Hot Electron Chemistry on Bimetallic Plasmonic Nanoparticles

Bryn E. Merrill
Chapman University, merri152@mail.chapman.edu

Bingjie Zhang
Chapman University, binzhang@chapman.edu

Jerry LaRue
Chapman University, larue@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/cusrd_abstracts

Part of the Atomic, Molecular and Optical Physics Commons, Physical Chemistry Commons, and the Plasma and Beam Physics Commons

Recommended Citation

Merrill, Bryn E.; Zhang, Bingjie; and LaRue, Jerry, "Hot Electron Chemistry on Bimetallic Plasmonic Nanoparticles" (2020). *Student Scholar Symposium Abstracts and Posters*. 403.
https://digitalcommons.chapman.edu/cusrd_abstracts/403

This Poster is brought to you for free and open access by the Center for Undergraduate Excellence at Chapman University Digital Commons. It has been accepted for inclusion in Student Scholar Symposium Abstracts and Posters by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
Methods

18 nm AuNPs were synthesized using a citrate reduction of gold (III) chloride (HAuCl$_4$) and then analyzed via UV-Vis spectroscopy (figure 3) and SEM (figure 4).

The absorption peak at around 530 nm shows that the LSPR are in the ideal range to be excited by a 532 nm laser. The SEM images show that the NP diameter is close to the target 18 nm.

The RuAuNPs were synthesized using ruthenium chloride (RuCl$_3$) and the synthesized 18 nm AuNPs, then analyzed via SEM (figure 5) and EDS (figures 6A and 6B).

Conclusion

The SEM and EDS images of the 18 nm AuNPs and the RuAuNPs show that the synthesis procedures were accurate in producing the target diameter; however, the segregation of ruthenium and gold rather than a uniform layer show that shells around the AuNPs were not achieved. The RuAuNP synthesis was being tuned for better coverage, but experimentation stopped after going online. We hope to optimize the RuAuNP synthesis and begin testing reactivity via CO oxidation.

References