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ADAPTIVE ORTHONORMAL SYSTEMS FOR MATRIX-VALUED FUNCTIONS

DANIEL ALPAY, FABRIZIO COLOMBO, TAO QIAN, AND IRENE SABADINI

Abstract. In this paper we consider functions in the Hardy space H
p×q

2
defined in the unit disc of

matrix-valued. We show that it is possible, as in the scalar case, to decompose those functions as linear
combinations of suitably modified matrix-valued Blaschke product, in an adaptive way. The procedure
is based on a generalization to the matrix-valued case of the maximum selection principle which involves
not only selections of suitable points in the unit disc but also suitable orthogonal projections. We show
that the maximum selection principle gives rise to a convergent algorithm. Finally, we discuss the case
of real-valued signals.

AMS Classification: 47A56, 41A20, 30H10.
Key words: Matrix-valued functions and Hardy spaces, matrix-valued Blaschke products, maximum
selection principle, adaptive decomposition.
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1. Introduction

Functions in the Hardy space H2(D) of the open unit disc D can be decomposed into linear combinations
of functions which are modified Blaschke products

(1.1) Bn(z) =

√
1− |an|2
1− zan

n−1∏

k=1

z − ak

1− zak
, n = 1, 2, . . .

where the points an ∈ D are adaptively chosen according to the function to be decomposed, see [26]. It
is important to note that these points do not necessarily satisfy the so-called hyperbolic non-separability
condition

(1.2)

∞∑

n=1

1− |an| = ∞.

The system (1.1), which is orthonormal, is called Takenaka–Malmquist system. It is a basis of the
Hardy space H2(D) and, more in general, of Hp(D), 1 ≤ p ≤ ∞, if and only if (1.2) is satisfied. It is
possible to show, see [26], that the points an can be chosen to decompose a given function f into basic
functions, each of which has nonnegative analytic instantaneous frequency. A system (1.1) satisfying
this property is called an adaptive rational orthonormal system. A signal that possesses a nonnegative
analytic instantaneous frequency function is said to be mono-component. It can be real or complex-
valued. If, in particular, taking a1 = 0, then the boundary values of the modified Blaschke products Bn

The authors thank Macao Science and Technology Fund FDCT/098/2012/A3 and Macao Science and Technology Fund
FDCT/099/2014/A2.
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2 D. ALPAY, F. COLOMBO, T. QIAN, AND I. SABADINI

are mono-component for all n ∈ N. We note that the condition (1.2) is not necessarily satisfied, and so
the system is not necessarily complete in H2(D). However, the convergence to f is fast.
As we said, the adaptive decomposition is designed in order to obtain a decomposition of a functions
into mono-component signals. This method has been intensively studied in the past few years, see
[23, 25, 26, 27, 28, 29]. It gives rise to an algorithm which is a variation of the greedy algorithm, see
[22, 34, 30].
An algorithm to perform an adaptive decomposition, given f , can be assigned as follows. One considers
a so-called dictionary D, being a family of elements of unit norm whose span is dense in the Hilbert space
H. Given f ∈ H we select u1, . . . , un ∈ D such that

f =

∞∑

k=1

〈fk, uk〉uk

where the functions fk are defined inductively, starting from f1 = f and setting

fk = f −
k−1∑

ℓ=1

〈fℓ, uℓ〉uℓ,

where 〈·, ·〉 denotes the inner product in H.
In the paper [26] H = H2(D) with its standard inner product, the dictionary consists of the normalized
Szegö kernels,

D =

{
ea(z) =

√
1− |a|2
1− za

, a ∈ D

}
.

Note that the reproducing kernel property of ea in H2(D) yields

〈f, ea〉 =
√
1− |a|2f(a).

Let f ∈ H2(D) and set f1 = f . For any a1 ∈ D

(1.3) f(z) = 〈f1, ea1
〉ea1

(z) + f2(z)
z − a1

1− za1

where

f2(z) =
f1(z)− 〈f1, ea1

〉ea1
(z)

z−a1

1−za1

.

One can show that f2 ∈ H2(D) and so the procedure can be repeated. The transformation from f1 to f2
is called generalized backward-shift. The two summands in (1.3) are orthogonal, thus

‖f‖2 = |〈f1, ea1
〉|2 + ‖f2‖2.

The maximal selection principle asserts that it is possible to choose a1 ∈ D such that

a1 = max{|〈f1, ea〉|2 = (1 − |a|2)|f1(a)|2, a ∈ D}.
The procedure can be iterated and after n steps one has

f(z) =

n∑

k=1

〈fk, eak
〉Bk(z) + fn+1(z)

n∏

k=1

z − ak

1− zak
,

where

ak = max{|〈fk, ea〉|2 = (1− |a|2)|fk(a)|2, a ∈ D}, k = 1, . . . , n

and

(1.4) fk(z) =
fk−1(z)− 〈fk−1, eak−1

〉eak−1
(z)

z−ak−1

1−zak−1

.

The function fk is called the k-th reduced remainder (see [25, (11) p. 850]). Its matrix-valued counterpart
is given by (5.7). One can easily show the relations

(1.5) 〈fk, eak
〉 = 〈gk, Bk〉 = 〈f,Bk〉,
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where gk is the k-th standard remainder, defined through

gk = f −
k−1∑

l=1

〈f,Bl〉Bl.

As before, the orthogonality of the summands and the fact that Bk is unimodular on ∂D, give

‖f(z)−
n∑

k=1

〈fk, eak
〉Bk(z)‖2 = ‖f(z)‖2 −

n∑

k=1

|〈fk, eak
〉|2 = ‖fn+1‖2.

Since it can be shown that ‖fn+1‖ → 0 as n → ∞ (see [26, Theorem 2.2]), we have the formula

f(z) =
∞∑

k=1

〈fk, eak
〉Bk(z)

called adaptive Fourier decomposition, abbreviated as AFD.

In this paper, we extend some of the results of [26] to the matrix-valued case. For w ∈ D we will use the
notations ew and bw for the normalized Cauchy kernel and Blaschke factor at the point w respectively,
that is:

(1.6) ew(z) =

√
1− |w|2
1− zw

and bw(z) =
z − w

1− zw

The Szegö dictionary now consists of the Cp×p-valued functions Pew, where w belongs to the open unit
disk D and P ∈ Cp×p is any orthogonal projection, that satisfies P = P 2 = P ∗.

Remark 1.1. In view of the polydisk setting, the operator-valued case will be considered in a later
publication (see [2, 3, 30] for an approach to the polydisk setting using operator-valued functions).

We denote by H
p×q
2 the space of p× q matrices with entries in H2(D). When q = 1 we write H

p
2 rather

than H
p×q
2 .

A function F ∈ H
p×q
2 if and only if it can be written as

(1.7) F (z) =

∞∑

n=0

Fnz
n,

where Fℓ ∈ C
p×q, ℓ = 1, 2, . . ., are such that

(1.8)

∞∑

n=0

Tr (F ∗
nFn) < ∞.

Let G be another element of Hp×q
2 , with power series expansion G(z) =

∑∞
n=1 Gnz

n at the origin. We
set

(1.9) [F,G] =

∞∑

n=0

G∗
nFn ∈ C

q×q

and

‖F‖2 = Tr [F, F ] =

∞∑

n=0

Tr (F ∗
nFn).

We note that (1.9) can be rewritten as

(1.10) lim
r→1

r∈(0,1)

1

2π

∫ 2π

0

G(reit)∗F (reit)dt

and so we also have

(1.11)
∞∑

n=0

Tr (G∗
nFn) = lim

r→1
r∈(0,1)

1

2π

∫ 2π

0

TrG(reit)∗F (reit)dt.

Most, if not all, the material of Sections 3 and 4 is classical. Some proofs are provided for the convenience
of the reader. We refer to [6, 7] for a study of these using state space methods.
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An important condition in the algorithm is whether F is a cyclic vector for the backward shift operator
R0, that is, whether the closed linear span M(F ) of the functions

Rn
0FX, n = 0, 1, 2, . . . and X ∈ C

q×q

is strictly included in H
p×q
2 or not.

2. The maximum selection principle

In this section we show that the maximum selection principle holds also in the matrix valued case.
It allows to adaptively choose a sequence of points together with orthogonal projections for any given
function in the Hardy space. We note that this selection principle does not exclude the possibility that
the obtained sequence of points contains elements repeating more than once.

Proposition 2.1. Let k0 ∈ {1, . . . , p}, and let F ∈ H
p×q
2 . There exists w0 ∈ D and an orthogonal

projection P0 of rank k0 such that

(2.1) (1− |w0|2) (Tr [P0F (w0), F (w0)]) is maximum.

Proof. We first recall that for f ∈ H2(D) (that is, p = q = 1), with power series f(z) =
∑∞

n=0 fnz
n, and

for w ∈ D, we have

(2.2)
√

1− |w|2|f(w)| = |[f, ew]| ≤ ‖f‖.
Let F = (fij) ∈ H

p×q
2 , where the fij ∈ H2(D) (i = 1, . . . , p and j = 1, . . . q), and ξ ∈ Ck0×p such that

ξξ∗ = Ik0
. Then,

Tr [ξF (w), ξF (w)] = Tr F (w)∗ξ∗ξF (w)

≤ Tr F (w)∗F (w)

=

p∑

i=1

q∑

j=1

|fij(w)|2.

Using (2.2) for every fij , we obtain

(2.3) (1− |w|2) (Tr [ξF (w), ξF (w)]) ≤
p∑

i=1

q∑

j=1

‖fij‖2 = ‖F‖2.

Let ǫ > 0. In view of (1.7)-(1.8) there exists a C
p×q-valued polynomial P such that ‖F − P‖ ≤ ǫ. We

have

(1− |w|2) (Tr [ξF (w), ξF (w)])

= (1− |w|2) (Tr [ξ(F − P )(w) + ξP (w), ξ(F − P )(w) + ξP (w)])

= (1− |w|2)‖ξ(F − P )(w) + ξP (w)‖2

≤ (1− |w|2) (‖ξ(F − P )(w)‖ + ‖ξP (w)‖)2

≤ 2(1− |w|2)‖ξ(F − P )(w)‖2 + 2(1− |w|2)‖ξP (w)‖2

≤ 2‖F − P‖2 + 2(1− |w|2)‖ξP (w)‖2 (where we have used (2.3))

≤ 2ǫ2 + 2(1− |w|2)‖P (w)‖2.

This ends the proof since (1 − |w|2)‖P (w)‖2 tends to 0 as w approaches the unit circle and since ξ∗ξ is
a rank k0 orthogonal projection. �

We write

(2.4) F (z) = P0F (w0)ew0
(z)

√
1− |w0|2 + F (z)− P0F (w0)ew0

(z)
√
1− |w0|2.

Lemma 2.2. Let

H(z) = F (z)− P0F (w0)ew0
(z)

√
1− |w0|2

H0(z) = P0F (w0)ew0
(z)

√
1− |w0|2.
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It holds that

(2.5) P0H(w0) = 0

and

(2.6) [F, F ] = [H0, H0] + [H,H ].

Proof. First we have (2.5) since

P0H(w0) = P0F (w0)− P0F (w0)ew0
(w0)

√
1− |w0|2 = 0.

Using (2.5) we have

[H,P0F (w0)ew0
(z)

√
1− |w0|2] = F (w0)

∗P0H(w0)(1− |w0|2) = 0.

So, [H,H0] = 0 and

[F, F ] = [H0 +H,H0 +H ] = [H0, H0] + [H,H ].

�

To proceed and take care of the condition (2.5) (that is, in the scalar case, to divide by a Blaschke factor)
we first need to define matrix-valued Blaschke factors. This is done in the next section.

3. Matrix-valued Blaschke factors

Matrix-valued Blaschke factors originate with the work of Potapov [24] and can be defined (up to right
multiplicative constant) as

(3.1) Bw0,P0
(z) = Ip − P0 + P0bw0

(z),

where for w0 ∈ D, bw0
is defined as in (1.6), and P0 ∈ Cp×p is any orthogonal projection. The degree

degBw0,P0
of the Blaschke factor is by definition the rank of the projection P0. When considering infinite

products, it will be more convenient to consider for w0 6= 0 the Blaschke factor

(3.2) Bw0,P0
(z) = Ip − P0 + P0

|w0|
w0

w0 − z

1− zw0
.

Note that

(3.3) B−1
w0,P0

(z) = Ip − P0 + P0
1

bw0
(z)

,

and so

Bw0,P0
(z) = Bw0,P0

(z)U with U = Ip − P0 −
|w0|
w0

P0.

In (3.5) in the following proposition, deg refers to the McMillan degree of a matrix-valued rational
function. We refer e.g. to [13] for the definition and properties of the McMillan degree and to [17] for
further information on matrix-valued Blaschke products. We also note that (3.4) is a special case of (4.4),
and that the proposition can be viewed as a special case of Proposition 4.1.

Proposition 3.1. Let Bw0,P0
be defined by (3.1). Then

(3.4) KBw0,P0
(z, w)

def.
=

Ip −Bw0,P0
(z)Bw0,P0

(w)∗

1− zw
=

(1− |w0|2)
(1− zw0)(1− w0w)

P0.

and

H
p×q
2 ⊖Bw0,P0

H
p×q
2 =

{
P0V

1− zw0
, V ∈ C

p×q

}

is the reproducing kernel Hilbert space with reproducing kernel KBw0,P0
(z, w) meaning that the function

z 7→ KBw0,P0
(z, w)X belongs to H

p×q
2 ⊖Bw0,P0

H
p×q
2 for every X ∈ Cp×q and

[F (·),KBw0,P0
(·, w)X ] = [P0F (w0), X ].

Finally (and with q = 1)

(3.5) degBw0,P0
= dimH

p
2 ⊖Bw0,P0

H
p
2.
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Proof. We put the proof for completeness. In the proof we write B(z) rather than Bw0,P0
to ease the

notation. We have Since P0(Ip − P0) = 0 we have

B(z)B(w)∗ = Ip − P0 + P0bw0
(z)bw0

(w),

and so
Ip −B(z)B(w)∗ = P0(1 − bw0

(z)bw0
(w)).

Equation (3.4) follows in since

1− bw0
(z)bw0

(w)

1− zw
=

(1− |w0|2)
(1− zw0)(1− w0w)

.

It follows that the Cp×p-valued function KBw0,P0
(z, w) is positive definite in the open unit disk, and that

the associated reproducing kernel Hilbert space H(KBw0,P0
) of Cp×q-valued functions is exactly the set

of functions of the form z 7→ P0V
1−zw0

when V varies in Cp×q. Equation (3.4) also implies that the space

H(KBw0,P0
) is isometrically included in H

p×q
2 . That

H(KBw0,P0
) = H

p×q
2 ⊖Bw0,P0

H
p×q
2

follows then from the kernel decomposition

Ip

1− zw
=

Ip −B(z)B(w)∗

1− zw

B(z)B(w)∗

1− zw
.

The last claim follows from the identification of the McMillan degree of an unitary rational function and
the dimension of its associated reproducing kernel space; see for instance [5, 6] for the latter. �

We note that in Proposition 3.1 one can replace Bw0,P0
by Bw0,P0

. It holds that

KBw0,P0
(z, w) = KBw0,P0

(z, w).

Lemma 3.2. Let H ∈ H
p×q
2 be such that P0H(w0) = 0p×q. Then

G = B−1
w0,P0

H ∈ H
p×q
2

and

(3.6) [H,H ] = [G,G].

Proof. (3.3)

B−1
w0,P0

(z) = Ip − P0 + P0
1

bw0
(z)

.

Write P0H(z) = (z − w0)R(z), where R is Ck×q-valued and analytic in a neighborhood of the origin.
Using (3.3) we have for z 6= w0

B−1
w0,P0

(z)H(z) = P0H(z)
1

bw0
(z)

= R(z)(1− zw0),

and the point w0 is a removable singularity of P0H . Hence, B−1
w0,P0

(z)H(z) has a removable singularity

at w0. Furthermore, since Bw0,P0
(eit)∗Bw0,P0

(eit) = Ip, and using (1.10), we have (3.6). �

4. Backward-shift invariant subspaces

We define for α ∈ C the resolvent-like operator

Rαf(z) =





f(z)− f(α)

z − α
, z 6= α,

f ′(α), z = α,

where the (possibly vector-valued) function f is analytic in a neighborhood of α.

A finite dimensional space M of Cp×q-valued functions analytic in a neighborhood of the origin is R0-
invariant if and only if there exists a pair of matrices (C,A) ∈ Cp×N×CN×N which is observable, meaning
∩∞
u=0 kerCAu = {0} and

M =
{
F (z) = C(IN − zA)−1X, X ∈ C

N×q
}
.
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The following proposition is a particular case of the Beurling-Lax theorem in the finite dimensional
setting.

Proposition 4.1. Let (C,A) ∈ Cp×N × CN×N be an observable pair of matrices, and let M denote the

span of the functions of the form F (z) = C(IN−zA)−1X, where X runs through CN×q. Then M ⊂ H
p×q
2

if and only if ρ(A) < 1. When this is the case, we have M = H
p×q
2 ⊖BH

p×q
2 , that is,

M⊥ = BH
p×q
2 ,

where B is a finite Blaschke product, defined up to a unitary right constant, by the formula

(4.1) B(z) = Ip − (1− z)C(IN − zA)−1P−1(IN −A)−∗C∗,

with

(4.2) P =

∞∑

u=0

A∗uC∗CAu.

Proof. The first claim follows from the series expansion

C(IN − zA) =

∞∑

u=0

zuCAu,

and from the observability of the pair (C,A).

To prove the second claim we remark that (4.2) indeed converges since ρ(A) < 1 and that the matrix P

is the unique solution of the Stein equation

(4.3) P−A∗PA = C∗C.

The second claim follows then from the identity

(4.4) C(IN − zA)−1P−1(IN − wA)−∗C∗ =
Ip −B(z)B(w)∗

1− zw
,

which is proved by a direct computation, taking into account (4.3). �

Using the above theorem, or using state space methods, one can prove that a finite Blasckhe product is
a finite product of degree one Blaschke factors. This result originates with the work of Potapov [24]; see
e.g. [6] for a proof.

Note that q = 1 in the next proposition.

Proposition 4.2. Let B be a Cp×p-valued Blaschke product. There is a one-to-one correspondence be-
tween factorizations B = B1B2 of B into two Blaschke products (up to a right multiplicative unitary
constant U for B1 and the corresponding left multiplicative constant U−1 for B2) and R0-invariant sub-
spaces of Hp

2 ⊖ BH
p
2.

The following proposition uses Beurling-Lax theorem (see [20]). In the statement a C
p×ℓ-valued inner

function is an analytic Cp×ℓ-valued function Θ such that the operator of multiplication by Θ is an isometry

from H
ℓ×q
2 into H

p×q
2

Proposition 4.3. Let F ∈ H
p×q
2 and assume that the closed linear span M(F ) of the functions

Rn
0FX, n = 0, 1, 2, . . . and X ∈ C

q×q

is strictly included in H
p×q
2 . Then there exists a Cp×ℓ-valued inner function Θ such that

(4.5) M(F ) = H
p×q
2 ⊖ΘH

ℓ×q
2 .

Proof. The space M(F ) is R0 invariant, and so its orthogonal complement (M(F ))⊥ is invariant by
multiplication by z. The result follows then from the Beurling-Lax theorem. �

Note that Θ need not be square; for instance, if p = 2, we can have

Θ(z) =

(
0

b(z)

)
,
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where b is a Blaschke product. Then,

M(F ) =

{(
f

g

)
, f ∈ H2(D) and g ∈ H2(D)⊖ bH2(D)

}
.

Still for p = 2, the case

Θ(z) =
1√
2

(
1

b(z)

)
,

where

b(z) =

N∏

n=1

z − wn

1− zwn
= c0 +

N∑

n=1

cn

1− zwn
for uniquely defined c0, . . . , cN ∈ C,

when the zeros of the Blaschke product are all different from 0 and simple, leads to

M(F ) =

{(
c0f(z) +

∑N
n=1 cn

zg(z)−wng(wn)
z−wn

g(z)

)
, g ∈ H2

}

where we have used (for instance) [1, Exercise 8.3.1] to compute the first component.

These examples suggest a classification of the functions F ∈ H
p×q
2 depending on the value ℓ and the

precise structure of Θ.

5. The algorithm

For any w0 in the unit disc and any projection P0, there holds the orthogonal decomposition

H
p×q
2 =

(
H

p×q
2 ⊖Bw0,P0

H
p×q
2

)
⊕Bw0,P0

H
p×q
2 ,

as is explained in the following lemma.

Lemma 5.1. For any given w0 and P0 formula (2.4) can be rewritten in a unique way as an orthogonal
sum (orthogonal also with respect to the [·, ·] form)

(5.1) F (z) = M0ew0
(z)

√
1− |w0|2 +Bw0,P0

(z)F1(z),

where M0 ∈ Cp×q and F1 ∈ H
p×q
2 . We have M0ew0

√
1− |w0|2 ∈

(
H

p×q
2 ⊖Bw0,P0

H
p×q
2

)
and Bw0,P0

F1 ∈
Bw0,P0

H
p×q
2 . Finally,

(5.2) [F, F ] = (1− |w0|2)[P0F (w0), F (w0)] + [F1, F1].

Proof. We have

(5.3) F (z) = M0ew0
(z)

√
1− |w0|2 +Bw0,P0

(z)F1(z),

where M0 = P0F (w0) and F1 = B−1
w0,P0

(
F − P0F (w0)ew0

√
1− |w0|2

)
∈ H

p×q
2 . By Lemma 3.1,

P0F (w0)ew0

√
1− |w0|2 ∈ H

p×q
2 ⊖Bw0,P0

H
p×q
2 .

Furthermore,

(5.4) [P0F (w0)ew0

√
1− |w0|2, Bw0,P0

(z)F1] = 0q×q

and so (5.2) holds. �

Note that the decomposition (2.4) is non-trivial if and only if F 6≡ 0p×q.

Assume that in (5.1) F1 6≡ 0. We can then reiterate and, after fixing k1 ∈ {1, . . . , p}, get a decomposition
of the form (5.1) for F2,

(5.5) F1(z) = P1F (w1)ew1
(z)

√
1− |w1|2 +Bw1,P1

(z)F2(z),

where w1 is any complex number in the disc, and P1 is any orthogonal projection of rank k1. Thus F

admits the orthogonal (also with respect to the [·, ·] form) decomposition (with M1 = P1F (w1))

F (z) = M0ew0
(z)

√
1− |w0|2+

+Bw0,P0
(z)M1ew1

(z)
√
1− |w1|2 +Bw0,P0

(z)Bw1,P1
(z)F2(z)

(5.6)
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along the decomposition

H
p×q
2 =

(
H

p×q
2 ⊖Bw0,P0

H
p×q
2

)
⊕Bw0,P0

(
H

p×q
2 ⊖Bw1,P1

H
p×q
2

)
⊕Bw0,P0

Bw1,P1
H

p×q
2

of Hp×q
2 . Note that

(
H

p×q
2 ⊖Bw0,P0

H
p×q
2

)
⊕Bw0,P0

(
H

p×q
2 ⊖Bw1,P1

H
p×q
2

)
= H

p×q
2 ⊖ Bw0,P0

Bw1,P1
H

p×q
2 .

Iterating the algorithm we get a family F0 = F, F1, F2, . . . of functions in H
p×q
2 such that

(5.7) Fk(z) =
(
Bwk−1,Pk−1

(z)
)−1

(
Fk−1(z)−Mk−1ewk−1

(z)
√
1− |wk−1|2

)
, k = 1, 2, . . .

where at each stage one takes a projection such that PkFk 6≡ 0. If there is no such projection it means
that the algorithm ends at the given step.

The function Fk is called the k-th reduced remainder and is the matrix-valued analogue of (1.4). Let

(5.8) B̃0(z) = P0e0(z) and B̃k(z) = Pkek(z)

x

k−1∏

u=0

Bwu,Pu
, k = 1, 2, . . .

We have

F (z) =
N∑

k=0

MkB̃k(z) +BwN ,PN
(z)FN+1(z).

Proposition 5.2. If BwN ,PN
(z)FN+1(z) = 0, then the algorithm ends up after N steps. In such case F

is rational.

Proof. Indeed, if the algorithm finishes after a finite number of steps, there is a finite Blaschke product
B such that F ∈ H

p×q
2 ⊖BH

p×q
2 , and the elements of the latter space are rational functions. �

If our selections of wk and Pk follow the maximum selection principle (that is, because of the choices of
the point and the projection at each stage) we have the following result, which is the matrix-version of
[26, Theorem 2.2].

Theorem 5.3. Suppose that at each step one selects wk and Pk according to the maximum selection
principle. Then, the algorithm (5.7) converges, meaning that

lim
N→N0

Tr [F (z)−
N∑

k=0

MkB̃k(z), F (z)−
N∑

k=0

MkB̃k(z)] = 0,

where N0 can be finite or infinite. In particular,

(5.9) [F, F ] =

N0∑

k=0

[Mk,Mk],

where Mk = PkFk(wk), k = 0, 1, . . ., and

(5.10) Tr [F, F ] =

N0∑

k=0

Tr [Mk,Mk].

Proof. The proof follows the proof for the scalar case presented in [26, Theorem 2.2]. Before proceeding,
it is important to recall that the maximum (2.1) is computed on all projections of given rank and all
points in D. The case N0 < ∞ means that the algorithm ceases after a finite number of steps. We then
obtain a decomposition of F into a sum of finite entries, and F is rational. We now suppose that N0 = ∞.

Let

G = F −
∞∑

k=0

MkB̃k 6≡ 0.

We proceed in a number of steps to get a contradiction.
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STEP 1: It holds that

[F, F ] =

N∑

k=0

[Mk,Mk] + [FN+1, FN+1]

with

(5.11) Mk = [F, B̃k].

This follows from the unitarity of the Blaschke factors Bwu,Pu
on the unit circle that

[B̃k(z), B̃ℓ(z)] =

{
0p×p if k,

Pk if k = ℓ,

and the claim in the step follows.

STEP 2: Let Rk = F −∑k−1
u=0 MuB̃u. We have

(5.12) [F, B̃k] = [Rk, B̃k] = [Fk, Pkek]

The first equality in (5.12) follows from

(5.13) [B̃k, B̃u] = 0p×p for u = 0, . . . , k − 1.

The second equality follows from

[Rk, B̃k] = [




x

k−1∏

u=0

Bwu,Pu


Fk, P ek




x

k−1∏

u=0

Bwu,Pu


],

and from the unitarity of the factors Bwu,Pu
on the unit circle.

STEP 3: There exist a projection P , which we assume of rank one, and a point b ∈ D such that

Tr [G,Peb] = Tr (PG(b)) 6= 0.

In view of (5.13) the sum
∑∞

k=0 MkB̃k converges in H
p×q
2 and so G is analytic in the open unit disk.

The claim in the step follows thenfrom the analyticity of G inside the open unit disk.

STEP 4: In the notation of the previous step, we have

(5.14)
√
1− |b|2|Tr [PRk(b)]| >

|Tr [G,Peb]|
2

.

In view of (5.10), and using the Cauchy-Schwarz inequality we see that there is k0 ∈ N such that for all
k ≥ k0,

|Tr [
∞∑

u=k

[MvB̃v, P eb]| <
|Tr [G,Peb]|

2
.

Hence,

|Tr [Rk, P eb]|+
|Tr [G,Peb]|

2
> |Tr [Rk, P eb]|+ |Tr [

∞∑

u=k

[MvB̃v, P eb]|

≥ |Tr [G,Peb]|,

so that |Tr [Rk, P eb]| > |Tr [G,Peb]|
2 . By the reproducing kernel property this inequality can be rewritten

as (5.14).

STEP 5: We conclude the proof.

By the Cauchy-Schwarz inequality, and since Bwn,Pn
(b)∗Bwn,Pn

(b) ≤ Ip, we have

|Tr [PRk(b)]| < (TrP )1/2(TrPRk(b)
∗Rk(b)P )1/2 < (TrP )1/2(TrPFk(b)

∗Fk(b)P )1/2,
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and so √
1− |b|2(TrP )1/2(TrPFk(b)

∗Fk(b)P )1/2 >
|Tr [G,Peb]|

2
.

Since P has rank 1, it has trace equal to 1 and we have
√
1− |b|2(TrPFk(b)

∗Fk(b)P )1/2 >
|Tr [G,Peb]|

2
.

Equation (5.10) implies that limk→∞ Mk = 0. From (5.12) and (5.11) and the Cauchy-Schwarz inequality
we have limk→∞[Fk, Pkek] = 0, and so

lim
k→∞

√
1− |ak|2PkFk(ak) = 0p×p,

and so
lim
k→∞

(1− |ak|2)Tr [PkFk(ak), Fk(ak)] = 0,

and hence a contradiction with the maximum selection condition (2.1), since the maximum (2.1) is
computed on all projections of given rank and all points in D. �

Remark 5.4. In the above arguments one could also use normalized factors of the form (3.2). It is
needed to use them when one wishes the underlying Blaschke product to converge. See Remark 5.6.

Remark 5.5. If F is a rational general function, and the maximum selection principle is used at each
step, then the only possibility that the algorithm stops after a finite N0 steps is the case when N0 = 1. In
the case, the subspace M(F ) of Hp×q

2 spanned by the functions Ru
0FX where u = 0, 1, . . . and X ∈ Cq×q

is finite dimensional and R0-invariant by construction. So it is of the form H
p×q
2 ⊖BH

p×q
2 for some finite

Blaschke product B. This does not mean that a backward-shift algorithm is then performed inside this
space, and thus that it would end after a finite number of steps. In contrast, for a rational function, if we
do not use the maximum selection principle but suitably select wk and Pk, the algorithm can well stop
after a finite N0 steps, as concerned by Proposition 5.2.

Remark 5.6. We now consider the case where we take normalized Blaschke factors (see Remark 5.4).
When the algorithm does not end in a finite number of steps, two cases occur depending on whether the
infinite matrix-valued Blaschke product

(5.15) B(z) def.
=

x

∞∏

n=0

Bwn,Pn
(z) = lim

N→∞
BwN ,PN

(z) · · · Bw1,P1
(z)Bw0,P0

(z)

converges or not. The first case can be achieved by requiring the numbers an to satisfy
∑∞

n=0(1−|an|) < ∞
(see [26]). The infinite product (5.15) then converges for all z ∈ D (the proof is as in the scalar case (see

for instance [14, TG IX.82] for infinite products in a normed algebra) and F ∈ H
p×q
2 ⊖BHp×q

2 . The second
case then occurs when

∑∞
n=0(1− |an|) = ∞. In such case an infinite Blaschke product cannot be defined,

but instead, the shift invariant space reduces to zero, and the backward shift invariant space coincides
with the whole Hardy H

p×q
2 space. The proof of this fact is based on the Beurling-Lax Theorem. In fact,

if the backward shift invariant space does not coincide with the Hardy H
p×q
2 space, then its orthogonal

complement is a non-trivial shift invariant space. By the Beurling-Lax Theorem the latter is of the form
BHp×q

2 , where B is the Blaschke product generated by the w′
ks and the P ′

ks. But this contradicts with
the condition

∑∞
n=0(1− |an|) = ∞.

Remark 5.7. Assume that the Blaschke product (5.15) converges. Then F ∈ H
p×q
2 ⊖ BHp×q

2 . But this
latter space is R0 invariant, and so

(5.16) M(F ) ⊂ H
p×q
2 ⊖ BHp×q

2 ,

and F is not cyclic for R0. Let Θ be the the Cp×ℓ-valued function as in Theorem 4.3. The isometric
inclusion (5.16) implies that the kernel

Θ(z)Θ(w)∗ − B(z)B(w)∗
1− zw

=
Ip − B(z)B(w)∗

1− zw
− Ip −Θ(z)Θ(w)∗

1− zw

is positive definite in D. Leech’s factorization theorem (see [32], [21], [19], [4]) implies that there is a
Cℓ×p-valued function Θ1 analytic and contractive in D and such that B(z) = Θ(z)Θ1(z). Since B takes
unitary values almost everywhere on the unit circle it follows that ℓ = p.
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6. The case of real signals

We begin with two definitions. Let A = (ajk) j=1,...p
k=1,...,q

∈ Cp×q. We say that A is real if the entries of A

are real, that is A = A, where A is the matrix with (j, k)-entry ajk.

A matrix-valued real signal of finite energy is a function of the form

f(t) = A0 +
∞∑

n=1

An cos(nt) +Bn sin(nt),

where the matrices An and Bn belong to Rp×q and such that (with AT denoting the transpose of the
matrix A)

Tr (AT
0 A0) +

∞∑

n=1

Tr (AT
nAn +BT

nBn) < ∞.

Since

f(t) = A0 +
∞∑

n=1

An
eint + e−int

2
+ Bn

eint − e−int

2i

we can rewrite f(t)

f(t) = F (eit) =
∑

n∈Z

Fne
int,

with

Fn =





A0 , if n = 0,
An−iBn

2 , if n = 1, 2, . . .
An+iBn

2 , if n = −1,−2, . . .

Note that F−n = Fn. With these computations at hand we can state (in the statement T denotes the
unit circle):

Proposition 6.1. Let F ∈ L
p×q
2 (T), with power series F (eit) =

∑
n∈Z

Fne
int and let F+(e

it) = F0 +∑∞
n=1 Fne

int. Then, F+ ∈ H
p×q
2 and

(6.1) F (eit) = F+(e
it) + F+(eit)− F0

Proof. Let F−(e
it) =

∑∞
n=1 F−ne

−int. Since the Fourier coefficients are real we can write

F+(eit) = F0 +

∞∑

n=1

Fne
−int

= F0 +
∞∑

n=1

F−ne
−int

= F0 + F−(e
it),

and so (6.1) holds. �

The preceding result allows to approximate real matrix-valued signals using the maximum selection
principle algorithm presented in the previous sections.

7. Concluding remarks

The method developed in [25, 26] is extended here to the matrix-valued case. The results have impacts to
rational approximation and interpolation of matrix-valued functions. In a sequel to the present paper we
may consider the case of the ball BN of CN . Then the counterpart of Blaschke elementary factors exists
(see [33]), and Blaschke products can be defined; see [8]. One has then to consider the Drury-Arveson
space of the ball, that is the reproducing kernel Hilbert space of functions analytic in BN with reproducing
kernel 1

1−
∑

N
j=1

zjwj
rather than the Hardy space of the ball, whose reproducing kernel is 1

(1−
∑

N
j=1

zjwj)N
,

see [9, 16]. We note that in the later mentioned reproducing kernel Hilbert space, viz., the Hardy H2

space inside the ball, there exists the H∞-functional calculus of the radial Dirac operator
∑N

k=1 zk
∂

∂zk
, or,

equivalently, the singular integral operator algebra generalizing the Hilbert transformation on the sphere
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([15]). More generally, one can consider complete Pick kernels, that is positive definite kernels whose
inverse has one positive square, see [10, 11, 12, 18, 31].
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[6] D. Alpay and I. Gohberg. On orthogonal matrix polynomials, volume 34 of Operator Theory: Advances and Applica-
tions, pages 25–46. Birkhäuser Verlag, Basel, 1988.

[7] D. Alpay and I. Gohberg. Unitary rational matrix functions. In I. Gohberg, editor, Topics in interpolation theory
of rational matrix-valued functions, volume 33 of Operator Theory: Advances and Applications, pages 175–222.
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