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A CLASS OF GAUSSIAN PROCESSES WITH
FRACTIONAL SPECTRAL MEASURES

DANIEL ALPAY, PALLE JORGENSEN, AND DAVID LEVANONY

Abstract. We study a family of stationary increment Gaussian
processes, indexed by time. These processes are determined by
certain measures σ (generalized spectral measures), and our focus
here is on the case when the measure σ is a singular measure. We
characterize the processes arising from when σ is in one of the
classes of affine self-similar measures. Our analysis makes use of
Kondratiev-white noise spaces. With the use of a priori estimates
and the Wick calculus, we extend and sharpen (see Theorem 7.1)
earlier computations of Ito stochastic integration developed for the
special case of stationary increment processes having absolutely
continuous measures. We further obtain an associated Ito formula
(see Theorem 8.1).
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1. Introduction

There are two ways of looking at stochastic processes, i.e., random
variables indexed by a continuous parameter (for example time): (i)
One starts with a probability space, i.e., a sample space, a set Ω with a
sigma algebra B of subsets, and a probability measure P on (Ω,B), and
a system of random variables {X(t)} on the (Ω,B, P ). From this one
may then compute quantities such as means, variances, co-variances,
moments, etc, and then derive important spectral data . These in
turn are used in various applications, such as in solving stochastic dif-
ferential equations. Here we are concerned with the other direction:
(ii) Given some a priori spectral data, how do we construct a suitable
probability space (Ω,B, P ) and an associated process {X(t)} such that
the prescribed spectral data is recovered from the constructed process?
In other words, this is a version of an inverse spectral problem. For a
number of reasons, it is useful in the study of the inverse problem to
focus on the case of Gaussian processes.

A zero mean Gaussian process {X(t)} on a probability space is said
to be stationary increment if the mean-square expectation of the in-
crement X(t) − X(s) is a function only of the time difference t − s.
Then there is a measure σ such that the covariance function of such a
process is of the form

(1.1) E[X(t)X(s)∗] = Kσ(t, s) =

∫

R

χt(u)χs(u)
∗dσ(u), t, s ∈ R,

where E is expectation, and we have set

(1.2) χt(u) =
eitu − 1

u
.

The positive measure dσ is called the spectral measure, and is subject
to the restriction

(1.3)

∫

R

dσ(u)

u2 + 1
<∞.

The covariance function Kσ(t, s) can be rewritten as

Kσ(t, s) = r(t) + r(s)∗ − r(t− s),
2



where

(1.4) r(t) = −
∫

R

{
eitu − 1− itu

u2 + 1

}dσ(u)
u2

,

When σ is even, r is real and takes the simpler form

(1.5) r(t) =

∫

R

1− cos(tu)

u2
dσ(u).

We note that some authors call spectral measure instead the measure
u2dσ(u) rather than the measure dσ(u). See [28, p. 25 (7)].

The literature contains a number of papers dealing with these pro-
cesses, but our treatment here goes beyond this, offering two novelties:
the inverse problem (see above), and an operator theory of singular
measures. Both are motivated by the need to deal with families of
singular measures σ (see (1.1) through (1.4)). Our focus is on families
of purely singular measures σ with an intrinsic spatial selfsimilarity,
typically with Cantor support, and with fractional scaling (and Haus-
dorff) dimension; see Section 2 below; these are measures with affine
selfsimilarity. Note that this notion is different from self-similarity in
the time-variable; the latter case includes fractional Brownian motion
(fBm), studied in e.g., [1, 2, 3, 14, 26]. For the latter (fBm), it is known
that the corresponding one-parameter family of measures σ consists of
a scale of absolutely continuous measures.

The derivative of a stationary increment process is a (possibly gener-
alized) stationary process, with covariance function

σ̂(t− s),

where σ̂ denotes the Fourier transform, possibly in the sense of distri-
butions, of σ. For a function f , recall the Fourier transform

f̂(u) =

∫

R

eiuxf(x)dx.

We note that second order stationary processes can be studied with
the use of the theory of Hilbert spaces and of unitary one-parameter
groups of operators in Hilbert space. One may then invoke the Stone-
von Neumann spectral theorem, the spectral representation theorem,
and a detailed multiplicity theory to study these processes. See for
instance [27].
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An important role in the theory is played by the space M(σ) of func-
tions in L2(R, dx) such that

∫

R

|f̂(u)|2dσ(u) <∞.

This space contains in particular the Schwartz space.

In the paper [3], see also [2], the case where σ(u) is absolutely contin-
uous with respect to Lebesgue measure, i.e., dσ(u) = m(u)du (where
the Radon-Nikodym derivative m satisfies moreover some growth con-
ditions) was considered. The study of [3] included in particular the
case of the Brownian motion and of the fractional Brownian motion.
A key role in that paper was played by the (in general unbounded)
operator Tm on L2(R, dx) defined by

(1.6) T̂mf =
√
mf̂.

So Tm is a convolution operator in L2(R, dx), i.e.,

Tmf = (
√
m)∨ ⋆ f,

with ∨ denoting the inverse Fourier transform, in the sense of distri-
butions.

In this paper we focus on the case when the spectral measure is an
affine iterated function-system measure (AIFSs). Among the AIFS-
measures there is a subfamily which admits an orthonormal family of
Fourier frequencies. These are lacunary Fourier series studied first in
a paper by one of the authors and Steen Pedersen in 1998, see [24].
A lacunary Fourier series is one in which there are large gaps between
consecutive nonzero coefficients. AIFS-measures may be visualized as
fractals in the small, while their Fourier expansions as dual fractals in
the large. The spectral measure of such a process {X(t)} is important
as it enters in a rigorous formulation of an associated Ito formula for
functions f(X(t)) of the process.

The main results of the paper may be summarized as follows: We
construct a densely defined operator Qσ from L2(dσ) into L2(R, dx)
such that

(1.7)

∫

R

χt(u)χs(u)
∗dσ(u) = 〈Qσ(1[0,t]), Qσ(1[0,s])〉L2(R,dx)

This operator Qσ is the counterpart of the operator Tm defined in (1.6)

and introduced in [3]. We denote by f 7→ f̃ the natural isometric
4



imbedding of L2(R, dx) into the white noise space; See Section 4 for
details. The stochastic process {Xσ(t)} defined by

Xσ(t) = ˜Qσ(1[0,t]), t ∈ R,

has covariance function

E[Xσ(t)Xσ(s)
∗] =

∫

R

χt(u)χs(u)
∗dσ(u)

Following [28], the measure σ in this expression will be called the spec-
tral measure of the process. Its intuitive meaning is that of ”spectral
densities”, not to be confused with ”power spectral measure” tradi-
tionally used for the much more restrictive family of stochastic process,
the stationary processes. In the case of stationary processes, and when
the power spectral measure is absolutely continuous with respect to
Lebesgue measure, one speaks of power spectral density (psd). It is
then the Fourier transform of the covariance function, a function of a
single variable, namely, the time difference. When the process can be
differentiated, its derivative is stationary and σ is absolutely continu-
ous with respect to Lebesgue measure, its derivative is the psd of the
derivative process.

We show that Xσ(t) admits a derivative (Xσ(t)
′)

def.
= Wσ(t) in the white

noise space, which is moreover continuous in the white noise space
norm. Furthermore

E[Wσ(t)(Wσ(s))
∗] = σ̂(t− s).

It is found that both the processes {Wσ(t)} and {Xσ(t)} are in the
white noise space. We define a stochastic integral with respect to Xσ,
and prove results similar to those of [1], but for a different class of
processes studied here.

The outline of the paper is as follows. The paper consists of nine sec-
tions besides the introduction. The first three small sections are of
a review nature. In Section 2 we present some material on measures
with affine selfsimilarity. In Section 3 we recall some properties of the
associated L2(dσ) spaces. Hida’s white noise space theory is based on
a Hilbert space, and plays an important role in our work. Its main
features are listed in Section 4. In Sections 4-9 we develop the new
results of the paper. In Section 5 we construct an operator for which
(1.7) holds. The corresponding process Xσ and its derivative are con-
structed in Section 6. The associated stochastic integral and a Ito
formula are considered in Sections 7 and 8 respectively. To contrast
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with the measures considered here, two examples of stationary incre-
ments Gaussian processes with measures with unbounded support are
presented in Section 9. In Section 10 we briefly consider the case of a
general measure σ. The last section is devoted to various concluding
remarks.

2. Measures with affine selfsimilarity

In understanding processes {X(t)} with stationary increments, one
must look at the variety possibilities for measures σ, representing spec-
tral measures, in the sense outlined above. Each measure-type for σ
entails properties of the associated Ito formulas for {X(t)} as it enters
into stochastic integration formulas.

While earlier literature on stationary-increment processes has been fo-
cused on the case when σ was assumed to be absolutely continuous
with respect to Lebesgue measure, or perhaps the case when it is sin-
gular but purely atomic; in this section we will focus instead on a quite
different family of measures: purely singular and non-atomic. They
share the following four features:

(i) they are given by explicit recursive formulas;
(ii) they posses an intrinsic affine selfsimilarity; see (2.1),
(iii) they admit a harmonic analysis based on a lacunary Fourier ex-
pansion; see (2.4), and finally,
(iv) the Fourier transform of σ admits an explicit infinite-product for-
mula; see (2.3).

Definition 2.1. A Borel probability measure σ on R is said to be an
affine iterated function system measure (AIFS) if there is a finite family
F of (usually contractive) affine transformations on R such that

(2.1) σ =
1

card F
∑

τ∈F

σ ◦ τ−1

holds i.e. ∫
f(x)dσ(x) =

1

card F
∑

τ∈F

∫
f(τ(x))dσ(x),

for all bounded continuous functions on R.

The simplest examples are Bernouilli convolutions. Then card F = 2
and there exists some fixed ρ > 0 such that

(2.2) τ±(x) = ρ(x± 1).
6



In that case, the measure dσρ satisfying (2.1), has Fourier transform of
the form

(2.3) σ̂ρ(t) =

∞∏

k=1

cos(ρkt).

Note that the function
∞∏

k=1

cos(ρk(t− s))

is positive definite on the real line, since each of the functions in that
product

cos(ρk(t− s)) = cos(ρkt) cos(ρks) + sin(ρkt) sin(ρks)

is positive definite, and one can obtain σ from Bochner’s theorem.

Cases with ρ of the form

ρ =
1

2m
, m = 2, 3, 4, . . .

will be of special interest here. Fix m and let σm (that is with ρ = 1
2m

)
be the corresponding Bernouilli measure. For t ∈ R, set

et(u) = eitu.

Let

(2.4) Λm = 2π

{
N∑

0

bj(2m)j, where N ∈ N and bj ∈
{
0,
m

2

}}
.

For instance,

Λ2 = 2π {0, 1, 4, 5, 16, 17, 20, . . .}

Λ3 = 2π

{
0,

3

2
, 9,

21

2
, 18, . . .

}
and

Λ4 = 2π {0, 2, 16, 18, 128, 130, . . .} .
It is known that the set Λm makes

{ eλ | λ ∈ Λm}
into an orthonormal basis (ONB) in L2(dσm); we say that (σm,Λm) is
a spectral pair. Let us formalize this notion:

Definition 2.2. A Borel finite measure σ on R is said to have a spec-
trum Λ ⊂ R if Λ is a discrete set and the set {eλ, λ ∈ Λ} is an or-
thonormal basis in L2(dσ). Then (σ,Λ) is called a spectral pair.

7



By the Fourier basis property mentioned above, we refer to the pres-
ence of a Fourier orthonormal basis (ONB) in the Hilbert space L2(dσ);
and our discussion below is restricted to the case when σ is assumed
to be a finite measure. The study of these singular measures was
initiated by one of the authors in collaboration with co-authors, see
[24, 36, 23, 22, 20, 21, 19, 5, 18, 6, 8, 7]. The Fourier expansion in
L2(dσ) for fractal measures σ differs from standard Fourier series (for
periodic functions) in that the fractal Fourier expansion is local, much
like wavelet expansions; see [37] for details. While the family of these
singular measures is extensive, we found it helpful to focus our dis-
cussion below on one of the simplest cases, the first occurring in the
literature, see [24]. It has Hausdorff dimension= scaling dimension=
1/2, and its support is a Cantor-subset of the real axis.

It is proved in [24] that the support of dσm is inside the closed interval
[−1/2, 1/2], and has Lebesgue measure 0. We note however, there are
also spectral pairs (σm,∆m) where the measure dσm is not compactly
supported.

3. The spaces L2(dσ)

For later use, we review two results from [5, 6, 7, 8] and [24]. Recall
that, for t ∈ R, et(u) = eitu. In general one does not assume that σ
has compact support. When the support of σ is compact, it has a well
defined Fourier transform, which is an entire function and not merely
a distribution. We have the following result, proved in [22, 23, 8].

Theorem 3.1. Let σ be a finite positive Borel measure and let Λ ⊂ R

be a discrete set. Then, (σ,Λ) is a spectral pair if and only if

(3.1)
∑

λ∈Λ

|σ̂(t− λ)|2 = 1, ∀t ∈ R.

Lemma 3.2. Let t, s ∈ R. It holds that

(3.2) ‖et − es‖L2(dσ) ≤ K|t− s|

where

K =

∫

[− 1

2
, 1
2
]

u2dσ(u).

8



Proof: We have

‖et − es‖2L2(dσ)
=

∫

[−1/2,1/2]

|eitu − eisu|2dσ(u)

=

∫

[−1/2,1/2]

|1− eiu(t−s)|2dσ(u)

=



∫

[−1/2,1/2]

4u2
sin2

(
u(t−s)

2

)

(
u(t−s)

2

)2 dσ(u)


 · (t− s)2

4

≤
(∫

[−1/2,1/2]

u2dσ(u)

)
· (t− s)2.

�

As already mentioned, the measures σ we consider are such that an
orthonormal basis of L2(dσ) is of the form

eiλnu, n = 0, 1, . . . ,

where λn ∈ πN0 for all n ∈ N0.

4. A brief survey of white noise space analysis

In this section we present some technical details required in the subse-
quent sections, taken from Hida’s white noise space theory. We refer
the reader to [12], [13], [14] for more information. The facts reviewed
here are essential for our analysis of certain stochastic integrals (Sec-
tion 7), and our Ito formula (Section 8). While convergence questions
for stochastic integrals traditionally involve integration in probability
spaces of paths, in our approach, the sample space will instead be a
space of tempered distributions S ′ derived from a Gelfand triple con-
struction; but there is a second powerful tool involved, a completion
called the Kondratiev-Wick algebra. We briefly explain the justifica-
tion for this approach below.

The second system of duality spaces are called Kondratiev spaces, see
Section 4 for details. Further, there is a particular Kondratiev space,
endowed with a product, the Wick product and an algebra under this
product. It serves as a powerful tool in building stochastic integrals be-
cause, as we show, the stochastic integral takes place in the Kondratiev-
Wick algebra; and we can establish convergence there; see Theorem 7.1.
Moreover (see Theorem 8.1), the stochastic integration making up our

9



Ito formula lives again in the Kondratiev-Wick algebra.

Let S denote the Schwartz space of real-valued C∞(R) functions such
that

∀p, q ∈ N0, lim
x→±∞

xpf (q)(x) = 0

For s ∈ S, let ‖s‖ denote its L2(R) norm. The function

K(s1 − s2) = e−
‖s1−s2‖

2

2

is positive definite for s1, s2 running in S. By the Bochner-Minlos
theorem (see [32], [11, Théorème 3, p. 311]), there exists a probability
measure P on S ′ such that

(4.1) K(s) =

∫

S′

e−i〈s
′,s〉dP (s′),

where 〈s′, s〉 denotes the duality between S and S ′. Henceforth, we set
Ω = S ′. The real Hilbert space W = L2(Ω,F , dP ), where F is the
Borelian σ-algebra, is called the white noise space.

For s ∈ S and ω ∈ Ω we set

(4.2) s̃(ω) = 〈ω, s〉
From (4.1) follows that the map s 7→ s̃ is an isometry from S en-
dowed with the L2(R, dx) norm into W. This isometry extends to all
of L2(R, dx), and we will denote the extension by the same symbol.

We now present an orthogonal basis of W. We set ℓ to be the space of
sequences (α1, α2, . . .), whose entries are in

N0 = {0, 1, 2, 3, . . .} ,
where αk 6= 0 for only a finite number of indices k. Furthermore, we
denote by h0,h1, . . . the Hermite polynomials. The functions

Hα = Hα(ω) =
∞∏

k=1

hαk
(h̃k(ω)), α ∈ ℓ,

form an orthogonal base of the white noise space (the ω-dependence
will be omitted throughout, unless specifically required). Furthermore,
one has

(4.3) ‖Hα‖2W = α!,

where we have used the multi-index notation

α! = α1!α2! · · · ,
10



The Wick product ♦ in W is defined by the formula

Hα♦Hβ = Hα+β, α, β ∈ ℓ,

on the basis (Hα)α∈ℓ, and is extended by linearity to W as

(4.4) F♦G =
∑

γ∈ℓ

(
∑

α+β=γ

fαgβ)Hγ,

where F =
∑

α∈ℓ fαHα and G =
∑

α∈ℓ gαHα. See [14, Definition 2.4.1,
p. 39]. The Wick product F♦G reduces to multiplication by a constant
when one of the elements F or G is non random. The Wick product
is not everywhere defined in W, and one may remedy this by viewing
W as the middle part of a Gelfand triple. The first element in the
triple is the Kondratiev space S1 of stochastic test functions, defined
as the intersection of the Hilbert spaces Hk, k = 1, 2, . . ., of series
f =

∑
α∈ℓ fαHα such that

(4.5) |‖f‖|2k
def.
=
∑

α∈ℓ

(α!)2|fα|2(2N)kα <∞.

The third element in the Gelfand triple is the Kondratiev space S−1

of stochastic distributions. It is a nuclear space, and is defined as
the inductive limit of the increasing family of Hilbert spaces H′

k, k =
1, 2, . . . of formal series

∑
α∈ℓ fαHα such that

(4.6) ‖f‖2k
def.
=
∑

α∈ℓ

|fα|2(2N)−kα <∞,

where, for β ∈ ℓ,

(2N)±β = 2±β1(2× 2)±β2(2× 3)±β3 · · · .
See [14, §2.3, p. 28].

The Wick product is stable both in S1 and in S−1. Moreover, V̊age’s
inequality (see [14, Proposition 3.3.2, p. 118]) makes precise the fact
that F♦G ∈ S−1 for every choice of F and G in S−1: Let l and k be
natural numbers such that k > l + 1. Let h ∈ H′

l and u ∈ H′
k. Then,

(4.7) ‖h♦u‖k ≤ A(k − l)‖h‖l‖u‖k,
where

(4.8) A(k − l) =

(∑

α∈ℓ

(2N)(l−k)α

)1/2

.

11



5. The operator Qσ

As we saw, the construction of a process {X(t)} from a fixed spectral
measure σ depends on properties of a certain operator in L2(R, dx). If
σ is assumed absolutely continuous, with Radon-Nikodym derivative
m, then this operator Tm was studied earlier and it is a convolution
operator with the square root of m. See (1.6) and [3]. In this section
we introduce the counterpart of the operator Tm in the present set-
ting. Recall that h0, h1, . . . denote the Hermite functions. We define a
unitary map W from L2(dσ) onto L2(R, dx) via the formula

W (eλn) = hn, n = 0, 1, . . .

Let Mu denote the operator of multiplication by the variable u in
L2(dσ). The formula

(5.1) T = WMuW
∗

defines a bounded self-adjoint operator from L2(R, dx) into itself. Fur-
thermore, for ψ ∈ S we set

Qσ(ψ) = ψ̂(T )h0.

Lemma 5.1. Let ψ ∈ S. Then, it holds that:

(5.2) (Qσψ)(x) =
∞∑

n=0

(∫

R

σ̂(y − λn)ψ(y)dy

)
hn(x)

Proof: Using the functional calculus we have from (5.1) that,

ψ̂(T ) = Wψ̂(Mu)W
∗

and hence

ψ̂(T )h0 = Wψ̂(Mu)W
∗h0

= Wψ̂(Mu)1

= Wψ̂(u).

Moreover, since ψ̂ ∈ L2(dσ) we have

ψ̂(u) =

∞∑

n=0

〈ψ̂, eλn〉L2(dσ)eλn(u)

=

∞∑

n=0

(∫

R

ψ̂(u)e−iuλndσ(u)

)
eλn(u),

so that W ∗ψ̂ is given by (5.2). �
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The operator Qσ is typically an unbounded operator in the Hilbert
space L2(R, dx), but it is well defined on a dense domain which consists
of the Schwartz space S ⊂ L2(R, dx). These facts are elaborated upon
in the next theorem. In the statement, note that the Fréchet topology
of S is stronger than that of the L2(R, dx)-norm.

Theorem 5.2. Let ψ ∈ S. Then, it holds that,

(5.3) ‖Qσ(ψ)‖2L2(R,dx) =

∫

R

|ψ̂(u)|2dσ(u).

In particular, Qσ is a continuous operator from S into L2(R, dx). More
precisely,
(5.4)

‖Qσψ‖L2(R,dx) ≤
√
K

((∫

R

|ψ(x)|dx
)2

+

(∫

R

|ψ′(x)|dx
)2
)1/2

,

where

(5.5) K =

∫

R

dσ(u)

1 + u2
<∞.

Remark 5.3. For some stochastic processes it is important to relax
condition (5.5) to

(5.6) Kp =

∫

R

dσ(u)

1 + |u|2p <∞

for some p ∈ N. In this case the estimate in (5.4) becomes
(5.7)

‖Qσψ‖L2(R,dx) ≤
√
Kp

((∫

R

|ψ(x)|dx
)2

+

(∫

R

|ψ(p)(x)|dx
)2
)1/2

.
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Proof of Theorem 5.2: Let ψ ∈ S. We have:

‖Qσψ‖2L2(R,dx)
=

∞∑

n=0

∣∣
∫

R

σ̂(y − λn)ψ(y)dy
∣∣2

=
∞∑

n=0

∣∣
∫∫

eiu(y−λn)ψ(y)dσ(u)dy
∣∣2

=
∞∑

n=0

∣∣
∫

(

∫
ψ(y)eiuydy)e−iuλndσ(u)

∣∣2

=
∞∑

n=0

∣∣
∫
ψ̂(u)e−iuλndσ(u)

∣∣2

=

∫

R

|ψ̂(u)|2dσ(u),

where we have used Fubini’s theorem for the third equality, and Par-
seval’s equality for the last equality.

We now prove (5.4). This will prove the continuity of Qσ from S
endowed with its Fréchet topology into L2(R, dx). For ψ ∈ S we have

‖Qσψ‖2L2(R,dx) =

∫

R

|ψ̂(u)|2dσ(u)

=

∫

R

(1 + u2)|ψ̂(u)|2 dσ(u)
1 + u2

≤ Kmax
u∈R

(1 + u2)|ψ̂(u)|2

≤ K

(∫

R

|ψ ⋆ ψ♯|(x)dx+
∫

R

|ψ′ ⋆ (ψ♯)′|(x)dx
)

≤ K

((∫

R

|ψ(x)|dx
)2

+

(∫

R

|ψ′(x)|dx
)2
)
,

where ψ♯(x) = ψ(−x) and ψ′ = dψ
dx
. Furthermore, we have used

ψ̂ ⋆ ψ♯(u) = |ψ̂(u)|2.
and

∫

R

|ψ ⋆ ψ♯|(x)dx ≤
(∫

R

|ψ|(x)dx
)(∫

R

|ψ♯|(x)dx
)

=

(∫

R

|ψ|(x)dx
)2

.
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Since the expression on the right hand side in this estimate is one of
the Fréchet semi-norms of S, the continuity assertion in Theorem 5.2
follows. The estimate (5.4) further gives an exact rate of continuity.

�

From equation (5.3) we can extend the domain of definition of Qσ to
a wider set, which in particular include the functions 1[0,t]. This is
explicited in the following proposition. We remark that such a result
may be extended to more general measures σ’s, see Section 10.

Proposition 5.4. Let f ∈ L2(dσ) be such that, for some sequence
(sn)n∈N of Schwartz functions,

(5.8) lim
n→∞

|f − ŝn|∞ = 0.

Then the sequence (Qσsn)n∈N is a Cauchy sequence in L2(R, dx). Its
limit is the same for all sequences which satisfy (5.8), and will be de-
noted by

Qσf
def.
= lim

n→∞
Qσsn.

Proof: From (5.3) follows that for every ǫ > 0 there is an N ∈ N such
that

n,m ≥ N =⇒ |ŝn − ŝm|∞ ≤ ǫ.

Thus for such n and m

‖Qσsn −Qσsm‖2L2(R,dx) =

∫

R

|ŝn(u)− ŝm(u)|2dσ(u)

≤ σ(R) · |ŝn − ŝm|2∞
≤ σ(R) · ǫ2.

(5.9)

Therefore, limn→∞Qσsn in the norm of L2(R, dx). Call this limit q1,
and assume that, for another sequence (tn)n∈N satisfying (5.8), we ob-
tain another limit, say q2. Note that

(5.10) lim
n→∞

|ŝn − t̂n|∞ ≤ lim
n→∞

|ŝn − f |∞ + lim
n→∞

|f − t̂n|∞ = 0.

Then,

‖q1 − q2‖L2(R,dx) ≤ ‖q1 −Qσsn‖L2(R,dx)+

+ ‖Qσsn −Qσtn‖L2(R,dx) + ‖Qσtn − q2‖L2(R,dx)

≤ ‖q1 −Qσsn‖L2(R,dx)+

+
√
σ(R) · |ŝn − t̂n|∞ + ‖Qσtn − q2‖L2(R,dx),

which goes to 0 as n→ ∞ by definition of q1 and q2 and due to (5.10).
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We now verify that the function

χt(u) =
eitu − 1

u

can be approximated in the supremum norm by Schwartz functions.
The function χt vanishes at infinity, and hence can be approximated
in the supremum norm by continuous functions with compact support;
see [35, Theorem 3.17, p. 70]. These in turn can be approximated
by functions in S, using approximate identities, as for instance Step
6 in the proof of Theorem 6.1 in [1]. We sketch the argument for
completeness. Let

(5.11) kǫ(x) =
1√
2πǫ

exp

(
− x2

2ǫ2

)
.

kǫ is an N (0, ǫ2) density, and therefore

(5.12)

∫

R

kǫ(x)dx = 1,

and, for every r > 0

(5.13) lim
ǫ→0

∫

|x|>r

kǫ(x)dx = 0.

Indeed, for |x| > r > 0,

1

ǫ
√
2π

∫ ∞

r

e−
x2

2ǫ2 dx =
1

ǫ
√
2π

∫ ∞

r

x

ǫ2
e−

x2

2ǫ2
ǫ2

x
dx

≤ ǫ

r
√
2π

∫ ∞

r

x

ǫ2
e−

x2

2ǫ2 dx

=
ǫ

r
√
2π
e−

r2

2ǫ2

−→ 0 as ǫ→ 0.

Theses properties express the fact that kǫ is an approximate identity.
Applying [10, Theorem 1.2.19, p. 25] we see that, for every continuous
function with compact support,

lim
ǫ→0

‖kǫ ∗ f − f‖∞ = 0.

To conclude, one proves by induction on n that the n-th derivative

(kǫ ∗ f)(n)(x)
is a finite sum of terms of the form

1√
2πǫ

∫

R

exp
(
− (u− x)2

2ǫ2
)
p(x− u)f(u)du,
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where p is a polynomial. All limits,

lim
|x|→∞

xm(kǫ ∗ f)(n)(x) = 0

are then shown, using the dominated convergence theorem, and all the
functions

(kǫ ∗ f)(x) =
1√
2πǫ

∫

R

exp(−(u− x)2

ǫ2
)f(u)du

are in the Schwartz space. �

We now compute the adjoint operator Q∗
σ. Note that it is an operator

from L2(R, dx) into S ′, and therefore lies outside L2(R, dx). We begin
with a notation and a preliminary computation. For φ ∈ L2(R, dx) set

cn(φ) =

∫

R

φ(y)hn(y)dy.

Then (cn(φ))n∈N is in ℓ2. Indeed

‖(cn(φ))n∈N‖2ℓ2 = ‖ψ‖2
L2(R,dx).

We introduce the operator from L2(R, dx) into L2(dσ):

(Tσφ)(u) =

∞∑

n=0

cn(φ)e
iλnu.

Clearly

‖φ‖L2(R,dx) = ‖Tσφ‖L2(dσ).

Theorem 5.5. Let ψ ∈ S and φ ∈ L2(R, dx). Then,

〈Qσψ, φ〉L2(R,dx) =

∫

sup σ

ψ̂(u)(Tσ(φ))dσ(u)(5.14)

=

∫

R

ψ(y)X(φ)(y))dy,(5.15)

where

(5.16) (X(φ))(y) =

∞∑

n=0

〈hn, φ〉L2(R,dx)σ̂(y − λn).
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Proof: We first prove (5.14). In view of the formula (5.2) for Qσ, we
have

〈Qσψ, φ〉L2(R,dx) =
∞∑

n=0

(∫

R

σ̂(y − λn)ψ(y)dy

)(∫

R

φ(x)hn(x)dx

)

=

∞∑

n=0

(∫

R

(∫

R

eiu(y−λn)dσ(u)

)
ψ(y)dy

)(∫

R

φ(x)hn(x)dx

)

=

∞∑

n=0

(∫

R

(∫

R

eiuyψ(y)dy

)
e−iuλndσ(u)

)(∫

R

φ(x)hn(x)dx

)

=

∫

R

ψ̂(u)

(
∞∑

n=0

e−iλnu
(∫

R

φ(x)hn(x)dx

))
dσ(u)

=

∫

R

ψ̂(u) · Tσ(φ)dσ(u),

where we have used Fubini’s theorem for the third equality, and the
continuity of the inner product for the fourth equality.

We now turn to the second formula. The sequence (〈hn, φ〉L2(R,dx))n∈N0

is in ℓ2. In view of (3.1), the Cauchy-Schwarz inequality implies that
X(φ) in (5.16) converges pointwise for every real y. We note that, in
general, X(φ) 6∈ L2(R, dx). For φ and ψ as in (5.14) we have:

〈Qσψ, φ〉L2(R,dx) =

∫

R

(
∞∑

n=0

(∫

R

σ̂(y − λn)ψ(y)dy

)
hn(x)

)
φ(x)dx

=

∞∑

n=0

(∫

R

σ̂(y − λn)ψ(y)dy

)(∫

R

hn(x)φ(x)dx

)

=

∫

R

ψ(y)

(
∞∑

n=0

σ̂(y − λn)

∫

R

φ(x)hn(x)dx

)
dy.

To obtain the second equality, we note the following: Write

∫

R

σ̂(y − λn)ψ(y)dy =

∫

R

σ̂(y − λn)

y2 + 1
((y2 + 1)ψ(y))dy.

Using the Cauchy-Schwarz inequality, we see that

∣∣
∫

R

σ̂(y−λn)ψ(y)dy
∣∣2 ≤

(∫

R

|σ̂(y − λn)|2
(y2 + 1)2

)(∫

R

(y2 + 1)2)|ψ(y)|2dy
)
.

18



In view of (3.1),

∞∑

n=0

(∫

R

σ̂(y − λn)ψ(y)dy

)
hn(x)

belongs to L2(R, dx), and we use the continuity of the scalar product.
Furthermore we have used the dominated convergence theorem to ob-
tain the third equality. �

Equations (5.14) and (5.15) allow to compute Q∗
σ:

Theorem 5.6. The domain of Q∗
σ is the Lebesgue space L2(R, dx). For

φ ∈ L2(R, dx), Q
∗
σφ is the tempered distribution defined through

〈Q∗
σ(φ), ψ〉S′,S =

∫

sup σ

ψ̂(u)(Tσ(φ))dσ(u).

Equivalently, Q∗
σ(φ) is the tempered distribution defined by the function

X(φ), that is, with some abuse of notation

Q∗
σ(ψ)(y) =

∞∑

n=0

〈hn, φ〉L2(R,dx)σ̂(y − λn).

The second representation for Q∗
σ has an important consequence:

Theorem 5.7. It holds that

kerQ∗
σ = {0} .

It follows that the operator Q∗
σQσ is a continuous and bounded opera-

tor from S into S ′. We now provide two formulas for this operator.

Theorem 5.8. Let ψ and φ be in S. Then,

〈(Q∗
σQσ)φ, ψ〉S,S′ =

=
∞∑

n=0

(∫

R

φ̂(u)e−iλnudσ(u)

)(∫

R

ψ̂(u)e−iλnudσ(u)

)

=

∫

R

φ̂(u)ψ̂(u)dσ(u).
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Proof: By definitions of Qσφ and of Q∗
σ we have

〈(Q∗
σQσ)(φ), ψ〉S,S′ =

∫

R

ψ̂(u) (Tσ(Qσφ))

=
∞∑

n=0

∫

R

ψ̂(u)

(∫

R

σ̂(y − λn)φ(y)dy

)
eiλnudσ(u)

=
∞∑

n=0

(∫

R

ψ̂(u)e−iλnudσ(u)

)(∫

R

σ̂(y − λn)φ(y)dy

)
.

But ∫

R

σ̂(y − λn)φ(y)dy =

∫

R

(∫

R

ei(y−λn)vdσ(v)

)
φ(y)dy

=

∫

R

φ̂(y)e−iλnvdσ(v)

where we have used Fubini’s theorem. This concludes the proof. �

Remark 5.9. While the operator Qσ (see Theorems 5.6 through 5.8)
is well defined as an unbounded linear operator in the Hilbert space
L2(R, dx), the other two operators Q∗

σ and Q∗
σQσ are not. The reason

is that the range of Q∗
σ is not contained in L2(R, dx). In fact,

(Q∗
σhn)(x) = σ̂(x− λn),

where σ̂ is the infinite product expression (2.3). It can be shown that
x 7→ σ̂(x) is not in L2(R, dx); so as an L2(R, dx)-operator, Qσ is not
closable (its adjoint, computed in L2(R, dx), does not have dense do-
main! Nonetheless Q∗

σ in the extended sense maps L2(R, dx) into S ′).
The use of the ambient space S ′ of tempered distributions is essential.
We illustrate the above discussion with the following diagrams:

S i−֒−→ L2(R, dx)
i∗−֒−→ S ′

Qσ

ց
Q∗

σ

ր
S i−֒−→ L2(R, dx)

i∗−֒−→ S ′

.

In the following diagram, dom Q∗
σ is only a small subspace of L2(R, dx):

L2(R, dx)
i∗−֒−→ S ′

restricted

Q∗
σ

ր
Q∗

σ

ր unbounded

Dom Q∗
σ

i−֒−→ L2(R, dx)

.
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6. The processes Xσ and Wσ

In this section we build the Gaussian process with covariance function
Kσ. First recall that, thanks to Proposition 5.4, the domain of the
operator Qσ has been extended to include the functions 1[0,t]. We begin
with:

Theorem 6.1. Let Qσ be as (5). Then, for every t, s ∈ R,

〈Qσ1[0,t], Qσ1[0,s]〉L2(R,dx) =

∫

R

eiut − 1

u

e−ius − 1

u
dσ(u).

Proof: We take (sn)n∈N and (tn)n∈N two sequences of elements of S
with Fourier transforms (ŝn)n∈N and (t̂n)n∈N converging in the supre-
mum norm respectively to χt and χ

∗
s. Then Q1[0,t] and Q1[0,s] are the

limit in L2(R, dx) of the sequences (Qsn)n∈N and (Qtn)n∈N respectively.
Hence,

〈Qσ1[0,t], Qσ1[0,s]〉L2(R,dx) = lim
n,m→∞

〈Qσsn, Qσtm〉L2(R,dx)

= lim
n,m→∞

∫

R

ŝn(u)t̂ndσ(u)

=

∫

R

eiut − 1

u

e−ius − 1

u
dσ(u).

�

Recall that we have denoted by f̃ the natural isometric imbedding (4.2)
of L2(R, dx) into the white noise space. We set

(6.1) Zn = h̃n, n = 0, 1, . . .

The Zn are independent, identically distributed N (0, 1) random vari-
ables, and represented in white noise space.

We arrive at the following decomposition:

Xσ(t) = ˜Qσ(1[0,t])

=

∞∑

n=0

(∫ t

0

σ̂(y − λn)dy

)
Zn.

(6.2)

Theorem 6.2. It holds that

(6.3) ‖Xσ(t)−Xσ(s)‖W ≤ |t− s|, t, s ∈ R.
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The function t 7→ Xσ(t) is differentiable in W (white noise space), and
its derivative is given by

(6.4) Wσ(t) =

∞∑

n=0

σ̂(t− λn)Zn

Remark 6.3. Formulas (6.2) and (6.4) are analogous to, but different
from Karhunen-Loève expansions; see e.g., [25].

Proof of Theorem 6.2: We first prove (6.3). We have

Eσ[|Xσ(t)−Xσ(s)|2] = ‖Xσ(t)−Xσ(s)‖2W

=
∞∑

n=0

∣∣
∫ t

s

σ̂(y − λn)dy
∣∣2

≤
∞∑

n=0

(

∫ t

s

12dy)(

∫ t

s

|σ̂(y − λn)|2dy)

= (t− s)

∫ t

s

(
∞∑

n=0

|σ̂(y − λn)|2)dy

= (t− s)2,

where we have used the Cauchy-Schwarz inequality and (3.1) for the
second and fourth equalities, respectively.

We remark that, in view of (3.1), Wσ(t) ∈ W for every real t. We have

Xσ(t)−Xσ(s)

t− s
−Wσ(t) =

∑∞
n=0

∫ t
s
σ̂(y − λn)dyZn

t− s
−

−
∞∑

n=0

σ̂(t− λn)dyZn

=

∑∞
n=0

{∫ t
s
(σ̂(y − λn)− σ̂(t− λn)) dy

}
Zn

t− s

=

∑∞
n=0

{∫ t
s
〈ey − et, eλn〉L2(dσ)dy

}
Zn

t− s
.
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Hence, using Parseval’s equality and (3.2), we obtain

∥∥∥∥
Xσ(t)−Xσ(s)

t− s
−Wσ(t)

∥∥∥∥
2

W

=

∑∞
n=0

∣∣ ∫ t
s
〈ey − et, eλn〉L2(dσ)dy

∣∣2

(t− s)2

≤
∞∑

n=0

1

t− s

∫ t

s

|〈ey − et, eλn〉L2(dσ)|2dy

=
1

t− s

∫ t

s

‖ey − et‖2L2(dσ)
dy

≤ 1

t− s

∫ t

s

(y − t)2dy

≤ (t− s)2

3
.

�

Theorem 6.4. The derivative process Wσ is continuous in the ‖ · ‖W
norm. It is furthermore stationary and of constant variance,

(6.5) E[|Wσ(t)|2] ≡ 1.

Proof:

‖Wσ(t)−Wσ(s)‖2W =
∞∑

n=0

|σ̂(t− λn)− σ̂(s− λn)|2

=
∞∑

n=0

|〈et − es, eλn〉L2(dσ)|2

= ‖et − es‖2L2(dσ)

= 2(1− 〈et, es〉L2(dσ))

= 2(1− σ̂(t− s))

= 2

(
1−

∞∏

n=1

cos

(
t− s

4n

))
.

Continuity and stationarity follow from the above chain of inequalities,
together with the fact that {Wσ(t)} is a Gaussian process. Equation
(6.5) follows from (3.1). �

We now turn to another type of representation for Xσ:
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Theorem 6.5. Let

H(ω, u) =
∞∑

n=0

h̃n(ω)e
iλnu ∈ W ⊗ L2(dσ).

Then

(Xσ(t))(ω) =

∫

R

H(ω, u)
e−iut − 1

u
dσ(u)

Proof: Using Fubini’s theorem we have
∫

R

eiλnu
e−iut − 1

u
dσ(u) =

∫

R

eiλnu(

∫ t

0

e−iuvdv)dσ(u)

=

∫ t

0

∫

R

ei(λn−v)udσ(u)

=

∫ t

0

σ̂(λn − v).

This together with (6.2) leads to the required conclusion. �

7. The Wick-Ito integral

In this section we establish a stochastic integration formula for the
general class of stationary increment processes considered here. An
extension of Ito’s formula is addressed in section 8. More precisely, see
Theorem 7.1, with the use of a priori estimates and of a Wick calculus
(from weighted symmetric Fock spaces), we extend and sharpen ear-
lier computations of Ito-stochastic integration developed originally only
for the special case of stationary increment processes having absolutely
continuous spectral measures. We further obtain in the subsequent
section an associated Ito formula (Theorem 8.2).

The main result of this section is the following theorem, which is the
counterpart of [1, Theorem 5.1]. The fact that the derivative process
Wσ(t) is W-valued (rather than lying in the larger Kondratiev space)
allows to get a sharper statement. The proof follows the strategy of [1]
and hence is only outlined.

Theorem 7.1. Let Y (t), t ∈ [a, b] be an S−1-valued function, continu-
ous in the strong topology of S−1. Then, there exists a p ∈ N such that
the function t 7→ Y (t)♦Wσ(t) is H′

p-valued, and

∫ b

a

Y (t, ω)♦Wσ(t)dt = lim
|∆|→0

n−1∑

k=0

Y (tk, ω)♦ (Xσ(tk+1)−Xσ(tk)) ,
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where the limit is in the H′
p norm, with ∆ : a = t0 < t1 < · · · < tn = b

a partition of the interval [a, b] and |∆| = max0≤k≤n−1(tk+1 − tk).

Proof: We proceed in a number of steps.

STEP 1: There exists a p ∈ N such that Y (t) ∈ H′
p for all t ∈ [a, b],

being uniformly continuous from [a, b] into H′
p.

This is proved in [1, STEP 2 of the Proof of Theorem 5.1].

STEP 2: The function t 7→ Y (t)♦Wσ(t) is continuous over [a, b].

Here and in the sequel, we set ‖ · ‖p def.
= ‖ · ‖H′

p
to simplify notation.

Using V̊age’s inequality (4.7), it follows that, for p > 1,

‖Y (t)♦Wσ(t)− Y (s)♦Wσ(s)‖p ≤
≤ ‖(Y (t)− Y (s))♦Wσ(t)‖p + ‖Y (s)♦(Wσ(t)−Wσ(s))‖p
≤ A(p)‖Y (t)− Y (s)‖p‖Wσ(s)‖0+

+ A(p)‖Y (s)‖p‖Wσ(t)−Wσ(s)‖0
where A(p) is defined by (4.8). We conclude the proof of STEP 2 by
observing that

‖ · ‖H0
≤ ‖ · ‖W ,

which implies the continuity of the function Y (t)♦Wσ(t) in the norm
‖ · ‖W .

In view of Step 2, the integral
∫ b
a
Y (t)♦Wσ(t)dt makes sense as a Rie-

mann integral of a continuous Hilbert space valued function.

STEP 3: Let ∆ be a partition of the interval [a, b]. We now compute
an estimate for

∫ b

a

Y (t)♦Wσ(t)dt−
n−1∑

k=0

Y (tk)♦ (Xσ(tk+1)−Xσ(tk)) =

=

n−1∑

k=0

(∫ tk+1

tk

(Y (t)− Y (tk))♦Wσ(t)dt

)
.

As for steps 1 and 2, we closely follow [1]. Let p be as in Step 2, and
set ǫ > 0. Since Y is uniformly continuous on [a, b], there exists an
η > 0 such that

|t− s| < η =⇒ ‖Y (t)− Y (s)‖p < ǫ.
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Set

C̃ = max
s∈[a,b]

‖Wσ(s)‖0 and A = A(p−N − 3).

Let ∆ be a partition of [a, b] with

|∆| = max {|tk+1 − tk|} < η.

We then have:

∥∥∥∥∥
n−1∑

k=0

(∫ tk+1

tk

(Y (t)− Y (tk))♦Wσ(t)dt

)∥∥∥∥∥
p

≤

≤
n−1∑

k=0

(∫ tk+1

tk

‖(Y (t)− Y (tk))♦Wσ(t)‖p dt
)

≤ A

n−1∑

k=0

(∫ tk+1

tk

‖(Y (t)− Y (tk))‖p ‖Wσ(t)‖0 dt
)

≤ C̃A

n−1∑

k=0

∫ tk+1

tk

‖(Y (t)− Y (tk))‖p dt

≤ ǫC̃A(b− a),

which completes the proof of Step 3 and the proof of the Theorem. �

8. An Ito formula

We extend the classical Ito’s formula to the present setting. Our present
wider context for these stochastic processes entails important analytical
points: Singular measures of fractal dimension, and singular operators,
extending beyond the Hilbert space L2(R, dx). This in turn brings to
light new aspects of Ito calculus which we detail below. In addition
to the examples in Section 2 (affine IFS measures), we further offer
two examples in sect 9 below: the periodic Brownian bridge, and the
Orenstein-Uhlenbeck processes.

Lemma 8.1. The function

r(t) = ‖Qσ1[0,t]‖2L2(R)

is absolutely continuous with respect to the Lebesgue measure.
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Proof: By (5.3) we have

‖Qσ1[0,t]‖2L2(R)
=

∫

R

|χt(u)|2dσ(u)

= 2

∫

R

1− cos(tu)

u2
dσ(u).

Since the support of dσ is bounded, the dominated convergence theo-
rem allows to show that r(t) is differentiable and that its derivative is
given by

r′(t) = 2

∫

R

sin(tu)

u
dσ(u).

�

Theorem 8.2. Let f : R → R be a C2(R) function. Then

f(Xσ(t)) = f(Xσ(t0)) +

∫ t

t0

f ′(Xσ(s))♦Wσ(s)ds+

+
1

2

∫ t

t0

f ′′(Xσ(s))r
′(s)ds, t0 < t ∈ R,

(8.1)

where the equality is in the P -almost sure sense.

Proof: We prove for t > t0 = 0. The proof for any other interval
in R is essentially the same. We divide the proof into a number of
steps. Step 1-Step 5 are constructed so as to show that (8.1) holds,
∀t > 0, for Schwartz functions. This enables the extension to C2 func-
tions with compact support, with the equality holding in the H′

p sense.
This implies its validity in the P -a.s. sense (actually, holding ∀ω ∈ Ω),
hence, setting the ground for the concluding step, in which the result
is extended to hold for all C2 functions f .

STEP 1: For every (u, t) ∈ R2, it holds that

eiuXσ(t) ∈ W,

and

(8.2) eiuXσ(t)♦Wσ(t) ∈ H′
2.

Indeed, since Xσ is real, we have

|eiuXσ(t)| ≤ 1, ∀u, t ∈ R,

and hence eiuXσ(t) ∈ W. Since W ⊂ H′
2, we have in particular that

Wσ(t) ∈ H′
2 for all t ∈ R, it follows from V̊age’s inequality (4.7) that
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(8.2) holds.

The aim of the following two steps is formula (8.1) for exponential
functions. For α ∈ R we set:

g(x) = exp(iαx).

The proofs are as in [1], taking into account that r(t) is absolutely
continuous with respect to Lebesgue measure and are omitted.

STEP 2: It holds that

(8.3) g′(Xσ(t)) = iαg(Xσ(t))♦Wσ(t) +
1

2
(iα)2g(Xσ(t))r

′(t).

STEP 3: Equation (8.1) holds for exponentials.

In the following two steps, we prove (8.1) to hold for Schwartz functions.

STEP 4: The function (u, t) 7→ eiuXσ(t)♦Wσ(t) is continuous from R2

into H′
2.

We first recall that the norm in H′
p is denoted by ‖ · ‖p. See (4.6). The

particular case p = 0 in (4.6) gives in particular

‖f‖20 =
∑

α∈ℓ

|fα|2.

The structure of H′
0 has been studied in [4, Section 7].

Recall now that the function t 7→ Xσ(t) is continuous, and even uni-
formly continuous, from R into W, and hence from R into H′

p for any
p ∈ N0 since

‖u‖p ≤ ‖u‖W , for u ∈ W.

The function (u, t) 7→ eiuXσ(t) is in particular continuous from R2 into
H′

2. Furthermore, using V̊age’s inequality (4.7) we have:

‖eiu1Xσ(t1)♦Wσ(t1)− eiu2Xσ(t2)♦Wσ(t2)‖H′
2
≤

≤ ‖(eiu1Xσ(t1) − eiu2Xσ(t2))♦Wσ(t1)‖H′
2
+

+ ‖eiu1Xσ(t1)♦(Wσ(t2)−Wσ(t1))‖H′
2

≤ A(2)‖(eiu1Xσ(t1) − eiu2Xσ(t2))‖H′
2
· ‖Wσ(t1)‖H′

0
+

+ A(2)‖eiu1Xσ(t1)‖H′
2
· ‖(Wσ(t2)−Wσ(t1))‖H′

0
,
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where A(2) is defined by (4.8). This completes the proof of STEP 4
since

‖ · ‖2 ≤ ‖ · ‖0 ≤ ‖ · ‖W
and in particular t 7→ Wσ(t) is continuous in the norm of H′

0 and
(u, t) 7→ eiuXσ(t) is continuous in the norm of H′

2.

STEP 5: (8.1) holds for f in the Schwartz space.

The reminder of the proof is exactly as Steps 6-9 in the corresponding
proof of [1, Theorem 6.1], and hence omitted. �

9. Two examples

In this section, to contrast the measures considered above, we now con-
sider two example where the measure σ has an unbounded support.

Example (The periodic Brownian bridge). Take

(9.1) σ(u) =
∞∑

n=0

δ(u− 2n),

that is the measure with support on the even positive integers with
mass equal to 1 at each of these points. Then, it follows from the
formula (1.5) on r(t) that

r(t) = π

∞∑

n=1

1− cos(2nt)

(2n)2
.

Note that,

t(π − t) = π

∞∑

n=1

1− cos(2nt)

(2n)2
, t ∈ [0, 2π].

In view of the preceding equality, we call the associated process {Xσ(t)}
the periodic Brownian bridge over [0, π]. We have

Xσ(t) =

√
π

2

∞∑

n=1

sin(nt)

n
Zn,

where, as in (6.1), Zn = h̃n.
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We note that, by construction, for every t, Xσ(t) belongs to the white
noise space. On the other hand, the power series

Wσ(t) =

√
π

2

∞∑

n=1

cos(nt)Zn

converges only in the Kondratiev space. More precisely,

Theorem 9.1. Let σ be given by (9.1). For every t, we have that
Wσ(t) ∈ H′

2 and in the topology of H′
4

(9.2) lim
s→t

Xσ(t)−Xσ(s)

t− s
= Wσ(t).

Proof: The fact thatWσ(t) belongs to H′
2 follows from definition (4.6)

since

‖Zn‖22 = (2n)−2,

and since the Zn are mutually orthogonal in H′
2. We now turn to (9.2).

We have

Xσ(t)−Xσ(s)

t− s
−Wσ(t) =

∞∑

n=0

(∫ t
s
(cos(nu)− cos(nt))du

t− s

)
Zn.

But
∣∣∣
∫ t
s
(cos(nu)− cos(nt))du

t− s

∣∣∣ ≤
∣∣∣
∫ t
s
(nu− ns)n sin(nv)du

t− s

∣∣∣, for some v ∈ (s, t)

≤ n2
∣∣∣
∫ t
s
(u− s)du

t− s

∣∣∣

=
n2|t− s|

2

and hence the limit goes to 0 in the H′
4 norm since

‖Zn‖24 = (2n)−4,

and the Zn are mutually orthogonal in H′
4. �

Example (The Ornstein-Uhlenbeck process). This is the solution
of ths stochastic differential equation

dX(t) = θ(µ−X(t))dt+ αdB(t), t ≥ 0,

where B is a Brownian motion and θ 6= 0, µ and σ are parameters. We
have

X(t) = µ+
α√
2θ
W (e2θt)e−θt,

30



and

E[X(t)] = e−θt + µ(1− e−µt),

E[(X(t)−E(X(t))(X(s)−E(X(s))] =
α2

2θ
e−θ(t+s)(e2θs∧t − 1).

Theorem 9.2. The centered Ornstein-Uhlenbeck process {X(t)−E[X(t)]}
is a stationary increment Gaussian process. Furthermore

E[|X(t)−E[X(t)]|2] = α2

2θ
(1− e−2θt)

=

∫

R

1− cos(tu)

u2
dσ(u),

with

dσ(u) =
α2

2πθ

θu2du

θ2 + u2
.

10. The operator Qσ for more general spectral measures
dσ

The purpose of this section is to the contrast the difference between a
singular measure or not. This is a crucial distinction in passing from
the given measure σ to the associated process Xσ(t) ; i.e., in solving
the inverse problem. The two cases are: (i) σ is assumed absolutely
continuous with respect to Lebesgue measure; versus: (ii) σ is singu-
lar. This distinction results in a dichotomy for the induced operators
in L2(R, dx), so for the two operator questions. In case (i) we have a
Radon-Nikodym derivative m , and the induced operator is Tm, a self-
adjoint convolution operator in the Hilbert space L2(R, dx) with the
Schwartz space S as dense domain; see (1.6). In the second case (ii) it
is not, even existence is subtle. Now rather the induced operator is our
operator Qσ from Section 5. But it is much more subtle, and below we
address some of the technical points omitted in Section 5: (a) There
is now more than one choice for Qσ; and (b) none of the choices will
be closable operators, referring just to the Hilbert space L2(R, dx). (c)
Nonetheless, by working within the environment of the Gelfand triples
(of Gaussian random fields), we are still able to make precise the two
operators Qσ and the corresponding adjoint Q∗

σ. For the singular case,
i.e., case (ii), the Gelfand triple is thus essential in justifying our con-
struction of the process {Xσ(t)}, existence and related properties.

One common point between the previous work [3] and the present work
is the construction of an operator Qσ from a subspace of L2(R, dx) into
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itself (denoted by Tm in [3]; see (1.6)) such that

(10.1) Kσ(t, s) = 〈Qσ(1[0,t]), Qσ(1[0,s])〉L2(R,dx) = E[Xσ(t)Xσ(s)
∗].

The natural isometry from L2(R, dx) into the white noise space allows
then to proceed by doing analysis in the Gelfand triple associated with
the Kondratiev spaces, see Section 7. Although there are numerous
possible other Gelfand triples, V̊age’s inequality, see (4.7), is a feature
which seems characteristic of this triple and is very useful in the com-
putations. In the present section we present some general results on the
existence and properties of the operator Qσ. To develop the associated
stochastic integral and Ito’s formula, one has to relate the properties of
σ and of Q. Not all the arguments go through for general σ’s. Details
will be presented in forthcoming publications.

Theorem 10.1. Let σ be a positive measure subject to

(10.2)

∫

R

dσ(u)

1 + u2
<∞,

and assume that dim L2(dσ) = ∞. There exists a possibly unbounded
operator Q from L2(dσ) into L2(R, dx), with domain containing the
Schwartz space, such that (10.1) holds:

Kσ(t, s) = 〈Q(1[0,t]), Q(1[0,s])〉L2(R,dx),

and
Xσ(t) = Q̃1[0,t].

The operator Q in the preceding theorem is not unique. In the previous
cases, a specific choice of Q was made by recipe, which depended on
the special structure of L2(dσ). In general there seems no natural way
to chose a specific Q. We have dropped therefore the index σ in the
notation.

Proof of Theorem 10.1: We proceed in a number of step.

STEP 1: Let W be a unitary map from L2(dσ) onto L2(R, dx), and let

f1 = Wb1,

where b1 denotes the function

b1(u) =
1√

1 + u2
∈ L2(dσ).

Then:

‖f1‖2L2(R,dx) = ‖b1‖2L2(dσ) =

∫

R

dσ(u)

u2 + 1
<∞.
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This is clear from the unitarity of W .

STEP 2: The operatorMu of multiplication by the variable u is a priori
an unbounded operator in L2(dσ). It is densely defined and self-adjoint

in L2(dσ).

This follows from (5.4), which is true for any measure σ satisfying
(10.2).

It follows from the preceding step that the operator

T =WMuW
∗.

is a self-adjoint operator in L2(R, dx). The operator Q

(10.3) Qψ =
√
1 + T 2ψ̂(T )f1

can therefore be computed using the spectral theorem. We claim Q
satisfies (10.1) and (5.3). This is done in the next two steps.

STEP 3: (5.3) holds.

Indeed, using the spectral theorem we have

‖Qψ‖2
L(R,dx) = ‖(

√
I + T 2ψ̂(T )f1‖2L(R,dx)

= ‖W ∗
√
I + T 2ψ̂(T )Wb1‖2L2(dσ)

=

∫

R

|
√
1 + u2ψ̂(u)

1√
1 + u2

|2dσ(u)

=

∫

R

|ψ̂(u)|2dσ(u).

STEP 4: Set

Xσ(t) = Q̃1[0,t].

Then

E[Xσ(t)Xσ(s)
∗] = 〈Q1[0,t], Q1[0,s]〉L(R,dx).

Indeed, the function 1[0,t] belongs to the domain of Q and the claim is
a direct consequence of the isometric imbedding of L(R, dx) inside W.

�
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Corollary 10.2. Let σ be a positive measure subject to

(10.4)

∫

R

dσ(u)

1 + |u| <∞,

and let {Xσ(t)} be the associated process as in Theorem 10.1. Then,
{Xσ(t)} has a continuous version. (By this we mean [34] that {Xσ(t)}
agrees a.e. with some time-continuous process.)

Proof: We will prove this as an application of Kolmogorov’s test for
the existence of a continuous version, [34, p. 14]. Because {Xσ(t)} is
Gaussian, there exists K independent of t, s such that

E[|Xσ(t)−Xσ(s)|4] = K
(
E[|Xσ(t)−Xσ(s)|2]

)2
.

On the other hand,

E[|Xσ(t)−Xσ(s)|2] = 2Re r(t− s) = 2

∫

R

1− cos((t− s)u)

u2
dσ(u).

Using (10.4) we now show that

(10.5) Re r(t) ≤ C|t|, |t| ∈ [0, 1].

The result will then follow from Kolmogorov’s continuity criterion (see
for instance [34, Theorem 2.2.3, p. 14] for the latter).

To prove (10.5) we proceed in a way similar as in [1] as follows. We
compute first

∫ 1

0

1− cos(tu)

u2
dσ(u) = 2

∫ 1

0

t2
sin
(
tu
2

)2

t2u2
dσ(u)

≤ K1t
2 (K1 > 0 independent of t)

≤ K1|t| for |t| ∈ [0, 1].

Furthermore, using the mean-value theorem for the function u 7→
cos(tu) we have

1− cos(tu) = t2u sin(tξt), ξt ∈ [0, u].

Thus ∫ ∞

1

1− cos(tu)

u2
dσ(u) = t2

∫ ∞

1

sin(tξt)
dσ(u)

u

≤ t2
∫ ∞

1

dσ(u)

u

≤ K2t
2, where we use (10.4),

≤ K2|t| for |t| ∈ [0, 1],
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where K2 > 0 is independent of t. Inequality (10.5) follows and hence
the result. �

In Section 5 we defined a specific operator Qσ on the Schwartz func-
tions, and then defined Q1[0,t] by approximation. Here we have used
the spectral theorem. Still it is possible to compute Q1[0,t] via approx-
imating sequences. We note that, in view of (10.2), the measure

dµ(u) =
dσ(u)

1 + u2

satisfies the following property:

(10.6) ∀ǫ > 0, ∃K compact and such that µ(R \K) ≤ ǫ.

The arguments in Proposition 5.4 can be adapted as follow. We take
as a special sequence

sn = 1[0,t] ⋆ k1/n

where k1/n is defined via (5.11). Then

ŝn(u) = χt(u) · e−
u2

n2 .

Instead of (5.9) we write (for the special sequence (sn)n∈N at hand)

‖Qσsn −Qσsm‖2L2(R,dx) =

∫

R

|ŝn(u)− ŝm(u)|2dσ(u)

=

∫

R

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u)

=

∫

K

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u)+

+

∫

R\K

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u).

where K is a compact to be determined.

We first focus on the second integral in the last equality above. Set

sup
m,n

|χt(u)|2(1 + u2)(e−
u2

n2 − e−
u2

m2 )2 =M <∞,
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and recall that dµ(u) = dσ(u)
1+u2

. Then
∫

R\K

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u) =

=

∫

R\K

|χt(u)|2(1 + u2)(e−
u2

n2 − e−
u2

m2 )2dµ(u)

≤Mµ(R \K).

For a preassigned ǫ > 0, chose now the compact K such that

µ(R \K) ≤ ǫ2

2M
.

Then

(10.7)

∫

R\K

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u) ≤ ǫ

2
.

Since K is compact there exists N such that, for n,m larger than N ,
the integral

(10.8)

∫

K

|χt(u)|2(e−
u2

n2 − e−
u2

m2 )2dσ(u) ≤ ǫ

2
.

Therefore, for n,m ≥ N ,

‖Qσsn −Qσsm‖L2(R,dx) ≤ ǫ,

and the sequence (Qσsn)n∈N is a Cauchy sequence in the norm of
L2(R, dx). This provides a constructive way to compute Q1[0,t]. To
see that the obtained limit gives the same value as the one obtained
from the spectral theorem, it suffices to let n go to infinity in (10.7)
and (10.8).

11. Concluding Remarks

We conclude with comments comparing our approach with the litera-
ture.

1. As in [1], no adaptability of the integrand with respect to an un-
derlying filtration has been made. In this sense, one may regard the
integral defined here in fact as a Wick-Skorohod integral.

2. Motivated in part by questions in physics, e.g., [12] and [30, 33],
there has been a recent increase in the use of operator theory in sto-
chastic processes, as reflected in e.g. references [1, 2, 3, 12, 13, 14]. In
addition, we call attention to the papers [25, 26, 15, 17, 29] and the
papers cited there. In our present approach, we have been using tools
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from the cross roads of harmonic analysis and stochastic process, as
are covered in [9, 14, 16, 31].
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