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GENERALIZED Q-FUNCTIONS AND

DIRICHLET-TO-NEUMANN MAPS FOR ELLIPTIC

DIFFERENTIAL OPERATORS

DANIEL ALPAY1 AND JUSSI BEHRNDT2

Abstract. The classical concept of Q-functions associated to symmetric and
selfadjoint operators due to M.G. Krein and H. Langer is extended in such a
way that the Dirichlet-to-Neumann map in the theory of elliptic differential
equations can be interpreted as a generalized Q-function. For couplings of uni-
formly elliptic second order differential expression on bounded and unbounded
domains explicit Krein type formulas for the difference of the resolvents and
trace formulas in an H2-framework are obtained.

1. Introduction

The notion of a Q-function associated to a pair {S,A} consisting of a symmetric
operator S and a selfadjoint extension A of S in a Hilbert or Pontryagin space
was introduced by M.G. Krein and H. Langer in [37, 38]. A Q-function contains
the spectral information of the selfadjoint extensions of the underlying symmetric
operator and therefore these functions play a very important role in the spectral and
perturbation theory of selfadjoint operators. Q-functions appear also naturally in
the description of the resolvents of the selfadjoint extensions of a symmetric operator
with the help of Krein’s formula and they can be used to construct functional
models for selfadjoint operators. In the theory of boundary triplets associated to
symmetric operators Q-functions can be interpreted as so-called Weyl functions,
cf. [16, 17, 18, 19, 29]. A prominent example for a Q-function is the classical
Titchmarsh-Weyl coefficient in the theory of singular Sturm-Liouville operators.

The main objective of this paper is to extend the concept of Q-functions in
such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential
equations can be identified as a generalized Q-function. In the abstract part of the
paper we introduce the notion of generalized Q-functions and we show that these
functions have similar properties as classical Q-functions. Besides a symmetric op-
erator S and a selfadjoint extension A also an operator T whose closure coincides
with S∗ is used. Some of the ideas here parallel [9], where a more abstract ap-
proach with isometric and unitary relations in Krein spaces was used. The main
result in the abstract part is Theorem 2.6 which states that an operator function
is a generalized Q-function if and only if it coincides up to a possibly unbounded
constant on a dense subspace with the restriction of a Nevanlinna function with an
invertible imaginary part and a certain asymptotic behaviour.

1 Earl Katz Family Chair in algebraic system theory; 2 Jussi Behrndt gratefully acknowledges
support from the Institute for Advanced Studies in Mathematics at Ben-Gurion University of the
Negev.
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Section 3 and Section 4 deal with second order elliptic operators on bounded
and unbounded domains, and with the coupling of such operators. Suppose first
that the domain Ω ⊂ Rn, n > 1, is bounded with a smooth boundary ∂Ω. Let AD

and AN be the selfadjoint realizations of an formally symmetric uniformly elliptic
differential expression

(1) L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+ a

in L2(Ω) defined on H2(Ω) and subject to Dirichlet and Neumann boundary con-
ditions, respectively. If T denotes the realization of L on H2(Ω), then the closure
of T in L2(Ω) coincides with the maximal operator associated to L in L2(Ω), and
AD and AN are both selfadjoint restrictions of T . For a function f ∈ H2(Ω) denote

the trace and the trace of the conormal derivative by f |∂Ω and ∂f
∂ν |∂Ω, respectively.

Then for each λ ∈ ρ(AD) the Dirichlet-to-Neumann map

(2) Q(λ)(fλ|∂Ω) := −
∂fλ

∂ν

∣∣∣
∂Ω
, where Tfλ = λfλ,

is well-defined and will be regarded as an operator in L2(∂Ω) defined on H3/2(∂Ω)
with values in H1/2(∂Ω). The minus sign in (2) is used for technical reasons. It
turns out that the operator function λ 7→ Q(λ) is a generalized Q-function in the
sense of Definition 2.2 and an explicit variant of Krein’s formula for the resolvents
of AD and AN is obtained in Theorem 3.4, see also [9, 13, 25, 26, 47, 48, 49] for
more general problems. In particular, in the case n = 2 the difference of these
resolvents is a trace class operator and we obtain the trace formula

(3) tr
(
(AD − λ)−1 − (AN − λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)

for λ ∈ ρ(AD) ∩ ρ(AN ). Here Q(λ)−1 is the closure of Q(λ)−1 in L2(∂Ω) and

Q̃ is a Nevanlinna function which differs from the Dirichlet-to-Neumann map by
a symmetric constant. Trace formulas for canonical differential expressions and
in more abstract situations for the finite-dimensional case can be found in, e.g.,
[2, 3, 10].

In Section 4 we consider a so-called coupling of elliptic operators. Such cou-
plings are of great interest in problems of mathematical physics, e.g., in the de-
scription of quantum networks; for more details and further references we refer the
reader to the recent works [20, 21, 44, 45, 46]. Suppose that Rn, n > 1, is decom-
posed in a bounded domain Ω with smooth boundary C and the unbounded domain
Ω′ = Rn\Ω. The orthogonal sum of the selfadjoint Dirichlet operators AD and A′

D

associated to L in L2(Ω) and L2(Ω′), respectively, is regarded as a selfadjoint diag-
onal block operator matrix in L2(Rn). The resolvent of AD ⊕A′

D is then compared

with the resolvent of the usual selfadjoint realization Ã of L in L2(Rn) defined on
H2(Rn). In order to express this difference in the Krein type formula

(4)
(
(AD ⊕A′

D) − λ
)−1

− (Ã− λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗

with a generalized Q-function an analogon of the Dirichlet-to-Neumann map is
constructed which measures the jump of the conormal derivative of L2(Ω) and
L2(Ω′)-solutions of Lu = λu on the boundary C, see (52). The operator Γ(λ) :
L2(C) → L2(Rn) in (4) is closely connected with the generalized Q-function and
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is here identified with a Poisson-type operator solving a certain Dirichlet problem.
As a consequence of the representation (4) we also obtain a trace formula of the
type (3) in the coupled case.

2. Generalized Q-functions

In this section we introduce the notion of generalized Q-functions associated to
a symmetric operators in Hilbert spaces. The class of generalized Q-functions is
characterized in Theorem 2.6, where it turns out that generalized Q-functions are
closely connected with operator-valued Nevanlinna or Riesz-Herglotz functions. We
also note in advance that for the case of finite deficiency indices of the underlying
symmetric operator the concept of generalized Q-functions coincides with the clas-
sical notion of (ordinary) Q-functions studied by M.G. Krein and H. Langer in
[37, 38], see also [35, 36].

Let H be a separable Hilbert space and let S be a densely defined closed sym-
metric operator with equal (in general infinite) deficiency indices

n±(S) = dimker(S∗ ∓ i) ≤ ∞

in H. It is well known that under this assumption S admits selfadjoint extensions
in H. In the following let A be a fixed selfadjoint extension of S in H, so that,
S ⊂ A = A∗ ⊂ S∗. Furthermore, let T be a linear operator in H such that
A ⊂ T ⊂ S∗ and T = S∗ holds, i.e., the domain domT of T is a core of domS∗

(see [34]), domT contains domA and Af = Tf holds for all f ∈ domA.
For λ ∈ C belonging to the resolvent set ρ(A) of the selfadjoint operator A

define the defect spaces Nλ(T ) = ker(T − λ) and Nλ(S∗) = ker(S∗ − λ). Then the
decompositions

(5) domS∗ = domA +̇Nλ(S∗) and domT = domA +̇Nλ(T )

hold for all λ ∈ ρ(A) and the closure Nλ(T ) of Nλ(T ) in H coincides with Nλ(S∗).
Recall that the symmetric operator S is said to be simple if there exists no nontrivial
subspace D in domS such that S restricted to D is a selfadjoint operator in the
Hilbert space D. It is important to note that S is simple if and only if

(6) H = span
{
Nλ(S∗) : λ ∈ C\R

}

holds, cf. [36]. Here span denotes the closed linear span. As Nλ(T ) = Nλ(S∗) it is
clear that the right hand side in (6) coincides with

span
{
Nλ(T ) : λ ∈ C\R

}
.

Fix some λ0 ∈ ρ(A), let G be a Hilbert space with the same dimension as
Nλ0

(T ) and let Γλ0
be a densely defined bounded operator from G into H such that

ranΓλ0
= Nλ0

(T ) and ker Γλ0
= {0} holds. The domain domΓλ0

of Γλ0
will be

denoted by G0. Observe that the closure Γλ0
of the operator Γλ0

is the bounded
extension of Γλ0

which is defined on G0 = G. We write Γλ0
∈ L(G,H), where

L(G,H) is the space of bounded linear operators defined on G with values in H.

Lemma 2.1. The operator function λ 7→ Γ(λ) := (I + (λ − λ0)(A − λ)−1)Γλ0

satisfies Γ(λ0) = Γλ0
,

Γ(λ) =
(
I + (λ − µ)(A− λ)−1

)
Γ(µ), λ, µ ∈ ρ(A),
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and Γ(λ) is a bounded operator from G into H which maps domΓ(λ) = G0 bijectively
onto Nλ(T ) for all λ ∈ ρ(A). Moreover, λ 7→ Γ(λ)g is holomorphic on ρ(A) for
every g ∈ G0.

Proof. Let us show that ranΓ(λ) = Nλ(T ) is true. The other assertions in the
lemma are obvious or follow from a straightforward calculation. Since T is an
extension of A we have (T − λ)(A− λ)−1 = I for λ ∈ ρ(A) and therefore

(T − λ)Γ(λ)h = (T − λ)
(
I + (λ − λ0)(A − λ)−1

)
Γλ0

h = (T − λ0)Γλ0
h = 0

shows that ranΓ(λ) ⊂ Nλ(T ) holds. Now let fλ ∈ Nλ(T ). Then it follows as above
that

fλ0
:=

(
I + (λ0 − λ)(A − λ0)

−1
)
fλ

is an element in Nλ0
(T ) and hence there exists h ∈ G0 such that fλ0

= Γλ0
h. Now

a simple calculation shows fλ = Γ(λ)h, thus ranΓ(λ) = Nλ(T ). �

In the following definition the concept of generalized Q-functions is introduced.

Definition 2.2. Let S, A, T , and Γ(·) be as above. An operator function Q defined
on ρ(A) whose values Q(λ) are linear operators in G with domQ(λ) = G0 for all
λ ∈ ρ(A) is said to be a generalized Q-function of the triple {S,A, T } if

(7) Q(λ) −Q(µ)∗ = (λ− µ̄)Γ(µ)∗Γ(λ)

holds for all λ, µ ∈ ρ(A). If, in addition, G0 = G and T = S∗, then Q is called an
ordinary Q-function of {S,A}.

We note that the values Q(λ), λ ∈ ρ(A), of a generalized Q-function can be
unbounded non-closed operators. The adjoint Q(µ)∗ in (7) is well defined since
domQ(µ) is dense in G and by setting λ = µ̄ in (7) it follows Q(µ) ⊂ Q(µ̄)∗. Hence
the identity (7) holds on G0, the operators Q(λ) are closable in G and symmetric
for λ ∈ ρ(A) ∩ R. The real and imaginary parts of the operators Q(λ) are defined
as usual:

ReQ(λ) =
1

2

(
Q(λ) +Q(λ)∗

)
and ImQ(λ) =

1

2i

(
Q(λ) −Q(λ)∗

)
.

Since (ReQ(λ)h, h) and (ImQ(λ)h, h) are real for all h ∈ G0 the operators ReQ(λ)
and ImQ(λ) are symmetric.

Remark 2.3. We note that the concept of generalized Q-functions is closely con-
nected with the theory of boundary triplets and associated Weyl functions. The
Weyl function of an ordinary or generalized boundary triplet (see [16, 18, 19, 29])
is also a generalized Q-function, but the converse is not true. The class of general-
ized Q-functions studied here coincides with the class of Weyl functions of so-called
quasi boundary triplets introduced in [9]. Furthermore, we note that generalized
Q-functions are no subclass of the Weyl families associated to boundary relations,
see [17] and Theorem 2.6.

The concept of generalized Q-functions differs from the classical notion of ordi-
nary Q-functions only in the case n±(S) = ∞.

Proposition 2.4. Let Q be a generalized Q-function of the triple {S,A, T } and
assume, in addition, that the deficiency indices n±(S) are finite. Then T = S∗ and
Q is an ordinary Q-function of the pair {S,A}.
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Proof. If the deficiency indices of the closed operator S are finite, then T is a finite
dimensional extension of S and hence also T is closed. Therefore T = T = S∗.
Moreover, in this case also dimG = dimNλ0

(T ) is finite and hence G0 = domΓ(λ) =
domQ(λ) = G, λ ∈ C\R. �

The representation of a generalized Q-function with the help of the resolvent
of A in the next proposition is formally the same as for ordinary Q-functions, see
[37, 38, 39].

Proposition 2.5. Let Q be a generalized Q-function of the triple {S,A, T } and let
λ0 ∈ ρ(A). Then Q can be written as the sum of the possibly unbounded operator
ReQ(λ0) and a bounded holomorphic operator function,

(8) Q(λ) = ReQ(λ0) + Γ∗

λ0

(
(λ− Reλ0) + (λ − λ0)(λ − λ̄0)(A − λ)−1

)
Γλ0

,

and, in particular, any two generalized Q-functions of {S,A} differ by a constant.

Proof. Let h ∈ G and set µ = λ0 in (7). Making use of the definition of Γ(λ) in
Lemma 2.1 we obtain

Q(λ)h = Q(λ0)
∗h+ (λ− λ̄0)Γ

∗

λ0

(
I + (λ− λ0)(A− λ)−1

)
Γλ0

h.

As Q(λ0)h − Q(λ0)
∗h = (λ0 − λ̄0)Γ

∗

λ0
Γλ0

h we see that the above formula can be
rewritten as

Q(λ)h = Q(λ0)h+ (λ− λ0)Γ
∗

λ0
Γλ0

h+ Γ∗

λ0
(λ− λ0)(λ − λ̄0)(A− λ)−1Γλ0

h.

The representation (8) follows by inserting Q(λ0)h = ReQ(λ0)h+ iImQ(λ0)h and
ImQ(λ0)h = Imλ0Γ

∗

λ0
Γλ0

h into this expression. �

Generalized Q-functions are closely connected with the class of Nevanlinna func-
tions, cf. Theorem 2.6 below. Let L(G) be the space of everywhere defined bounded

linear operators in G. Recall that an L(G)-valued operator function Q̃ which is holo-
morphic on C\R and satisfies

(9)
Im Q̃(λ)

Imλ
≥ 0 and Q̃(λ̄) = Q̃(λ)∗

for λ ∈ C\R is said to be an L(G)-valued Nevanlinna function. We note that Q̃ is an

L(G)-valued Nevanlinna function if and only if Q̃ admits an integral representation
of the form

(10) Q̃(λ) = α+ λβ +

∫

R

(
1

t− λ
−

t

1 + t2

)
dΣ(t), λ ∈ C\R,

where α = α∗ ∈ L(G), 0 ≤ β = β∗ ∈ L(G) and t 7→ Σ(t) ∈ L(G) is a selfadjoint
nondecreasing L(G)-valued function on R such that

∫

R

1

1 + t2
dΣ(t) ∈ L(G).

It is well known that Nevanlinna functions can be represented with the help of
selfadjoint operators or relations in Hilbert spaces in a very similar form as in (8).
Such operator and functional models for Nevanlinna functions can be found in, e.g.,
[1, 7, 12, 15, 19, 27, 33, 39, 41].
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In the next theorem we characterize the class of generalized Q-functions.
Roughly speaking, it turns out that up to a symmetric constant a generalized Q-

function is a restrictions of an L(G)-valued Nevanlinna function Q̃ with invertible

imaginary part on domQ(λ) and Q̃ satisfies certain limit properties at ∞.

Theorem 2.6. Let G0 be a dense subspace of G, λ0 ∈ C\R, and let Q be a function
defined on C\R whose values Q(λ) are linear operators in G with domQ(λ) = G0,
λ ∈ C\R. Then the following is equivalent:

(i) Q is a generalized Q-function of a triple {S,A, T }, where S is a simple
symmetric operator in some separable Hilbert space H, A is a selfadjoint
extension of S in H and A ⊂ T ⊂ S∗ with T = S∗;

(ii) There exists an unique L(G)-valued Nevanlinna function Q̃ with the prop-
erties (α), (β) and (γ):
(α) The relations

Q(λ)h− ReQ(λ0)h = Q̃(λ)h

and

Q(λ)∗h− ReQ(λ0)h = Q̃(λ)∗h

hold for all h ∈ G0 and λ ∈ C\R;

(β) Im Q̃(λ)h = 0 for some h ∈ G0 and λ ∈ C\R implies h = 0;
(γ) The conditions

lim
η→+∞

1

η
(Q̃(iη)k, k) = 0 and lim

η→+∞
η Im (Q̃(iη)k, k) = ∞

are valid for all k ∈ G, k 6= 0.

Proof. We start by showing that (i) implies (ii). For this, let Q be a generalized Q-
function of the triple {S,A, T } and suppose that S is simple. Let Γλ0

be a bounded
operator defined on domQ(λ) = G0 such that ranΓλ0

= Nλ0
(T ) and kerΓλ0

= {0}.
According to Proposition 2.5 for each λ ∈ C\R

Q(λ) − ReQ(λ0) = Γ∗

λ0

(
(λ − Reλ0) + (λ− λ0)(λ− λ̄0)(A− λ)−1

)
Γλ0

is a bounded operator in G defined on the dense subspace G0 and hence admits a
unique bounded extension onto G which is given by

(11) Q̃(λ) := Γ∗

λ0

(
(λ− Reλ0) + (λ− λ0)(λ − λ̄0)(A − λ)−1

)
Γλ0

,

where Γλ0
∈ L(G,H) is the closure of Γλ0

. Obviously we have

Q(λ)h− ReQ(λ0)h = Q̃(λ)h

for all h ∈ G0 and λ ∈ C\R, which is the first relation in (α). Recall that for a
generalized Q-function Q(λ̄)∗ is an extension of Q(λ). This implies ReQ(λ0) ⊂
(ReQ(λ0))

∗,

Q(λ)∗ − ReQ(λ0) ⊂
(
Q(λ) − ReQ(λ0)

)∗
= Q̃(λ)∗

and therefore also Q(λ)∗h−ReQ(λ0)h = Q̃(λ)∗h is true for all h ∈ G0 and λ ∈ C\R.
Hence we have shown (α).

Clearly Q̃ in (11) is a holomorphic L(G)-valued function on C\R. Denote by

Γ(λ) the closure of Γ(λ) = (I + (λ − λ0)(A − λ)−1)Γλ0
. Then

Γ(λ) =
(
I + (λ − λ0)(A − λ)−1

)
Γλ0

, λ ∈ C\R,



Q-FUNCTIONS AND ELLIPTIC OPERATORS 7

and it is not difficult to see that (7) extends to

Q̃(λ) − Q̃(µ)∗ = (λ− µ̄)Γ(µ)∗Γ(λ).

Hence (
Im Q̃(λ)k, k

)
= (Im λ)

(
Γ(λ)∗Γ(λ)k, k

)
= (Imλ)‖Γ(λ)k‖2

holds for all k ∈ G and this implies that Q̃ is a Nevanlinna function, cf. (9).
Furthermore, for h ∈ G0 we have

Im Q̃(λ)h = (Imλ)Γ(λ)∗Γ(λ)h

and from the property ker Γ(λ) = {0}, cf. Lemma 2.1, we conclude that Im Q̃(λ)h =
0 for h ∈ G0 implies h = 0, i.e., condition (β) holds. The same arguments as in
[39, Theorem 2.4, Corollaries 2.5 and 2.6] together with the assumption that S

is a densely defined closed simple symmetric operator show that Q̃ satisfies the
conditions in (γ).

Let us now verify the converse direction. If Q̃ is a L(G)-valued Nevanlinna function,
λ0 ∈ C\R and the first condition in (γ) holds, then it is well known that there exists

a Hilbert space H, a selfadjoint operator A in H and a mapping Γ̃ ∈ L(G,H) such
that the representation

(12) Q̃(λ) = Re Q̃(λ0) + Γ̃∗
(
(λ− Reλ0) + (λ− λ0)(λ− λ0)(A− λ)−1

)
Γ̃

is valid for all λ ∈ C\R, see, e.g., [33, 39]. Furthermore, the space H can be chosen
minimal, i.e.,

(13) H = span
{(
I + (λ − λ0)(A − λ)−1

)
Γ̃k : k ∈ G, λ ∈ C\R

}
.

We define the mapping Γλ0
to be the restriction of Γ̃ onto G0. As Γ̃ is bounded

the closure Γλ0
of Γλ0

coincides with Γ̃. We claim that Γλ0
is injective. In fact, if

Γλ0
h = 0 for some h ∈ G0 then Γ̃h = 0 and by (12) we have Q̃(λ)h = Re Q̃(λ0)h.

Therefore Im Q̃(λ)h = 0 and by assumption (β) this implies h = 0.
Define the operator S by

Sf = Af, domS =
{
f ∈ domA : ((A− λ̄0)f,Γλ0

h) = 0 for all h ∈ G0

}
.

Then S is a closed symmetric operator and the identities ran (S− λ̄0) = (ranΓλ0
)⊥

and ker(S∗ − λ0) = ranΓλ0
hold. Let

(14) Γ(λ) = (I + (λ − λ0)(A − λ)−1)Γλ0
, λ ∈ C\R.

It is not difficult to check that ran (S − λ̄) = (ranΓ(λ))⊥ is true for all λ ∈ C\R

and the conditions in (γ) together with (13) now yield in the same way as in [39,
Theorem 2.4, Corollaries 2.5 and 2.6] that S is densely defined and simple.

Note that domA ∩ ranΓλ0
= {0} since λ0 ∈ ρ(A) and ranΓλ0

⊂ Nλ0
(S∗). Let

us define a linear operator T in H on domT := domA +̇ ranΓλ0
by

T (f + fλ0
) := Af + λ0fλ0

, f ∈ domA, fλ0
∈ ranΓλ0

.

Obviously T is an extension of A and since Nλ0
(T ) = ranΓλ0

and ranΓλ0
is dense

in Nλ0
(S∗) we obtain from domS∗ = domA +̇Nλ0

(S∗), cf. (5), that T ⊂ S∗ and
T = S∗ holds.

According to condition (α) the Nevanlinna function Q̃ and the function Q are
related by

Q(λ)h = Q̃(λ)h+ ReQ(λ0)h and Q(λ)∗h = Q̃(λ)∗h+ ReQ(λ0)h
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for all h ∈ G0 and λ ∈ C\R. It remains to show that Q satisfies (7). Observe first
that for λ, µ ∈ C\R we have

(15) Q(λ)h−Q(µ)∗h = Q̃(λ)h − Q̃(µ)∗h.

Denote the closures of the operators Γ(λ), λ ∈ C\R, in (14) by Γ̃(λ). Then

Γ̃(λ) = Γ(λ) =
(
I + (λ− λ0)(A− λ)−1

)
Γλ0

=
(
I + (λ − λ0)(A − λ)−1

)
Γ̃

and it follows from (12) with a straightforward calculation that

(16) Q̃(λ) − Q̃(µ)∗ = (λ − µ̄)Γ̃(µ)∗Γ̃(λ), λ, µ ∈ C\R,

holds. As Γ̃(µ)∗ = Γ(µ)
∗

= Γ(µ)∗ we conclude

Q(λ)h−Q(µ)∗h = (λ− µ̄)Γ(µ)∗Γ(λ)h, h ∈ G0,

from (15). Therefore Q is a generalized Q-function of the triple {S,A, T }. �

Remark 2.7. The definition of a generalized Q-function can be extended to the
case that A is a selfadjoint relation, S is a non-densely defined symmetric operator
or relation and T is a linear relation which is dense in the relation S∗. We refer
to [39] for ordinary Q-functions in this more general situation. In this case the
condition (γ) in Theorem 2.6 can be dropped.

For ordinary Q-functions Theorem 2.6 reads as follows, cf. [39, Theorem 2.2 and
Theorem 2.4].

Theorem 2.8. A L(G)-valued Nevanlinna function Q̃ is an ordinary Q-function
of some pair {S,A}, where S is a densely defined closed simple symmetric operator
in some Hilbert space H and A is a selfadjoint extension of S in H, if and only if

condition (γ) in Theorem 2.6 and 0 ∈ ρ(Im Q̃(λ)) holds for some, and hence for
all, λ ∈ C\R.

Corollary 2.9. Let Q be a generalized Q-function of {S,A, T } and let Q̃ be the
L(G)-valued Nevanlinna function in Theorem 2.6. Then for all λ ∈ C\R and h ∈ G0

we have

d

dλ
Q(λ)h =

d

dλ
Q̃(λ)h = Γ(λ̄)∗Γ(λ)h.

Proof. It follows from (16) that

d

dλ
Q̃(λ) = lim

µ̄→λ

Q̃(λ) − Q̃(µ)∗

λ− µ̄
= Γ̃(λ̄)∗Γ̃(λ)

holds. Hence condition (α) in Theorem 2.6 and Γ̃(λ) = Γ(λ) imply

d

dλ
Q(λ)h = lim

µ̄→λ

Q(λ)h−Q(µ)∗h

λ− µ̄
= lim

µ̄→λ

Q̃(λ)h− Q̃(µ)∗h

λ− µ̄
= Γ(λ̄)∗Γ(λ)h

for h ∈ G0. �
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3. Elliptic operators and the Dirichlet-to-Neumann map

Let Ω ⊂ R
n be a bounded or unbounded domain with compact C∞-boundary

∂Ω. Let L be the ”formally selfadjoint” uniformly elliptic second order differential
expression

(17) (Lf)(x) := −
n∑

j,k=1

(
∂

∂xj
ajk

∂f

∂xk

)
(x) + a(x)f(x),

x ∈ Ω, with bounded infinitely differentiable coefficients ajk ∈ C∞(Ω) satisfying

ajk(x) = akj(x) for all x ∈ Ω and j, k = 1, . . . , n, the function a ∈ L∞(Ω) is real
valued and

(18)

n∑

j,k=1

ajk(x)ξjξk ≥ C

n∑

k=1

ξ2k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)⊤ ∈ Rn and x ∈ Ω. We note that the
assumptions on the domain Ω and the coefficients of L can be relaxed but it is
not our aim to treat the most general setting here. We refer the reader to e.g.
[30, 40, 43, 51] for possible generalizations.

In the following we consider the selfadjoint realizations of L in L2(Ω) subject
to Dirichlet and Neumann boundary conditions. For a function f in the Sobolev
space H2(Ω) we denote the trace by f |∂Ω and the trace of the conormal derivative
is defined by

∂f

∂ν

∣∣∣
∂Ω

:=

n∑

j,k=1

ajknj
∂f

∂xk

∣∣∣
∂Ω

;

here n(x) = (n1(x), . . . , nn(x))⊤ is the unit vector at the point x ∈ ∂Ω pointing out

of Ω. Recall that the mapping C∞(Ω) ∋ f 7→
{
f |∂Ω,

∂f
∂ν

∣∣
∂Ω

}
extends by continuity

to a continuous surjective mapping

(19) H2(Ω) ∋ f 7→

{
f |∂Ω,

∂f

∂ν

∣∣∣
∂Ω

}
∈ H3/2(∂Ω) ×H1/2(∂Ω).

The kernel of this map is

H2
0 (Ω) =

{
f ∈ H2(Ω) : f |∂Ω =

∂f

∂ν

∣∣∣
∂Ω

= 0

}

which coincides with the closure of C∞
0 (Ω) in H2(Ω). We refer the reader to the

monographs [40, 43, 51] for more details. In the following the scalar products in
L2(Ω) and L2(∂Ω) are denoted by (·, ·)Ω and (·, ·)∂Ω, respectively. Then Green‘s
identity

(20) (Lf, g)Ω − (f,Lg)Ω =

(
f |∂Ω,

∂g

∂ν

∣∣∣
∂Ω

)

∂Ω

−

(
∂f

∂ν

∣∣∣
∂Ω
, g|∂Ω

)

∂Ω

holds for all functions f, g ∈ H2(Ω). We note that (20) is even true for f ∈ H2(Ω)
and g belonging to the domain of the maximal operator associated to L in L2(Ω)
if the (·, ·)∂Ω scalar product in L2(∂Ω) is extended by continuity to H3/2(∂Ω) ×
H−3/2(∂Ω) and H1/2(∂Ω) × H−1/2(∂Ω), respectively, see [40, 51]. However, we
shall make use of (20) only for the case f, g ∈ H2(Ω).
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It is well known that the realizations AD and AN of L subject to Dirichlet and
Neumann boundary conditions defined by

ADf = Lf, domAD =
{
f ∈ H2(Ω) : f |∂Ω = 0

}
,

ANf = Lf, domAN =
{
f ∈ H2(Ω) :

∂f

∂ν

∣∣∣
∂Ω

= 0
}
,

(21)

are selfadjoint operators in L2(Ω). The following statement is known and can be
found in, e.g., [40]. It can be proved with similar methods as Theorem 4.1 in the
next section.

Proposition 3.1. Let L be the elliptic differential expression in (17). Then the
operator

(22) Sf = Lf, domS = H2
0 (Ω),

is a densely defined closed symmetric operator in L2(Ω) with infinite deficiency in-
dices n±(S) and the adjoint S∗ of S coincides with the maximal operator associated
to L,

S∗f = Lf, domS∗ =
{
f ∈ L2(Ω) : Lf ∈ L2(Ω)

}
.

The operator

Tf = Lf, domT = H2(Ω),

is not closed as an operator in L2(Ω) and T satisfies T = S∗ and T ∗ = S. Fur-
thermore, the selfadjoint operators AD and AN in (21) are extensions of S and
restrictions of T .

In order to define a mapping Γλ0
for the definition of a generalized Q-function

associated to the triple {S,AD, T } we make use of the decomposition (5) in the
present situation. More precisely, for all points λ in the resolvent set ρ(AD) of
the selfadjoint Dirichlet operator AD we have the direct sum decomposition of
domT = H2(Ω):

(23) H2(Ω) = domAD +̇Nλ(T ) =
{
f ∈ H2(Ω) : f |∂Ω = 0

}
+̇Nλ(T ),

where

Nλ(T ) = ker(T − λ) =
{
fλ ∈ H2(Ω) : Lfλ = λfλ

}
.

Let now ϕ be a function in H3/2(∂Ω) and let λ0 ∈ ρ(AD). Then it follows from (19)
and (23) that there exists a unique function fλ0

∈ H2(Ω) which solves the equation
Lfλ0

= λ0fλ0
, i.e., fλ0

∈ Nλ0
(T ), and satisfies fλ0

|∂Ω = ϕ. We shall denote the
mapping that assigns fλ0

to ϕ by Γλ0
,

(24) H3/2(∂Ω) ∋ ϕ 7→ Γλ0
ϕ := fλ0

∈ Nλ0
(T ),

and we regard Γλ0
as an operator from L2(∂Ω) into L2(Ω) with domΓλ0

=
H3/2(∂Ω) and ranΓλ0

= Nλ0
(T ).

Proposition 3.2. Let λ0 ∈ ρ(AD), let Γλ0
be as in (24) and let λ ∈ ρ(AD). Then

the following holds:

(i) Γλ0
is a bounded operator from L2(∂Ω) in L2(Ω) with dense domain

H3/2(∂Ω);
(ii) The operator Γ(λ) = (I + (λ− λ0)(AD − λ)−1)Γλ0

is given by

Γ(λ)ϕ = fλ, where fλ ∈ Nλ(T ) and fλ|∂Ω = ϕ;
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(iii) The mapping Γ(λ̄)∗ : L2(Ω) → L2(∂Ω) satisfies

Γ(λ̄)∗(AD − λ)f = −
∂f

∂ν

∣∣∣
∂Ω
, f ∈ domAD.

Proof. Statement (i) will be a consequence of (iii). We prove assertion (ii). Recall
that by Lemma 2.1 the range of the operator Γ(λ), λ ∈ ρ(AD), is Nλ(T ). Let
ϕ ∈ domΓ(λ) = H3/2(∂Ω) and choose elements fλ ∈ Nλ(T ) and fλ0

∈ Nλ0
(T )

such that
fλ|∂Ω = ϕ = fλ0

|∂Ω

holds. According to (23) the functions fλ and fλ0
are unique. Then Γλ0

ϕ = fλ0

and hence we obtain

Γ(λ)ϕ = Γλ0
ϕ+ (λ − λ0)(AD − λ)−1Γλ0

ϕ = fλ0
+ (λ− λ0)(AD − λ)−1Γλ0

ϕ.

Since (λ− λ0)(AD − λ)−1Γλ0
ϕ belongs to domAD it is clear that the trace of this

element vanishes. Therefore, the traces of the functions Γ(λ)ϕ ∈ Nλ(T ) and fλ0

coincide,
(Γ(λ)ϕ)|∂Ω = fλ0

|∂Ω = ϕ = fλ|∂Ω.

Thus we have that the traces of Γ(λ)ϕ ∈ Nλ(T ) and fλ ∈ Nλ(T ) coincide and from
(23) we conclude Γ(λ)ϕ = fλ.

(iii) Let ϕ ∈ H3/2(∂Ω) and choose the unique function gλ̄ ∈ Nλ̄(T ) with the
property gλ̄|∂Ω = ϕ. Hence we have Γ(λ̄)ϕ = gλ̄ and for f ∈ domAD it follows

(
Γ(λ̄)ϕ, (AD − λ)f

)
Ω

= (gλ̄, ADf)Ω − (λ̄gλ̄, f)Ω = (gλ̄, ADf)Ω − (Tgλ̄, f)Ω.

Making use of Green’s identity (20) we find

(gλ̄, ADf)Ω − (Tgλ̄, f)Ω =

(
∂gλ̄

∂ν

∣∣∣
∂Ω
, f |∂Ω

)

∂Ω

−

(
gλ̄|∂Ω,

∂f

∂ν

∣∣∣
∂Ω

)

∂Ω

and since the trace of f ∈ domAD vanishes the first summand on the right hand
side is zero. Therefore

(
Γ(λ̄)ϕ, (AD − λ)f

)
Ω

= −

(
gλ̄|∂Ω,

∂f

∂ν

∣∣∣
∂Ω

)

∂Ω

=

(
ϕ,−

∂f

∂ν

∣∣∣
∂Ω

)

∂Ω

holds for all ϕ ∈ domΓ(λ̄) = H3/2(∂Ω). This gives (AD − λ)f ∈ domΓ(λ̄)∗ and

Γ(λ̄)∗(AD − λ)f = −
∂f

∂ν

∣∣∣
∂Ω
.

Moreover, as λ ∈ ρ(AD) and f ∈ domAD was arbitrary we see that Γ(λ̄)∗ is defined
on the whole space L2(Ω). This together with the fact that Γ(λ̄)∗ is closed implies

Γ(λ̄)∗ ∈ L
(
L2(Ω), L2(∂Ω)

)

for λ ∈ ρ(AD) and, in particular, Γ(λ̄) ⊂ Γ(λ̄) = Γ(λ̄)∗∗ is bounded. Inserting
λ0 = λ̄ this yields assertion (i). �

In the study of elliptic differential operators the so-called Dirichlet-to-Neumann
map plays an important role, we mention only [4, 14, 22, 23, 24, 25, 26, 31, 42, 44, 45,
46, 47, 48, 49, 50]. Roughly speaking this operator maps the Dirichlet boundary
value fλ|∂Ω of an H2(Ω)-solution of the equation Lu = λu onto the Neumann

boundary value ∂fλ

∂ν |∂Ω of this solution. In the following definition also a minus
sign arises, which is needed to obtain a generalized Q-function in Theorem 3.4.
Otherwise −Q would turn out to be a generalized Q-function.
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Definition 3.3. Let λ ∈ ρ(AD) and assign to ϕ ∈ H3/2(∂Ω) the unique function
fλ ∈ Nλ(T ) such that fλ|∂Ω = ϕ, see (19) and (23). The operator Q(λ) in L2(∂Ω)
defined by

(25) Q(λ)ϕ = Q(λ)(fλ|∂Ω) := −
∂fλ

∂ν

∣∣∣
∂Ω
, ϕ ∈ domQ(λ) = H3/2(∂Ω),

is called the Dirichlet-to-Neumann map associated to L.

Note that by (19) the range of the Dirichlet-to-Neumann map Q(λ), λ ∈ ρ(AD),
lies in H1/2(∂Ω). We remark that the Dirichlet-to-Neumann map can be extended,
e.g., to an operator from H1(∂Ω) in L2(∂Ω) if instead of H2(Ω) the operator T is
defined on a suitable subspace of H3/2(Ω), cf. [4, 5, 6, 9, 32, 40]. However, for our
purposes this is not necessary since AD and AN are defined on subspaces of H2(Ω).

In the next theorem we show that the Dirichlet-to-Neumann map is a generalized
Q-function and we illustrate the usefulness of this object in the representation of
the difference of the resolvents of the Dirichlet and Neumann operators AD and
AN in (21). Similar Krein type resolvent formulas can also be found in [9, 13, 25,
26, 47, 48, 49]. The fact that the difference of the resolvents belongs to some von
Neumann-Schatten class depending on the dimension of the space is well-known
and goes back to M.S. Birman, cf. [11].

Theorem 3.4. Let L be the elliptic differential expression in (17) and let AD and
AN be the selfadjoint realizations of L in (21). Denote by S the minimal operator
associated to L and let T = L ↾ H2(Ω) be as in Proposition 3.1. Define Γ(λ) as in
Proposition 3.2 and let Q(λ), λ ∈ ρ(AD), be the Dirichlet-to-Neumann map. Then
the following holds:

(i) Q is a generalized Q-function of the triple {S,AD, T };
(ii) The operator Q(λ) is injective for all λ ∈ ρ(AD)∩ ρ(AN ) and the resolvent

formula

(26) (AD − λ)−1 − (AN − λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗

holds;
(iii) For p ∈ N and 2p+ 1 > n the difference of the resolvents in (26) belongs to

the von Neumann-Schatten class Sp(L
2(Ω)).

Proof. In order to proof assertion (i) we have to check the relation

(27) Q(λ) −Q(µ)∗ = (λ− µ̄)Γ(µ)∗Γ(λ), λ, µ ∈ ρ(AD),

on domQ(λ)∩domQ(µ)∗. For this it will be first shown that domQ(λ) = H3/2(∂Ω)
is a subset of domQ(µ)∗ and that Q(µ)∗ is an extension of Q(µ̄). Let ψ ∈ H3/2(∂Ω)
and choose the unique function fµ̄ ∈ Nµ̄(T ) such that fµ̄|∂Ω = ψ. For an arbitrary

ϕ ∈ domQ(µ) = H3/2(∂Ω) let fµ ∈ Nµ(T ) be the unique function that satisfies
fµ|∂Ω = ϕ. By the definition of the Dirichlet-to-Neumann map we have

Q(µ)ϕ = −
∂fµ

∂ν

∣∣∣
∂Ω

and Q(µ̄)ψ = −
∂fµ̄

∂ν

∣∣∣
∂Ω
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and hence Green’s identity (20) shows

(Q(µ)ϕ, ψ)∂Ω =

(
−
∂fµ

∂ν

∣∣∣
∂Ω
, fµ̄|∂Ω

)

∂Ω

=

(
fµ|∂Ω,

∂fµ̄

∂ν

∣∣∣
∂Ω

)

∂Ω

−

(
∂fµ

∂ν

∣∣∣
∂Ω
, fµ̄|∂Ω

)

∂Ω

+

(
ϕ,−

∂fµ̄

∂ν

∣∣∣
∂Ω

)

∂Ω

= (Tfµ, fµ̄)Ω − (fµ, T fµ̄)Ω +

(
ϕ,−

∂fµ̄

∂ν

∣∣∣
∂Ω

)

∂Ω

.

Since fµ ∈ Nµ(T ) and fµ̄ ∈ Nµ̄(T ) it is clear that (Tfµ, fµ̄)Ω = (fµ, T fµ̄)Ω holds
and therefore we obtain

(Q(µ)ϕ, ψ)∂Ω =

(
ϕ,−

∂fµ̄

∂ν

∣∣∣
∂Ω

)

∂Ω

for all ϕ ∈ domQ(µ). Thus ψ ∈ domQ(µ)∗ and

Q(µ)∗ψ = −
∂fµ̄

∂ν

∣∣∣
∂Ω

= Q(µ̄)ψ.

Next we prove the relation (27). Let ϕ, ψ ∈ H3/2(∂Ω) and choose the functions
fλ ∈ Nλ(T ) and gµ ∈ Nµ(T ) such that fλ|∂Ω = ϕ and gµ|∂Ω = ψ. Hence we have

Q(λ)ϕ = −
∂fλ

∂ν

∣∣∣
∂Ω
, Q(µ)ψ = −

∂gµ

∂ν

∣∣∣
∂Ω
, Γ(λ)ϕ = fλ and Γ(µ)ψ = gµ.

Note that ϕ ∈ H3/2(Ω) belongs to domQ(µ)∗ by the above considerations. With
the help of Green’s identity (20) we find

(
(Q(λ) −Q(µ)∗)ϕ, ψ

)
∂Ω

= −

(
∂fλ

∂ν

∣∣∣
∂Ω
, gµ|∂Ω

)

∂Ω

+

(
fλ|∂Ω,

∂gµ

∂ν

∣∣∣
∂Ω

)

∂Ω

= (Tfλ, gµ)Ω − (fλ, T gµ)Ω = (λ− µ̄)(fλ, gµ)Ω

= (λ− µ̄)(Γ(λ)ϕ,Γ(µ)ψ)Ω =
(
(λ− µ̄)Γ(µ)∗Γ(λ)ϕ, ψ

)
∂Ω
.

This holds for all ψ in the dense subset H3/2(∂Ω) of L2(∂Ω) and therefore (27) is
valid on domQ(λ) = domΓ(λ) = H3/2(∂Ω), i.e., the Dirichlet-to-Neumann map is
a generalized Q-function of the triple {S,AD, T }.

(ii) Let λ ∈ ρ(AD) ∩ ρ(AN ) and suppose that we have Q(λ)ϕ = 0 for some ϕ ∈
H3/2(∂Ω). There exists a unique fλ ∈ Nλ(T ) such that fλ|∂Ω = ϕ and for this

fλ by assumption we have ∂fλ

∂ν |∂Ω = 0. Hence fλ ∈ domAN ∩ Nλ(T ) and from
λ ∈ ρ(AN ) we conclude fλ = 0, that is, ϕ = fλ|∂Ω = 0.

Therefore Q(λ)−1, λ ∈ ρ(AD) ∩ ρ(AN ) exists and, roughly speaking, Q(λ)−1

maps the negative Neumann boundary values of H2(Ω)-solutions of Lu = λu onto
their Dirichlet boundary values. Let us proof the formula (26) for the difference
of the resolvents of AD and AN . Observe first, that the right hand side in (26) is
well defined. In fact, by Proposition 3.2 (iii) and (19) the range of Γ(λ̄)∗ lies in
H1/2(∂Ω) and it follows from the surjectivity of the mapping in (19) that Q(λ)−1

is defined on the whole space H1/2(∂Ω) and maps H1/2(∂Ω) onto H3/2(∂Ω), the
domain of Γ(λ).

Let now f ∈ L2(Ω). We claim that the function

(28) g = (AD − λ)−1f − Γ(λ)Q(λ)−1Γ(λ̄)∗f
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belongs to domAN . It is clear that g is in H2(Ω) since (AD − λ)−1f ∈ domAD

and the second term on the right hand side belongs to Nλ(T ), the range of Γ(λ).

In order to verify ∂g
∂ν |∂Ω = 0 we choose fD ∈ domAD such that f = (AD − λ)fD,

so that (28) becomes

(29) g = fD − Γ(λ)Q(λ)−1Γ(λ̄)∗(AD − λ)fD = fD + Γ(λ)Q(λ)−1 ∂fD

∂ν

∣∣∣
∂Ω
,

where we have used Proposition 3.2 (iii). Let fλ := Γ(λ)Q(λ)−1 ∂fD

∂ν |∂Ω. Then
fλ ∈ Nλ(T ) and the trace of fλ is given by

fλ|∂Ω = Q(λ)−1 ∂fD

∂ν

∣∣∣
∂Ω
.

Hence Q(λ)fλ|∂Ω = ∂fD

∂ν |∂Ω, but on the other hand, by the definition of the

Dirichlet-to-Neumann map Q(λ)fλ|∂Ω = −∂fλ

∂ν |∂Ω. Therefore, the sum of the Neu-
mann boundary value of the function fλ and the Neumann boundary value of fD

is zero and we conclude from (29)

∂g

∂ν

∣∣∣
∂Ω

=
∂fD

∂ν

∣∣∣
∂Ω

+
∂fλ

∂ν

∣∣∣
∂Ω

= 0.

We have shown that g in (28) belongs to domAN . As T is an extension of AN and
AD, and ranΓ(λ) = ker(T − λ) we obtain

(AN − λ)g = (T − λ)(AD − λ)−1f − (T − λ)Γ(λ)Q(λ)−1Γ(λ̄)∗f = f.

Together with (28) we find

(AN − λ)−1f = (AD − λ)−1f − Γ(λ)Q(λ)−1Γ(λ̄)∗f

for all λ ∈ ρ(AD)∩ ρ(AN ) and f ∈ L2(Ω), and therefore the resolvent formula (26)
is valid.

Up to some small modifications assertion (iii) was proved in [11]. �

We mention that for λ, λ0 ∈ ρ(AD) the Dirichlet-to-Neumann map is connected
with the resolvent of AD via

Q(λ) = ReQ(λ0) + Γλ0

(
(λ− Reλ0) + (λ− λ0)(λ − λ̄0)(AD − λ)−1

)
Γλ0

.

This follows from the fact that Q is a generalized Q-function and Proposition 2.5.
The following two corollaries collect some properties of the Dirichlet-to-Neumann
map and its inverse.

Corollary 3.5. For λ, λ0 ∈ ρ(AD) the Dirichlet-to-Neumann map Q(λ) has the
following properties.

(i) Q(λ) is a non-closed unbounded operator in L2(∂Ω) defined on H3/2(∂Ω)
with ranQ(λ) ⊂ H1/2(∂Ω);

(ii) Q(λ) − ReQ(λ0) is a non-closed bounded operator in L2(∂Ω) defined on
H3/2(∂Ω);

(iii) the closure Q̃(λ) of the operator Q(λ) − ReQ(λ0) in L2(∂Ω) satisfies

d

dλ
Q̃(λ) = Γ(λ̄)∗Γ(λ)

and Q̃ is a L(L2(∂Ω))-valued Nevanlinna function.
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Proof. Besides the statement that Q(λ) is a non-closed unbounded operator the
assertions follow from the fact that Q is a generalized Q-function and the results
in Section 2. In Corollary 3.6 it will turn out that Q(λ)−1 is a compact operator

and that Q(λ)−1 is not closed. This implies that Q(λ) and Q(λ) are unbounded
and that Q(λ) is not closed. �

Corollary 3.6. For λ ∈ ρ(AD) ∩ ρ(AN ) the inverse Q(λ)−1 of the Dirichlet-to-
Neumann map Q(λ) has the following properties.

(i) Q(λ)−1 is a non-closed bounded operator in L2(∂Ω) defined on H1/2(∂Ω)
with ranQ(λ)−1 = H3/2(∂Ω);

(ii) the closure Q(λ)−1 is a compact operator in L2(∂Ω);

(iii) the function λ 7→ −Q(λ)−1 is a L(L2(∂Ω))-valued Nevanlinna function.

Proof. It is clear that (i) is an immediate consequence of (ii). Statement (iii) follows
from Theorem 2.6 and general properties of the Nevanlinna class. Assertion (ii) is
essentially a consequence of the classical results in [40], see also [32, Theorem 2.1].
Namely, for λ ∈ ρ(AD) ∩ ρ(AN ) the operator Q(λ) : H3/2(∂Ω) → H1/2(∂Ω) is an

isomorphism and can be extended to an isomorphism Q̂(λ) : H1(∂Ω) → L2(∂Ω)

which acts as in (25). Therefore Q(λ)−1 ⊂ Q̂(λ)−1 is a densely defined operator in
L2(∂Ω) which is bounded as an operator in H1(∂Ω) and hence also bounded when

considered as an operator in L2(∂Ω). Its closure Q(λ)−1 in L2(∂Ω) is a bounded
everywhere defined operator in L2(∂Ω) with values in H1(∂Ω) and coincides with

Q̂(λ)−1. As H1(∂Ω) is compactly embedded in L2(∂Ω) it follows that Q(λ)−1 is a
compact operator in L2(∂Ω). �

The next corollary is a simple consequence of Theorem 3.4 for the case that the
difference of the resolvents is a trace class operator.

Corollary 3.7. Let the assumptions be as in Theorem 3.4, let Q̃ be the Nevanlinna
function from Corollary 3.5 and suppose, in addition, n = 2. Then

(30) tr
(
(AD − λ)−1 − (AN − λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)

holds for all λ ∈ ρ(AD) ∩ ρ(AN ).

Proof. The resolvent formula (26) can be written in the form

(31) (AD − λ)−1 − (AN − λ)−1 = Γ(λ)Q(λ)−1 Γ(λ̄)∗,

where the closures Γ(λ) and Q(λ)−1 are everywhere defined bounded operators, cf.
Corollary 3.6 (ii). In the case n = 2 it follows from Theorem 3.4 (iii) that (31) is a
trace class operator and from Corollaries 2.9, 3.5 (iii) and well known properties of
the trace of bounded operators (see [28]) we conclude (30). �

4. Coupling of elliptic differential operators

In this section we study the uniformly elliptic second order differential expression
L from (17) on two different domains and a coupling of the associated Dirichlet
operators. More precisely, let Ω ⊂ Rn be a simply connected bounded domain with
C∞-boundary C := ∂Ω and let Ω′ = R

n\Ω be the complement of the closure of Ω in
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Rn. Clearly, Ω′ is an unbounded domain with the compact C∞-boundary ∂Ω′ = C.
Let again L be given by

(32) Lh = −
n∑

j,k=1

∂

∂xj
ajk

∂h

∂xk
+ ah

with bounded coefficients ajk ∈ C∞(Rn) satisfying ajk(x) = akj(x) for all x ∈ Rn

and j, k = 1, . . . , n, the function a ∈ L∞(Rn) is real valued and suppose that L
is uniformly elliptic, cf. (18). The restriction of L on functions f defined on Ω or
functions f ′ defined on Ω′ will be denoted by LΩ and LΩ′ , respectively. Then it is
clear that the differential expressions LΩ and LΩ′ are of the type as in Section 3.

In the following we will usually denote functions defined on Rn by h or k, and
we denote functions defined on Ω or Ω′ by f, g or f ′, g′, respectively. The scalar
products of L2(Ω) and L2(Ω′) are indexed with Ω and Ω′, respectively, whereas
the scalar product of L2(Rn) is just denoted by (·, ·). For the trace of a function
f ∈ H2(Ω) and f ′ ∈ H2(Ω′) we write f |C and f ′|C , and the trace of the conormal
derivatives are

(33)
∂f

∂ν

∣∣∣
C

=

n∑

j,k=1

ajknj
∂f

∂xk

∣∣∣
C

and
∂f ′

∂ν′

∣∣∣
C

=

n∑

j,k=1

ajkn
′

j

∂f

∂xk

∣∣∣
C

;

here n(x) = (n1(x), . . . , nn(x))⊤ and n′(x) = −n(x) are the unit vectors at the
point x ∈ C = ∂Ω = ∂Ω′ pointing out of Ω and Ω′, respectively. Note also that the
coefficients ajk in (33) are the restrictions of the coefficients in (32) onto Ω and Ω′,
respectively. The Dirichlet operators

AΩf = LΩf, domAΩ =
{
f ∈ H2(Ω) : f |C = 0

}
,

AΩ′f ′ = LΩ′f ′, domAΩ′ =
{
f ′ ∈ H2(Ω′) : f ′|C = 0

}
,

are selfadjoint operators in L2(Ω) and L2(Ω′), respectively. Hence the orthogonal
sum

(34) A =

(
AΩ 0
0 AΩ′

)
, domA = domAΩ ⊕ domAΩ′ ,

is a selfadjoint operator in L2(Rn) = L2(Ω) ⊕ L2(Ω′). Observe that

A(f ⊕ f ′) = L(f ⊕ f ′) = LΩf ⊕ LΩ′f ′,

domA =
{
f ⊕ f ′ ∈ H2(Ω) ⊕H2(Ω′) : f |C = 0 = f ′|C

}
,

(35)

and that A is not a usual second order elliptic differential operator on Rn since for

a function f ⊕ f ′ ∈ domA the traces of the conormal derivatives ∂f
∂ν |C and −∂f ′

∂ν′
|C

at the boundary C of the domains Ω and Ω′ in general do not coincide.
Besides the operator A we consider the usual selfadjoint operator associated to

L in L2(Rn) defined by

(36) Ãh = Lh, h ∈ dom Ã = H2(Rn),

and our aim is to prove a formula for the difference of the resolvents of Ã and
A with the help of a generalized Q-function in a similar form as in the previous
section.

The following theorem indicates how S and T in the triple {S,A, T } for the
definition of a generalized Q-function can be chosen.
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Theorem 4.1. The operator

(37) Sh = Lh, domS =
{
h = f ⊕ f ′ ∈ H2(Rn) : f |C = 0 = f ′|C

}
,

is a densely defined closed symmetric operator in L2(Rn) with infinite deficiency
indices n±(S). The operator

T (f ⊕ f ′) = L(f ⊕ f ′),

domT =
{
f ⊕ f ′ ∈ H2(Ω) ⊕H2(Ω′) : f |C = f ′|C

}
,

(38)

is not closed as an operator in L2(Rn) and T satisfies T = S∗ and T ∗ = S. Fur-

thermore, the selfadjoint operators A and Ã in (34), (35) and (36) are extensions
of S and restrictions of T .

Proof. The operator S is a restriction of the selfadjoint operator A and hence S is
symmetric. The fact that domS is dense follows, e.g., from the fact that H2

0 (Ω) and
H2

0 (Ω′) are dense subspaces of L2(Ω) and L2(Ω′), respectively, cf. Proposition 3.1,
and

H2
0 (Ω) ⊕H2

0 (Ω′) ⊂ domS.

Since for any function h ∈ H2(Rn) decomposed as h = f ⊕ f ′, where f ∈ H2(Ω),

f ′ ∈ H2(Ω′), we have f |C = f ′|C ∈ H3/2(C) it follows that Ã is an extension of S
and a restriction of the operator T . Moreover, S ⊂ A ⊂ T is obvious.

Let us verify that S = T ∗ holds. In particular this implies that S is closed and
that T = S∗ is true. We start with the inclusion S ⊂ T ∗. Let h = f ⊕ f ′ ∈ domS

and k = g ⊕ g′ ∈ domT , where f, g ∈ H2(Ω) and f ′, g′ ∈ H2(Ω′). First of all we
have

(Tk, h) − (k, Sh) = (LΩg, f)Ω − (g,LΩf)Ω + (LΩ′g′, f ′)Ω′ − (g′,LΩ′f ′)Ω′

and Green’s identity (20) shows that this is equal to
(
g|C ,

∂f

∂ν

∣∣∣
C

)

C

−

(
∂g

∂ν

∣∣∣
C

, f |C

)

C

+

(
g′|C ,

∂f ′

∂ν′

∣∣∣
C

)

C

−

(
∂g′

∂ν′

∣∣∣
C

, f ′|C

)

C

.

Since h = f ⊕ f ′ ∈ domS we have

f |C = f ′|C = 0 and
∂f

∂ν

∣∣∣
C

= −
∂f ′

∂ν′

∣∣∣
C

,

and for k = g ⊕ g′ ∈ domT by definition g|C = g′|C holds. Hence we conclude

(Tk, h) − (k, Sh) = 0

and therefore every h ∈ domS belongs to domT ∗ and T ∗h = Sh, i.e., S ⊂ T ∗. Let
us now prove the converse inclusion T ∗ ⊂ S. For this it is sufficient to check that
every function h ∈ domT ∗ belongs to domS. From the fact that T is an extension

of the selfadjoint operators A and Ã we conclude

T ∗ ⊂ A∗ = A ⊂ T and T ∗ ⊂ Ã∗ = Ã ⊂ T,

so that T ∗ is a restriction of A and Ã. Hence every function h in domT ∗ belongs also

to domA and dom Ã. Thus h = f ⊕ f ′ ∈ H2(Rn) and f ∈ H2(Ω) and f ′ ∈ H2(Ω′)
satisfy f |C = f ′|C = 0. Therefore domT ∗ ⊂ domS and we have shown T ∗ = S.

Next it will be verified that T is not closed. The arguments are similar as in [8,
Proof of Proposition 4.5] and could also be formulated in terms of unitary relations
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between Krein spaces, cf. [17]. Assume that T is closed, i.e., T = T , and consider
the subspace

M =









f ⊕ f ′

T (f ⊕ f ′)
f |C

∂f
∂ν |C + ∂f ′

∂ν′
|C


 : f ⊕ f ′ ∈ domT





⊂ L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C).

Observe that by (19) and the definition of T the mapping

(39) domT ∋ f ⊕ f ′ 7→

{
f |C,

∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

}
∈ H3/2(C) × H1/2(C)

is onto. Setting N = L2(Ω) ⊕ L2(Ω) ⊕ {0} ⊕ {0} it is clear that the sum of the
subpaces M and N is

(40) M + N = L2(Rn) ⊕ L2(Rn) ⊕
(
H3/2(C) × H1/2(C)

)
.

We will calculate the orthogonal complements of M and N in L2(Rn) ⊕L2(Rn) ⊕
L2(C) ⊕ L2(C) and show that M⊥ + N⊥ is closed. First of all we have

(41) N⊥ = {0} ⊕ {0} ⊕ L2(C) ⊕ L2(C)

and in order to determine M⊥ suppose that

(42)




l ⊕ l′

g ⊕ g′

ϕ

ψ


 ∈ M⊥, g, l ∈ L2(Ω), g′, l′ ∈ L2(Ω′), ϕ, ψ ∈ L2(C),

is an element in L2(Rn)⊕L2(Rn)⊕L2(C)⊕L2(C) which is orthogonal to M. Then
we have

(43)
(
T (f ⊕ f ′), g ⊕ g′

)
+

(
f ⊕ f ′, l ⊕ l′

)
= −

(
f |C , ϕ

)
C
−

(
∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

, ψ

)

C

for all f ⊕ f ′ ∈ domT . In particular, for f ⊕ f ′ ∈ domS we have

∂f

∂ν

∣∣∣
C

= −
∂f ′

∂ν′

∣∣∣
C

and f |C = f ′|C = 0,

so that (43) becomes
(
T (f ⊕ f ′), g ⊕ g′

)
=

(
S(f ⊕ f ′), g ⊕ g′

)
= −

(
f ⊕ f ′, l ⊕ l′

)

and hence g ⊕ g′ ∈ domS∗ and S∗(g ⊕ g′) = −l ⊕ l′. But we have assumed that T
is closed and hence from S = T ∗ we conclude S∗ = T ∗∗ = T = T , so that

(44) g ⊕ g′ ∈ domT and T (g ⊕ g′) = −l ⊕ l′.

From Green’s identity we then obtain
(
T (f ⊕ f ′), g ⊕ g′

)
−

(
f ⊕ f ′, T (g ⊕ g′)

)

= (LΩf, g)Ω − (f,LΩg)Ω + (LΩ′f ′, g′)Ω′ − (f ′,LΩ′g′)Ω′

=

(
f |C ,

∂g

∂ν

∣∣∣
C

)

C

−

(
∂f

∂ν

∣∣∣
C

, g|C

)

C

+

(
f ′|C ,

∂g′

∂ν′

∣∣∣
C

)

C

−

(
∂f ′

∂ν′

∣∣∣
C

, g′|C

)

C

=

(
f |C ,

∂g

∂ν

∣∣∣
C

+
∂g′

∂ν′

∣∣∣
C

)

C

−

(
∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

, g|C

)

C

,
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where we have used that f ⊕ f ′, g ⊕ g′ ∈ domT satisfy f |C = f ′|C and g|C = g′|C .
Inserting (44) in (43) and comparing this with the above relation shows that the
identity

(45)

(
f |C ,

∂g

∂ν

∣∣∣
C

+
∂g′

∂ν′

∣∣∣
C

+ϕ

)

C

=

(
∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

, g|C − ψ

)

C

holds for all f ⊕ f ′ ∈ domT . As the mapping (39) is surjective and H3/2(C) ×
H1/2(C) is dense in L2(C) ⊕ L2(C) we conclude from (45) that

ϕ = −

(
∂g

∂ν

∣∣∣
C

+
∂g′

∂ν′

∣∣∣
C

)
and ψ = g|C

holds. Hence we have seen that the element (42) in M⊥ is of the form

(46)




−T (g ⊕ g′)
g ⊕ g′

− ∂g
∂ν |C − ∂g′

∂ν′
|C

g|C




for some g ⊕ g′ ∈ domT . It is not difficult to check that conversely an element as
in (46) belongs to M⊥. Therefore the orthogonal complement of M is given by

M⊥ =









−T (g ⊕ g′)
g ⊕ g′

− ∂g
∂n

∣∣
C
− ∂g′

∂ν′

∣∣
C

g|C


 : g ⊕ g′ ∈ domT





⊂ L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C)

and together with (41) we find that the sum of M⊥ and N⊥ is

M⊥ + N⊥ =

{[
−T (g ⊕ g′)
g ⊕ g′

]
: g ⊕ g′ ∈ domT

}
⊕ L2(C) ⊕ L2(C).

The assumption that T is closed implies that M⊥ + N⊥ is a closed subspace of
L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C). But then according to [34, IV Theorem 4.8]
also M + N is a closed subspace of L2(Rn) ⊕ L2(Rn) ⊕ L2(C) ⊕ L2(C) which is a
contradiction to (40). Thus T can not be closed. �

The following lemma will be useful later in this section.

Lemma 4.2. Let S and T be as in Theorem 4.1 and let Ã be the selfadjoint real-
ization of L in L2(Rn) defined on H2(Rn). For a function f ⊕ f ′ ∈ domT , where
f ∈ H2(Ω) and f ′ ∈ H2(Ω′), we have

f ⊕ f ′ ∈ dom Ã if and only if
∂f

∂ν

∣∣∣
C

= −
∂f ′

∂ν′

∣∣∣
C

.

Proof. For a function f ⊕ f ′ ∈ dom Ã = H2(Rn) it is clear that ∂f
∂ν |C = −∂f ′

∂ν′
|C

holds. Conversely, let f ⊕ f ′ ∈ domT and assume

(47)
∂f

∂ν

∣∣∣
C

= −
∂f ′

∂ν′

∣∣∣
C

.

Then also f |C = f ′|C and since every g ⊕ g′ ∈ dom Ã satisfies

g|C = g′|C and
∂g

∂ν

∣∣∣
C

= −
∂g′

∂ν′

∣∣∣
C
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Green’s identity implies
(
Ã(g ⊕ g′), f ⊕ f ′

)
−

(
g ⊕ g′, T (f ⊕ f ′)

)

=

(
g|C ,

∂f

∂ν

∣∣∣
C

)

C

−

(
∂g

∂ν

∣∣∣
C

, f |C

)

C

+

(
g′|C ,

∂f ′

∂ν

∣∣∣
C

)

C

−

(
∂g′

∂ν

∣∣∣
C

, f ′|C

)

C

= 0.

Therefore f ⊕ f ′ ∈ dom Ã∗ = dom Ã. �

Next we define a mapping Γλ0
which satisfies the assumptions in the definition

of a generalized Q-function. For this let A be the selfadjoint operator in L2(Rn) in
(34) and (35) which is the orthogonal sum of the Dirichlet operators AΩ and AΩ′

in L2(Ω) and L2(Ω′), respectively. For λ ∈ ρ(A) the domain of the operator T in
Theorem 4.1 can be decomposed in

domT = domA +̇Nλ(T )

=
{
f ⊕ f ′ ∈ H2(Ω) ⊕H2(Ω′) : f |C = f ′|C = 0

}
+̇Nλ(T ),

(48)

cf. (5). Let us fix some λ0 ∈ ρ(A). The decomposition (48) and the surjectivity of
the map

(49) domT ∋ f ⊕ f ′ 7→

{
f |C ,

∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

}
∈ H3/2(C) × H1/2(C),

cf. (19), (39) imply that for a given function ϕ ∈ H3/2(C) there exists a unique
function fλ0

⊕ f ′
λ0

∈ Nλ0
(T ) such that fλ0

|C = f ′
λ0
|C = ϕ. Let Γλ0

be the mapping
that assigns fλ0

⊕ f ′

λ0
to ϕ,

(50) H3/2(C) ∋ ϕ 7→ Γλ0
ϕ := fλ0

⊕ f ′

λ0
.

Similarly as in the previous section Γλ0
will be regarded as an operator from L2(C) to

L2(Rn) with domΓλ0
= H3/2(C) and ranΓλ0

= Nλ0
(T ). Observe that the function

Γλ0
ϕ = fλ0

⊕ f ′
λ0

consists of an H2(Ω)-solution fλ0
of LΩu = λ0u and an H2(Ω′)-

solution f ′

λ0
of LΩ′u′ = λ0u

′ satisfying the boundary conditions ϕ = fλ0
|C = f ′

λ0
|C .

The following proposition parallels Proposition 3.2.

Proposition 4.3. Let λ0 ∈ ρ(A), let Γλ0
be as in (50) and let λ ∈ ρ(A). Then the

following holds:

(i) Γλ0
is a bounded operator from L2(C) in L2(Rn) with dense domain

H3/2(C);
(ii) The operator Γ(λ) = (I + (λ− λ0)(A− λ)−1)Γλ0

is given by

Γ(λ)ϕ = fλ ⊕ f ′

λ, where fλ ⊕ f ′

λ ∈ Nλ(T ) and fλ|C = ϕ = f ′

λ|C ;

(iii) The mapping Γ(λ̄)∗ : L2(Rn) → L2(C) satisfies

Γ(λ̄)∗(A− λ)h = −
∂f

∂ν

∣∣∣
C

−
∂f ′

∂ν′

∣∣∣
C

, h = f ⊕ f ′ ∈ domA.

Proof. We start with the proof (ii). Let ϕ ∈ H3/2(C) and choose the unique ele-
ments fλ ⊕ f ′

λ ∈ Nλ(T ) and fλ0
⊕ f ′

λ0
∈ Nλ0

(T ) such that

fλ|C = f ′

λ|C = ϕ = fλ0
|C = f ′

λ0
|C

holds. By definition Γλ0
ϕ = fλ0

⊕ f ′

λ0
and therefore

Γ(λ)ϕ = Γλ0
ϕ+ (λ− λ0)(A− λ)−1Γλ0

ϕ

= fλ0
⊕ f ′

λ0
+ (λ − λ0)(A − λ)−1Γλ0

ϕ.
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Since (λ − λ0)(A − λ)−1Γλ0
ϕ is a function belonging to domA we have

(
(λ − λ0)(A − λ)−1Γλ0

ϕ
)∣∣

C
= 0,

cf. (35). This implies

(Γ(λ)ϕ)|C = (Γλ0
ϕ)|C =

(
fλ0

⊕ f ′

λ0

)
|C = fλ0

|C = f ′

λ0
|C = ϕ

and since ranΓ(λ) = Nλ(T ), see Lemma 2.1, and fλ ⊕ f ′

λ is the unique function in
Nλ(T ) with fλ|C = f ′

λ|C = ϕ we conclude Γ(λ)ϕ = fλ ⊕ f ′
λ.

Next we verify (iii). Observe that then Γ(λ̄)∗, λ ∈ ρ(A), is a closed operator which
is defined on the whole space, i.e., Γ(λ̄)∗ is bounded and hence assertion (i) follows
by setting λ0 = λ̄. Let ϕ ∈ H3/2(C) and choose the unique function fλ̄⊕f

′

λ̄
∈ Nλ̄(T )

such that

(51) fλ̄|C = f ′

λ̄|C = ϕ

holds. Then Γ(λ̄)ϕ = fλ̄ ⊕ f ′

λ̄
and for each h = f ⊕ f ′ ∈ domA, where f ∈ H2(Ω),

f ′ ∈ H2(Ω′), we have
(
Γ(λ̄)ϕ, (A− λ)h

)
=

(
fλ̄ ⊕ f ′

λ̄, A(f ⊕ f ′)
)
−

(
T (fλ̄ ⊕ f ′

λ̄), f ⊕ f ′
)

= (fλ̄,LΩf)Ω − (LΩfλ̄, f)Ω + (f ′

λ̄,LΩ′f ′)Ω′ − (LΩ′f ′

λ̄, f
′)Ω′ .

With the help of Green’s identity this can be rewritten as
(
∂fλ̄

∂ν

∣∣∣
C

, f |C

)

C

−

(
fλ̄|C ,

∂f

∂ν

∣∣∣
C

)

C

+

(
∂f ′

λ̄

∂ν′

∣∣∣
C

, f ′|C

)

C

−

(
f ′

λ̄|C ,
∂f ′

∂ν′

∣∣∣
C

)

C

.

Since for h = f ⊕ f ′ ∈ domA we have f |C = f ′|C = 0 we conclude from the above
calculation and (51) that

(
Γ(λ̄)ϕ, (A− λ)h

)
= −

(
ϕ,
∂f

∂ν

∣∣∣
C

+
∂f ′

∂ν′

∣∣∣
C

)

C

holds for every ϕ ∈ H3/2(C) = domΓ(λ̄). Hence (A− λ)h ∈ domΓ(λ̄)∗ and

Γ(λ̄)∗(A− λ)h = −
∂f

∂ν

∣∣∣
C

−
∂f ′

∂ν′

∣∣∣
C

, h = f ⊕ f ′ ∈ domA.

Furthermore, for λ ∈ ρ(A) we have ran (A−λ) = L2(Rn), so that Γ(λ̄)∗ is a bounded
operator defined on L2(Rn). �

Next we define a function Q in a similar way as the Dirichlet-to-Neumann map
in Definition 3.3. For this we make use of the decomposition (48). Namely, for
λ ∈ ρ(A) and ϕ ∈ H3/2(C) there exists a unique function fλ ⊕ f ′

λ ∈ Nλ(T ) such
that fλ|C = f ′

λ|C = ϕ. The operator Q(λ) in L2(C) is now defined by

(52) Q(λ)ϕ := −
∂fλ

∂ν

∣∣∣
C

−
∂f ′

λ

∂ν′

∣∣∣
C

, ϕ ∈ domQ(λ) = H3/2(C).

Observe that ranQ(λ) ⊂ H1/2(C) holds. Roughly speaking, up to a minus sign
Q(λ) maps the Dirichlet boundary value of the H2-solutions of LΩu = λu and
LΩ′u′ = λu′, u|C = u′|C , onto the sum of the Neumann boundary values of these
solutions. We mention that in the analysis of so-called intermediate Hamiltonians
a modified form of such a Dirichlet-to-Neumann map has been used in [44].

In the following theorem it turns out that Q can be interpreted as a generalized

Q-function and the difference of the resolvents of A and Ã is expressed with the
help of Q.
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Theorem 4.4. Let L be the elliptic differential expression in (32) and let A and

Ã be the selfadjoint realizations of L in (34)-(35) and (36), respectively. Let S and
T be the operators in Theorem 4.1, define Γ(λ) as in Proposition 4.3 and let Q(λ),
λ ∈ ρ(A), be as in (52). Then the following holds:

(i) Q is a generalized Q-function of the triple {S,A, T };

(ii) The operator Q(λ) is injective for all λ ∈ ρ(A) ∩ ρ(Ã) and the resolvent
formula

(53) (A− λ)−1 − (Ã− λ)−1 = Γ(λ)Q(λ)−1Γ(λ̄)∗

holds;
(iii) For p ∈ N and 2p+ 1 > n the difference of the resolvents in (53) belongs to

the von Neumann-Schatten class Sp(L
2(Ω)).

Proof. Let us prove assertion (i). Before the defining relation (7) for a generalized
Q-function will be verified we show that the operator Q(µ)∗ is an extension of Q(µ̄),
µ ∈ ρ(A). For this let ψ ∈ H3/2(C) and choose the unique element fµ̄⊕f ′

µ̄ ∈ Nµ̄(T )

with the property fµ̄|C = f ′
µ̄|C = ψ. For ϕ ∈ H3/2(C) let fµ ⊕ f ′

µ ∈ Nµ(T ) be such
that fµ|C = f ′

µ|C = ϕ holds. By the definition of Q in (52) we have

Q(µ)ϕ = −
∂fµ

∂ν

∣∣∣
C

−
∂f ′

µ

∂ν′

∣∣∣
C

and Q(µ̄)ψ = −
∂fµ̄

∂ν

∣∣∣
C

−
∂f ′

µ̄

∂ν′

∣∣∣
C

.

This gives

(54) (Q(µ)ϕ, ψ) = −

(
∂fµ

∂ν

∣∣∣
C

, fµ̄|C

)

C

−

(
∂f ′

µ

∂ν′

∣∣∣
C

, f ′

µ̄|C

)

C

and since(
fµ|C ,

∂fµ̄

∂ν

∣∣∣
C

)

C

−

(
∂fµ

∂ν

∣∣∣
C

, fµ̄|C

)

C

= (LΩfµ, fµ̄)Ω − (fµ,LΩfµ̄)Ω = 0,

(
f ′

µ|C ,
∂f ′

µ̄

∂ν′

∣∣∣
C

)

C

−

(
∂f ′

µ

∂ν′

∣∣∣
C

, f ′

µ̄|C

)

C

= (LΩ′f ′

µ, f
′

µ̄)Ω′ − (f ′

µ,LΩ′f ′

µ̄)Ω′ = 0

we can rewrite (54) in the form

(Q(µ)ϕ, ψ) = −

(
fµ|C ,

∂fµ̄

∂ν

∣∣∣
C

)

C

−

(
f ′

µ|C ,
∂f ′

µ̄

∂ν′

∣∣∣
C

)

C

= −

(
ϕ,
∂fµ̄

∂ν

∣∣∣
C

+
∂f ′

µ̄

∂ν′

∣∣∣
C

)

C

.

This is true for every ϕ ∈ domQ(µ) and hence we conclude ψ ∈ domQ(µ)∗ and

Q(µ)∗ψ = −
∂fµ̄

∂ν

∣∣∣
C

−
∂f ′

µ̄

∂ν′

∣∣∣
C

= Q(µ̄)ψ.

Let Γ(·) be as in Proposition 4.3. We prove now that

(55) Q(λ) −Q(µ)∗ = (λ− µ̄)Γ(µ)∗Γ(λ), λ, µ ∈ ρ(A)

holds on domΓ(λ) = H3/2(C). For this let ϕ, ψ ∈ H3/2(C) and choose the unique
elements fλ ⊕ f ′

λ ∈ Nλ(T ), fµ ⊕ f ′
µ ∈ Nµ(T ) with the properties

(56) fλ|C = f ′

λ|C = ϕ and fµ|C = f ′

µ|C = ψ.

Then according to Proposition 4.3 (ii) Γ(λ)ϕ = fλ ⊕ f ′

λ and Γ(µ)ψ = fµ ⊕ f ′
µ and

by the definition of Q(·) in (52) we have

Q(λ)ϕ = −
∂fλ

∂ν

∣∣∣
C

−
∂f ′

λ

∂ν′

∣∣∣
C

and Q(µ)ψ = −
∂fµ

∂ν

∣∣∣
C

−
∂f ′

µ

∂ν′

∣∣∣
C

.
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Therefore

(
(Q(λ) −Q(µ)∗)ϕ, ψ

)
C

= −

(
∂fλ

∂ν

∣∣∣
C

+
∂f ′

λ

∂ν′

∣∣∣
C

, ψ

)

C

+

(
ϕ,
∂fµ

∂ν

∣∣∣
C

+
∂f ′

µ

∂ν′

∣∣∣
C

)

C

and inserting (56) gives

−

(
∂fλ

∂ν

∣∣∣
C

, fµ|C

)

C

−

(
∂f ′

λ

∂ν′

∣∣∣
C

, f ′

µ|C

)

C

+

(
fλ|C ,

∂fµ

∂ν

∣∣∣
C

)

C

+

(
f ′

λ|C ,
∂f ′

µ

∂ν′

∣∣∣
C

)

C

.

Making use of Green’s identity the above relations then become
(
(Q(λ) −Q(µ)∗)ϕ, ψ

)
C

= (LΩfλ, fµ)Ω − (fλ,LΩfµ)Ω + (LΩ′f ′

λ, f
′

µ)Ω′ − (f ′

λ,LΩ′f ′

µ)Ω′

= (λ − µ̄)
(
(fλ, fµ)Ω + (f ′

λ, f
′

µ)Ω′

)
= (λ− µ̄)

(
fλ ⊕ f ′

λ, fµ ⊕ f ′

µ

)

= (λ − µ̄)(Γ(λ)ϕ,Γ(µ)ψ) =
(
(λ− µ̄)Γ(µ)∗Γ(λ)ϕ, ψ

)
C
.

Since this is true for any ψ ∈ H3/2(C) we conclude that (55) holds on H3/2(C).
Thus Q in (52) is a generalized Q-function for the triple {S,A, T }.

(ii) We check first that kerQ(λ) = {0} holds for λ ∈ ρ(A) ∩ ρ(Ã). Assume that
Q(λ)ϕ = 0 for some ϕ ∈ H3/2(C) and let fλ ⊕ f ′

λ ∈ Nλ(T ) be the unique element
with the property fλ|C = f ′

λ|C = ϕ. Then the definition of Q and the assumption
Q(λ)ϕ = 0 imply

∂fλ

∂ν

∣∣∣
C

= −
∂f ′

λ

∂ν′

∣∣∣
C

.

According to Lemma 4.2 this yields fλ ⊕ f ′
λ ∈ dom Ã∩Nλ(T ). But as λ ∈ ρ(Ã) we

conclude fλ = 0 and f ′

λ = 0, and hence ϕ = 0.

Now we prove the formula (53) for the difference of the resolvents of A and Ã. By

the above argument Q(λ)−1 exists for λ ∈ ρ(A) ∩ ρ(Ã). Furthermore, (49) implies
ranQ(λ) = H1/2(C) and it follows from Proposition 4.3 that the right hand side in
(53) is well defined.

Let h ∈ L2(Rn) and define the function k as

(57) k = (A− λ)−1h− Γ(λ)Q(λ)−1Γ(λ̄)∗h.

We show k ∈ dom Ã. First of all it is clear that k ∈ domT since (A − λ)−1h ∈
domA ⊂ domT and Γ(λ) maps into Nλ(T ). Therefore k = g⊕g′, where g ∈ H2(Ω),

g′ ∈ H2(Ω′), and g|C = g′|C . According to Lemma 4.2 for k ∈ dom Ã it is sufficient
to check

(58)
∂g

∂ν

∣∣∣
C

+
∂g′

∂ν′

∣∣∣
C

= 0.

We proceed in a similar way as in the proof of Theorem 3.4. Let hA = fA ⊕ f ′
A ∈

domA be such that h = (A− λ)hA. Making use of Proposition 4.3 (iii) we obtain

(59) k = hA + Γ(λ)Q(λ)−1

(
∂fA

∂ν

∣∣∣
C

+
∂f ′

A

∂ν′

∣∣∣
C

)

from (57). Let

Nλ(T ) ∋ fλ ⊕ f ′

λ := Γ(λ)Q(λ)−1

(
∂fA

∂ν

∣∣∣
C

+
∂f ′

A

∂ν′

∣∣∣
C

)
.
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Then by Proposition 4.3 (ii) we have

fλ|C = f ′

λ|C = Q(λ)−1

(
∂fA

∂ν

∣∣∣
C

+
∂f ′

A

∂ν′

∣∣∣
C

)
.

This together with the definition of Q(λ) in (52) implies

∂fA

∂ν

∣∣∣
C

+
∂f ′

A

∂ν′

∣∣∣
C

= Q(λ)(fλ|C) = Q(λ)(f ′

λ|C) = −
∂fλ

∂ν

∣∣∣
C

−
∂f ′

λ

∂ν′

∣∣∣
C

.

Hence we conclude that the function k = g ⊕ g′ in (59) fulfils (58), i.e., k ∈ dom Ã.

From (57) and A, Ã ⊂ T we obtain

(Ã− λ)k = (T − λ)(A − λ)−1h− (T − λ)Γ(λ)Q(λ)−1Γ(λ̄)∗h = h

and now k = (Ã− λ)−1h and (57) imply (53). �

The following corollaries can be proved in the same way as Corollary 3.5 and
Corollary 3.6.

Corollary 4.5. For λ, λ0 ∈ ρ(A) the following holds.

(i) Q(λ) is a non-closed unbounded operator in L2(C) defined on H3/2(C) with
ranQ(λ) ⊂ H1/2(C);

(ii) Q(λ) − ReQ(λ0) is a non-closed bounded operator in L2(C) defined on
H3/2(C);

(iii) the closure Q̃(λ) of the operator Q(λ) − ReQ(λ0) in L2(C) satisfies

d

dλ
Q̃(λ) = Γ(λ̄)∗Γ(λ)

and Q̃ is a L(L2(C))-valued Nevanlinna function.

Corollary 4.6. For λ ∈ ρ(A) ∩ ρ(Ã) the following holds.

(i) Q(λ)−1 is a non-closed bounded operator in L2(C) defined on H1/2(C) with
ranQ(λ)−1 = H3/2(C);

(ii) the closure Q(λ)−1 is a compact operator in L2(C);

(iii) the function λ 7→ −Q(λ)−1 is a L(L2(C))-valued Nevanlinna function.

As a corollary of Theorem 4.4 we obtain a trace formula for the difference of the

resolvents of A and Ã.

Corollary 4.7. Let the assumptions be as in Theorem 4.4, let Q̃ be the Nevanlinna
function from Corollary 4.5 and suppose, in addition, n = 2. Then

tr
(
(A− λ)−1 − (Ã− λ)−1

)
= tr

(
Q(λ)−1

d

dλ
Q̃(λ)

)

holds for all λ ∈ ρ(A) ∩ ρ(Ã).
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