes the degree of ambiguity perceived by

the decision maker. NEO-EU preferences are the special case of (6) in which

P := {p ∈ ∆(S) : p(E) ≥ ρπ(E) for all E ⊂ S}. The set P is naturally

interpreted as a set of probabilities that lie within an interval of the reference

prior π. Further, 1 − ρ represents the decision maker’s perceived ambiguity in

the sense that the size of the set of priors expands as ρ decreases. When the

agent perceives no ambiguity (ρ = 1), P collapses to a singleton {π}, and the

model reduces to SEU. Under maximal ambiguity (ρ = 0), P expands to the

entire simplex ∆(S).

2.3 Characterization of Generalized NEO-EU Preferences

We say that an agent has a generalized non-extreme outcome expected utility (ab-

breviated generalized NEO-EU) preference functional with parameters (π, λ, ρ) ∈
∆(S)× R× R if the agent uses the functional V (f) = V (f ; π, λ, ρ) as defined in (7)

to compare acts in F, except that the parameters satisfy the following conditions:

ρ ≥ 0, (8)

ρπs + (1− ρ)λ ≥ 0, for all s ∈ S, (9)

ρπs + (1− ρ)(1− λ) ≥ 0, for all s ∈ S. (10)
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This representation includes five prominent decision models as special cases:

1. NEO-EU preferences as defined by Chateauneuf et al. (2007) if λ, ρ ∈ [0, 1].

2. ϵ-contamination preferences if ρ = 1− ϵ, where ϵ ∈ [0, 1], and λ = 0.

3. SEU preferences if ρ = 1.

4. Hurwicz preferences if ρ = 0.

5. Maximin preferences if ρ = 0 and λ = 0.

2.4 Co-Extreme Independence and NEO-EU Preferences

We define more concepts to provide a foundation for a generalized NEO-EU repre-

sentation.

Definition 1 Given an act f ∈ F, the following two subsets of S are called the

maximum and minimum sets of states of f , respectively:

S(f) := {s ∈ S : f(s) ≿ f(s′) for all s′ ∈ S} ,

S(f) := {s ∈ S : f(s′) ≿ f(s) for all s′ ∈ S} .

The elements of S(f) are called “maximum” states of f , and the elements of S(f)

are called “minimum” states of f . We will denote by R(f) the set of states in S that

are neither maximum nor minimum of f , that is,

R(f) := S \
(
S(f) ∪ S(f)

)
.

Notice that because ≻ is a preference relation and S is finite, the maximum and

minimum sets of any act are always nonempty. Also, notice that if s and s′ are

maximum states of f , then we must have f(s) ∼ f(s′). Similarly, if s and s′ are

minimum states of f , then we must have f(s) ∼ f(s′). Also, there exists a state that

is both minimum and maximum for the same act f if and only if S(f) = S(f) = S.

Definition 2 Two acts f, g ∈ F are called “state co-extreme”, or simply “co-extreme”,

which we denote by f ≡ g, if they have the same sets of maximum and minimum

states. That is, f, g are co-extreme if S(f) = S(g) and S(f) = S(g).

9



We are ready to state a key new axiom that helps in establishing a generalized

NEO-EU preference representation and that bridges the gap between the invariant

bi-separable representation in (5) and the representation in (7).

Axiom 5 (Co-extreme independence) For every f, g, h co-extreme to each other and

γ ∈ (0, 1], f ≻ g implies γf + (1− γ)h ≻ γg + (1− γ)h.

It is easy to see that if the classical independence axiom holds, then Axiom 5

will also hold, but the converse is not necessarily true. For instance, as we show in

Theorem 2 below, preferences represented by NEO-EU functionals with ρ ̸= 1 satisfy

Axiom 5, but being nonlinear across non-co-extreme acts, they cannot satisfy the

independence axiom. Also, the preferences in Ellsberg’s urn paradoxes are examples

which violate the independence axiom but not Axiom 5.

There is a hedging intuition behind Axiom 5. A mixture of two co-extreme acts

mixes the worst states in one act with the worst states in another, and mixes the

best states in one act with the best states in another. Since the essence of hedging is

to mix bad states for one act with good states in another act such that the mixture

of the two acts is less exposed to uncertainty, co-extreme acts are not particularly

useful in hedging tail ambiguity (ambiguity associated with the extreme outcomes

of an act). A decision maker who prefers to hedge tail ambiguity might deviate

from the independence axiom and exhibit a preference for hedging for acts that are

not co-extreme, but otherwise satisfy the independence axiom. Proposition 5 in the

Appendix implies that a mixture of co-extreme acts is also co-extreme with those

acts. Hence, rankings of the best and worst outcomes across acts are preserved under

mixtures of co-extreme acts. Thus, Axiom 5 imposes independence in cases where

hedging cannot change which act has the worst outcome or which act has the best

outcome. Formally, in a similar spirit to Kopylov (2009) and Frick et al. (2022), we

say an act f is more secure than an act g if there exists s ∈ S such that f(s′) ≿ g(s)

for all s′ ∈ S. Similarly, we say an act f has more potential than an act g if there

exists s ∈ S such that f(s) ≿ g(s′) for all s′ ∈ S. In this precise sense, co-extreme

independence restricts the independence axiom to acts where hedging cannot change

which act is more secure or which act has more potential. In contrast, co-extreme

independence permits violations of independence, for example, if f is more secure or

has more potential than g, but the mixture γg+ (1− γ)h is more secure or has more

potential than γf + (1− γ)h.
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The co-extreme independence axiom is reminiscent of the tail independence axiom

used by Wakker and Zank (2002) as a key axiom in their characterizations of rank-

dependent utility preferences and cumulative prospect theory preferences in choice

under risk. Wakker and Zank (2002) note that tail independence “weakens indepen-

dence somewhat further by considering only maximal or minimal common outcomes.”

Zank (2007) notes that tail independence is formally equivalent to the axiom called

independence of common extremes used by Zank (2007) to characterize a class of so-

cial welfare functions. However, to our knowledge, such an axiom is missing from the

axioms used to characterize ambiguity models in the Anscombe-Aumann framework.

Chateauneuf et al. (2007) use an axiom of Extreme Event Sensitivity (EES) that

formalizes optimism (as an aversion to hedging utility on good events) and pessimism

(as a preference for hedging utility on bad events) in their characterization of NEO-

EU in a purely subjective setting. An axiom of extreme outcome sensitivity (EOS),

which assumes preferences are invariant to changes in common intermediate outcomes

is used by Toquebeuf (2016) to characterize generalized NEO-EU in a purely subjec-

tive setting as a special case of Choquet expected utility. Eichberger and Kelsey

(1999) assume an axiom of extremal independence (EI) in their characterization of

E-capacities, which applies independence to acts with a common worst state. Their

EI axiom leads to a representation that is a weighted sum of Choquet integrals with

respect to an ϵ-contamination representation in which the mixture parameter de-

pends on the particular event. Dominiak and Guerdjikova (2021) assume preferences

satisfy extreme event independence (EEI) which seeks to adapt EES to the Anscombe-

Aumann framework. The EEI axiom leads to a representation that is a weighted sum

of Choquet integrals with respect to a neo-additive capacity in which the parame-

ters λ and ρ depend on the state. A surprising property, in light of Dominiak and

Guerdjikova (2021), where the preference parameters can be different for each state,

and Ghirardato et al. (2004), where the preference parameters can be different for

each act, is that under our representation with the co-extreme independence axiom

the resulting preference parameters are constant across states and across acts and

along with the agent’s subjective prior distribution, they are uniquely determined

from the axioms.

The next result determines a set of conditions under which a generalized NEO-EU

representation will hold for all acts.
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Theorem 2 Let |S| > 3. The relation ≻ on F satisfies Axioms 1 through 5 if and

only if there exist λ, ρ ∈ R and π ∈ ∆(S) such that

f ≻ g if and only if V (f) > V (g), (11)

for all f, g ∈ F, where V is the generalized NEO-EU preference functional with param-

eters (π, λ, ρ) from (7) satisfying conditions (8), (9), and (10). The utility function

u in the definition of V is nonconstant and unique up to a positive linear transfor-

mation. The scalar ρ is unique. Moreover, if ρ ̸= 1, then the scalar λ is unique. If

ρ > 0, then the vector π is unique. Further, if ρ ̸= 1 and there is at least one state

s ∈ S such that πs = 0, then conditions (8)-(10) are equivalent to 0 ≤ ρ < 1 and

0 ≤ λ ≤ 1.

Proof. See Appendix.

Consequently, if there is a state s with πs = 0, generalized NEO-EU preferences based

on Axioms 1− 5 reduce to the standard NEO-EU representation with ρ, λ ∈ [0, 1].

2.5 Additional Axioms and Refinements

In general, the representation from the previous section allows for parameters λ and

ρ outside of the interval [0, 1]. The next result obtains further restrictions on the pa-

rameters by adapting the definition of complementary acts due to Siniscalchi (2009):

Definition 3 Two acts f and f̂ are complementary with indifferent extremes, abbre-

viated CIE, if 1
2
f(s) + 1

2
f̂(s) ∼ 1

2
f(s′) + 1

2
f̂(s′) for all s, s′ ∈ S, there exist s ∈ S(f)

and s′ ∈ S(f̂) such that f(s) ∼ f̂(s′), and there exist s ∈ S(f) and s′ ∈ S(f̂) such

that f(s) ∼ f̂(s′).

An example of CIE acts is the pair of ambiguous acts in Ellsberg’s two-color paradox.

Axiom 6 (Uncertainty aversion for CIE acts) For each f, g ∈ F, if f, g is a CIE

pair and f ∼ g then 1
2
f + 1

2
g ≿ f .

Axiom 6 is a refinement of the simple diversification axiom in Siniscalchi (2009)

which restricts the axiom to complementary pairs with indifferent extremes. As such,

Axiom 6 permits departures from ambiguity aversion for acts that hedge utility on the
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best event for an act, allowing instead for a preference for speculating on ambiguous

acts with high potential payoffs, consistent with the empirical findings of Baillon and

Bleichrodt (2015), Dimmock et al. (2015) and Kocher et al. (2018).

Proposition 1 Let |S| > 3. Axioms 1-6 are necessary and sufficient for ≻ to be

represented by a generalized NEO-EU functional with parameters (π, λ, ρ) satisfying

(1− ρ)(1
2
− λ) ≥ 0.

A NEO-EU representation is the special case of a generalized NEO-EU representa-

tion in Theorem 2 in which ρ, λ ∈ [0, 1]. We refer to a representation as an ambiguity-

averse NEO-EU representation if it is a NEO-EU representation with λ ∈ [0, 1
2
),

which is also the range of values that produce ambiguity aversion in the Ellsberg

(1961) paradox. Proposition 1 implies that if λ ∈ [0, 1
2
), then ρ ∈ [0, 1] and the deci-

sion maker has an ambiguity-averse NEO-EU representation. Conversely, if ρ ∈ [0, 1),

then λ ∈ [0, 1
2
]. Due to Proposition 1, one can state a representation result as follows:6

Corollary 1 Let |S| > 3. Then for λ ∈ [0, 1
2
), Axioms 1-6 hold if and only if ≻

admits an ambiguity-averse NEO-EU representation.

The restriction λ ∈ [0, 1
2
) has empirical support from existing estimates of λ in

prior experiments: Dimmock et al. (2015) estimate λ = 0.44, Baillon et al. (2018a) es-

timate λ = 0.45, and Abdellaoui et al. (2021) estimate λ = 0.18. Further, Ghazi et al.

(2023a) estimate λ for a NEO-EU representative agent of the aggregate stock market

(the market’s ambiguity attitude) in a generalization of the Consumption CAPM.

Across their data spanning more than thirty years of monthly observations, the esti-

mated λ fluctuates between 0 and 0.52 and the values of λ > 0.5 are concentrated in

the period of the dot-com bubble.

The next definition and axiom are used in a recent working paper by Asano et al.

(2022) in the Anscombe-Aumann framework. The axiom implies ambiguity seeking

behavior for acts that have their worst outcome in the same state and ambiguity

aversion for acts that have their best outcome in the same state. However, the axiom

seems too strong as there is not a clear justification why a decision maker is or should

6Note that Axioms 1 - 6 imply the existence and uniqueness of λ and ρ from the axioms. This
statement of the representation result which notes a range for λ has a similar form to the statement
of the main theorem in Hartmann (2023) that “For each α ∈ [0, 1]\ 1

2” his axioms are equivalent to
an α-maxmin representation.
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be ambiguity seeking due to acts sharing a common worst state. Asano et al. (2022)

show that when added to the Choquet expected utility axioms, this additional axiom

implies a NEO-EU representation with the parameters restricted to the interval [0, 1].

We show a related result, that Axiom 7, when combined with Axioms 1 - 5 restricts

ρ and λ to the interval [0, 1]. However, since Axiom 7 seems too strong, we conclude

that axioms leading to a NEO-EU representation with λ ∈ [0, 1
2
) may be more natural.

Definition 4 Two acts f, g ∈ F are called “co-maximal” if S(f) = S(g). Analo-

gously, two acts f, g ∈ F are called “co-minimal” if S(f) = S(g).

Hence, two acts are co-maximal or co-minimal if they have the same maximum or

minimum states, respectively.

Axiom 7 (Uncertainty aversion or tolerance depending on co-extremality) For every

f, g ∈ F such that f ∼ g, f and g co-maximal implies 1
2
f + 1

2
g ≿ f ; and f and g

co-minimal implies f ≿ 1
2
f + 1

2
g.

If Axiom 7 holds, a generalized NEO-EU functional is both a convex and a concave

function across mixtures of two acts, ruling out parameter values outside [0, 1].

Proposition 2 Let |S| > 3. Axioms 1-5 and 7 are necessary and sufficient for ≻
to be represented by a generalized NEO-EU functional with parameter vector (π, λ, ρ)

such that λ, ρ ∈ [0, 1].

The proofs of Proposition 1 and 2 are in the Appendix.

3 VC Dimension and Theory Falsifiability

Basu and Echenique (2020) study the degree of falsifiability of three central theories of

choice under ambiguity: subjective expected utility (SEU), Choquet expected utility

(CEU), and max-min expected utility (MEU) which is the special case of the α-

maxmin multiple priors model in which α = 0. They observe, “A theory is easy to

falsify if relatively small data sets are enough to guarantee that the theory can be

falsified: the Vapnik-Chervonenkis (VC) dimension of a theory is the largest sample

size for which the theory is ‘never falsifiable’.” They consider a setting in which a

strategic proponent of a theory presents experimental evidence in favor of the theory
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to a skeptical user of theories. They determine the smallest sample size needed for

SEU, CEU, and MEU to be falsifiable, even when the experimenter can selectively

design the experiment to produce favorable conditions for the theory.

As we characterize generalized NEO-EU preferences in Section 2, we ask whether

our proposed axioms produce a theory that can be falsified in principle. The results

of Basu and Echenique (2020) seem to indicate more broadly that axiomatic ambiguity

models are difficult or impossible to falsify in practice, or at least are substantially

more difficult to falsify than SEU. Here, we compute the VC dimension of generalized

NEO-EU preference theories and show that their VC dimension increases linearly

with the number of states, similar to SEU. Consequently, an indirect implication of

the co-extreme independence axiom is that it delivers a preference representation that

can be tested convincingly and efficiently with small data sets.

We denote by H the set of all preference relations defined on F×F. In particular,

we denote by E ⊂ H the set of EU preferences, that is, ≻∈ E if there exists π ∈ ∆(S)

such that f ≻ g if and only if µ(f ; π) > µ(g; π). We denote by N ⊂ H the set

of standard NEO-EU preferences, that is, ≻∈ N if there exists (π, λ, ρ) ∈ ∆(S) ×
[0, 1] × [0, 1] such that f ≻ g if and only if V (f) > V (g). We denote by N0 ⊂ H

the set of Hurwicz preferences, that is, ≻∈ N0 if there exists λ ∈ [0, 1] such that

f ≻ g if and only if ν(f) > ν(g), where ν(f) = ν(f ;λ) := λmaxs∈S U(f(s)) + (1 −
λ)mins∈S U(f(s)). Finally, we denote by N1 ⊂ H the set of generalized NEO-EU

preferences (i.e., for which λ and ρ are not restricted to the interval [0,1], but still

satisfy conditions (8)-(10) from Theorem 2). We clearly have E ∪N0 ⊂ N ⊂ N1.

Given m ∈ N, let Dm := (F × F)m be the set of samples of size m, where each

coordinate in a sample (vector) is taken from F × F. A labeled sample is a pair

(d, b), where d ∈ Dm and b ∈ {0, 1}m. Given a relation ≻ and a labeled sample

(d, b) ∈ Dm × {0, 1}m, with d :=
[
(f1, f̂1), . . . , (fm, f̂m)

]
, we say that ≻ is consistent

with d if fi ≻ f̂i ⇔ bi = 1 for all i = 1, . . . ,m.

Definition 5 Given a sample vector d ∈ Dm and a set of preferences C ⊂ H, we say

that d is shattered by C if for all b ∈ {0, 1}m there exists a relation ≻∈ C consistent

with (d, b). Furthermore, the Vapnik-Chervonenkis (VC) dimension of C is defined as

VC(C) := max {m ∈ N : there exists d ∈ Dm shattered by C} , (12)

that is, VC(C) is the largest positive integer m for which we can find a sample m-vector
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that can be shattered by a preference in C.

The following theorem establishes the VC dimension of EU, standard NEO-EU,

generalized NEO-EU, and Hurwicz theories.7

Theorem 3 The following statements hold true:

1. VC(E) = |S| − 1.

2. For |S| > 2, VC(N) = VC(N1) = |S|+ 1.

3. VC(N0) = 1.

Proof. See Appendix.

Given two preferences ≻ and ≻′, and a probability distribution F on F × F

we denote by eF (≻,≻′) the error between the preferences, that is, eF (≻,≻′) :=

PF (≻ △ ≻′), where △ is the symmetric difference operator on F × F. Next, we

adapt standard learning theory concepts and results from Blum et al. (2020); Kearns

and Vazirani (1994).

Definition 6 We say that a set of preferences C (theory) is “probably approximately

correct (PAC) learnable” if there exists an algorithm such that for a given preference

≻∈ C any probability distribution F , and for any δ, ϵ ∈ (0, 1), with probability at least

1 − δ, the algorithm, with input a random sample d (generated by using F ) labeled

by b consistent with ≻, outputs a relation ≻′∈ C consistent with (d, b) and satisfying

eF (≻,≻′) < ϵ.

Using Theorem 3 and Theorem 3.3 from Kearns and Vazirani (1994) (or Corollary

5.17 from Blum et al. (2020)), we obtain the following result that shows that all the

preference sets considered in this section (EU, NEO-EU, generalized NEO-EU, and

Hurwicz) are PAC learnable.

Corollary 2 For a given set of preferences C, let A be any algorithm that takes input

a labeled sample (d, b) ∈ Dm ×{0, 1}m with labels consistent with a relation in C, and

7We derive the VC dimension of EU preferences since we identified an error in the proof of the
VC dimension for EU in Basu and Echenique (2020). Correcting the error, we find that the VC
dimension of EU is |S| − 1, not |S| as reported in Basu and Echenique (2020).
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outputs a relation in C that is consistent with (d, b). Then, A is a PAC learning

algorithm for C as long as the sample size m satisfies

m ≥ c

ϵ

(
VC(C) log2

1

ϵ
+ log2

1

δ

)
, (13)

for some constant c > 0.

The proof of Theorem 3 suggests an efficient method to determine whether there

exists a standard NEO-EU relation that separates the points of a sample m-vector

and, if this relation exists, how to determine the parameter vector (π, λ, ρ) ∈ ∆(S)×
[0, 1]× [0, 1] of such a relation. This is summarized in the following result.

Proposition 3 Given a sample d :=
[
(f1, f̂1), . . . , (fm, f̂m)

]
∈ Dm and a nonzero

label vector b ∈ {0, 1}m consistent with an agent’s preferences among the acts in d,

let vis := U(fi(s)) and v̂
i
s := U(f̂i(s)) for all s ∈ S and i = 1, . . . ,m; A := [a1, . . . , am]

be the matrix whose columns are ai := vi − v̂i; g := [max(vi) − max(v̂i)]i=1,...,m;

h := [min(vi)−min(v̂i)]i=1,...,m; I := {i : bi = 1}; and J := {i : bi = 0}. Consider the

following linear optimization problem:

(P) max σ,

s.t.

AT
I w + αgI + βhI ≥ σeI ,

AT
Jw + αgJ + βhJ ≤ 0,

eTw + α + β = 1,

α, β, σ, w ≥ 0.

Then, there exists a relation ≻ in N consistent with the labeled sample (d, b) if and

only if problem (P) has a solution (α, β, σ, w) with σ > 0. In that case (π, λ, ρ) ∈
∆(S)× [0, 1]× [0, 1] defined as follows determines a relation ≻ in N consistent with

b:

ρ := eTw,

λ :=


α

α+β
if 0 < ρ < 1,

α if ρ = 0,

1 if ρ = 1,
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π :=


w
ρ

if 0 < ρ < 1,
e
|S| if ρ = 0,

w if ρ = 1.

If (P) is infeasible or has an optimal solution with σ = 0, then (d, b) is proof that the

standard NEO-EU theory is false for this agent. If b is a zero vector (so that I is

empty), then there exists a relation ≻ in N consistent with the sample if and only if

the system ATw + αg + βh ≤ 0, eTw + α + β = 1, and α, β, w ≥ 0 is feasible.

Proof. See Appendix.

Provided we can efficiently compute utility U(f(s)) of an act f in F for each s ∈ S,

using a polynomial-time linear programming algorithm, and using a sample size m

satisfying bound (13), this algorithm is an efficient (i.e., with polynomial running

time) PAC learning algorithm for the class N of standard NEO-EU preferences. In

the case b ̸= 0, there is a linear program analogous to (P) to determine if an EU

theory is consistent with a data sample, namely, maxσ,w{σ : AT
I w ≥ σeI , A

T
Jw ≤

0, eTw = 1, σ, w ≥ 0}. Similar to Proposition 3, there is an EU preference consistent

with the data if and only if there is an optimal solution to this problem with σ > 0.

Since identifying an EU preference consistent with the data and the problem (P) of

identifying a NEO-EU preference consistent with the data can each be represented via

linear programs (which differ only in two columns), the two problems have essentially

the same computational complexity. Similar remarks apply to the case b = 0.

4 Conclusion

Often in applications, one seeks a simple parametric model that can be justified on ax-

iomatic grounds. However, there is typically a tradeoff as ambiguity models based on

normatively appealing axioms such as certainty independence, co-monotonic indepen-

dence, or complementary independence characterize very general classes of preferences

and provide little guidance on which specific functional form to adopt. Our main rep-

resentation theorem (Theorem 2) demonstrates that the axiom of co-extreme indepen-

dence, when combined with the standard invariant bi-separable axioms (non-trivial

weak order, continuity, monotonicity, and certainty independence) delivers a precise

parametric representation of preferences (the generalized NEO-EU representation) in
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the standard Anscombe-Aumann framework in which the existence and uniqueness of

the parameters and the subjective probability distribution are determined from the

axioms. We also show that a refinement of the preference for hedging axiom from

Siniscalchi (2009) helps to provide the first characterization of an ambiguity-averse

NEO-EU representation, which can be stated in a form similar to the statement of

the main theorem characterizing α-maxmin preferences in Hartmann (2023).

We brought into our analysis a criterion for evaluating ambiguity models intro-

duced by Basu and Echenique (2020): the degree to which ambiguity models are

falsifiable. We find that although generalized NEO-EU and NEO-EU preferences

weaken the standard SEU independence axiom and so admit a more general class of

preferences, they each have a VC dimension that increases linearly with the number

of states, making them essentially no more difficult to falsify than SEU.

By providing an axiomatic foundation for generalized NEO-EU preferences and

ambiguity-averse NEO-EU preferences in the standard Anscombe-Aumann frame-

work and determining the VC dimension of NEO-EU and the recoverability of its

parameters, our approach helps clarify the foundations and properties of the NEO-

EU model. To the extent the axioms are reasonable, the results presented here further

justify its broad use in economic applications.
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Baillon, Aurélien, Zhenxing Huang, Asli Selim, Peter P Wakker. 2018b. Measuring

ambiguity attitudes for all (natural) events. Econometrica 1839–1858.

Basu, Pathikrit, Federico Echenique. 2020. On the falsifiability and learnability of

decision theories. Theoretical Economics 15(4) 1279–1305.

Bazaraa, M.S., H.D. Sherali, C.M. Shetty. 2006. Nonlinear Programming . 3rd ed.

John Wiley & Sons, Inc., New York, NY.

Blum, A., J. Hopcroft, K. Ravindran. 2020. Foundations of Data Science. Cambridge

University Press, New York, NY.

Chambers, Christopher P, Federico Echenique, Nicolas S Lambert. 2021. Recovering

preferences from finite data. Econometrica 89(4) 1633–1664.

Chambers, Christopher P, Federico Echenique, Nicolas S Lambert. 2023. Recovering

utility. arXiv preprint arXiv:2301.11492 .

Chambers, Robert G, Simon Grant, Ben Polak, John Quiggin. 2014. A two-parameter

model of dispersion aversion. Journal of Economic Theory 150 611–641.

Chateauneuf, Alain, Jürgen Eichberger, Simon Grant. 2007. Choice under uncertainty

with the best and worst in mind: Neo-additive capacities. Journal of Economic

Theory 137(1) 538–567.

Denti, Tommaso, Luciano Pomatto. 2022. Model and predictive uncertainty: A foun-

dation for smooth ambiguity preferences. Econometrica 90(2) 551–584.

Dimmock, Stephen G, Roy Kouwenberg, Olivia S Mitchell, Kim Peijnenburg. 2015.

Estimating ambiguity preferences and perceptions in multiple prior models: Evi-

dence from the field. Journal of Risk and Uncertainty 51 219–244.

Dominiak, Adam, Ani Guerdjikova. 2021. Pessimism and optimism towards new

discoveries. Theory and Decision 90 321–370.

20



Dow, James, Sérgio Ribeiro da Costa Werlang. 1992. Uncertainty aversion, risk aver-

sion, and the optimal choice of portfolio. Econometrica: Journal of the Econometric

Society 197–204.

Eichberger, Jürgen, Simon Grant, Jean-Philippe Lefort. 2012. Generalized neo-

additive capacities and updating. International Journal of Economic Theory 8(3)

237–257.

Eichberger, Jürgen, David Kelsey. 1999. E-capacities and the ellsberg paradox. Theory

and decision 46 107–138.

Ellsberg, D. 1961. Risk, ambiguity, and the Savage axioms. The Quarterly Journal

of Economics 75(4) 643–669.

Frick, Mira, Ryota Iijima, Yves Le Yaouanq. 2022. Objective rationality foundations

for (dynamic) α-meu. Journal of Economic Theory 200 105394.

Ghazi, Soroush, Mark Schneider, Jack Strauss. 2023a. Market ambiguity attitude

restores the risk-return tradeoff. Management Science, forthcoming .

Ghazi, Soroush, Mark Schneider, Jack Strauss. 2023b. Momentum is still there con-

ditional on crash aversion. Available at SSRN 4680094 .

Ghirardato, Paolo, Fabio Maccheroni, Massimo Marinacci. 2004. Differentiating am-

biguity and ambiguity attitude. Journal of Economic Theory 118(2) 133–173.

Gilboa, Itzhak, David Schmeidler. 1989. Maxmin expected utility with non-unique

prior. Journal of mathematical economics 18(2) 141–153.
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Appendix: Proofs of Main Results

State-Utility Space

Throughout this section we assume that Axioms 1 through 4 hold. We also use the

utility function u from Theorem 1 normalized as indicated in (2). We denote by û

the |X|-dimensional vector whose coordinates are ûx := u(x), for all x ∈ X. Notice

that for each act f ∈ F there is a corresponding |S| × |X|-matrix M(f) defined as

M(f)sx = fs(x). We denote by e the all-ones vector whose dimension is determined

by the context in which is used. We denote by es the vector in R|S| whose s-th

coordinate is 1 and all other coordinates are 0. Hence, we have M(f)e = e for all

f . Moreover, any nonnegative |S| × |X|-matrix M such that Me = e corresponds to

an act in F, namely the act f defined as fs(x) := Msx. Therefore, the set F can be
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identified with the set of all nonnegative |S| × |X|-matrices M satisfying Me = e.

Also notice that M(αf + (1− α)g) = αM(f) + (1− α)M(g) for all α ∈ [0, 1].

Let G := [0, 1]|S|. We call G the state-utility space. In particular, given v ∈ G,

we can define f(s) := vsx + (1 − vs)x for each s ∈ S. Using normalization (2), it

follows that U(f(s)) = vs for each s. Hence, for each v ∈ G there exists f ∈ F

such that M(f)û = v. Following Grant and Polak (2013), on G we define a binary

relation ≻u as follows: v ≻u v′ if there exist acts f and f ′ in F such that v =M(f)û,

v′ =M(f ′)û, and f ≻ f ′, for all v, v′ ∈ G. The binary relation ≻u is well-defined and

satisfies equivalent axioms to Axioms 1-4 on G. The following is a standard result

for preferences satisfying those axioms (Grant and Polak, 2013).

Proposition 4 For each v ∈ G there exists a unique αv ∈ [0, 1] such that v ∼u αve.

Based on Proposition 4, we define function φ : G → [0, 1] as φ(v) = αv, where αv is

the scalar indicated in the proposition. Hence, v ∼u φ(v)e for all v ∈ G. By definition,

we readily obtain 0 ≤ φ(v) ≤ 1 for all v, φ(0) = 0, and φ(e) = 1. The next result

states well-known properties of φ whose proofs are standard in the literature (see

Mas-Collel et al., 1995; Grant and Polak, 2013; Nunez and Schneider, 2019).

Lemma 1 The following properties of φ hold:

1. v ≻u v′ if and only if φ(v) > φ(v′), for all v, v′ ∈ G;

2. φ(αv + (1− α)βe) = αφ(v) + (1− α)β for all v ∈ G and α, β ∈ [0, 1];

3. φ(αv) = αφ(v) for all v ∈ G and α ∈ [0, 1];

4. φ(v + δe) = φ(v) + δ for all v ∈ G and δ ∈ R such that v + δe ∈ G;

5. if v ∼u v′ and δ ∈ R is such that v + δe, v′ + δe ∈ G, then v + δe ∼u v′ + δe.

6. φ is a continuous function on G.

Proof of Theorem 2

Throughout this section we assume that Axioms 1 through 5 hold. We first ex-

tend the definition of co-extremality to state-utility vectors analogously to Defini-

tions 1 and 2. Hence, for v ∈ G let S(v) := {s : vs ≥ vs′ for all s
′ ∈ S}, S(v) :=

24



{s : vs ≤ vs′ for all s
′ ∈ S}, and R(v) := S \

(
S(v) ∪ S(v)

)
. We say that two vectors

v, v̂ are co-extreme and write v ≡ v̂, if S(v) = S(v̂) and S(v) = S(v̂). The maximum

and minimum of a vector v are defined as usual: max(v) := max{vs : s ∈ S}, and
min(v) := min{vs : s ∈ S}.

Observe that if v is not proportional to the e vector, then S(v) and S(v) are

nonempty nonoverlapping sets. Moreover, in that case, vs = max(v) for all s ∈ S(v)

and vs = min(v) for all s ∈ S(v). If v is proportional to e, i.e., all its entries are the

same, then S(v) = S(v) = S. Also notice that it is easy to show that if f, f̄ ∈ F

are such that v = M(f)û and v̂ = M(f̄)û, then v, v̂ are co-extreme if and only if

f, f̄ are co-extreme. The relation ≡ on G is an equivalence relation. Therefore, G

can be partitioned into a finite collection of equivalence classes, each equivalent class

is a subset of G. As usual, we denote by G/ ≡ the set of equivalent classes, and

call them “co-extreme” to emphasize that they are derived from the ≡ relation. In

particular, we denote by G0 the class of vectors v such that S(v) = S(v) = S, which

is the same as the set of all vectors in G that are proportional to e. If |S| ≥ 3, for

every state s ∈ S we can always have a vector v such that vs is neither the maximum

nor minimum of v, i.e., s ∈ R(v). Therefore, the number of equivalence classes other

than G0 is the same as the number of ways that we can partition S into two or three

nonempty sets, i.e., K := 3|S|−2|S|+1+1. We denote by Gk, k = 1, . . . , K, the classes

in G other than G0. Since v ≡ v̂ implies S(v) = S(v̂), we denote by Sk the common

set of maximum states across all vectors v ∈ Gk. Similarly, we denote by Sk the

common set of minimum states across all vectors v ∈ Gk. We say that a class Gk

is mono-extreme if |Sk| = |Sk| = 1. Notice that if v ∈ Gk and Gk is mono-extreme,

then there is a unique state s such that vs = max(v), a unique state s such that

vs = min(v), and vs > vs > vs for all s ∈ Rk. Also, it is easy to see that the number

of mono-extreme classes in G/ ≡ is |S| (|S| − 1). The next result follows from the

maximum and minimum definitions.

Proposition 5 Let v, v̂ ∈ G and α ∈ [0, 1]. If S(v)∩S(v̂) ̸= ∅, then max (αv + (1− α)v̂) =

αmax(v)+(1−α)max(v̂). If S(v)∩S(v̂) ̸= ∅, then min (αv + (1− α)v̂) = αmin(v)+

(1− α)min(v̂). If v ≡ v̂, then αv + (1− α)v̂ is co-extreme with v and v̂.

Proposition 5 implies that each class Gk is a mixture space as defined in Kreps

(1988). Moreover, since ≻u satisfies the preference and continuity axioms in Gk, and

Axiom 5 implies that the independence axiom is also satisfied in Gk, from the mixture
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space theorem (see Theorem 5.11 in Kreps, 1988), we obtain linearity of φ across Gk:

Proposition 6 For all v, v̂ ∈ Gk, and α ∈ [0, 1], we have φ(αv + (1 − α)v̂) =

αφ(v) + (1− α)φ(v̂).

The next result shows that for each class there exists a linear preference functional

that represents an agent’s choices in that class. If a class is mono-extreme, the

vector parameter associated with the class representation is uniquely determined,

but for a class not mono-extreme there could be more than one vector parameter

that yields the same representation. On the other hand, all class representations

reduce to a representation of a mono-extreme class, that is, in reality there are at

most |S| (|S| − 1) different vector parameters that represent choices across all classes.

Lemma 2 Suppose that the relation ≻ on F satisfies Axioms 1 through 5. Then, for

k ≥ 1 there exists w(k) ∈ ∆(S) such that

φ(v) = w(k)Tv, (14)

for all v ∈ Gk. The coordinates w
(k)
s for s ∈ Rk, the term

∑
s∈Sk

w
(k)
s , and the

term
∑

s∈Sk
w

(k)
s are uniquely determined by the class. In particular, the vector w(k)

associated with a mono-extreme class is unique. The normalized utility function u

from (2) is common to all the representations across the classes. Furthermore, if Gj

and Gk are co-extreme classes such that Sj ⊂ Sk, and Sj ⊂ Sk, then w
(k)Tv = w(j)Tv,

for all v ∈ Gk.

Proof. We will show that there is a linear representation in state-utility space for

each class Gk. In doing so, we will assume that Rk is not empty because, except for a

few minor details, the proof is almost identical when Rk is empty. First, notice that

Gk is a convex set. This is because if v, v̂ ∈ Gk and α ∈ [0, 1], then by Proposition 5,

αv + (1− α)v̂ ≡ v ≡ v̂. Therefore, αv + (1− α)v̂ ∈ Gk, so that Gk is convex.

Next, without loss of generality, we assume that each v ∈ Gk is of the form v =(
vSk

, vSk
, vRk

)
, that is, the first |Sk| coordinates are in Sk, the next |Sk| coordinates

are in Sk, and the last |Rk| coordinates are in Rk.

Let ϕ : Gk → R2+|Rk| be the mapping defined as ϕ(v) = (max(v),min(v), vRk
)

and Y the image of ϕ, that is, Y := ϕ(Gk). It is easy to show that ϕ is bijective

mapping between Gk and Y, so that ϕ−1 : Y → Gk exists. Moreover, both ϕ and ϕ−1
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are continuous functions because the max and min functions are continuous. The

convexity of Gk and Proposition 6 imply that Y is also a convex set. Furthermore, we

have ϕ(αv+ (1−α)v′) = αϕ(v) + (1−α)ϕ(v′), for all v, v′ ∈ Gk, and α ∈ [0, 1]. Since

ϕ is bijective, it follows that ϕ−1(αy + (1− α)y′) = αϕ−1(y) + (1− α)ϕ−1(y′), for all

y, y′ ∈ Y, and α ∈ [0, 1]. By Proposition 6, it follows that the real-valued function

ψ := φ◦ϕ−1 is continuous on Y and satisfies ψ(αy+(1−α)y′) = αψ(y)+(1−α)ψ(y′),
for all y, y′ ∈ Y, and α ∈ [0, 1].

Next, we show that Y has a nonempty interior. Let y′ := (3/4, 1/4,

|Rk| times︷ ︸︸ ︷
1/2, . . . , 1/2).

Let v′ be defined as

v′s :=


3/4 if s ∈ Sk,

1/4 if s ∈ Sk,

1/2 if s ∈ Rk.

Then clearly v′ ∈ Gk, y
′
s = v′s = 1/2 for s ∈ Rk, y

′
1 = max(v′) = 3/4, y′2 = min(v′) =

1/4, and y′ ∈ Y. Moreover, for ϵ ∈ (0, 1/8), we have y′ + z ∈ U for all z such that

|zs| < ϵ for all s ∈ S. Hence, y′ ∈ int(Y), so that int(Y) is nonempty.

Therefore (see Bazaraa et al., 2006), there exist unique b := (b, b, bRk
) ∈ R2+|Rk|

and γ ∈ R such that ψ(y) = bTy + γ for all y ∈ Y. Given v ∈ Gk, it follows that

φ(v) = φ(ϕ−1(ϕ(v))) = ψ(ϕ(v)) = bmax(v) + bmin(v) +
∑

s∈Rk
bsvs + γ.

For ϵ ∈ (0, 1), let v(ϵ) be defined as

v(ϵ)s :=


1 if s ∈ Sk,

1− ϵ if s ∈ Sk,

1− ϵ/2 if s ∈ Rk.

Hence, v(ϵ) ∈ Gk for all ϵ, and v(ϵ) → e as ϵ → 0+. By the continuity of φ, we get

b+ b+
∑

s∈Rk
bs+ γ = limϵ→0+ φ

(
v(ϵ)
)
= φ(e) = 1. Similarly, if v(ϵ) is instead defined

as

v(ϵ)s :=


1/2 if s ∈ Sk,

1/2− ϵ if s ∈ Sk,

1/2− ϵ/2 if s ∈ Rk,

for all ϵ ∈ (0, 1/2), then v(ϵ) ∈ Gk for all ϵ, and v(ϵ) → e/2 as ϵ → 0+. Thus, we

obtain 1
2

(
b+ b+

∑
s∈Rk

bs
)
+ γ = 1

2
. Therefore, combining these results, we obtain
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b+ b+
∑

s∈Rk
bs = 1 and γ = 0. Next, consider v(ϵ) defined as

v(ϵ)s :=


1 if s ∈ Sk,

0 if s ∈ Sk,

ϵ if s ∈ Rk.

Then, we have b+ ϵ
∑

s∈Rk
bs = φ(v(ϵ)) ≥ 0 for all ϵ ∈ (0, 1). Therefore, b ≥ 0. Next,

consider v(ϵ) defined as

v(ϵ)s :=


1 if s ∈ Sk,

0 if s ∈ Sk,

1− ϵ if s ∈ Rk.

Then, we have b + (1 − ϵ)
∑

s∈Rk
bs = φ(v(ϵ)) ≤ 1 for all ϵ ∈ (0, 1). Therefore,

b = 1− b−
∑

s∈Rk
bs ≥ 0. Furthermore, for s′ ∈ Rk, let v

(ϵ) be defined as

v(ϵ)s :=


1 if s ∈ Sk,

0 if s ∈ Sk,

1/2 if s ∈ Rk, s ̸= s′,

1/2 + ϵ if s = s′,

for all ϵ ∈ [0, 1/2). Axiom 4 implies φ(v(ϵ)) ≥ φ(v(0)) for all ϵ, that is, b+1/2
∑

s∈Rk
bs+

ϵbs′ ≥ b+ 1/2
∑

s∈Rk
bs, from which we obtain ϵbs′ ≥ 0 for all ϵ, and so, bs′ ≥ 0.

Summarizing, we have proven that there exists a unique vector b := (b, b, bRk
) ∈

R2+|Rk| such that φ(v) = bmax(v) + bmin(v) +
∑

s∈Rk
bsvs, where b ≥ 0 and b +

b +
∑

s∈Rk
bs = 1. Therefore, if we define w(k) ∈ R|S| such that w

(k)
s := b/|Sk| for all

s ∈ Sk, w
(k)
s := b/|Sk| for all s ∈ Sk, and the same as b in Rk, we obtain

∑
s∈S w

(k)
s = b,∑

s∈S w
(k)
s = b, w

(k)
s = bs for all s ∈ Rk. Therefore, we have φ(v) = w(k)Tv with

w(k) ∈ ∆(S), and we obtain (14).

Finally, to prove the last statement in the theorem, let Gj and Gk be such that

Sj ⊂ Sk, and Sj ⊂ Sk. If Rj = ∅, then S = Sj ∪ Sj ⊂ Sk ∪ Sk ⊂ S, which implies

Sk ∪ Sk = S and so, Rk = ∅. Therefore, in this case Sj = Sk and Sj = Sk, so that

Gj = Gk and the result is trivially true.

Hence, for the rest of the proof we assume that Rj ̸= ∅. Also notice that Rk ⊂ Rj.
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Given ϵ > 0, consider vectors v(ϵ) and v̂ in G defined as

vs(ϵ) :=



1 if s ∈ Sj,

1− ϵ if s ∈ Sk \ Sj,

δs if s ∈ Rk,

ϵ if s ∈ Sk \ Sj,

0 if s ∈ Sj,

and v̂s :=


1 if s ∈ Sk,

δs if s ∈ Rk,

0 if s ∈ Sk,

where δs for all s ∈ Rk are fixed, arbitrarily chosen, scalars in (0, 1). Notice that

v(ϵ) ∈ Gj for all ϵ < 1 − max{δs : s ∈ Rk}, and v̂ ∈ Gk. Moreover, v(ϵ) → v̂

as ϵ → 0+. By continuity, it follows that φ(v(ϵ)) → φ(v̂) as ϵ → 0+. Since

φ(v(ϵ)) =
∑

s∈Sj
w

(j)
s + (1 − ϵ)

∑
s∈Sk\Sj

w
(j)
s +

∑
s∈Rk

w
(j)
s δs + ϵ

∑
s∈Sk\Sj

w
(j)
s , and

φ(v̂) =
∑

s∈Sk
w

(k)
s +

∑
s∈Rk

w
(k)
s δs, by letting ϵ→ 0+ we obtain∑

s∈Sk

w(j)
s +

∑
s∈Rk

w(j)
s δs =

∑
s∈Sk

w(k)
s +

∑
s∈Rk

w(k)
s δs. (15)

Since the δs are arbitrary in (0, 1), it follows from (15) that
∑

s∈Sk
w

(j)
s =

∑
s∈Sk

w
(k)
s .

Using this identity to simplify (15), we obtain
∑

s∈Rk
w

(j)
s δs =

∑
s∈Rk

w
(k)
s δs. Once

again because the δs are arbitrary in (0, 1), we obtain w
(j)
s = w

(k)
s for all s ∈ Rk. Hence,

by using probability complements, we obtain
∑

s∈Sk
w

(j)
s =

∑
s∈Sk

w
(k)
s . Therefore,

for v ∈ Gk we have w
(k)Tv = max(v)

∑
s∈Sk

w
(k)
s +min(v)

∑
s∈Sk

w
(k)
s +

∑
s∈Rk

w
(k)
s vs =

max(v)
∑

s∈Sk
w

(j)
s + min(v)

∑
s∈Sk

w
(j)
s +

∑
s∈Rk

w
(j)
s vs = w(j)Tv, and the result fol-

lows.

Since a vector parameter associated with a class reduces to a vector parameter

associated with a mono-extreme class, we only consider mono-extreme classes in what

follows. The following result provides a necessary and sufficient condition for the

existence of a NEO-EU representation across mono-extreme classes.

Lemma 3 An agent has a NEO-EU preference functional V with parameter vector

(π, λ, ρ) ∈ ∆(S)×R×R satisfying conditions (8)-(10) if and only if for each mono-

extreme class Gk the parameters satisfy the following system of equations:

ρπsk + (1− ρ)λ = w
(k)
sk
, (16)

ρπsk + (1− ρ)(1− λ) = w(k)
sk
, (17)
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ρπs = w(k)
s , ∀s ∈ Rk, (18)

where w(k) is the EU vector associated with Gk, Sk = {sk}, and Sk = {sk}.

Proof. Suppose that the agent has a NEO-EU preference functional V with parame-

ter vector (π, λ, ρ) satisfying conditions (8)-(10). Given a mono-extreme class Gk with

Sk = {sk} and Sk = {sk}, notice that the vector with coordinates ρπsk + (1 − ρ)λ,

ρπsk + (1 − ρ)(1 − λ), and ρπs for all s ∈ Rk is in ∆(S). Moreover, we have

V (f) = ρπskvsk + ρπskvsk + ρ
∑

s∈Rk
πsvs + (1 − ρ) (λmax(v) + (1− λ)min(v)) =

(ρπsk + (1− ρ)λ) vsk +
(
ρπsk + (1− ρ)(1− λ)

)
vsk +

∑
s∈Rk

ρπsvs, for each f ∈ F such

that v := M(f)û ∈ Gk. Hence, the parameters π, λ, and ρ yield another EU repre-

sentation on Gk. Therefore, from the uniqueness of vector w(k) as shown in Lemma 2,

it follows that (π, λ, ρ) must satisfy system (16)-(18).

Conversely, suppose that the parameter vector (π, λ, ρ) satisfies system (16)-(18)

for each mono-extreme class. Given f, g ∈ F, let v = M(f)û and v′ = M(g)û.

We have f ≻ g if and only if φ(v) > φ(v′). On the other hand, by Lemma 2,

there exist mono-extreme classes Gj and Gk with respective EU vectors w(j) and w(k)

such that φ(v) = w(j)Tv = ρ
∑

s∈S πsvs + (1 − ρ) (λmax(v) + (1− λ)min(v)), and

φ(v′) = w(k)Tv′ = ρ
∑

s∈S πsv
′
s + (1 − ρ) (λmax(v′) + (1− λ)min(v′)). Hence, if we

define functional V with parameter vector (π, λ, ρ) as in (7), we have f ≻ g if and

only if V (f) > V (g), and the result follows.

Lemma 4 Let Gj and Gk be two different mono-extreme classes with respective EU

vectors w(j) and w(k) ∈ ∆(S), the following statements hold true:

1. if Sj = Sk = {s}, then w(j)
s = w

(k)
s , and w

(j)
s̃ +w

(j)
ŝ = w

(k)
s̃ +w

(k)
ŝ for s̃ ∈ Sj and

ŝ ∈ Sk;

2. if Sj = Sk = {s}, then w(j)
s = w

(k)
s , and w

(j)
s̃ +w

(j)
ŝ = w

(k)
s̃ +w

(k)
ŝ for s̃ ∈ Sj and

ŝ ∈ Sk;

3. if |S| > 3, then w
(j)
s = w

(k)
s for all s ∈ Rj ∩Rk.

Proof. For the first statement, suppose that Sj = Sk = {s}. Let v ∈ G be defined as

vs′ =

{
1 if s′ = s,

0 if s′ ̸= s,
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for each s′ ∈ S. Notice that Sj = Sk = S(v) and Sj, Sk ⊂ S(v). Hence, from

Lemma 2, we obtain w
(j)
s = w(j)Tv = φ(v) = w(k)Tv = w

(k)
s , as stated in statement

1. Next, suppose that Sj = {s̃} and Sk = {ŝ}. For each s′ ∈ Rj ∩ Rk we choose an

arbitrary ϵs′ ∈ (0, 1). Let v ∈ G be defined as

vs′ =


1 if s′ = s,

ϵs if s′ ∈ Rj ∩Rk,

0 if s′ = s̃ or ŝ.

Notice that Sj = Sk = S(v), and Sj, Sk ⊂ S(v). Hence, from Lemma 2, we obtain

w
(j)
s +

∑
s′∈Rj\{ŝ}w

(j)
s′ ϵs′ = w(j)Tv = φ(v) = w(k)Tv = w

(k)
s +

∑
s′∈Rk\{s̃}w

(k)
s′ ϵs′ . Since

w
(j)
s = w

(k)
s , we obtain

∑
s′∈Rj∩Rk

(
w

(j)
s′ − w

(k)
s′

)
ϵs′ = 0. Because the ϵs′ are arbitrarily

chosen in (0, 1), it follows that w
(j)
s′ = w

(k)
s′ for all s′ ∈ Rj ∩ Rk in this case. Hence,

since w(j)T e = w(k)T e = 1, we obtain w
(j)
s̃ + w

(j)
ŝ = w

(k)
s̃ + w

(k)
ŝ , and statement 1

follows.

To prove statement 2, suppose that Sj = Sk = {s}. Let v be defined this time as

vs′ =

{
0 if s′ = s,

1 if s′ ̸= s,

for each s′ ∈ S. Notice that Sj = Sk = S(v) and Sj, Sk ⊂ S(v). Hence, again from

Lemma 2, we obtain 1 − w
(j)
s = w(j)Tv = φ(v) = w(k)Tv = 1 − w

(k)
s , from which we

obtain w
(j)
s = w

(k)
s . Analogously to the proof of statement 1, we can show that in this

case w
(j)
s′ = w

(k)
s′ for all s′ ∈ Rj ∩ Rk. Hence, once again since w(j)T e = w(k)T e = 1,

we obtain w
(j)
s̃ + w

(j)
ŝ = w

(k)
s̃ + w

(k)
ŝ , and statement 2 follows.

Finally, for statement 3, we assume that Rj ∩ Rk is not empty, otherwise there

is nothing to prove. We have already shown that the statement follows whenever

Sj = Sk or Sj = Sk. Hence, suppose that Sj ̸= Sk and Sj ̸= Sk. Let sj, sj, sk, sk ∈ S

be such that Sj = {sj}, Sj = {sj}, Sk = {sk}, Sk = {sk}. Let s ∈ Rj ∩ Rk. If

sj ̸= sk, then let Fl be the mono-extreme class with Sl = {sj} and Sl = {sk}. Notice
that s ∈ Rj ∩ Rl and s ∈ Rk ∩ Rl. Hence, by statements 1 and 2, we must have

w
(j)
s = w

(l)
s = w

(k)
s , and the result follows. Similarly, if sj ̸= sk, then an analogous

argument shows that w
(j)
s = w

(k)
s . Finally, if sj = sk and sj = sk, then consider

the mono-extreme classes Gl and Gm with Sl = {sj}, Sl = {s′}, Sm = {sj}, and
Sm = {s′}, where s′ is any other state different from s, sj, sj (this is possible because
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|S| > 3). Then, again from statements 1 and 2, we obtain w
(j)
s = w

(l)
s = w

(m)
s = w

(k)
s ,

and the result follows.

Proof of Theorem 2 (axioms are sufficient): First, we show that Axioms 1-5

are sufficient, so that we assume that they hold. Given f, g ∈ F and using the same

notation as in the preceding paragraphs, let v := M(f)û and v̂ := M(g)û. Then,

from Lemma 1, we have f ≻ g if and only if v ≻u v̂ iff φ(v) > φ(v̂). So that if we

show that there exist parameters π ∈ ∆(S) and λ, ρ ≥ 0 satisfying (8)-(10) such that

φ(v) = ρπTv + (1− ρ) (λmax(v) + (1− λ)min(v)) (19)

for all v ∈ G, then by taking V (f) := φ(M(f)û) and V (g) := φ(M(g)û), we will

obtain (11) for the normalized utility function u used in this section. Moreover, it is

not difficult to see that from this we obtain (11) for any other positive affine trans-

formation of u, thus proving that the axioms are sufficient. Hence, we concentrate on

proving that (19) holds.

Since |S| > 3, the third statement in Lemma 4 implies that the coefficients w
(k)
s

of a mono-extreme class Gk that correspond to states s ∈ Rk are independent of the

class. In other words, for each s ∈ S there exists a scalar bs ≥ 0 such that w
(k)
s = bs

for all mono-extreme classes Gk with s ∈ Rk. Based on this, we define

ρ :=
∑
s∈S

bs.

If ρ > 0, then we define

πs :=
bs∑

s′∈S bs′
=
bs
ρ
,

for each s ∈ S; and if ρ = 0, then we arbitrarily pick any vector π ∈ ∆(S). Either

way, we obtain ρ ≥ 0, π ∈ ∆(S), and

ρπs = w(k)
s ,

for each s ∈ Rk and for each Gk.

If ρ = 1, then we arbitrarily pick λ to be any number in [0, 1]. So that assume

that ρ ̸= 1. Given an arbitrary mono-extreme class Gk with Sk = {s} and Sk = {s},
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let

λ :=
w

(k)
s − ρπs
1− ρ

.

Notice that

1− λ =
1

1− ρ

(
1− w

(k)
s − ρ(1− πs)

)
=

1

1− ρ

(
w(k)

s +
∑
s∈Rk

w(k)
s − ρπs −

∑
s∈Rk

ρπs

)

=
w

(k)
s − ρπs
1− ρ

.

Now, let Gk′ be another mono-extreme class different from Gk with Sk′ = {ŝ} and

Sk′ = {š}. From Lemma 4 statements 1 and 2, if s = ŝ or s = š, then we obtain

w
(k)
s = w

(k′)
ŝ or w

(k)
s = w

(k′)
š . In either case, it follows that

w
(k′)
ŝ − ρπŝ
1− ρ

=
w

(k)
s − ρπs
1− ρ

= λ.

If s ̸= ŝ and s ̸= š, then consider the mono-extreme class Gk′′ with Sk′′ = {ŝ} and

Sk′′ = {s}. Again from Lemma 4 statements 1 and 2, it follows that

w
(k)
s + w

(k)
ŝ = w

(k′′)
s + w

(k′′)
ŝ = w

(k′)
s + w

(k′)
ŝ .

Thus,

w
(k′)
ŝ − ρπŝ
1− ρ

=
w

(k′)
ŝ − w

(k)
ŝ

1− ρ
=
w

(k)
s − w

(k′′)
s

1− ρ
=
w

(k)
s − ρπs
1− ρ

= λ.

Therefore, we have proven that the identities

ρπsk + (1− ρ)λ = w
(k)
sk
, (20)

ρπsk + (1− ρ)λ = w(k)
sk
, (21)

hold for any mono-extreme class Gk with Sk = {sk} and Sk = {sk}. Hence, from

Lemma 3, it follows that the agent has a NEO-EU preference functional V with

parameters (π, λ, ρ) as defined above. Moreover, ρ ≥ 0, and since for each s ∈ S

there exists a mono-extreme class with S = {s} and another mono-extreme class
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with S = {s}, it follows from identities (20) and (21) that ρπs + (1 − ρ)λ ≥ 0 and

ρπs + (1− ρ)(1− λ) ≥ 0 for all s ∈ S.

From Theorem 1, it follows that the utility function u is nonconstant and unique

up to a positive linear transformation. Next, we show that ρ is unique. For suppose

that there is another NEO-EU representation V̂ in the form (7) with parameters

(π̂, λ̂, ρ̂) and utility function û. By normalizing û, we can assume without loss of

generality that û = u. Hence, û generates the same state-utility space as G. Let φ̂ be

the representation of V̂ in G, that is,

φ̂(v) = ρ̂π̂Tv + (1− ρ̂)
(
λ̂max(v) + (1− λ̂)min(v)

)
,

for all v ∈ G. Since for any v ∈ G we have v ∼u φ(v)e, it follows that

ρ̂π̂Tv + (1− ρ̂)
(
λ̂max(v) + (1− λ̂)min(v)

)
= φ̂(v) = φ̂(φ(v)e) = φ(v)

= ρπTv + (1− ρ) (λmax(v) + (1− λ)min(v)) ,

for all v ∈ G. By considering all vectors in G that have exactly one coordinate equal

to 1 and the other coordinates equal to 0, it follows that,

ρπs + (1− ρ)λ = ρ̂π̂s + (1− ρ̂)λ̂, (22)

for all s ∈ S. Similarly, by considering all vectors in G that have exactly one coordinate

equal to 0 and the other coordinates equal to 1, it follows that,

ρ(1− πs) + (1− ρ)λ = ρ̂(1− π̂s) + (1− ρ̂)λ̂,

for all s ∈ S. Adding these identities for all s, we get

ρ+ |S|(1− ρ)λ = ρ̂+ |S|(1− ρ̂)λ̂,

ρ(|S| − 1) + |S|(1− ρ)λ = ρ̂(|S| − 1) + |S|(1− ρ̂)λ̂.

Thus,

ρ− ρ̂ = |S|(1− ρ̂)λ̂− |S|(1− ρ)λ = (|S| − 1)(ρ− ρ̂).

Since we are assuming that |S| > 3, we obtain ρ = ρ̂, and so the ρ is unique. Using
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that ρ = ρ̂, we also obtain

|S|(1− ρ)(λ− λ̂) = 0

Therefore, if ρ ̸= 1, we obtain λ = λ̂, so that λ is unique. We also obtain from (22)

that, if ρ > 0, πs = π̂s for all s ∈ S, and so, the π is unique.

Proof of Theorem 2 (axioms are necessary): Suppose that there exists a NEO-

EU preference functional V with parameters (π, λ, ρ) satisfying conditions (8) to (10),

with nonconstant utility function u, and such that f ≻ g if and only if V (f) > V (g),

for all f, g ∈ F. Since u is nonconstant, it is easy to verify that V defines a nontrivial

preference relation on F, so that Axiom 1 holds. Without loss of generality, we

assume that u has been normalized such that u(x) = 1 and u(x) = 0. Hence, we can

define state-utility space G in relation to u as usual, i.e., v ∈ G if and only if there

exists f ∈ F such that M(f)û = v. Let φ : G → R be defined as φ(v) := ρπTv +

(1 − ρ) (λmax(v) + (1− λ)min(v)), for all v ∈ G, so that V (f) = φ(M(f)û), for all

f ∈ F. Thus, Axiom 2 is an easy consequence from φ being a continuous function on

G. Axiom 3 follows from noticing that φ(αv + (1− α)βe) = αφ(v) + (1− α)β, for all

α, β ∈ [0, 1].

Next, consider the following optimization problem:

z := max{φ(v̂)− φ(v) : v ≥ v̂, v, v̂ ∈ G}. (23)

Notice that by taking v = v̂, we can obtain a feasible solution with objective equal

to 0, so that z ≥ 0. It follows that Axiom 4 holds if and only if z = 0. To show that

z = 0, notice that problem (23) can be solved by solving O(|S|4) linear programs of

the form

zijkl := max ρπT v̂ + (1− ρ)
(
λv̂+ + (1− λ)v̂−

)
− ρπTv − (1− ρ)

(
λv+ + (1− λ)v−

)
,

s.t.

v ≥ v̂,

v−e ≤ v ≤ v+e,

v̂−e ≤ v̂ ≤ v̂+e,

vsi = v+, vsj = v̂+, vsk = v−, vsl = v̂−,

v, v̂ ∈ G,
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for si, sj, sk, sl ∈ S, si ̸= sk, sj ̸= sl; and then setting z = maxijkl{zijkl}. Hence,

Axiom 4 holds if and only if zijkl ≤ 0 for all i, j, k, l. For a given set of indexes

i, j, k, l, the dual of the corresponding linear program is

zijkl = min eTy2,

s.t.

−y1 + y2 + y4 − y6 − β1esi + β3esk = −ρπ,

y1 − y3 + y5 − y7 − β2esj + β4esl = ρπ,

−eTy4 + β1 = −(1− ρ)λ,

−eTy5 + β2 = (1− ρ)λ,

eTy6 − β3 = −(1− ρ)(1− λ),

eTy7 − β4 = (1− ρ)(1− λ),

yh ∈ R|S|, yh ≥ 0, for all h ∈ {1, . . . , 7},

βh ≥ 0, for all h ∈ {1, . . . , 4}.

We claim that the dual problem always has a feasible solution with objective equal

to zero, which would imply that zijkl ≤ 0 as we wish to show. Hence, set y2 = y3 = 0,

and consider the following cases:

• If (1 − ρ)λ ≥ 0 and (1 − ρ)(1 − λ) ≥ 0, then set y5 = y6 = 0, β1 = β4 = 0,

y4 = (1− ρ)λesj , y7 = (1− ρ)(1− λ)esk , β2 = (1− ρ)λ, β3 = (1− ρ)(1− λ), and

y1 = ρπ + (1− ρ)λesj + (1− ρ)(1− λ)esk .

• If (1 − ρ)λ ≤ 0 and (1 − ρ)(1 − λ) ≥ 0, then set y4 = y6 = 0, β2 = β4 = 0,

y5 = −(1− ρ)λesi , y7 = (1− ρ)(1− λ)esk , β1 = −(1− ρ)λ, β3 = (1− ρ)(1− λ),

and y1 = ρπ + (1− ρ)λesi + (1− ρ)(1− λ)esk .

• If (1 − ρ)λ ≥ 0 and (1 − ρ)(1 − λ) ≤ 0, then set y5 = y7 = 0, β1 = β3 = 0,

y4 = (1− ρ)λesj , y6 = −(1− ρ)(1− λ)esl , β2 = (1− ρ)λ, β4 = −(1− ρ)(1− λ),

and y1 = ρπ + (1− ρ)λesj + (1− ρ)(1− λ)esl .

• If (1−ρ)λ ≤ 0, (1−ρ)(1−λ) ≤ 0, and si ̸= sl, then set y4 = y7 = 0, β2 = β3 = 0,

y5 = −(1−ρ)λesi , y6 = −(1−ρ)(1−λ)esl , β1 = −(1−ρ)λ, β4 = −(1−ρ)(1−λ),
and y1 = ρπ + (1− ρ)λesi + (1− ρ)(1− λ)esl .
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• If (1 − ρ)λ ≤ 0, (1 − ρ)(1 − λ) ≤ 0, ρπsi + 1 − ρ ≤ 0, and si = sl, then set

y7 = 0, β2 = β3 = 0, y4 = (ρπsi + (1− ρ)λ)eh, y5 = (ρπsi + (1− ρ)(1− λ))esi −
(ρπsi + 1 − ρ)esh′ , y6 = (ρπsi + (1 − ρ)λ)eh − (ρπsi + 1 − ρ)esh′ , β1 = ρπsi ,

β4 = −(1− ρ)(1− λ), and y1 = ρπ+ ρπsiesi + (ρπsi +1− ρ)esh′ , where sh ̸= sh′

and sh, sh′ are arbitrary states different from si.

• If (1−ρ)λ ≤ 0, (1−ρ)(1−λ) ≤ 0, ρπsi +1−ρ > 0, and si = sl, then set y7 = 0,

β2 = β3 = 0, y4 = −(1− ρ)(1−λ)eh, y5 = −(1− ρ)λesi , y6 = −(1− ρ)(1−λ)eh,

β1 = −(1− ρ), β4 = −(1− ρ)(1− λ), and y1 = ρπ + (1− ρ)esi , where sh is an

arbitrary state different from si.

In each of the above cases we exhibit a feasible solution to the dual problem with a

zero objective value, so that, as argued before, Axiom 4 holds.

Finally, by noticing that φ is a linear function within any co-extreme class Gk,

i.e., φ(αv + (1− α)v̂) = αφ(v) + (1− α)φ(v̂) for all v, v̂ ∈ Gk and α ∈ [0, 1], it is not

difficult to see that Axiom 5 also holds. Therefore, Axioms 1-5 are necessary.

Additional Representation Results

Proof of Proposition 1: Without loss of generality, we prove this result in state-

utility space. Extending the definition of complementary with indifferent extremes

(CIE), it is easy to show that two acts v, v̂ ∈ G are CIE if and only if v+v̂ = (max(v)+

min(v))e. Suppose that Axioms 1-6 hold. Then, the relation ≻u can be represented

by a NEU-EU functional φ with parameters π, λ, ρ as in Theorem 2. It follows that

for ρ > 0, a CIE pair (v, v̂) satisfies v ∼u v̂ if and only if πTv = (max(v)+min(v))/2.

Let (v, v̂) be a CIE pair satisfying this equation and such that max(v) > min(v) (for

instance, because |S| > 3, there exist s, s′ ∈ S such that πs + πs′ ≤ 1/2; so that

take vs = 1, vs′ = 0, and vs′′ = x for all s′′ ∈ S \ {s, s′} with x ∈ [0, 1] such that

πs+(1−πs−πs′)x = 1/2). If ρ = 0, then any CIE pair (v, v̂) trivially satisfies v ∼u v̂,

so that again we can choose max(v) > min(v). Then, by Axiom 6, φ(1
2
v+ 1

2
v̂) ≥ φ(v),

which implies

(1− ρ)(1/2− λ)(max(v)−min(v)) ≥ 0, (24)

and the sufficiency of the axioms follows.

For the converse, assume that ≻u can be represented by a generalized NEU-EU

functional φ with parameters π, λ, ρ satisfying (1−ρ)(1/2−λ) ≥ 0. Theorem 2 implies
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that Axioms 1-5 hold. For any CIE pair (v, v̂) such that v ∼u v̂ inequality (24) is

satisfied, which implies φ(1
2
v + 1

2
v̂) ≥ φ(v). Hence, Axiom 6 also holds, and the

necessity of the axioms follows.

Proof of Proposition 2: Without loss of generality, we prove this result in state-

utility space. In this case, two acts v, v̂ ∈ G are co-maximal if S(v) = S(v̂), and

co-minimal if S(v) = S(v̂). Suppose that Axioms 1-5 and 7 hold. Then, the rela-

tion ≻u can be represented by a NEU-EU functional φ with parameters π, λ, ρ as in

Theorem 2. Since |S| > 3, let s′, s′′, s′′′ be three different states in S. Consider the

state-utility vectors v, v̂ defined as follows:

vs :=


1 if s = s′,

1/2 if s = s′′,

0 if s = s′′′,

1/4 if s ̸= s′, s′′, s′′′,

v̂s :=


1 if s = s′,

0 if s = s′′,

1/2 if s = s′′′,

1/4 if s ̸= s′, s′′, s′′′.

Notice that S(v) = S(v̂) = {s′}, so that v and v̂ are co-maximal. Axiom 7 implies

φ
(
1
2
v + 1

2
v̂
)
≥ 1

2
φ(v) + 1

2
φ(v̂), from which we obtain

(1− ρ)(1− λ) ≥ 0. (25)

Now, re-define v and v̂ as follows:

vs :=


1/4 if s = s′,

1/2 if s = s′′,

1 if s = s′′′,

3/4 if s ̸= s′, s′′, s′′′,

v̂s :=


1/4 if s = s′,

1 if s = s′′,

1/2 if s = s′′′,

3/4 if s ̸= s′, s′′, s′′′.

This time v and v̂ are co-minimal. Axiom 7 implies φ
(
1
2
v + 1

2
v̂
)
≤ 1

2
φ(v) + 1

2
φ(v̂),

from which we obtain

(1− ρ)λ ≥ 0. (26)

Adding together the left-hand sides of inequalities (25) and (26), it follows that 1−ρ ≥
0, that is, ρ ≤ 1. If ρ = 1, then we can arbitrarily choose any λ in [0, 1]. If ρ < 1, then

inequalities (25) and (26) imply that 0 ≤ λ ≤ 1. Therefore, the axioms are sufficient.

For the converse, suppose that ≻u can be represented by a generalized NEO-
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EU functional φ with parameters π, λ, ρ satisfying ρ, λ ∈ [0, 1]. Theorem 2 im-

plies that Axioms 1-5 hold. If v ∼u v̂ and v, v̂ are co-maximal, it follows that

max
(
1
2
v + 1

2
v̂
)
= 1

2
max(v) + 1

2
max(v̂), and min

(
1
2
v + 1

2
v̂
)
≥ 1

2
min(v) + 1

2
min(v̂).

Thus, φ
(
1
2
v + 1

2
v̂
)
≥ 1

2
φ(v) + 1

2
φ(v̂) = φ(v). Hence, Axiom 7 holds in this case.

Similarly, the axiom holds if v ∼u v̂ and v, v̂ are co-minimal. Therefore, the axioms

are necessary.

Proof of VC-Dimension Results

Proposition 7 There exists a sample of size |S| − 1 that can be shattered by E.

Proof. Let m := |S| − 1 and fix a state s̄ ∈ S. For each s ∈ S \ {s̄}, let vs :=

es and v̂s := 0. Let fs and f̂s be such that M(fs)û = vs and M(f̂s)û = v̂s for

all s ∈ S \ {s̄}. Let d be the sample m-vector formed by the pairs (fs, f̂s) for

s ∈ S \ {s̄}. Let b be any binary m-vector and define I := {s ∈ S \ {s̄} : bs = 1}
and J := {s ∈ S \ {s̄} : bs = 0}. Clearly, I and J form a partition of S \ {s̄} and

|I|+ |J | = m.

If I is nonempty, then define π := 1
|I|
∑

i∈I ei. Notice that eTπ = 1 and π ≥ 0, so

that π ∈ ∆(S). Moreover, πTvs = 1/|I| > 0 = πT v̂s for all s ∈ I, and πTvs = 0 =

πT v̂s for all s ∈ J . Hence, if ≻ is the relation in E defined by π, we obtain fs ≻ f̂s

for all s ∈ I and fs ̸≻ f̂s for all s ∈ J . If I is empty, then define π := es̄, so that we

have again π ∈ ∆(S) and πTvs = 0 = πT v̂s for all s ∈ S \ {s̄}, so that fs ̸≻ f̂s for all

s ∈ S \ {s̄}.
Hence, we can always choose π ∈ ∆(S) that can separate the sample d according

to vector b. Therefore, d can be shattered by E.

Proposition 8 Any sample of size |S| or greater cannot be shattered by E.

Proof. For arbitrary m ∈ N, let d :=
[
(f1, f̂1), . . . , (fm, f̂m)

]
∈ Dm, and define

ai := vi − v̂i, where vi = M(fi)û and v̂i = M(f̂i)û for all i ∈ {1, . . . ,m}. Let

A := [a1, . . . , am] be the matrix whose columns are the ai vectors. Let I, J be a

partition of {1, . . . ,m}. Then, there exists a relation ≻∈ E such that fi ≻ f̂i for all

s ∈ I and fj ̸≻ f̂j for all j ∈ J if and only the following linear system is feasible:

(*) AT
I w ≥ δe,
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AT
Jw ≤ 0,

eTw ≥ δ,

w ≥ 0,

δ > 0.

If w is a solution to this system, then it is easy to see that the relation ≻ can be

represented by π := w/eTw ∈ ∆(S). By Farkas’ Lemma, system (*) is feasible if and

only if the following system is not feasible:

(**) − AIyI + AJyJ − θe ≥ 0,

eTI yI + θ = 1,

yI , yJ , θ ≥ 0.

Now, suppose that m = |S| and a1, . . . , am are linearly independent vectors. It

follows that A is an m ×m nonsingular matrix, so that there exits a vector q ∈ Rm

such that Aq = −e. Let

I := {i : qi > 0} and J := {j : qj ≤ 0}. (27)

It follows that −AIqI + AJ(−qJ) − e = 0. Then, by setting yI := qI
eTI qI+1

, yJ :=
−qJ

eTI qI+1
, and θ := 1

eTI qI+1
, we obtain a solution to system (**), so that system (*) for

partition (27) cannot be feasible. Hence, there cannot be a relation ≻∈ E such that

fi ≻ f̂i for all s ∈ I and fj ̸≻ f̂j for all j ∈ J for partition (27).

If m = |S| and a1, . . . , am are linearly dependent vectors or if m > |S|, then there

exits a vector q ∈ Rm such that Aq = 0. It follows that −AIqI +AJ(−qJ) = 0, where

I, J are as in (27). Without loss of generality we can assume that I is nonempty,

so that by setting yI := qI
eTI qI

, yJ := −qJ
eTI qI

, and θ := 0, we obtain another solution to

system (**).

Therefore, when m ≥ |S| any sample in Dm cannot be shattered by E.

Corollary 3 Let E′ ⊂ H be such that ≻∈ E′ if there exists w ∈ RS such that eTw = 1,

and f ≻ g if and only if
∑

s∈S wsU(f(s)) >
∑

s∈S wsU(g(s)), for all f, g ∈ F. Then,

any sample of size |S| or greater cannot be shattered by E′.

Proof. The proof is analogous to the proof of Proposition 8, except that we use the
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linear system:

AT
I w ≥ δe,

AT
Jw ≤ 0,

eTw ≥ δ,

δ > 0,

whose alternative system through Farkas’ Lemma is:

−AIyI + AJyJ − θe = 0,

eTI yI + θ = 1,

yI , yJ , θ ≥ 0.

Like in Proposition 8, the proof follows from noticing that when the sample vectors

a1, . . . , am are either linearly dependent or linearly independent for m = |S|, then the

alternative system has a solution and hence, it is not possible to separate the sample

vectors by a relation in E′.

Proposition 9 For |S| > 2, there exists a sample of size |S|+1 that can be shattered

by N.

Proof. Let m := |S| + 1, fix a state s0 ∈ S, and let s1 be another state not in S.

For each s ∈ S, let vs := es and v̂
s := e/|S|. Let vs1 = e− es0 and v̂s1 := e/2. Let fs

and f̂s be such that M(fs)û = vs and M(f̂s)û = v̂s for all s ∈ S ∪ {s1}. Let d be the

sample m-vector formed by the pairs (fs, f̂s) for s ∈ S ∪ {s1}. Let b be any binary

m-vector and define I := {s ∈ S : bs = 1}, and J := {s ∈ S : bs = 0}. Clearly, I and

J form a partition of S and |I|+ |J | = |S|. We consider three cases:

1. I and J are nonempty.

2. I is empty and so, J = S.

3. I = S and so, J is empty.

Notice that state s1 belongs to neither I nor J .
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In case #1, define π ∈ ∆(S) as

πs :=

{
1
|S| +

θ
|I| if s ∈ I,

1
|S| −

θ
|J | if s ∈ J,

for all s ∈ S, where θ is a positive number small enough to ensure that π ≥ 0. Clearly,

eTπ = 1. Also, define λ := 1/|S|. Then, for s ∈ I, we have φ(vs) = 1
|S| + ρ θ

|I| >
1
|S| =

φ(v̂s), for any ρ > 0. For s ∈ J , we have φ(vs) = 1
|S| − ρ θ

|J | <
1
|S| = φ(v̂s), for any

ρ > 0. If bs1 = 1, then we take ρ = 1, so that φ(vs1) = 1− 1
|S|+θK > 1

2
= φ(v̂s1), for θ

small enough, where K := −1/|I| if s0 ∈ I and K := 1/|J | if s0 ∈ J . If bs1 = 0, then

we take ρ as a positive number close to zero, so that φ(vs1) = 1
|S|+ρ

(
1− 2

|S| + θK
)
<

1
2
= φ(v̂s1).

In case #2, we set π := e/|S| and λ := 1/|S|. Then, φ(vs) = 1/|S| = φ(v̂s), for

all s ∈ S. If bs1 = 1, then we take ρ = 1, so that φ(vs1) = 1− 1/|S| > 1/2 = φ(v̂s1),

and if bs1 = 0, then we take ρ = 0, so that φ(vs1) = 1/|S| < 1/2 = φ(v̂s1).

In case #3, we set π := e/|S| and ρ := 0. Then, φ(vs) = λ > 1/|S| = φ(v̂s), for

all λ > 1/|S| and s ∈ S. If bs1 = 1, then we take λ = 1, so that φ(vs1) = 1 > 1/2 =

φ(v̂s1), and if bs1 = 0, then we take λ = 1/2, so that φ(vs1) = 1/2 = φ(v̂s1).

Hence, we can always choose (π, λ, ρ) ∈ ∆(S)× [0, 1]× [0, 1] that can separate the

sample d according to vector b. Therefore, d can be shattered by N.

Proposition 10 Any sample of size |S|+ 2 or greater cannot be shattered by N1.

Proof. Let ≻ be a relation in N1. Then, there exist π ∈ RS, eTπ = 1, and ρ, λ ∈ R
such that for any two acts f, f̂ ∈ F we have f ≻ f̂ if and only if

ρπTv + (1− ρ) (λmax(v) + (1− λ)min(v)) >

ρπT v̂ + (1− ρ) (λmax(v̂) + (1− λ)min(v̂)) , (28)

where v = M(f)û and v̂ = M(f̂)û. Now, let S ′ := S ∪ {s0, s1}, where s0 and s1 are

different states not in S. Define w ∈ ∆(S ′) as

ws :=


ρπs if s ∈ S,

(1− ρ)λ if s = s0,

(1− ρ)(1− λ) if s = s1,
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for all s ∈ S ′. Then, inequality (28) becomes wTv′ > wT v̂′, where v′ := [v,max(v),min(v)]

and v̂′ := [v̂,max(v̂),min(v̂)]. If f ′ and f̂ ′ are augmented acts defined in S ′ such that

M(f ′)û = v′ and M(f̂ ′)û = v̂′, then f ≻ f̂ if and only if f ′ ≻′ f̂ ′, where ≻′ is the

relation in E′ from Corollary 3 defined by w.

If m = |S| and a1, . . . , am are linearly dependent vectors or if m > |S|, then there

exists a nonzero vector q ∈ Rm such that Aq = 0. It follows that−AIqI+AJ(−qJ) = 0,

where I, J are as in (27). Without loss of generality we can assume that I is nonempty,

so that by setting yI := qI
eTI qI

, yJ := −qJ
eTI qI

, and θ := 0, we obtain another solution to

system (**).

Hence, if an arbitrary sample d :=
[
(f1, f̂1), . . . , (fm, f̂m)

]
∈ Dm can be shattered

by N1, then the corresponding sample of augmented acts d′ :=
[
(f ′

1, f̂
′
1), . . . , (f

′
m, f̂

′
m)
]

can also be shattered by E′ on the augmented state space S ′. However, because

|S ′| = |S|+ 2, Corollary 3 implies that d′ cannot be shattered by E′ for m ≥ |S|+ 2.

Therefore, d cannot be shattered by N1 for m ≥ |S|+ 2 and the result follows.

Proof of Theorem 3: Proposition 7 implies that VC(E) ≥ |S| − 1, whereas Propo-

sition 8 implies that VC(E) < |S|. Therefore, it follows that VC(E) = |S| − 1.

For |S| > 2, Proposition 9 implies that VC(N) ≥ |S|+ 1, whereas Proposition 10

implies that VC(N1) < |S|+2. Hence, we obtain |S|+1 ≤ VC(N) ≤ VC(N1) < |S|+2

Therefore, it follows that VC(N) = VC(N1) = |S|+ 1.

Finally, to show that VC(N0) = 1, we first show that there is a sample vector in

D1 that can be shattered. Let s̄ be a fixed state in S. Let v := es̄, v̂ := 1
|S|e, and

b ∈ {0, 1}. Let f and f̂ be such that M(f)û = v and M(f̂)û = v̂, and d := (f, f̂). If

b = 1, then let ≻ be the Hurwicz preference corresponding to λ = 1. Then, we have

ν(f) = 1 > 1
|S| = ν(f̂). If b = 0, then let ≻ be the Hurwicz preference corresponding

to λ = 0. Then, we have ν(f) = 0 < 1
|S| = ν(f̂). Hence, d can be shattered by N0.

Next, we show that there cannot be a sample in D2 shattered by N0. Let

d := [(f1, f̂1), (f2, f̂2)] ∈ D2. By letting parameter λ vary in the interval [0, 1], it

follows that the mappings g1(λ) := ν(f1;λ), ĝ1(λ) := ν(f̂1;λ), g2(λ) := ν(f2;λ), and

ĝ2(λ) := ν(f̂2;λ) are linear functions on [0, 1]. Notice that to shatter d it is necessary

and sufficient to partition interval [0, 1] into at least four nonempty regions such that

each region corresponds to each of the four possible conditions g1(λ)−ĝ1(λ) > or ≤ 0

and g2(λ) − ĝ2(λ) > or ≤ 0. If such a partition exists, then d can be shattered

by taking the Hurwicz preferences corresponding to four values of λ taken respec-
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tively from each region in the partition. However, because g1, ĝ1, g2, ĝ2 correspond to

straight lines, there is at most one point λ1 such that g1 − ĝ1 changes sign in [0, 1],

and there is at most one point λ2 such that g2 − ĝ2 changes sign in [0, 1]. Taken

together, the points λ1 and λ2 define at most three nonempty regions in [0, 1], where

g1(λ)− ĝ1(λ) > or ≤ 0 and g2(λ)− ĝ2(λ) > or ≤ 0. Therefore, it is not possible to

shatter d in this case, and we must have VC(N0) = 1.

Proof of Proposition 3: The dual problem of (P) is as follows:

(D) min θ,

s.t.

−AIyI + AJyJ + θe ≥ 0,

−gTI yI + gTJ yJ + θ ≥ 0,

−hTI yI + hTJ yJ + θ ≥ 0,

eTI yI ≥ 1,

yI , yJ ≥ 0.

Since we can choose θ to be an arbitrarily large positive number, problem (D) is always

feasible. Hence, if problem (P) is feasible, its objective function will be bounded from

above and (P) will have an optimal solution.

If (P) has a solution (α, β, σ, w) with σ > 0, then let (π, λ, ρ) ∈ ∆(S)×[0, 1]×[0, 1]

be defined using (α, β, w) as indicated in the statement of this proposition, and ≻ the

relation in N defined by (π, λ, ρ). It follows that for each i ∈ I we have ρ(vi− v̂i)Tπ+
(1 − ρ) [λ(max(vi)−max(v̂i)) + (1− λ)(min(vi)−min(v̂i))] > 0, which implies that

fi ≻ f̂i. Similarly, for each i ∈ J ,we have ρ(vi− v̂i)Tπ+(1−ρ)[λ(max(vi)−max(v̂i))+

(1 − λ)(min(vi) − min(v̂i))] ≤ 0, which implies that fi ̸≻ f̂i. Therefore, under this

relation we have fi ≻ f̂i ⇔ bi = 1 for i = 1, . . .m.

For the converse, suppose that fi ≻ f̂i ⇔ bi = 1 for i = 1, . . .m for some ≻ in N.

Let (π, λ, ρ) ∈ ∆(S)× [0, 1]× [0, 1] be a corresponding parameter vector defining ≻.

Then, it is easy to see that if we define w := ρπ, α := (1−ρ)λ, and β := (1−ρ)(1−λ),
then we can obtain a feasible solution to (P) with σ > 0, and the result follows.
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