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CONVEX CONES OF GENERALIZED POSITIVE RATIONAL

FUNCTIONS AND THE NEVANLINNA-PICK INTERPOLATION

DANIEL ALPAY AND IZCHAK LEWKOWICZ

Dedicated to appreciated colleagues Avraham Berman, Moshe Goldberg and Raphael Loewy

Abstract. Scalar rational functions with a non-negative real part on the right half
plane, called positive, are classical in the study of electrical networks, dissipative sys-
tems, Nevanlinna-Pick interpolation and other areas. We here study generalized positive
functions, i.e with a non-negative real part on the imaginary axis. These functions form
a Convex Invertible Cone, cic in short, and we explore two partitionings of this set: (i)
into (infinitely many non-invertible) convex cones of functions with prescribed poles and
zeroes in the right half plane and (ii) each generalized positive function can be written
as a sum of even and odd parts. The sets of even generalized positive and odd functions
form subcics.

It is well known that the Nevanlinna-Pick interpolation problem is not always solvable
by positive functions. Unfortunately, there is no computationally simple procedure to
carry out this interpolation in the framework of generalized positive functions. Through
examples it is illustrated how the two above partitionings of generalized positive functions
can be exploited to introduce simple ways to carry out the Nevanlinna-Pick interpolation.

Finally we show that only some of these properties are carried over to rational gener-
alized bounded functions, mapping the imaginary axis to the unit disk.

1. Introduction

1.1. Historical perspective. Functions which are analytic in the open right half-plane
C+ and with a non-negative real part there

(1.1) Re p(s) ≥ 0, s ∈ C+,

here denoted by P, play an important in the theory of electrical networks they were first
studied around 1930 by W. Cauer, [22], [23] and O. Brune (who first coined the name
positive for such functions; see [20, Definition 1, p. 25], see also [21]). These functions
also serve as the corner stone of the theory of linear dissipative systems (a.k.a absolutely
stable), see e.g. [12, Theorem 2.7.1], [17, 3.18], [45] and [47].
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2 D. ALPAY AND I. LEWKOWICZ

One can weaken condition (1.1) and assume that a function p is analytic almost every-
where on the imaginary axis satisfying

Re p(s) ≥ 0, s ∈ iR.
These functions will be called generalized positive and thus denoted by GP . They were
first addressed more than forty years ago by B.D.O. Anderson and J.B. Moore in [11].

We shall denote by C− the open left half of the complex plane. We also denote the
closed right half plane by C+ (= iR ∪ C+). We here consider the field of scalar rational
functions of a complex variable s with complex coefficients. Throughout this work we
denote by GP the set of scalar rational generalized positive functions and by P its
subset of positive functions.

In the sequel, we shall find it convenient to denote for an arbitrary rational function g(s),

g#(s) := (g(−s∗))∗.
The following result appeared in [8] (to help the reader we shall use p ∈ P and ψ ∈ GP):

Theorem 1.1. A rational function ψ(s) is generalized positive if and only if it admits
the factorization

(1.2) ψ(s) = g(s)p(s)g#(s), s ∈ C,

where p ∈ P and g is rational such that both g and g−1 analytic in C− and 1

deg(g) ∈ [0, deg(ψ)].
Moreover, one can always2 find so ∈ iR so that in (1.2) the functions p(s) and g(s)
are uniquely determined by 0 6= ψ(so) = p(so) and g(so) = 1.

Factorization results of the form of (1.2) are well known in other frameworks. To name
but three:
(i) Schur functions, analytically mapping the open unit disk to its closure, rational gener-
alized Schur functions mapping the unit circle to the closed unit disk, see e.g. [46], [24],
[1]. Factorization result of generalized Schur functions appeared in [38, Theorem 3.2].
(ii) Carathéodory functions, mapping the open unit disk to C+ and the rational gener-
alized (=pseudo) Carathéodory functions, mapping the unit circle to C+. Factorization
result of generalized Carathéodory functions appeared in [28, Theorem 3.1].
(iii) Nevanlinna functions, analytically mapping the closed upper half plane to its closure
and the rational generalized Nevanlinna functions mapping the real axis to the closed up-
per half plane. Factorization of generalized Nevanlinna functions appeared in parallel in
[31] and [33] and further explored and extended to operator valued functions in [42], [43]
and [44].

An extended version of GP functions was introduced by M.G. Krĕın and H. Langer in a
long and celebrated series of papers of which we cite only [38], [39] (note that they studied
functions meromorphic in the open upper half plane, or in the open disk).

1Recall, the degree of a rational function is taken to be the maximum between the degrees of the
numerator and the denominator.

2assuming ψ(s) 6≡ 0
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Important part of the existing research on GP functions is neither confined to scalar
functions nor to rational functions. Restricting the discussion to scalar rational functions
mapping the imaginary axis into the right half-plane, enabled us in [8] to obtain an elemen-
tary proof for the factorization (1.2). On the expense of generality, to keep the exposition
simple, we here adhere to the case of scalar rational functions.

1.2. The current work. Traditionally, GP functions were studied almost uniquely by
mathematicians. They were addressed in the framework of not necessarily rational func-
tions. In contrast, Electrical engineers have long been interested in rational positive func-
tions (impedance of R-L-C electrical circuits).

In this work we take a challenging task try to simultaneously address both audiences.
Thus, depending on their background, some readers may find part of the statements
nearly obvious and others not clear at all. Moreover, we try to address skeptical questions
like:
(An engineer): ”Why should I be interested in the extension of positive functions to the
GP framework?”
(A mathematician): ”Why should I be interested in scalar rational GP functions if the
operator-valued non-rational case has already been addressed ?”

As already pointed out above, positive functions have been a corner-stone in system theory.
We thus believe that a sufficiently good motivation for a researcher in this field to explore
GP functions, is to gain a proper perspective on the subset of P functions. In particular to
understand which of the properties of P exist in the larger set GP and which are peculiar
to positive functions.

As a prime example we point out that rational GP functions (bounded at infinity) may
be characterized through the Generalized Positive Real Lemma (in the positive case a.k.a.
the Kalman-Yakubovich-Popov Lemma) see e.g. [11], [32] for early accounts and most
recently [9].

One can examine this gap between GP functions and its Hurwitz stable subset of P
functions, from the Matrix Lyapunov Equation point of view. It has been of interest to
identify which of the properties of the Lyapunov Equation for Hurwitz stable matrices
are carried over to the general inertia case, see e.g. [36, Chapter 2 and Section 4.4] or
the relation to the dimension of the controllable subspace in [40]. Resorting to the matrix
Lyapunov equation was not just a metaphor, it is part of the above mentioned Generalized
Positive Real Lemma, see e.g. [9], [11], [32].

Recall that convex sets are an essential ingredient in optimization. As an illustration, a
typical control engineering problem would be: “Find among all stabilizing controllers the
one which minimizes a certain property”. Such problems are easier to address if the set
of all controllers or closed loop systems is convex. Convex sets also serve as a model for
uncertainty, e.g. the celebrated Kharitonov Theorem for checking the Hurwitz stability
of a polytope of polynomials, see [16]. Hence, one is motivated in studying convex sets
of rational functions which are Hurwitz stable (and then look for stable minimum phase).
In Section 2 we identify maximal convex cones of rational functions with prescribed poles
and zeroes in the open right (or left) half plane.
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Using the above result, we introduce in Section 3 a partitioning of all GP functions into
“small”, yet maximal, convex cones denoted by GPg, with prescribed poles and zeroes in
the right half plane. Each of these sets is a replica of P functions.

Recall that a convex cone which in addition is closed under inversion is called a Convex
Invertible Cone, cic in short3 , see e.g. [25], [26] and [27]. It is easy to see that the set
of GP functions is closed under positive scaling, summation and inversion, i.e. a cic and
P is a subcic of it. More precisely, P is a maximal cic of functions which are analytic in
C+, see [27, Proposition 4.1.1] and Proposition 2.2 below.

In Section 4 partition each GP function to a sum of even and odd generalized positive
functions. It turns out that the sets of even and odd generalized positive functions are
subcics of GP . First, the set of all Odd functions (i.e. generalized lossless) which is of
particular interest, is then studied. In Section 5 even GP functions are explored. As a
by-product of this partitioning it is shown that it is only within the larger GP set that a
positive function can always be written as a sum of even and odd part.

From an applications point of view, Nevanlinna-Pick type interpolation was originally
motivated by the design of the driving point impedance of R-L-C electrical circuits and
subsequently by H∞ control, both restricted to positive functions. There are good reasons
to study Nevanlinna-Pick interpolation over GP functions:

Recall that in the positive case solution exists, if and only if, the Pick matrix associated
with the data points is positive semidefinite. In the GP framework, this restriction is
removed, namely for almost any set of data points a solution exists4. Note that in some
applications, Hurwitz stability is not required e.g. when the data is not associated with
an input-output dynamical system or when the system at hand is not passive.

Nevanlinna-Pick interpolation problem of generalized Schur and Nevanlinna functions has
been well addressed in the literature: For generalized Nevanlinna functions see e.g. [3],
[10], [5], [18], [29, Section 3] and [4]. For generalized Schur functions see e.g. [2], [13], [15],
[19], [30] and [41] Nonetheless from computational point of view the known procedure is
involved.

In each of the Sections: 3, 4 and 5, we illustrate through examples how can one exploit the
new structural results to simplify the Nevanlinna-Pick interpolation problem. A careful
examination of this examples suggests directions for future research. Some of them are
stated in Section 7.

Recall that a function is called bounded, denoted by fb ∈ B, (commonly the real case is
addressed) if it analytically maps C+ to the closed unit disk, see e.g. [12, Chapter 7],
[17, Section 6.5] and fgb ∈ GB is generalized bounded if it maps the imaginary axis to
the closed unit disk, see e.g. [32]. It is known that through the Cayley transform positive
functions may be identified with bounded functions. In Section 6 properties of generalized
bounded functions, which do not trivially follow from this Cayley transform are explored.

3Strictly speaking, this means that whenever the inverse exists, it also belongs to the set, e.g. the set
of positive semidefinite matrices is a cic. In contrast, the open upper half of C is not.

4For generalized Schur function this follows from [30] and by appropriate Cayley transforms (of the
functions and of the variable) this is true for GP functions as well.
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In particular it is shown that one cannot easily mimic Section 3 to obtain a partitioning
of all rational generalized bounded functions to a union of sets with prescribed poles and
zeroes outside the unit disk.

2. Maximal convex sets of rational functions with prescribed poles and
zeroes in C+ or in C−

In this section we consider poles and zeroes of sums of rational functions. Up to possible
cancellations, poles of a sum are the union of the poles original functions. However, in
general little can be said about the zeroes of a sum. We now characterize maximal convex
sets of rational functions with prescribed poles and zeroes in C+ (or in C−).
We begin with some preliminaries. We find it convenient to define the following sets

(2.1)
G− := all rational functions with poles and zeroes in C− ,
G+ := all rational functions with poles and zeroes in C+ .

Note that g ∈ G− is equivalent to g# ∈ G+.

Example 2.1. All degree one real functions with poles and zeroes in the C+ are given by

(2.2) G1 =

{

as− b

cs− d
: ab ≥ 0, cd ≥ 0, ad 6= bc.

}

.

Now G#
1 =

{

as+b
cs+d

: ab ≥ 0, cd ≥ 0, ad 6= bc.
}

, and all degree one real functions within

P is a subset of G#
1 where in addition a, c ≥ 0. Indeed, up to inversion, all degree one

real functions in P are of the form as + b or a
s
+ b with a, b ≥ 0 (in electrical circuits

terminology, the driving point impedance of R-L or R-C networks, respectively). �

Next, for a given g+ in G+, see (2.1), let G̃g+ be the set of all rational functions with
prescribed poles and zeroes in C+ given by,

(2.3) G̃g+ :=

{

n−(s)

d−(s)
g+(s) : n−(s), d−(s) polynomials with roots in C−

}

.

Obviously, if in (2.3) g ∈ G̃g+ satisfies n−(s)
d−(s) ≡ const. then in fact g ∈ G+ (2.1). The

set G̃g+ can not be convex as both −g+(s) and sg+(s) belong to it, but their sum has

an additional zero in C+. Yet, it is of interest to identify maximal convex subsets of G̃g+

in (2.3). To this end, denote by Go the set of rational functions, which along with their
inverses, are analytic in both open half planes. Namely, whenever go ∈ Go, it is of the
form

(2.4) go(s) = c

m
∏

j=1

(s− irj)
ηj ,

where rj ∈ R are all distinct, ηj are integers (positive or negative) and c ∈ C. We shall

use the convention that
0
∏

1
= 1, so that also g(s) ≡ const. belongs to this set.

For three given functions g+ ∈ G+ , g− ∈ G− see (2.1), and go see (2.4), define,

(2.5) Gg+, g−, go := {g+(s)p(s)go(s)g−(s) : p ∈ P }.
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By construction, in C+ the poles and zeroes of all functions5 in Gg+, g−, go are exactly
those of g+(s). On iR poles and zeroes are almost fixed in the following sense. Consid-
ering (2.4), functions in Gg+, g−, go have factors of the form (s− irj)

ηj+1, (s− irj)
ηj−1

or (s− irj)ηj depending on p(s) having at s = irj, a zero, a pole, neither zero nor pole,
respectively.

We can now describe convex sets of functions with prescribed poles and zeroes in C+

and on iR, almost prescribed in the above sense.

Proposition 2.2. The following is true:

(i) The set P is a maximal convex invertible cone, cic, of rational functions analytic
in C+.

(ii) Gg+,g−,go in (2.5), is a maximal convex set of rational functions with prescribed
poles and zeroes in C+.
In fact, if φ 6∈ Gg+,g−,go, one can always find ψ ∈ Gg+,g−,go so that (φ+ψ) 6∈ G̃g+

(2.3).

The fact that the set P is a convex invertible cone, cic, is classical, see e.g. [17, 5.6]. The
result in item (i) is a small variation of [27, Proposition 4.1.1].

Proof : (i) We first show that if h(s) is a non-positive function, one can always find
a positive function p so that h + p has a zero in C+. Indeed, let h 6∈ P be given.
By definition there are points in C+ which are mapped by h(s) to C−, i.e. there exist

α, γ > 0, β, δ ∈ R so that h(s)|s=α+iβ
= −γ + iδ. Take now p(s) = γ

α
s− i(βγ

α
+ δ). Then

clearly p ∈ P and (p + h)(s)|s=α+iβ
= 0, i.e. a zero in C+ . Next, note that 1

p+h
is not

analytic in C+. Since P is closed under inversion (i.e. p ∈ P is equivalent to 1
p
∈ P),

this part is established.
(ii) Let g− ∈ G− , g+ ∈ G+ see (2.1) and go ∈ Go, see (2.4), be given and let φ(s) be a

rational function not in Gg+,go,g− . To avoid triviality assume that φ ∈ {G̃g+ r Gg+,g−,go}.
Next, denote, h(s) = go(s)

−1g+(s)
−1φ(s)g−(s)

−1. Then by (2.5), h 6∈ P (else φ would
have been in Gg+,g−,go). Take now ψ(s) = g+(s)go(s)p(s)g−(s) with the above g+(s),
go(s), g−(s) and p(s) as in part (a) of this proof. By construction, p ∈ P and thus

ψ ∈ Gg+,g−,go, but (φ+ ψ) 6∈ G̃g+ since this function has an additional zero in C+. (If this

additional zero coincides with an existing pole, both in C+, still (φ + ψ) 6∈ G̃g+). Thus,
this part of the claim is established and the proof is complete. �

As an illustration we have the following.

Example 2.3. Take g+(s), go(s) and g−(s) in (2.5) to be fixed polynomials. A maximal
(up to scaling) convex set of polynomials whose roots in C+ are those of g+, is given by

{g+(s)(s + a)go(s)g−(s) : a ∈ C+ }.

Indeed, p(s) = s+ a, a ∈ C+ are the only polynomials in P. �

5excluding the zero function
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We conclude this section by stating the analogous results for the left half plane. First, we
denote by P# the set of para-positive functions,

(2.6) P# := { ψ : ψ# ∈ P }.

Thus, functions in P# map C− to C+. In particular, P# ⊂ GP . We can now state
results which are dual to Proposition 2.2.

Observation 2.4. The following is true:

(i) The set P# is a maximal convex invertible cone, cic, of rational functions analytic
in C−.

(ii) Let g− ∈ G−, g+ ∈ G+ and go ∈ Go be given. The set

{g+(s)p#(s)go(s)g−(s) : p ∈ P }

is a maximal convex set whose poles and zeroes in C− are precisely those of
g−(s).

3. Convex partitioning of GP functions

We now address ourselves to subsets of generalized positive functions within Gg+, g−, go

in (2.5), namely sets of the form Gg+, g−, go ∩GP . To this end, we introduce the following
set, using (2.1) and (2.4),

(3.1) G+ := {g+(s)go(s) : g+ ∈ G+, go ∈ Go }.

Note that g ∈ G+ means that both g and g−1 are analytic in C−. For example, all
degree one functions in G+ are given by (the real subset G1 was described in (2.2)),

(3.2) Ĝ =

{

as− b

cs− d
: Re(a∗b) ≥ 0, Re(c∗d) ≥ 0, ad 6= bc

}

.

Using this notation, we shall hereafter simply write

GPg := Gg+, g−, go ∩ GP .

By Theorem 1.1, for given g ∈ G+ this can be equivalently written as

(3.3) GPg = { gpg# : p ∈ P}.

For a given g ∈ G+, the set GPg is a replica of P. Nevertheless, the picture in GPg is
richer.

Example 3.1. We here illustrate two properties of the set GPg (3.3), where g ∈ G+ is
given:
(a) If ψj = gpjg

# with g fixed, deg p1 > deg p2, does not always imply deg ψ1 > deg ψ2 .
(b) In this set, it is only in C+ that the poles and zeroes are fixed. On iR they are
almost prescribed, and in C− they are not fixed.

Take g(s) = s−2
s

(g ∈ G1, see (2.2)). Thus, GPg =
{

s2−4
s2

p(s) : p ∈ P
}

. We here

mention, but five interesting samples,
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p(s) ψ(s) = g(s)p(s)g#(s)

(i) s
s+2

s−2
s

(ii) s
(s+2)2

s−2
s(s+2)

(iii) 1 s2−4
s2

(iv) s+2
s

(s+2)2(s−2)
s3

(v) s(s+2i)
s+i

(s2−4)(s+2i)
s(s+i) .

(a) These five functions are ordered so that the degree of ψj(s) is non-decreasing. In
contrast, the degree of the corresponding pj(s) “fluctuates”.
(b) In C+, there is always a zero with a unit multiplicity at s = +2.
On iR, there is a pole at the origin. Its generic multiplicity is two, but it may also be one
or three (i.e. at the origin p has a pole e.g. (iv), no pole nor zero e.g. (iii), or a zero e.g.
(i), (ii), (v) respectively). ψ may have additional poles or zeroes, see e.g. (v).
In C− poles and zeroes are not fixed, see e.g. the point s = −2. �

Using the notation of (3.1) Theorem 1.1 may be formulated as saying that having ψ ∈ GP
is equivalent to ψ(s) = g(s)p(s)g#(s) for some g ∈ G+ and some p ∈ P. Thus, we can
use the last result to introduce a convex partitioning of all GP functions. The proof is
immediate and thus omitted.

Observation 3.2. Let GPg be as in (3.3). Then,

(i) GPg is a convex sub-cone of GP.

(ii) For g1, g2 ∈ G+ GPg2 =
(

g2
g1

)

GPg1

(

g2
g1

)#
.

(iii) Let g1, g2 ∈ G+ be so that g2 6≡ cg1, for some constant c, then, GPg1 ∩ GPg2 = {0}.
(iv) GP =

⋃

g∈G+

GPg .

(v) (GPg)
−1 = GP(g#)−1 .

Proof. Items (i), (ii) and (v) are immediate from (3.3). Item (iv) follows from Theorem
1.1 along with (3.3).
As to item (iii), assume that there exits ψ within GPg1 ∩ GPg2 for some g1, g2 ∈ G+.
We shall find it convenient to factorize gj = go,jg+,j with j = 1, 2. where go,1, go,2 ∈ Go,
see (2.4), and g+,1, g+,2 ∈ G+, see (2.1). As poles and zeroes of ψ in C+ are uniquely
determined by g+, without loss of generality one can write g1 = go,1g+ and g2 = go,2g+
for some g+ ∈ G+.
Next assume that for j = 1, 2 and some r ∈ R, go,j(s) have factors (s − ir)mj and the

corresponding pj(s) have factors (s − ir)lj , where mj, lj are integers (not necessarily
positive). Then in ψj(s) the respective factors are

(s− ir)mj (s− ir)lj ((s− ir)mj )# = (−1)mj (s − ir)2mj+lj .

This implies that: (i) 2m1 + l1 = 2m2 + l2 and (ii) m1 −m2 = 2k for some integer k.
Namely, l2 − l1 = 2(m1 − m2) = 4k. Now recall that on the imaginary axis poles and
zeroes of positive functions are simple, see e.g. [8, Theorem 2.2], i.e. 1 ≥ |lj |. This implies
that 2 ≥ |l2 − l1|. But, m1 6= m2 implies that |l2 − l1| ≥ 4. Hence, one can now conclude
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that m1 = m2, l1 = l2 and since r was arbitrary (up to a constant) g0,1 = g0,2, which in
turn implies g1 = g2 (up to a constant) and the proof is complete. �

This partitioning of GP functions rightfully seems straightforward. In contrast, at the
end of Section 6, we show that partitioning of GB, generalized bounded functions (or
generalized Schur functions) in the spirit of Observation 3.2, can not be easily mimicked.

For a given g ∈ G+ we now wish to identify minimal degree functions within GPg .

Proposition 3.3. The following is true.

(i) g ∈ G+ can always be factored as g(s) = c
q
∏

j=1
ψj(s) with ψ#

j (s) positive, see

(2.6), and c ∈ C.
(ii) Among all possible factorizations of g ∈ G+ let us choose g(s) = g1(s)g2(s) so

that g#1 (s) is positive and deg(g1) is maximal.

Then, gg#2 is the minimal degree function in GPg.

Proof : Item (i) is immediate from item (i) in Observation 2.4. Specifically, g ∈ G+ can

always be written as g =

∏

j

(s−zj)

∏

k

(s−πk)
with zj , πk ∈ C+. Note now that (s−zj)# = −(s+z∗j )

and 1
(s−πk)#

= −1
s+π∗

k
. Namely, up to sign change, this g# is a product of degree one

positive functions.
Item (ii) stems from item (i) and (3.3) noting that ψ ∈ GPg can always be written as,

ψ(s) = g(s)p(s)g#(s) = g1(s)g2(s)p(s)g
#
1 (s)g#2 (s),

so that g#1 (s) is positive, see e.g. Example 2.1. Thus, to reduce the degree of the above
ψ(s) choose p(s) = 1

g
#
1 (s)

so that

ψ(s) = g1(s)g2(s)p(s)g
#
1 (s)g#2 (s)|

p= 1

g
#
1

= g1(s)g2(s)g
#
2 (s) = g(s)g#2 (s)

and the construction is complete. �

The above construction is illustrated in part (a) of Example 3.1.

Within the set P, the Nevanlinna-Pick interpolation problem is classical, see e.g. [14,
Chapter 18], [48]. Within GP , variants of this interpolation problem are well studied,
see e.g. [3], [10], [5], [18], [29, Section 3] and [4] for generalized Nevanlinna functions and
for generalized Schur functions see e.g. [13], [15], [19], and [30] and [2]. Nonetheless from
computational point of view the procedure is involved. As an intermediate step, in the
following example we illustrate the fact that within the set GPg, namely when g ∈ G+ is
fixed, the Nevannlin-Pick interpolation problem reduces to the classical version within the
set P, which is computationally well established.

Example 3.4. We here illustrate a Nevanlinna-Pick interpolation scheme within the set
GPg . We look for ψ ∈ GPg so that

ψ(s)|s=1
= 1 and ψ(s)|s=2

= 4.
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(As the associated Pick matrix is
(

1
5
3

5
3

2

)

, its determinant is negative, so there is no ψ ∈ P).

Take6 g(s) = 4
7−3s i.e. a right half plane pole at s = 7

3 and a zero at infinity. Thus,

g(s)g#(s) = 16
49−9s2

. First denote

w1 := g(s)g#(s)|s=1
= 2

5
and w2 := g(s)g#(s)|s=2

= 16
13

.

Exploiting the GPg structure, see (3.3), we actually seek p ∈ P so that

p(s)|s=1
= 1

w1
= 5

2
and p(s)|s=2

= 4
w2

= 13
4
.

But this is a classical Nevanlinna-Pick problem and the resulting Pick matrix is, Π =
(

5
2

23
12

23
12

13
8

)

.

As this Π is positive definite, there are infinitely many solutions (using Π, they can all
be parameterized, see e.g. [14, Chapter 18]).

Take for instance two degree three interpolating functions, pa(s) =
3s(s2+9)
4(s2+2) and

pb(s) =
9
4

(

1 + s3

3(s2+2)

)

. The resulting interpolating functions in GPg are

ψa(s) = g(s)pa(s)g(s)
# = 12(s2+9)

(s2+2)(49−9s2) ,

ψb(s) = g(s)pb(s)g(s)
# = 12(s3+3s2+6)

(s2+2)(49−9s2)
.

Both ψa(s) and ψb(s) are of degree four.
Recall that the set of interpolating functions is convex. Take for example

ψc(s) := 2
9
ψa(s)+ 7

9
ψb(s) = g(s) = 4

7−3s ,

to obtain a unity degree interpolating function within GPg. From item (ii) in Proposition
3.3 it follows that in fact this is the minimal degree function within GPg and in particular
the minimal degree interpolating function. �

4. Odd functions - a subcic of generalized positive functions

As already mentioned, it is easy to see that the set of GP functions is closed under positive
scaling, summation and inversion, i.e. a cic. In the previous section we introduced a
partitioning of this cic into (infinitely many non invertible) convex cones of the form GPg.
We now explore a partitioning of each generalized positive function into even and odd
parts. It turns out that the sets of even and odd generalized positive functions are two
subcics of GP .

Abusing the real case terminology, for a given rational function f(s) we shall define the
even and odd parts as

(4.1) feven(s) :=
1
2

(

f(s) + f#(s)
)

fodd(s) :=
1
2(f(s)− f#(s)).

Then, we also define the sets of all even and all odd functions,

(4.2) Even := { f(s) : f = feven } Odd := { f(s) : f = fodd }.
The following observations are almost obvious, they are stated for a comparison in the
sequel.

Proposition 4.1. Let the sets Even and Odd be as in (4.1) and (4.2).

6Recall that we assume g is prescribed.
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(i) Even and Odd are convex invertible cones, cics of rational functions.
(ii) Let f, g be rational functions. If g ∈ Even then,

(fg)even = feveng (fg)odd = foddg.

Conversely, if (fg)even = feveng and f 6≡ 0, then g ∈ Even.
Proof (i) Indeed, positive scaling and summation are obvious. As to inversion note

that if f(s) = n(s)
d(s) , with n, d polynomials, then f ∈ Even is equivalent to nd# = n#d,

which in turn means, f−1 ∈ Even. The reasoning for f ∈ Odd is similar and thus
omitted.
(ii) A straightforward calculation shows that having (fg)even = feveng is equivalent to
f#g = f#g#, which in turn for f 6≡ 0 means g ∈ Even. �

From item (i) in Proposition 2.2 and item (i) in Proposition 4.1 it respectively follows
that P and Odd are cics. Recall that a non-empty intersection of cics is a cic, see
[27, Observation 2.1]. Thus, of particular interest is the subcic of all positive odd rational
functions PO := P∩Odd. The real subset of PO functions are sometimes called “lossless”,
or “Foster” and they correspond to L-C circuits, see e.g. [12], [17].

PO functions can be parameterized, see e.g. [17, 5.13], as

(4.3) PO :=







p(s) = iro + aos+
∑

j≥1

aj
s− irj

: ao ≥ 0, aj > 0, rj ∈ R







.

Combining Theorem 1.1 together with (4.3) we have the following.

Proposition 4.2. Let the set of odd functions, Odd, be as in (4.1) and (4.2). The
following statements are true.

(i) Odd = GP ∩ Odd.
(ii) ψ ∈ Odd if and only if ψ maps the imaginary axis to itself.
(iii) The set Odd is closed (excluding the zero function) under:

(a) real scaling, (b) addition, (c) inversion (d) composition and (e) the product of

an odd number of elements, i.e.
2m+1
∏

j

ψj(s) with ψj ∈ Odd, m = 0, 1, . . .

(iv) ψ ∈ Odd can always be written as

ψ(s) = g(s)



iro + aos+
∑

j≥1

aj
s− irj



 g#(s),

with ao ≥ 0, aj > 0, rj ∈ R and g ∈ G+ (3.1).

Proof : (i), (ii) Recall that for an arbitrary function f ,

(4.4)
(

f#(s)
)

|s∈iR

=
(

f(s)|s∈iR

)∗
.

Thus, whenever f ∈ Odd it maps iR to itself and hence it is a GP function. Next,
from (4.1) and (4.4) it follows that feven, the even part of an arbitrary f , maps iR to
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R. Thus, if f = feven + fodd maps iR to iR, it follows that feven(s)|s∈iR
≡ 0, which in

turn means that feven(s) ≡ 0.
Item (iii) follows from item (ii).
Item (iv) follows from item (i) together with (4.3) and Theorem 1.1. �

We now explore the structure of Odd from a geometric point of view.

Observation 4.3. For a given set of rational functions G (G 6= {0}), denote by F and
H the following sets,

F := {g−1 : g ∈ G} H := { h = g2 : g ∈ G}
G ⊂ Odd if and only if

(4.5) Re
(

(f(s)h(s))|s∈iR

)

≡ 0 ∀f ∈ F ∀h ∈ H.

Proof : The claim relies on Proposition 4.2 item (ii). First, if ga(s) and gb(s) are odd

functions then Im
(

g2a(s)|s∈iR

)

≡ 0 and Re
(

g−1
b (s)|s∈iR

)

≡ 0. Thus, Re
(

(

g2a(s)g
−1
b (s)

)

|s∈iR

)

≡ 0,

i.e. (4.5) is satisfied.

Conversely, if (4.5) is satisfied for all f ∈ F and all h ∈ H, it in particular holds for
f = g−1 and h = g2 with the same g. This implies that fh = g, which means g ∈ Odd. �

Note that for a pair of functions f, h one can define a function-valued inner product
< f, h > := Re

(

f(s)h#(s)
)

(in the sense that < rf, h >= r < f, h > for r ∈ R). Now,

as (f(s)h(s))|s∈iR
=

(

f(s)h#(s)
)

|s∈iR
, equation (4.5) can be written as < f, h >|s∈iR

≡ 0.

Namely, one can interpret Observation 4.3 as saying that 0 6≡ g ∈ Odd is equivalent to
having the restriction to the imaginary axis of g and g2, orthogonal in the above inner
product.

Based on Observation 3.2 and Proposition 4.2 we can now introduce a convex partitioning
of all Odd functions. For a fixed g ∈ G+ the set GPg was defined in (3.3). We now
consider the set odd functions in it:

Oddg := GPg ∩ Odd.
This subset is given by

(4.6) Oddg =
⋃

ao≥0,aj>0,rj∈R

g



iro + aos+
∑

j≥1

aj
s− irj



 g#.

Observation 4.4. Let Oddg be as in (4.6). Then,

Odd =
⋃

g∈G+

Oddg .

Recall that in [48] it was shown that (up to possibly compromising the minimal degree
interpolating function) without loss of generality the classical Nevanlinna-Pick interpola-
tion may be confined to P ∩ Odd. Similarly, for a fixed g ∈ G+ interpolation of GPg

functions may be confined to Oddg functions. This is illustrated next.
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Example 4.5. In Example 3.4 we studied a variant of Nevanlinna-Pick interpolation
problem within the set GPg with g(s) = 4

7−3s , and looked for a function ψ so that

ψ(s)|s=1
= 1 and ψ(s)|s=2

= 4.

It turned out that this was equivalent for a classical Nevanlinna-Pick interpolation problem
of searching p ∈ P so that

p(s)|s=1
= 5

2
and p(s)|s=2

= 13
4
.

Following the above analysis, looking for ψ ∈ Oddg is equivalent to restricting the classical
Nevanlinna-Pick search for p ∈ P ∩ Odd. From [48] it follows that this restriction, does
not limit the solvability of the problem. In fact, there are still infinitely many solutions.

We here mention two solutions pa(s) =
3s(s2+9)
4(s2+2)

(from Example 3.4) and pd(s) =
1
6(8s +

7
s
).

The resulting interpolating functions in Oddg are

ψa(s) = g(s)pa(s)g
#(s) = 12s(s2+9)

(s2+2)(49−9s2)
,

ψd(s) = g(s)pd(s)g
#(s) = 8(8s2+7)

3s(49−9s2)
.

The function ψa(s) is of degree four while ψd(s) is of degree three.

Following item (iii)(a) in Proposition 4.2, taking r ∈ R as parameter, rψa(s)+(1−r)ψd(s)
forms a variety of interpolating functions within the same Oddg.
Finally, a straightforward use of (4.3) reveals that the above ψd is a minimal degree
interpolation function in Oddg. �

5. Even generalized positive functions

In Proposition 4.2 we showed that all odd functions are generalized positive functions and
characterized them. We now characterize GPE := GP ∩ Even, the subset of even functions

within GP . We shall use again the convention that
0
∏

1
= 1.

Proposition 5.1. The following are equivalent

(i) ψ ∈ GPE .

(ii) ψ(s) = c ·
m∏

j=1
(1−αj(1+(s−iβj)2))

n∏

k=1

(1−γk(1+(s−iδk)2))
with c > 0, αj , γk ∈ (0, 1], βj , δk ∈ R.

(iii) ψ(s) = g(s)g#(s) for some rational g(s).
(iv) ψ(s) maps iR to R+.
(v) ψ ∈ GP maps iR to R.

Proof Any even function maps iR to R, thus (i) implies (v).
(v) ⇐⇒ (iv). From (v) it follows that ψ maps iR to C+ ∩ R, thus in fact to R+,
so this part is established.
(iv) ⇐⇒ (iii). From Theorem 1.1 together with with fact that
g(s)ψ(s)g#(s)|s∈iR

= g(s)ψ(s) (g(s))∗, it follows that ψ(s) = g(s)p(s)g#(s), where p ∈ P
maps iR to R+. Now, up to non-negative scaling, p(s) ≡ 1 in whole C, is the only
function which achieves that.
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(iii) =⇒ (ii). Denote, g(s) = c̃

m∏

j=1

(s−zj)

n∏

k=1

(s−pk)
with c̃, zj , pk ∈ C. Thus,

g(s)g(s)# = |c̃|2 ·

m
∏

j=1

(

−s2 + s(zj − z∗j ) + |zj |2
)

n
∏

k=1

(

−s2 + s(pk − p∗k) + |pk|2
)

= |c̃|2 ·

m
∏

j=1

(

(Re(zj))
2 − (s− iIm(zj))

2
)

n
∏

k=1

((Re(pk))2 − (s− iIm(pk))2)

= |c̃|2 ·

m
∏

j=1

(

1 + (Re(zj))
2 − (1 + (s − iIm(zj))

2)
)

n
∏

k=1

(1 + (Re(pk))2 − (1 + (s − iIm(pk))2))

= |c̃|2 ·

m
∏

j=1

(

1 + (Re(zj))
2
)

n
∏

k=1

(1 + (Re(pk))2)

·

m
∏

j=1

(

1− 1
1+(Re(zj))2

(1 + (s− iIm(zj))
2)
)

n
∏

k=1

(

1− 1
1+(Re(pk))2

(1 + (s − iIm(pk))2)
)

,

Denoting c := |c̃|2 ·
m∏

j=1
(1+(Re(zj))2)

n∏

k=1

(1+(Re(pk))2)
, αj =

1
1+(Re(zj))2

, βj = Im(zj), γk = 1
1+(Re(pk))2

and

δk = Im(pk) completes the construction.
As trivially (ii) =⇒ (i), the claim is established. �

From Proposition 5.1 it follows that ψ(s) is in GPE may be characterized as ψ = gg#.
Note however that this factorization is non-unique, namely, one can have g1 6= g2 and still

g1g
#
1 = g2g

#
2 . A characterization of all these factorizations is given in [34].

One can now state several properties of GPE , the subset of even functions within GP .

Proposition 5.2. Let ψ be a rational function. The following statements are true.

(i) ψ ∈ GP ⇐⇒ ψeven ∈ GP.
(ii) GPE is a subcic of GP.
(iii) GP ∩ Even is a multiplicative group.
(iv) g ∈ GPE ⇐⇒ g · GP ⊂ GP.

(v) For arbitrary GPE functions g1(s)g
#
1 (s) , . . . , gm(s)g#m(s), there always exists

ĝĝ# ∈ GPE so that
m
∑

j=1

gj(s)g
#
j (s) = ĝ(s)ĝ#(s).

Moreover, one can always take ĝ ∈ G+.
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(vi) Let ψ be the composition function ψ(s) := p(g(s)) where g ∈ GPE and p ∈ P.
Then, ψ ∈ GP. If in addition p leaves the real axis invariant (e.g. p is real),
then ψ ∈ GPE .

Proof (i) This follows from the fact that ψ ∈ GP ⇐⇒ ψ# ∈ GP.
(ii) Recall that the set GP is a Convex Invertible Cone, the claim is immediate from
Proposition 5.1(iv). Alternatively, GPE is a non-empty intersection of two cics and thus
a subcic, [27, Observation 2.1].
(iii) Is immediate from items (ii) or (iv) in Proposition 5.1.
(iv) If f is a generalized positive function, from item (i) we know that feven ∈ GP . Now if
g ∈ GPE from item (ii) it follows that (feveng) ∈ GPE . Next, from Proposition 4.1(ii) it
follows that (fg)even = feveng and hence, (fg)even ∈ GPE . Using again item (i) implies,
(fg) ∈ GP ∩ Even.
For the other direction all we need to show is that if g is a non-even function within
GP , one can always find f ∈ GP so that (fg) 6∈ GP . Indeed assume that g is so that
g(s)|s=iωo

= a+ ib with a ≥ 0 and 0 6= b ∈ R for some ωo ∈ R. Then, taking the (odd)

GP function f = b(ωos + i) reveals that Re
(

f(s)g(s)|s=iωo

)

= −b2(1 + ω2
o) and thus

gf 6∈ GP .
(v) Is immediate from item (ii) here together with item (iii) in Proposition 5.1.
(vi) By construction g maps iR to R+ and in turn p maps R+ to C+, thus, ψ
maps iR to C+. If in addition p maps R+ to R+, ψ maps iR to R+, so the claim
is established. �

The convexity of the set GP and of its subset of GPE functions, see item (v) in Proposition
5.2, may be exploited to introduce a straightforward scheme of solving the Nevanlinna-Pick
interpolation problem.

Example 5.3. For simplicity we consider the real case.
a. We first look for a real polynomial gg# ∈ GPE so that

(5.1) g(s)g(s)# |s=±1
= 1, g(s)g(s)# |s=±2

= 4, g(s)g(s)# |s=±3
= 9.

(Note that f(s) = s2 is an interpolating polynomial, but only −f ∈ GPE).
Consider the following real GPE polynomials,

g1(s)g
#
1 (s) = (4− s2)(9 − s2)( 25

24
−s2)

g2(s)g
#
2 (s) = (1− s2)(9 − s2) 1

9
( 8

5
−s2)

g3(s)g
#
3 (s) = (1− s2)(4− s2) 1

360
(90 − s2)

It is easy to verify that,

s = ±1 ±2 ±3

g1g
#
1 = 1 0 0

g2g
#
2 = 0 4 0

g3g
#
3 = 0 0 9

Thus, using item (v) in Proposition 5.2, gg# = g1g
#
1 +g2g

#
2 +g3g

#
3 is a real GPE polynomial

satisfying (5.1).
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b. Using part a, we now look for a real polynomial ψ ∈ GP so that

(5.2) ψ(s)|s=1
= 1, ψ(s)|s=2

= 4, ψ(s)|s=3
= 9,

(with no constraints on ψ(s)|s=−1,−2,−3
). For j = 1, 2, 3 we now construct real GP polyno-

mials of the form ψj = gjpjg
#
j with gjg

#
j from part a and pj ∈ P are of the form

aj+j

aj+s

with aj > 0 is so that one of the roots of gjg
#
j is canceled. Indeed take,

p1(s) =
5

2
√

6
+1

5

2
√

6
+s

, p2(s) =
2
√

2
√

5
+2

2
√

2
√

5
+s

, p3(s) = 3
√

10+3

3
√

10+s

.

Thus, one obtains,

ψ1(s) = (4− s2)(9− s2)( 5

2
√

6
+1)( 5

2
√

6
−s)

ψ2(s) = (1− s2)(9− s2) 2
9
(

√

2
√

5
+1)( 2

√

2
√

5
−s)

ψ3(s) = (1− s2)(4− s2) 1
120

(
√
10 + 1)(3

√
10− s)

It is easy to verify that,
s = 1 2 3
ψ1 = 1 0 0
ψ2 = 0 4 0
ψ3 = 0 0 9.

Thus, taking ψ = ψ1 + ψ2 + ψ3 satisfies (5.2).

Roughly speaking, the simplicity of this scheme of constructing interpolating functions,
comes on the expense of high degree. �

As already mentioned, the fact that the set P is a convex invertible cone cic, is classical,
see e.g. [17, 5.6] and item (i) in Proposition 2.2. Recall that real P functions are
identified with the driving point impedance of R-L-C electrical circuits [12], [17], [20],
[21]. In fact, in the framework of R-L-C electrical circuits the three cic operations of
positive scaling, summation and inversion have the physical interpretation of transformer
ratio, series connection of impedances and impedance/admittance duality, respectively.
Moreover, recall that P∩Even is associated with resistive circuits and PO with reactive
networks (L-C). However, not every network can be realized as a series connection of a
resistive and a reactive circuits. Namely, it is only over GP that the partitioning of a
positive function into even and odd parts is always possible.

Recall that in contrast to (4.3), the set P ∩ Even is almost empty, i.e. up to positive
scaling it consists of a single function, p(s) ≡ 1. We now show that if one is interested
in even-odd partitioning of functions, the set GP is closed, while its subset of positive
functions is not. Namely, peven, the even part of a positive function p, is either a non-
negative constant or not a positive function. One can only guarantee that peven ∈ GPE .
This is illustrated next.

Example 5.4. Consider the positive (real) function: ψ(s) = 1
1+s

defined in the whole C.

Then peven(s) =
1

1−s2
and podd(s) =

−2s
1−s2

are so that peven ∈ GPE and podd ∈ GP∩Odd,
but neither peven nor podd are positive. �

We conclude this section by introducing yet another factorization of GP functions through
odd functions.
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Observation 5.5. ψ ∈ GP if and only if there exist f, g ∈ Odd so that ψeven = −f2
and ψodd = g.

Proof : Since ψodd ∈ Odd, we only need to show that ψ ∈ GP if and only if ψeven = −f2
for some f ∈ Odd. Now from item (i) in Proposition 5.2 it follows that having ψ ∈ GP is
equivalent to ψeven ∈ GP . From item (iv) in Proposition 5.1 this in turn is equivalent to
ψeven mapping iR to R+. Using item (ii) from Proposition 4.2 completes the proof. �

6. Generalized bounded functions

Recall that a function fb(s) is called bounded, denoted by fb ∈ B, (commonly the real
case is addressed) if it analytically maps C+ to the closed unit disk, see e.g. [12, Chapter
7], [17, Section 6.5] and fgb(s) is generalized bounded fgb ∈ GB if it maps iR to the
closed unit disk, see e.g. [32]. It is well known that through the Cayley transform one can
identify positive functions with bounded functions, namely

(6.1) fb(s) =
1− p(s)

1 + p(s)
p ∈ P, fgb(s) =

1− ψ(s)

1 + ψ(s)
ψ ∈ GP .

Nevertheless, we here focus on the less obvious analogies. In Proposition 6.1 and Corollary
6.3 below we introduce two representations of GB functions.

Proposition 6.1. A rational fgb(s) is a generalized bounded function if and only if it is
of the form fgb(s) = fb(s)/β(s), where fb ∈ B and where β(s) is a finite Blaschke product.

Proof: We first note that since fgb is bounded on the imaginary axis, all its singularities
there are removable. Let w1, . . . , wℓ be the poles of fgb in C+, and consider the function

fb(s) = fgb(s)

ℓ
∏

j=1

s− wj

s+w∗
j

.

The function fgb is analytic and bounded by 1 in modulus in C+, as is seen for example
by the maximum modulus principle, or by direct inspection. We thus have the result with

β(s) =

ℓ
∏

j=1

s− wj

s+w∗
j

.

The converse is clear. �

One can characterize generalized bounded functions through the associated kernel.

Corollary 6.2. A rational f(s) is a generalized bounded function if and only if the kernel

kf (s,w) =
1− f(s)f(w)∗

s+ w∗

has a finite number of negative squares in C+ r {w1, . . . , , wℓ}, where the wj denote the
poles of f in C+.
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Proof: Assume that f = fgb = fb/β. As proved in a more general context in [7, Theorem
6.6, p. 132], one direction follows from the equality

kfgb(s,w) =
1

β(s)
{kfb(s,w) − kβ(s,w)}

1

β(w)∗
,

see for instance the formula on top of page 134 in [7].

The converse is just a particular case of the above mentioned result of Krĕın Langer [38,
Theorem 3.2]. A direct proof for the rational case can also be given, but will be omitted
here. �

We now turn to another representation of fgb ∈ GB. Obviously, (generalized) bounded
functions and (generalized) positive functions are related through the Cayley transform
(6.1). We now introduce an adapted version of this characterization. To this end, recall
(Proposition 5.2) that the set GP ∩ Even is characterized by functions of the form gg#.
From the above discussion one has the following.

Corollary 6.3. A rational function fgb(s) is generalized bounded if and only if it admits
a representation,

(6.2) fgb(s) =
(

g(s)g#(s)− p(s)
)(

g(s)g#(s) + p(s)
)−1

,

for some p ∈ P and some g(s) ∈ G+, (3.1)

Proof Indeed, from (1.2) and (6.1) it follows that fgb ∈ GB can be written as,

fgb = (1− ψ) (1 + ψ)−1 =
(

1− gpg#
) (

1 + gpg#
)−1

=
(

g
(

(g#g)−1 − p
)

g#
) (

g
(

(g#g)−1 + p
)

g#
)−1

=
(

(g#g)−1 − p
) (

(g#g)−1 + p
)−1

.

Now, from Proposition 5.1 and Proposition 5.2 it follows that ψ ∈ GP∩Even is equivalent

to ψ(s) =
(

g#(s)g(s)
)−1

, so up to inversion, the claim is established. �

It is interesting to compare Corollary 6.3 with fgb in (6.1)

We conclude by pointing out that there is a structural difference between GP and GB
functions. One may be tempted to try to mimic, in the framework of GB functions,
the convex partitioning of sets of functions of the form GBg in the spirit of (3.3) and
Observations 3.2 and 4.4, sets where in C+ the poles and zeroes are fixed. However,
unfortunately this is no longer true. This also prevents us from mimicking the interpolation
over GPg to GBg functions.
Indeed, for a given g in (6.2) define the set GB function,

(6.3) GBg :=

{

(

g(s)g#(s)− p(s)
)(

g(s)g#(s) + p(s)
)−1

: p ∈ P
}

.

In the following example we show that in contrast to the set GPg in (3.3), within the set
GBg neither the poles nor the zeroes in C+ are fixed.
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Example 6.4. Fix in (6.3) g ∈ G+ , see (2.1), namely, g(s) = n
d

with n =
l
∏

j=1
(s − zj)

and d =
q
∏

k=1

(s−πk), where z1, . . . , zl and π1, . . . , πq are prescribed (not necessarily

distinct) points in C+. Let now, ñ =
l
∏

j=1
(s− zj − ǫj) and d̃ =

q
∏

k=1

(s − πk − δk) with

ǫj ≥ 0, δk ≥ 0, 1 >>
l
∑

j=1
ǫj > 0, 1 >>

q
∑

k=1

δk > 0. Let p1 := n
ñ

and p2 := d̃
d
. By

construction, each of the functions p1, p2 analytically maps C+ to a neighborhood of
the point +1 and hence both are positive. Thus both

fgb,1 :=
(

g(s)g#(s)− p1(s)
) (

g(s)g#(s) + p1(s)
)−1

fgb,2 :=
(

g(s)g#(s)− p2(s)
) (

g(s)g#(s) + p2(s)
)−1

are in GBg. However, in C+ they do not share the poles nor the zeroes. Indeed,

substitution yields fgb,1 = (ñg#−d)(ñg#+d)−1 and fgb,2 = (ng#− d̃)(ng#+ d̃)−1. �

It should be pointed out that the above discussion reflects a property of GBg functions,
independent of the choice of the representation. Indeed, if the set in (6.3) is substituted
by the analogous one, based on Proposition 6.1, a conclusion, similar to that of the above
example, is reached.

It should be emphasized that rational generalized Nevanlinna functions, mapping the real
axis to the upper half plane, admit a partitioning along the lines of Section 3. In contrast,
rational generalized Schur functions mapping the unit circle to the unit disk, share the
same difficulty as GB functions. This suggests that the complicated known scheme for
solving Nevanlinna- Pick interpolation problem for generalized Schur functions, see e.g.
[13], [15] and [30] and for the single point with derivatives version, [2], can not be simplified
along the lines suggested in Example 3.4

7. Future research

In this work, part of ongoing research on GP functions, we concentrated on exploring
structural properties this set. This opens the door for studying various questions and we
here mention sample of those. First, in the framework of Nevanlinna-Pick interpolation
problem of scalar rational GP functions.

• Explore the question of minimal degree interpolating functions.
• We conjecture that if the Pick matrix Π has m negative eigenvalues then there
exists an interpolating function within a set GPg where g has m poles or m zeroes
in C+.

• Parameterize all GPE interpolating functions.
• Characterize the Nevanlinna-Pick interpolation problems solvable by Odd and by
GPE functions.

One can then look for generalizations. For example,

• Formalize the extension of the study of GPg functions, to the cases of: (i) not
necessarily rational, (ii) matrix valued.
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• Formalize the extension of the study of the even-odd partitioning of GP functions,
to the cases of: (i) not necessarily rational, (ii) matrix valued.

References

[1] N. I. Akhiezer, The classical moment problem, Oliver & Boyd, London 1965.
[2] D. Alpay, T.Ya. Azizov, A. Dijksma H. Langer and G. Wanjala “A basic interpolation problem for

generalized Schur functions and coisometric realizations”, Operator Theory: Advances and Applica-
tions,Vol. 143, pp. 39-76, Birkhäuser Verlag, Basel, 2003.
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