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Slow ramping emerges from spontaneous
fluctuations in spiking neural networks

Jake Gavenas 1,2,3 , Ueli Rutishauser3,4,5,6, Aaron Schurger1,7,8,9 &
Uri Maoz 1,2,6,7,10,11

The capacity to initiate actions endogenously is critical for goal-directed
behavior. Spontaneous voluntary actions are typically preceded by slow-
ramping activity in medial frontal cortex that begins around two seconds
before movement, which may reflect spontaneous fluctuations that influence
action timing. However, the mechanisms by which these slow ramping signals
emerge from single-neuron and network dynamics remain poorly understood.
Here, we developed a spiking neural-network model that produces sponta-
neous slow ramping activity in single neurons and population activity with
onsets ~2 s before threshold crossings. A key prediction of our model is that
neurons that ramp together have correlated firing patterns before ramping
onset. We confirmed this model-derived hypothesis in a dataset of human
single neuron recordings from medial frontal cortex. Our results suggest that
slow ramping signals reflect bounded spontaneous fluctuations that emerge
from quasi-winner-take-all dynamics in clustered networks that are temporally
stabilized by slow-acting synapses.

Humans and other animals can initiate actions spontaneously, without
immediate external triggers. Such spontaneous voluntary actions are
critical to purposeful goal-directed behavior, but the neural mechan-
isms underlying these kinds of actions are poorly understood. Studies
investigating the neural precursors of spontaneous voluntary actions
have found that movement onset is preceded by neural signals that
slowly ramp up or down more than 2 s before movement onset. This
phenomenon is most evident in human medial frontal cortex and has
been captured by scalp electroencephalography (EEG), where it is
termed the readiness potential or “RP”1–3, as well as by fMRI4–6, and in
single-neuron firing rates7, where it is termed the readiness discharge.
Othermammals also exhibit slow-ramping signals before spontaneous
actions in analogous brain regions8–10, and slow ramping has also been

reported in invertebrates11. This suggests that slow ramping reflects an
evolutionarily conserved mechanism related to voluntary action
initiation. While widely reported, the origin and significance of slow
ramping signals remain debated.

Slow-ramping signals were originally interpreted as reflecting
preparatory processes that begin at the onset of ramping2,12. However,
more recently, it has been proposed that slow ramping signals, like the
RP, may instead be the result of autocorrelated fluctuations in neural
activity that trigger movement upon crossing a threshold13–17 or bias
the precise time of movement onset18. In contrast to classic inter-
pretations, these models (hereafter collectively referred to as “sto-
chastic fluctuationmodels” or SFMs) ascribe no specialmeaning to the
onset of the slow-ramping signals. Rather, SFMs posit that ramping
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signals appear only because of back-averaging autocorrelated signals
aligned to movement onset. SFMs therefore offer drastically different
neural and cognitive implications for action initiation than classic
interpretations19.

Amajor challenge for SFMs is that the timeconstant of empirically
observed autocorrelations in neural spike trains is much shorter than
the observed rate of ramping by about an order of magnitude. For
example, slow ramping in the firing rate of human medial frontal
cortex neurons evolves on the time scale of seconds7, but studies have
reported that neurons in medial frontal cortex have autocorrelation
time constants on the order of hundreds ofmilliseconds20–22 (although
some have much longer time constants23). SFMs predict that more
strongly autocorrelated fluctuations will approach the threshold more
slowly and thus take longer to ramp up, while less autocorrelated (i.e.,
less temporally stable) processes are more likely to “jump up” and
cross the thresholdmore abruptly, leading to shorter ramps13. It is thus
unclear whether neurons that exhibit slow ramping are among the few
that have longer autocorrelation time constants23, or increase their
autocorrelation temporarily during slow ramping through some
unknown mechanism, or if slow ramping is a network phenomenon
that does not rely on the autocorrelation of single units.

Here, we utilized a combination of spiking neural network
simulations and analysis of human single-neuron experimental
data7 to investigate (1) the mechanisms by which temporally auto-
correlated fluctuations in neural activity emerge in spiking neural
networks, and (2) whether such fluctuations can account for the
kind of slow ramping activity before spontaneous voluntary actions
seen in the empirical data. We show that spiking neural networks
can be configured to produce spontaneous fluctuations and slow-
ramping activity with properties similar to those recorded7 from
human medial frontal cortex during a spontaneous voluntary
movement task similar to the classic Libet task2. Our model is a
spiking neural-network with 400 units with clustered connectivity.
Such networks can exhibit spontaneous fluctuations24,25, but prior
studies found that neurons in these networks exhibit “abrupt
switching” activity—i.e. abrupt alternations between slow and fast
firing—which is unlike the gradual changes seen during slow ramp-
ing. We hypothesized that we could stabilize activity by inserting
slow synapses, which are critical for producing temporally stable
activity26,27 and increased autocorrelation in simulated spiking
neurons28. We show that the presence of slow synapses led to more
gradual spontaneous fluctuations and facilitated the emergence of
slow ramping. The properties of ramping resembled the ramping
signals observed in experimental data both at the single-neuron and
population level. Furthermore, our model predicted that pairs of
neurons that both ramped up or down would have more correlated
activity compared to pairs that ramped in different directions even
before the onset of ramping. This prediction was validated in the
experimental data. We conclude that slow ramping signals before
spontaneous, voluntary action likely emerge from backward-
averaged spontaneous fluctuations aligned to threshold-crossings,
and that clustered connectivity and slow synapses interact to jointly
facilitate temporally smooth fluctuations. These results are com-
patible with SFMs of spontaneous voluntary action generation.

Results
Slow synaptic transmission temporally stabilizes spontaneous
fluctuations in simulated networks
We simulated networks consisting of N = 400 spiking leaky integrate-
and-fire neurons (see LIF Network Simulations in Methods); 80% of
the neurons were excitatory, i.e., they provided only positive inputs
to other neurons, while the remainder were inhibitory. Excitatory
neurons were grouped into 4 clusters of 80 neurons each, such that
within-cluster connections were more likely than between-cluster

connections. Simulations of a range of network sizes (N = 200, 300,
400, 500 neurons) and number of clusters (Nclusters = 3, 4, 5, 8) led to
the samequalitative results, describedbelow, suggesting that ourmain
results do not strictly depend on our chosen network size and number
of clusters. The extent of clustering was quantified by the parameter
REE (clustering degree), which is equal to the ratio of the probability of
a within-cluster connection to the probability of a between-cluster
connection (within-cluster connections were also stronger compared
to between-cluster connections, as in ref. 24; see Connectivity Matrix
Construction in Methods). Inhibitory neurons were not clustered, and
their connectivity probability with excitatory neurons did not depend
on REE

29.
REE describes a continuum between homogenous networks

without clustering (REE = 1) and winner-take-all networks with strong
clustering (REE >> 1) (Fig. 1A). Homogenous networks with balanced
excitation and inhibition exhibit asynchronous spiking activity without
slow spontaneous fluctuations in firing rates30. Conversely, in winner-
take-all networks, neurons in a single cluster dominate and suppress
neurons in other clusters via lateral inhibition implemented by inhi-
bitory neurons31. In between these two extremes, clustered networks
(roughly 2 < REE < 5, depending on network size, number of clusters,
and other factors) exhibit slow spontaneous fluctuations due to a
combination of lateral inhibition and lateral excitation between clus-
ters. Note that in our networks, spontaneous fluctuationswere entirely
due to internal interactions because external input to the network was
fixed (besides noise).

Previous work had only simulated clustered networks with fast
synaptic dynamics, in which the entire postsynaptic potential is
delivered within ~5ms24,25,32. We were interested in the role of slow
synapses in modulating spontaneous fluctuations in such networks.
We therefore simulated networkswith both fast and slow synapses.We
used double-exponential functions to model synapses24,33,34, with fast
synapses having rising and falling time-constants of 2 and 5 ms,
respectively, and slow synapses having rising and falling time-
constants of 20 and 100ms respectively33 (Fig. 1B). Because different
types of synapses engage either fast or slow dynamics (AMPA and
GABA-A for fast, NMDA and GABA-B for slow34), we modeled mixtures
of synapses as a weighted sum of these two types of synapses, para-
meterized as the ratio of fast to slow synaptic signaling (i.e., the per-
cent of post-synaptic potential (PSP) delivered via fast versus slow
synapses; note that this applied to both excitatory and inhibitory
connections; see LIF Network Simulations in Methods).

Recreating prior results for clustered networks with 100% fast
synapses, we found that increasing REEwas associatedwith a transition
from asynchronous activity to more winner-take-all dynamics, with
networks in an intermediate range exhibiting slow fluctuations (Fig. 1C
top row). Notably, fluctuations in each cluster manifested as bistable
switching activity, with entire clusters switching between states of low
and high activity24,25. Thesefluctuations exhibited quasi-winner-take-all
dynamics: activations in one cluster were accompanied by decreased
firing in all the other clusters. Notably, switches between these states
were rapid with no apparent slow ramping (Fig. 1C, top row; see Fig. 2
for quantification).

In contrast, networks with slow synapses exhibited more gradual
fluctuations. With 50% slow synapses, fluctuations in networks with
intermediate REE valueswere temporally stable, with rises and falls that
occur over a longer timespan when compared to networks with 100%
fast synapses (Fig. 1C bottom row; see below for quantification).
Fluctuations in 50% slow-synapse networks still exhibited quasi-
winner-take-all dynamics, with activations in one cluster suppressing
other clusters, but without the all-or-none nature of fluctuations
common in 100% fast-synapse networks.Note thatfluctuations are less
clear in the inhibitory pool (Fig. 1C green raster); henceforth we
exclusively analyze properties of the excitatory neurons.
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Network architecture and synaptic dynamics interact to shape
network activity
Next, we quantified the effects of clustering degree and slow synaptic
transmission on spontaneous fluctuations. We simulated 5 s of activity
in 50 different randomly generated networks (each with 400 neurons,
320 excitatory) for REE values between 1 and 6 (increment of 0.1), with
synaptic ratios ranging from 0% slow (100% fast) to 50% slow (incre-
ment of 10%, overall N = 15,300 networks). We then investigated the
effects of REE and synaptic ratio onmeasures of the networks’ temporal
statistics, starting with power spectra. For each network, we calculated
firing rate as a function of time for each neuron by smoothing spike
trains with a gaussian filter (50ms kernel), and then calculated the
power spectra fromthe resulting smoothedfiring rates (see Simulating
& Analyzing Fluctuations in Methods). Next, we averaged power at
matched frequencies across neurons within a network, and then

averaged across networks within bins of increasing REE values (e.g.
between 1.0 and 2.0; Fig. 2A left panel). Spectral power was generally
higher at low frequencies and, on average, droppedmonotonically as a
function of frequency. As clustering increased past a critical value,
spectral power increased for all networks. Notably, for low clustering
coefficients (REE approximately between 1 and 3), the ratio of fast to
slow synapses hadnoor a low impactonpower. However, as clustering
reached a critical range (REE above ~3.0), a larger percentage of slow
synapses resulted in higher power at relatively low (below ~1Hz) and
high (above ~5Hz) frequencies. At even higher clustering (REE above
~5.0), power decreased again, likely signifying the transition from the
“fluctuation” regime to the “winner take all” regime.

We next investigated autocorrelation directly, employing the
same grouping strategy as above (Fig. 2B; see Simulating & Analyzing
Fluctuations in Methods). Unlike power, which did not vary as a

Inh Inh Inh

Fig. 1 | Simulation overview and example network activity. A As the clustering
degree (REE) increases, connectivity transitions from homogenous/balanced,
through clustered connectivity, to winner-take-all. B Schematic of fast vs. slow
synapses. C Example 5-second simulations for networks with 100% fast synapses
(top row) and 50% slow synapses (bottom row) at various clustering degrees (same
underlying network structure, leading to the same ‘winning’ cluster, depicted in
orange). For each subpanel, at the top are single-trial raster plots and at the bottom

are cluster-averaged firing rates over time (spikes smoothed with 400ms Gaussian
kernel then averaged across all neurons in each cluster in different colors). In raster
plots, purple are excitatory neurons (4 clusters of 80neurons), green are inhibitory
neurons. Clustering leads to spontaneous fluctuations, but fluctuation character-
istics depend on synaptic dynamics. Networks with 100% fast synapses (top) switch
between high- and low-activity states, whereas networks with 50% slow synapses
(bottom) show smoother, more temporally stable fluctuations.
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function of synaptic dynamics for low clustering values, autocorrela-
tion at short time lags was slightly higher for networks with a higher
ratio of slow synapses. Then, at higher clustering values (REE above
~3.0, roughly commensurate with results from power spectra), higher
ratios of slow synapses led to noticeably greater autocorrelation at
longer time-lags. As clustering increased further, autocorrelation at
longer time-lags decreased and lag-one autocorrelation (correspond-
ing to one 50ms bin) became negative.

To further quantify the slow fluctuations we observed, we calcu-
lated four measures of spiking variability. First, we calculated the
spectral slope (equal to the negative 1/f exponent) of neural firing rate
power spectra as the slope of a linear fit of frequency to power in log-
log space13,35 (Fig. 2C; power spectra calculated as above; see Simu-
lating & Analyzing Fluctuations in Methods). For low clustering (REE

below ~3.0), spectral slope did not depend on clustering degree and
only little on the ratio of slow synapses, with higher ratios of slow
synapses having slightly lower slope. At higher clustering degree, the
dynamics changed, with spectral slope generally increasing with clus-
tering, with larger increases for networks that hadhigher ratios of slow
synapses. The higher slopes for networks with greater frequency of
slow synapses indicates that power increases due to greater clustering

were relatively larger at higher frequencies for higher ratios of slow
synapses. Next, we calculated the autocorrelation timescale τ20,21,36 of
neural firing rates as the decay parameter of an exponential fit to the
autocorrelation function (Fig. 2D). Timescales were generally higher
for networks with greater ratios of slow synapses for all clustering
values. As clustering increased, autocorrelation timescales increased
for all frequencies of slow synapses (until REE ~ 3–4) and then dropped
off. The drop-offwasmoregradual for networkswith high percentages
of slow synapses, indicating that slow synapses may impact the tran-
sition point from fluctuations to winner-take-all dynamics.

Next, we investigated how the coefficient of variation (CV) of
individual neurons’ firing rates across time was affected by the clus-
tering (Fig. 2E). The CV equals the standard deviation of firing rates
across time (average firing rates in 100ms non-overlapping bins; see
Simulating & Analyzing Fluctuations in Methods), normalized by
dividingby the trial-averagefiring rate.HighCVvalues are expected for
networks that exhibit slow fluctuations in firing rates, as those fluc-
tuations entail higher firing rate standard deviations across time. CV
sharply increased after a critical REE value (~3–3.5) for all networks,
suggesting the emergence of slow fluctuations past that point. CV then
decreased for higher REE values, indicating the transition to a winner-

A

C D F

gniretsulCeroMgniretsulCsseL

B

E

Fig. 2 | Effects of clustering & synaptic dynamics on temporal dynamics of
neuronal activity. A Effect of clustering and synaptic dynamics power spectra of
simulated neurons’ firing rates (plotted in log-log scale). B Effect of clustering and
synaptic dynamics on spike train autocorrelation at time lags up to 1000ms.
C–F Effect of clustering and synaptic dynamics on four measures of temporal
dynamics. Solid lines and shaded regions denote mean and standard error
respectively. C Spectral Slope, the slope of a linear regression of power to

frequency in log-log scale (A,DAutocorrelation timescales, the decay parameter of
exponential fit to autocorrelation functions (B). E Coefficient of variation (CV), the
firing rate standarddeviation across time (100ms non-overlapping bins) dividedby
trial-average firing rate. F ŜT, a measure of firing rate variability across time like CV.
ŜT was designed to specifically index slow-switching behavior like that seen in 100%
fast / 0% slow synapse networks25. Source data are provided as a Source Data file.
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take-all regime. Notably, a greater percentage of slow synapses con-
sistently resulted in a higher CV (though the rate of increase dimin-
ished with the proportion of slow synapses), suggesting that slow
synapses increase firing rate variability even without clustering. We
next looked at ŜT, a measure of spiking variability25 that characterizes
slow-switching behavior in clustered networks, such as those seen in
100% fast synapse networks, Fig. 1C top row). We investigated how ŜT
was affected by clustering and slow synapses (Fig. 2F). ŜT is the stan-
dard deviation of cluster-averaged firing rates (100ms non-
overlapping bins) across time, averaged across clusters, and normal-
ized by subtracting the samemeasure applied to randomgroupings of
neurons rather than by cluster identity. Higher values of ŜT therefore
increased temporal variability and slow-switching activity. ŜT increased
steadily as REE increased, reaching maximal values for REE between 3
and 4, and then decreased. Notably, a greater percentage of slow
synapses resulted in lower ŜT values. These results indicate that net-
works with slow synapses exhibit slow fluctuations, but that these
fluctuations manifest as gradual fluctuations rather than slow-
switching activity. Notably, however, the changes in temporal statis-
tics we observed were heterogeneous across networks with the same
REE and synaptic ratio parameters (especially so in the fluctuation
regime; see Fig. S1), and likely depend on the emergence of specific
connectivity patterns as clustering increases. Taken together, cluster-
ing is sufficient to lead to spontaneous slow fluctuations in spiking
networks, yet our results suggest that introducing slow synaptic
dynamics can greatly alter the nature of said fluctuations, in this case
leading them to be temporally stable. We next turned to quantifying
the speed of ramping in this network architecture.

Slow-ramping at the single-neuron level
We next examined the relation between spontaneous fluctuations and
slow-ramping signals at the single-neuron level. We simulated activity
in 20 randomly connected networks with intermediate clustering
degrees that led to spontaneous fluctuations (Min REE = 2.8; Max
REE = 4;manually tuning for each network so that dynamicswere in the
fluctuation regime rather than winner-take-all regime; see Network
Selection in Methods). For each network, we simulated 100 trials of
10 s each, when synaptic dynamics were either 100% fast or 50% slow.
We then aligned data to times when activity in a specific cluster
increased their activity above a threshold (termed threshold-crossing;
the threshold was defined as 50% of maximum normalized firing rate
across the whole trial; see Threshold Alignment in Methods). Neurons
that significantly increased or decreased their firing rates in the
400ms before threshold-crossing relative to a baseline (−3 to −2 s; as
in ref. 7) were categorized as increasing or decreasing, respectively
(Wilcoxon rank-sum test, the cutoff was p <0.01, as in ref. 7). The ratio
of neurons categorized as increasing to decreasing was, on average,
50:50 in 100% fast synapse networks and 39:61 in 50% slow synapse
networks.

Networks with 50% slow synapses demonstrated slow ramping
with increasing and decreasing of firing rates before threshold-cross-
ing, whereas networks with fast synapses showed only a steep jump
shortly before threshold-crossing (Fig. 3A). Notably, our networks did
not have a specified ‘ramping onset,’ norwere there any changes to the
network’s input after trial onset (which was many seconds before the
spontaneous ramping onset) beyond those attributable to noise.
Therefore, the observed ramping must reflect the spontaneous fluc-
tuations prior to threshold-crossing rather than a buildup driven by a
specific intervening event. To further explore the relationship between
slow synapses and ramping behavior, we conducted simulations (same
as above) for various ratios of fast-to-slow synapses. Those simulations
revealed that slow ramping emerged gradually as we increased the
proportion of slow synaptic signaling (Fig. 3B). This gradual emer-
gence closelymatched the similar gradual emergence of slow ramping
with increased autocorrelation (Fig. S2A). Accordingly, we found that

increasing the ratio of slow synapses gradually increased activity
autocorrelation during the ramping period at both the cluster and
single-neuron level, although cluster-level autocorrelation was much
higher than single-neuron autocorrelation (Fig. S2B). Together, these
simulations support the notion that slow synapses facilitate temporally
stable autocorrelated activity and, therefore, slow ramping.

Comparison of single-neuron slow ramping in simulated and
empirical data
We next assessed whether the degree of slow ramping observed in the
model is comparable to that typically seen in the motor system pre-
ceding the onset of self-initiated actions. One of the key brain areas
within which such slow ramping has been observed is inmedial frontal
cortex (MFC) of humans, including the pre-supplementarymotor area,
supplementary motor area proper, and anterior cingulate cortex3,37,38.
We examinedwhether theproperties of empiricallymeasured ramping
are comparable to those seen in our model by re-analyzing human
MFC single-neuron data recorded by Fried and colleagues7 that show
slow ramping and other firing rate changes before spontaneous
voluntary actions.

We analyzed n = 512 MFC neurons. Of these, 153 (30%) neurons
significantly changed their response relative to movement onset
(using the same selection criteriaweused for ourmodel data). Of these
153 neurons, 51 had increasing, and 102 had decreasing firing rates
before movement onset relative to baseline. We next sub-selected
neurons that exhibited slow ramping rather than more abrupt, step-
like changes in firing rates. We distinguished between these two
response profiles by fitting a sigmoid to trial-averaged firing rates and
extracting an inverse-gain parameter. Neurons with an inverse-gain
> 0.4 were categorized as slow ramping, otherwise as steplike (see
Neuron Categorization and Response Profiles in Methods). Thus, 41
MFC neurons were slow-ramping (27% of MFC neurons that sig-
nificantly changed their firing rate beforemovement; 15 increasing and
26 decreasing) and the remaining 112 were steplike (73%; 36 increasing
and 76 decreasing). Notably, slow ramping neurons showed pro-
gressive changes to their firing rates beginning around 2 s before
movement onset on average, while steplike neurons showed a sharper
firing rate change around 1 second before movement (Fig. 3C left; see
Fig. S2C for distribution of ramping onset times). Here we focus on
slow-ramping neurons.

Comparing the response profiles of simulated and recorded MFC
neurons revealed that neurons in the slow ramping group had
response profiles that were like those in simulated networks with slow
synapses (compare Fig. 3A vs 3C). To quantify the goodness-of-fit of
our networks, we regressed pre-threshold activity (averaged across
neurons; −3 to 0 seconds rel. threshold-crossing) in simulated net-
works on the empirical data from matching time points (similarly
averaged across neurons; Fig. 3C right). Networks with 50% slow
synapses hadhigherR2 values than thosewith 100% fast synapseswhen
comparing increasing neurons (mean [95% confidence interval]: 50%
slow: 0.73 [0.71, 0.76] vs 100% fast: 0.24 [0.22, 0.27]; p < 0.001 two-
sided sign-rank test) and decreasing neurons (50% slow: 0.66 [0.62,
0.71] vs 100% fast: 0.36 [0.31, 0.41]; p <0.001 two-sided sign-rank test).
Notably, slow ramping over ~2 s at the single-neuron level occurred
even though autocorrelation in these neurons decayed to zero after
~600ms, both for simulated and empirical neurons (Fig. 3D). There-
fore, our model reproduces the key apparent paradox that we sought
to resolve. Furthermore, visual inspection of raster plots from neurons
that engaged in slow ramping behaviors showed that smooth, largely
monotonic ramping was not visible on every individual trial—rather,
activity was highly heterogeneous across trials (Fig. 3E).

Slow ramping at the population-level
We next investigated slow ramping at the population level of all
recorded/simulated neurons. We trained a linear discriminant analysis
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classifier (LDA) to differentiate activity at different points during the
ramping period froma baseline (−3.0 to −2.6 s). Classification accuracy
on statistically independent data, not used for training (5-fold cross-
validation) for simulated networks with 50% slow synapses reached
75% at 641 ± 7ms before threshold-crossing (mean± standard error
here and below, averaged across networks), while classification accu-
racy for simulated networks with 100% fast synapses only increased
above 75% on average 31 ± 30ms before threshold-crossing (Fig. 4A
shows results from 100 simulations on a single network; further
examples are in Fig. S4A). Classification accuracy in the simulated
networks with 50% slow synapses resembled the gradual rise in accu-
racy obtained by an analogous analysis of the Fried et al. 7 dataset
(Fig. 4A right), in which we pooledMFC neurons across participants to

create a pseudo-population for decoding39. Decoding accuracy
reached 75% at ~1.2 s before movement onset, and reached ~90% at
movement onset, presumably becausemany empirical neurons showa
sudden ‘step like’ change in their firing rates at around 0.5 s before
movement onset (see Fig. 3C). Our model does not contain such
neurons. These results suggest that our simulations best capture the
early, gradually increasing accuracy in decoding activity from baseline
up to ~0.5 s before movement onset (Fig. 4A, left vs. right plot).

To test whether gradually increasing accuracy reflected ramping
at the population level, we investigated the temporal generalization of
decoders, which can be used to ascertain the temporal evolution of
neural activity40.We classified activity at different timepoints against a
baseline (−3 to −2.6 s). If the population as a whole is exhibiting

A

DC

E Simulated Neurons; 50% Slow Network Empirical Neurons with slow ramping response profile

Fried et al (2011) Empirical Data

Simulated Data

Simulations; 50% Slow Empirical; Slow Ramping

B

Fig. 3 | Slow ramping at the single-neuron level in simulated networks and
recorded human frontal neurons. A Firing rates (Δ, relative to baseline; mean ±
95% confidence intervals across networks) of neurons that increased (Inc.; red) or
decreased (Dec.; blue) activity before threshold-crossings in networks with 100%
fast (dotted lines) or 50% slow synapses (solid lines). B Slow ramping of firing rates,
either increasing (left) or decreasing (right), gradually emerges with the growing
proportionof slow synapses.C Left: Slowrampingbeforemovement inhumanMFC
neurons (Fried et al.7;Δ, relative tobaseline;mean±95%confidence intervals across
neurons; N = 15 increasing slow ramping, 36 increasing steplike, 26 decreasing slow
ramping, 76 decreasing steplike). Some neurons show a steplike response profile
(solid lines), and others show slow ramping (dashed lines). Right: Goodness-of-fit of
simulated data versus experimental slow ramping response profiles (points: indi-
vidual networks, error bars: 95% confidence intervals). For each network simulated

with 0% and 50% slow synapses, we regressed average pre-threshold activity on the
average empirical pre-movement activity at equivalent time-points (separately for
increasing and decreasing neurons). From those models we extracted the R2 as a
measure of how well each network fit pre-threshold changes in firing rates. 50%
slownetworks had significantly betterfits compared to 100% fast networks for both
increasing and decreasing neurons (p <0.001 both increasing and decreasing).
D Slow ramping emerges despite low autocorrelation at the single-neuron level in
both simulated (left;mean) and empirical neurons that exhibit slow ramping (right;
mean ± 95% confidence interval). E Example raster plots and trial-averaged firing
rates from simulated (left) and empirical neurons (right). Notably, slow ramping is
not apparent inmost single-trial responses. Sourcedata for (A,B,D) left, and (E) are
provided as a Source Data file.
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ramping activity, then earlier time points will be closer to the baseline
in neuronal state space, while later time points will be farther from
baseline. Therefore, when training a classifier on activity that is tem-
porally close to baseline (early), the classifier will find a separatrix that
is closer to the baseline in neural state space. Then, when applied to
activity that is temporally further from baseline (later), the same
separatrix will perform well because that activity is farther from
baseline activity in state space (and vice-versa for training on later then
generalizing to earlier activity). Thus,we should observe anasymmetry
in across-time generalization accuracy such that classifiers perform
better when generalizing from earlier to later timepoints compared to
the reverse.

To test this theoretical prediction, we trained an LDA classifier to
differentiate between ramping activity at a given time point relative to
threshold crossing and activity during a baseline period (and tested
that classifier’s accuracy at different time points (see Decoding Ana-
lyses in Methods). For simulated data, decoding accuracy gradually
increased leading up to threshold-crossing (Fig. 4B left; more exam-
ples in Fig. S4B). Notably, as expected for ramping signals, across-time
generalization accuracy was asymmetric—higher when training on
earlier and testing on later timepoints compared to when training on
later and testing on earlier timepoints (Fig. 4B). This can be seen by
comparing the average values in the upper vs. lower triangle of the
temporal generalization matrix (one-tailed rank-sum test p <0.001).
Similarly, for the MFC neurons, decoding accuracy showed a similar
increase and asymmetry (rank-sum test comparing upper triangle to
lower triangle decoding accuracies, p < 0.001, Fig. 4B right; see
Fig. S4C for explicit demonstration of this asymmetry). To verify that

this asymmetry reflects ramping, we generated spike trains that slowly
ramped up and down to create a pseudo-population of neurons that
we knowapriori exhibit linear ramping (n = 20, 50 trials, see Simulated
Ramping inMethods).We conducted the samedecoding and temporal
generalization procedure on those spike trains and found the same
asymmetry that decoders generalized to future timepoints better than
to past time (one-tailed rank-sum test p <0.001; Fig. S4D).

We also investigated ramping at the population level by calcu-
lating an EEG proxy from our network to compare to the readiness
potential, a negative deflection in trial-averaged scalp EEG that slowly
builds up over the last ~1–2 s prior to movement onset3,19. Notably, we
focus only on the early (negative) rise of the readiness potential, which
is thought to originate in bilateral SMA, unlike the later parts, closer to
movement onset, which originate in lateral motor cortex3. The EEG
signal is typically taken to reflect the summation of post-synaptic
potentials onto neurons41. So, as a proxy signal, we calculated the total
signed post-synaptic input (both inhibitory and excitatory) delivered
to each excitatory neuron in the network, then averaged across neu-
rons, and investigated its trajectory leading up to threshold-crossings
(see Threshold Alignment in Methods). Networks with 50% slow
synapses exhibited slow negative ramping in the EEG proxy. In con-
trast, networks with 100% fast synapses had a relatively flat signal with
an abrupt jump close to threshold-crossing (Fig. 4C top). Repeating
this analysis for multiple ratios of fast-to-slow synaptic signaling
revealed that slow ramping in the EEG proxy signal gradually emerged
with a greater percentage of slow synapses (Fig. 3C bottom). The
results were similar for an EEG proxy that uses PSPs onto all simulated
neurons rather than just excitatory neurons (Fig. S4E), accounting for

A CataDlaciripmEataDdetalumiS

Simulated Data Empirical Data
B

Fig. 4 | Slow ramping at the population level in simulated and empirical data.
A Classification accuracy versus baseline in (linear discriminant analysis; spike
count in 400mswindows, times depicted refer to the leading edge of thatwindow,
versus -3 to −2.6 s baseline window) in simulated (left) and empirical data (right;
solid line is average and shaded region is 95% confidence interval across cross-
validations; dashed line is chance level across 100 shuffles of the data). Accuracy
slowly ramps before threshold-crossing / movement, suggesting slow ramping at
the population level. B Performance of LDA classifiers trained at one time bin and
tested on another time bin (relative to threshold-crossing or movement). Left:

simulated data. Right: empirical data. Accuracy gradually increased leading up to
the time of threshold-crossing or movement and was higher when the training bin
was earlier than the testing bin compared to vice-versa (above versus below the
main diagonal). C Top: EEG proxy (PSPs onto excitatory populations) shows slow
ramping in 50% slow but not 100% fast networks (solid line and shaded region are
mean and 95% confidence intervals over 20 networks respectively). Bottom: slow
ramping in EEG proxy signal gradually emerges with an increased percentage of
slow synaptic signaling. Source data for panels A left, B left, and C are provided as a
Source Data file.
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suggestions that the human cortex contains larger proportions of
inhibitory neurons than other species42.

Pre-ramping noise correlations relate to slow-ramping activity
Our model, like other SFMs, predicts that slow ramping is a con-
sequence of averaging autocorrelated fluctuations aligned to times of
threshold-crossings. Those fluctuations do not begin at what would
appear as ramping onset on average but occur throughout the entire
trial (see Fig. 1C bottom). Therefore, a prediction of our model is that
two neurons that show ramping behavior in the same direction (both
increasing or decreasing) will have more correlated activity before
ramping onset in comparison to pairs that show ramping behavior in
different directions (one increasing and one decreasing). Such corre-
lations in trial-by-trial firing rate are called noise correlations43,44, and
are relevant to behavior45,46. Pre-ramping noise correlations that
depend on the later type of ramping should emerge because ramping
behavior is related to cluster membership—two neurons that both
increase their firing rates are likely part of the same ‘winning’ cluster,
and two neurons that both decrease their firing rates may be from any
of the three ‘losing’ clusters, whereas two neurons that show opposite
ramping directions almost certainly belong to different clus-
ters (Fig. 5A).

As predicted, in 50% slow synapse networks, activity in pairs of
increasing neurons (i.e., both belonging to the specific cluster asso-
ciatedwithmovement) was positively correlated during a pre-ramping
baseline period (−3 to −2.5 s, Fig. 5B, r =0.277, p <0.001, LME; see
Analysis of Pairwise Correlations in Methods). In addition, activity in
pairs of decreasing neurons (i.e., both belonging to clusters other than
the one whose threshold-crossing determined movement timing) was
also positively correlated, though to a lesser extent than pairs of
increasing neurons, because they may belong to different clusters
(r =0.059, p <0.001, LME). In contrast, activity in pairs involving one

increasing and one decreasing neuron (i.e., very likely belonging to
different clusters) was negatively correlated (r = −0.115, p <0.001,
LME). Finally, some neurons neither increased nor decreased their
activity before threshold-crossing, likely due to the random nature of
network connectivity leading to them receiving heterogeneous inputs.
Activity in pairs of such neurons had very low but significantly positive
correlations before ramping onset (r =0.003, p <0.001).

We next examined empirical noise correlations between firing
rates in the pre-ramping baseline period (−3.5 to −2.5 s) for MFC neu-
rons recorded in the same session (see Analysis of Pairwise Correla-
tions in Methods; Fig. 5C). Pairs of neurons that later exhibited the
same type of ramping (i.e., both increasing or both decreasing) were
significantly positively correlated before ramping onset (increasing-
increasing N = 108 pairs: r = 0.048, 95% CI = [0.022 0.074], p <0.001,
LME; decreasing-decreasing N = 865 pairs: r =0.038, 95% CI = [0.020
0.057], p < 0.001, LME), whereas pairs with opposing types of ramping
were not significantly correlated at baseline (N = 532 pairs; r =0.011,
95% CI = [−0.008 0.030], p =0.285, LME; Fig. 5C). Further, same-type
pairs were more correlated than opposite-type pairs (increasing-
increasing vs. increasing-decreasing: p = 0.004; decreasing-decreasing
vs. increasing-decreasing: p <0.001, LME post-hoc tests, Tukey cor-
rection for multiple comparisons) and were alsomore correlated than
pairs involving neurons that did not increase or decrease or had a
steplike response profile (N = 18,384 pairs; increasing-increasing vs.
other: p =0.053, only trending; decreasing-decreasing vs. other:
p <0.001). It is worth noting that noise correlations in the empirical
data were smaller in magnitude overall compared to model predic-
tions (although their magnitude is in line with prior studies45,46). Fur-
thermore, noise correlations between opposite-type and other pairs
were more positive compared to model predictions (e.g., opposite:
rsimulated = −0.115, rdata = 0.011). Together, these results are in line with
the predictions made by an SFM (Fig. 5A, B), increasing the plausibility
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Fig. 5 |Model schematic and correlation structure relates to rampingdirection.
A Stochastic fluctuation model (SFM) schematic. In SFMs, ramping reflects auto-
correlated fluctuations prior to a threshold-crossing. Because the fluctuations
occur throughout a trial, neurons with the same ramping behavior should exhibit
correlated activity even before ramping onset. B In 50% slow synapse networks,
pairs of simulated neurons that exhibited the same ramping behavior—both
increasing (Inc-Inc) or both decreasing (Dec-Dec)—were significantly correlated
evenbefore rampingonset (−3 to−2.5 s;mean&95%confidence interval ofpairwise
correlation calculated via a linear mixed-effects model; N = 505,257 no-change
pairs, 215,747 decreasing-decreasing pairs, 53,964 increasing-increasing pairs, and
210,132 increasing-decreasing pairs). Furthermore, neurons that showed opposite
ramping behaviors (Inc-Dec) were anticorrelated before ramping (p-values were
obtained from the linear mixed effects model, comparisons were done via two-
sided post-hoc testing using Tukey correction formultiple comparisons).C Pairs of
empirical neurons that showed the same ramping behavior (increasing or

decreasing) were significantly correlated before ramping onset (−3.5 to −2.5 s;
mean & 95% confidence interval of pairwise correlation calculated via a linear
mixed-effects model; steplike responses were categorized as “other” for this ana-
lysis; N = 18,384 no-change pairs, 865 decreasing-decreasing pairs, 108 increasing-
increasing pairs, and 532 increasing-decreasing pairs). Pairs of neurons that
exhibited the same type of ramping (both increasing or decreasing) were more
correlated in the pre-ramping period compared to pairs that exhibited opposing
types of ramping (increasing vs. decreasing). Although pairs showing opposite
ramping behaviorswere not reliably anticorrelated, as theywere in the simulations,
they were not statistically different from 0 in the positive or negative direction
(p =0.285) and pairs categorized as “other” exhibited a slight positive correlation
(p =0.026; p-values were obtained from the linear mixed effects model, compar-
isons were done via two-sided post-hoc testing using Tukey correction formultiple
comparisons; * signifies p <0.05; *** signifies p <0.001). Source data for (B) are
provided as a Source Data file.
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that slow ramping signals reflect correlated fluctuations that are pre-
sent from trial onset to threshold-crossing.

Discussion
In this study, we demonstrated that spiking neural-networks can be
configured to produce spontaneous fluctuations and slow-ramping
activity with properties like those of intracortical experimental
recordings in humans. Specifically, we recreated prior work that
showed that networks with clustered architectures exhibit sponta-
neous “slow switching” fluctuations24,25, and further showed that slow
synaptic dynamics temporally stabilized those fluctuations that
(Figs. 1, 2) and, in the aggregate, facilitated the emergence of gradual
ramping activity before threshold-crossings (Fig. 3). In networks with
50% slow synapses, simulated neurons slowly ramped theirfiring rates,
with 39% and 61% of slow ramping neurons increasing and decreasing
their firing rates respectively. Interestingly, individual neurons in net-
works with 50% slow synapses slowly ramped their firing rates over 2 s
before threshold-crossing, despite their autocorrelation dropping to
zero at lags of ~600ms. By contrast, neurons in networks with 100%
fast synapses did not exhibit changes in their trial-average firing rates
until around 300 or 500ms prior to movement in increasing and
decreasing neurons respectively. Moreover, the accuracy of classifiers
trained to distinguish activity from a baseline period slowly ramped up
over time leading up to threshold-crossings (Fig. 4A left). Further,
classifiers’ accuracy generalized to later time points better than they
generalized to earlier time points (Fig. 4B left), indicating ramping at
the population-level40.

Importantly, all of these features of simulated activity matched
analogous analyses that we carried out on intracranially recorded
human MFC neurons7 (Fig. 4A right, 4B right). Like simulated neu-
rons, autocorrelation in real neurons that exhibited slow ramping
diminished to zero within ~600 milliseconds. In addition, an
aggregate signal derived from our model, which could be inter-
preted as a proxy for EEG, slowly ramped negatively, akin to the
readiness potential1 (RP) in terms of timing, shape, and ramping
direction (Fig. 4C). Critically, all simulated slow-ramping signals
emerged spontaneously from ongoing activity, without necessitat-
ing any external input at ramping onset to drive changes in activity.
Finally, our model (similar to other SFMs) predicted that neurons
that show the same ramping behavior (increase or decrease) after
ramping onset would exhibit elevated pairwise correlations in their
activity already before ramping onset. This prediction was borne
out in the empirical MFC neurons, which exhibited a similar corre-
lation structure to our model even before ramping onset (Fig. 5).
This analysis was not a test of our model against classical inter-
pretations of ramping onset (which suggest ramping onset reflects
an event that drives ramping and, eventually, movement2,12, and
thus make no particular prediction regarding pre-ramping correla-
tions). But this qualitative confirmation of our model’s prediction in
real data increases our model’s plausibility. Taken together, our
study explains how highly autocorrelated spontaneous fluctuations
can emerge in spiking neural networks through a combination of
topographical and synaptic factors and demonstrates that such
fluctuations are sufficient to explain several non-trivial aspects of
slow ramping neural activity preceding spontaneous voluntary
action.

One of our central aims was to investigate the discrepancy
between short autocorrelation (decaying in ~600ms) and slow
ramping (lasting ~2 s—hence the period of slow ramping is therefore
~3 times longer than the autocorrelation window for simulated and
empirical neurons). However, slow ramping at the single-neuron
level emerges only when averaging across trials, while auto-
correlation is calculated from firing rates on individual trials.
Inspection of raster plots from individual neurons that exhibit slow
ramping (on average across trials) shows that smooth, generally

monotonic ramping is not apparent on every trial (examples in
Fig. 3E; more examples in Fig. S3; this fact is also noted by Schurger
et al.19). Rather, activity on each trial is highly variable, and
smoother, slow ramping emerges only in the trial-averaged firing
rate. Our model gives a potential explanation: in our model,
movement is triggered after an entire cluster’s average activity
crosses a threshold (see Threshold Alignment in Methods). There-
fore, individual neurons can and will show variable activity on
individual trials. Still, trial-averaged response profiles will show
smooth ramps because their activity is, across many trials,
entrained to the activity of the cluster to which it belongs, which
must increase (due to it later crossing the threshold) or decrease
(due to lateral inhibition) its net firing before threshold-crossings.

Our work expands on research into spontaneous voluntary
actions by offering what is, to our knowledge, the first model of slow
ramping in spiking neural networks. Previous work had investigated
spontaneous neural activity24,25,28,30,32 or autocorrelation in spiking
neural networks27,28,47, but did not explore the connection to slow-
ramping signals. Ourmodel provides an implementation at the level of
spiking neurons of previous, more abstract stochastic fluctuation
models (SFMs) of spontaneous voluntary action, demonstrating how
the fluctuations that are central to those models13–17 may emerge from
biologically plausible spiking neural networks. Also, many brain
regions are organized in a modular fashion48, and individual neural
circuits have clustered connectivity among excitatory neurons49,50.
Such clustering could plausibly emerge due to synaptic plasticity, such
as Hebbian learning51–53, and ‘soft winner-take-all’ networks are hypo-
thesized to be a canonical cortical circuit54. Furthermore, it is known
that synaptic transmission occurs through both fast and slow
channels55 (although, as is typical in computational modeling, our
implementation of slow synaptic transmission is likely an over-
simplification), and that some important cognitive functions rely on
slow synapses26. Taken together, clustered connectivity and slow
synaptic transmission are a plausible combination that we demon-
strate can lead to spontaneous fluctuations and slow ramping. Addi-
tionally, the fact that our model can parsimoniously explain many
features of MFC activity before spontaneous voluntary actions sug-
gests that stochastic fluctuations in brain activity may underlie slow
ramping signals and play a key role in the genesis of spontaneous
voluntary action. Our model also goes beyond prior abstract compu-
tational models such as stochastic accumulation14 by describing a
process that does not terminate at threshold crossing but is rather
continuous in time. In doing so, our model offers possibilities for
investigating strings or cascades of actions rather than single actions
that occur in isolation.

Our results have major implications for the use of slow-ramping
signals for predicting movement intentions, for instance in brain-
computer interfaces. Because neural activity can stochastically
increase or decrease, movement timing is not completely determined
until threshold crossing. Therefore, slow-ramping signals may be of
limited utility in online, real-time prediction systems. Indeed, predic-
tions based on whole-brain EEG activity could predict movement
timing above chance in real time only ~600ms before movements56

(see also refs. 57,58), whereas the RP and other slow ramping signals
emerge 2 s or more before movement onset. Furthermore, in this
respect, the EEG proxy we derived closely matched the RP. And our
proxy is based on post-synaptic potentials, which exhibits a negative
deflection before threshold-crossings due to an overall increase of
inhibitory signaling and decrease of excitatory signaling as part of the
quasi-winner-take-all process inherent to the networks we investi-
gated. Taken together, we suggest that the apparent onset of the RP
and other slow ramping signals several seconds before movement is
the result of aligning spontaneous fluctuations to threshold-crossings
rather than the many cognitive interpretations that have been offered
since the RP’s discovery3,19.
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Future directions
The model we developed is a “minimal plausible model” for slow
ramping activity prior to spontaneous voluntary action. To our
knowledge, it is the first model to describe how such ramping could
arise spontaneously from spiking neural-network dynamics and cap-
tures several nontrivial aspects of premovement slow ramping activity.
However, many questions remain about the neural mechanisms
underlying spontaneous voluntary action. One key open question is
regarding the timing of threshold-crossing and what mechanisms
underlies its implementation. Prior models suggested that threshold-
crossing leads to movement within about 200 milliseconds14. How-
ever, many non-ramping neurons in MFC and other brain areas
abruptly change their firing rates 0.5–1 s before movement (Fig. 3C),
around which time activity also abruptly changes in parietal cortex59.
Such activationsmay reflect the spontaneous ignition of global activity
patterns following threshold-crossings17,60,61. Future modeling work
could investigate this by directly implementing a threshold mechan-
ismandby recreating the activity of not just slow-ramping neurons but
also those with a “step-like” response profile.

Slow ramping signals in the MFC have received much attention in
the spontaneous voluntary action literature. Supporting this view,
Fried and colleagues7 found that a greater fraction of neurons in MFC
changed their activity prior to movement compared to temporal
regions, suggesting a particular importance of this region. However,
slow ramping signals have been observed in other regions, including
medial temporal cortex7, sensory areas6, and subcortical areas such as
the locus coeruleus (indexed by pupil dilations)62. Also, recordings in
rats have found ramping activity in the dopaminergic substantia
nigra63–65. Recent large-scale recordings of neural activity in mice fur-
ther suggest that spontaneous voluntary movements involve widely
distributed rather than localized activity66,67, as suggested by Schurger
and Uithol68. Taken together, fluctuations influencing movement tim-
ing may reflect a distributed, brain-wide process rather than one
localized only in MFC. One—admittedly speculative—possibility is that
these fluctuations are related to fluctuations in arousal69, which may
explaincorrelations between theRP and respiration70 and thepresence
of pupil dilations before freely timedmovement in humans62. If so, our
model might thus be implemented not in cortical regions exhibiting
slow ramping activity, such as MFC, but rather in subcortical arousal
hubs such as the Locus Coeruleus. Fluctuations and ramping in cortical
regions could then be caused by input from these areas to the MFC71.
Future studies should test this hypothesis by investigating the spa-
tiotemporal relationship between slow ramping activity (including
activity prior to the onset of slow ramping in trial-averaged activity, as
we did in Figs. 5) and (1) peripheral signatures of arousal and activity in
arousal related areas, such as the Locus Coeruleus, and (2) activity
more proximal to the time of threshold-crossing or movement.

Crucially, because slow-ramping signals before spontaneous
voluntary action may reflect stochastic population-level neural fluc-
tuations, they also offer the opportunity to validate models that
describe how temporally stable fluctuations emerge from neural
dynamics. Brain activity fluctuates over several seconds or tens of
seconds72, and the temporal properties of such fluctuations correlate
with behavior73 change with age74, and are disrupted in disease75. It is
therefore of interest to understand how these fluctuations emerge
more generally. Indeed, prior work has also suggested that such fluc-
tuations emergewhen neural systems arepoised at the edgeof a phase
transition24,25,32,76–79 (i.e., at criticality). In the present study, we
manipulated the clustering coefficient of our networks to be just below
a critical point, which had previously been shown to lead to sponta-
neous fluctuations in network activitys24,25. By introducing slow
synaptic transmission, we showed that factors besides the parameter
poised near criticality can alter the spatiotemporal dynamics of
emergent fluctuations. Our model suggests that clustering and slow
synapses lead to slow fluctuations emerging spontaneously in spiking

networks (for instance, during resting periods). However, models
using different mechanisms could potentially recreate our results. For
instance, in ourmodel we generated fluctuations by grouping neurons
into clusters that had relatively higher (lower) intra- (inter-) cluster
probability of connection between neurons. Schaub and colleagues25

found that other architectures (e.g. small-world connectivity) or
varying intra-cluster synaptic strength instead of connection prob-
ability can also lead to spontaneous fluctuations. Furthermore, in our
model, we temporally smoothed fluctuations via slow synaptic trans-
mission. However, short-term plasticity or neuro-modulatory factors
could potentially also stabilize fluctuations, and short-term plasticity
could potentially alter the clustering degree, leading to further chan-
ges influctuationdynamicsWe elected touse slowsynapses over these
other possibilities due to their simplicity—slow synapses donot involve
changes in connectivity, as short-term plasticity would, or factors
external to the network, as neuromodulatory factors would, and thus
our results emerge spontaneously. Future modeling efforts could
explore whether combinations of these other factors would lead to
results like ours and compare models to establish which factor, or
combination of factors, best explain fluctuations in neural activity.
Future studies could also investigate networks such as these analyti-
cally, as Schaub and colleagues did for clustered networks with fast
synapses25, although we note that slow synapses might complicate
suchanalysis bymakingnetworkactivity dependent onfiring further in
the past due to slower decay of synaptic currents (essentially making
dynamics non-Markovian).

Slow ramping signals also emerge in other behavioral contexts,
such as delayed response tasks (the contingent negative variation,
or CNV, which is dissociated from the RP80,81), motor
preparation82,83, and time perception84,85. Crucially, ramping in these
other behavioral contexts occurs between two well-defined points—
usually an external stimulus that leads to a response—whereas
ramping onset in the spontaneous voluntary action context emer-
ges without an external cue. So, whether slow ramping reflects
similar processes across these contexts is unclear. In other “exter-
nally cued” contexts, reaction times are often too fast (hundreds of
milliseconds) for “slow ramping” to occur beforehand, and even
without time pressure to respond, pre-movement ramping, at least
in MFC, is sometimes absent when decisions are not made sponta-
neously (e.g. according to stimulus value)15.

Interestingly, slow ramping with a seemingly spontaneous
onset also occurs before other types of spontaneous behaviors,
including generation of creative ideas86, spontaneous abstract
decisions87,88, eureka moments in problem solving89, free recall of
memories79,90,91, and switches between bistable percepts during bino-
cular rivalry92. Notably, slow ramping signals before creative ideashave
been linked to the temporal properties of spontaneous resting-state
fluctuations86, similar to the relationship between autocorrelation and
slow ramping13 that we investigated. Others have noticed these simi-
larities and proposed that threshold-crossings by slow spontaneous
fluctuations underlie various types of spontaneous behaviors17. It is
thus tempting to suggest that the neuralmechanismwe investigated in
the present study may apply to spontaneous cognitive and perceptual
processes more generally, offering an intriguing direction for future
empirical studies.

Methods
LIF Network Simulations
We simulated networks of leaky integrate-and-fire (LIF) neurons where
themembranepotentialVm was governed (andupdated at a resolution
of 1ms) by the equations:

τm
dVm

dt
= EL � Vm

� �
+ Iapp +RI + ζ ð1Þ
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Here τm is the synaptic time-constant (10ms for our simulations). EL is
the reversal potential (−70mV). Iapp is a constant bias current set at the
rheobase (300 pA). ζ ∼Nð0,0:5mV Þ is the noise term, which changes
every 10ms. In other words, each neuron receives constant noise for
10ms, which then changes. The membrane potential, Vm, had a
threshold of −40 mV, and upon crossing it was reset to −65 mV and
held constant for a refractory period of 2ms. In every simulation
Vminitial ∼Uð�70,�50mV Þ for each neuron.

RI is the synaptic current vector. For each neuron it is a sum
(weighted according to the connectivity matrix W ; details below) of
the other neurons’ synaptic output. Each such synaptic output is itself
a weighted sum of fast and slow synaptic currents. RI follows the
equation:

RI =W � 0:9 � Ksyn � rslow + 1� Ksyn

� �
� rf ast

� �
ð2Þ

Here, 0≤Ksyn ≤ 1 is the ratio of fast to slow synapses. Hence, if Ksyn =0
or Ksyn = 1 the network’s activity would entirely be governed by fast or
slow synapses, respectively. And 0<Ksyn < 1, the network’s activity is
governed by a weighted sum of fast and slow synaptic currents. We
multiplied the slow synaptic currents by 0.9 to afford better compar-
isons between networks with similar clustering values (see below).
Synaptic currents, r, follow a double-exponential time course includ-
ing a rising and falling time-constant which differs between fast and
slow synapses. Thus r follows the equations:

dr
dt

= � 1
τf all

r + s ð3Þ

ds
dt

= � 1
τrise

s +
1

τriseτf all
� SpikesðtÞ ð4Þ

Here τrise and τf all are the time-constants for the synaptic currents to
rise to their peak and then decay, respectively. Fast synapses had
τrise =2 ms and τf all = 5ms and slow synapses had τrise =20ms and
τf all = 100ms33. Spikes tð Þ is a binary (0 or 1) spiking vector reflecting,
for each time-step in the simulation, whether each neuron had spiked
on the previous timestep. These spiking valueswere normalized by the
rising and falling time constants, which ensured that the same total
current was delivered for fast and slow synapses (see Fig. 1B).

Connectivity matrix construction
Much of the dynamics of neural networks are determined by how
neurons are interconnected, encoded in the connectivity matrix W :

Previous research has found that balanced networks with roughly
equal excitatory and inhibitory signaling exhibit stable asynchronous
dynamics30. Balanced networks are usually implemented with more
excitatory than inhibitory neurons (usually 75–80%excitatory), though
with relatively weaker synaptic signaling in those excitatory neurons
(to compensate for their higher proportion). To introduce slow
changes in firing rates, we grouped the excitatory neurons into “clus-
ters” both topographically and synaptically. Topographically, we
raised the probability of connection for inter-cluster excitatory neu-
rons in comparison with intra-cluster excitatory neurons. Synaptically,
we increased the weights representing connections between excita-
tory neurons in the same cluster24 (although similar slow fluctuations
in firing rates can be achieved by increasing intra-cluster connectivity
strength alone, as well as through othermethods25). Notably, however,
the slow fluctuations in firing rates that emerged due to this clustering
were depended significantly on the synaptic dynamics (see LIF Net-
work Simulations section above).

We wanted tomaintain sparse connectivity in our network, hence
we used a 20% connection probability between any two excitatory
neurons (PEE), taking into account the different number of intra- and

inter-cluster connections. In a network with more than two clusters,
there will be a larger percentage of inter-cluster connection opportu-
nities than intra-cluster ones. So, calculating the precise values of the
intra-cluster connection probability (PIn

EE ) and inter-cluster connection
probability (POut

EE ) is non-trivial. To do so, we first note that the overall
probability of connection (PEE) is a sum of intra- and inter-cluster
connections divided by the total number of possible connections
between excitatory neurons:

PEE =
E # Intra� cluster connectionsð Þ+ E # Inter � cluster connectionsð Þ

NE
2 =0:2

ð5Þ

Next, we find the expected number of intra-cluster connections:

E # Intra� cluster connectionsð Þ=PIn
EE � NClusters � C2 =PIn

EE
NE

2

NClusters

ð6Þ

WhereNClusters is the number of clusters,C is the number of neurons in
each cluster (which equals NE

NClusters
), and NE is the total number of exci-

tatory neurons. The expected number of inter-cluster connections
similarly follows:

Eð# Intra� cluster connectionsÞ=POut
EE � NClusters NClusters � 1

� � � C2

=POut
EE

NE
2ðNClusters � 1Þ
NClusters

ð7Þ
Then, letting A= NE

2

NClusters
and B= NE

2ðNClusters�1Þ
NClusters

for simplicity, we
obtain:

PEE =
PIn
EE � A+POut

EE � B
NE

2
ð8Þ

Finally, defining the clustering ratio REE as

REE =
PIn
EE

POut
EE

ð9Þ

we can then solve explicitly for PIn
EE and POut

EE :

PIn
EE =

NE
2PEEREE

B+AREE

ð10Þ

POut
EE =

NE
2PEE

B+AREE

ð11Þ

Solving for these probabilities explicitly thereby allows for a
relatively easy construction of connectivity matrices corresponding to
clustered networks, while maintaining a constant probability of con-
nection overall (PEE =0.2, or 20% between excitatory neurons). Fur-
thermore, these equations demonstrate that the precise values of PIn

EE
and POut

EE depend not only on the clustering coefficient (REE), but also
the number of excitatory neurons (NE), and the number of clusters
(NClusters) (or, equivalently, on the number of clusters and size of each
cluster).

Simulating & analyzing fluctuations
During simulations we varied two control parameters: the clustering
coefficient, REE (defined below), and the ratio of slow-to-fast synapses,
KSYN (defined above).We simulated 5 s of activity in 50 unique network
architectures for a range of REE values (1 to 6 at increments of 0.1) and a
range of synapse ratios (0% to 50% slow synapses at increments of
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10%). After discarding the first 500ms of each simulation, we calcu-
lated several measures of temporal variability from simulated firing
rates. First, we calculated the power spectra of firing rates (obtained by
convolving spike trains with a gaussian kernel of width 400ms) using
the fast-Fourier transform in MATLAB and then taking the absolute
value of the resulting complex-valued data. For calculating the spectral
slope of these power spectra, we transformed data into log-log space
and linearly regressed power on frequency, and then took the slope of
the resulting linear fit as the spectral slope. For autocorrelation, we
calculated firing rates using 50ms non-overlapping bins and then
calculated the autocorrelation of the resulting time-series up to lag 20
(corresponding to 1000ms). For autocorrelation timescales, we fit an
exponential function to the autocorrelation at lag t using the following
equation:

ACF tð Þ=a+b � e�t
τ ð12Þ

And took the decay constant (τ) as the autocorrelation timescale.
We used the approach of Cavanagh and colleagues22 by fitting an
exponential function to autocorrelation averaged across all excitatory
neurons in a given network (as opposed to fitting and then averaging).
We also followed prior research20,22 and excluded neurons with trial-
averagefiring rates less than2.5 Hz from further analysis, andomitted τ
and autocorrelation of a network from further analyses if any of the
following criteriaweremet: (1) fitted τwasnot between0 and 1000ms,
(2) fitted parameter bwas below zero, or (3) iffitting of the exponential
model did not converge. These rejection criteria led to omission of
3675 out of 15300 simulated trials (24%), but more than half of that
(1913) came from networks with clustering coefficients above 4, at
which point activity started transitioning into a winner-take-all regime.

Next, for CV, we calculated the firing rates of each excitatory
neuron i∈ {1,…, N}, where N is 320 (80% of 400), over time using non-
overlappingbins of 100ms. Fromthesewe calculated the coefficient of
variation of firing rates across time (standard deviation divided by
mean). For eachneuron, with T time bins and firing rates at each binwe
get a sequence Fi = [fi(t1), fi(t2),…, fi(tT)], over whichwe calculated the
standard deviation σi andmean μi. Then, the network-level coefficient
of variation is as follows:

CVNet =
1
N

XN

i= 1

σi

μi
ð13Þ

We calculated a single CVNet value for each network, and plot
grandmeans and standard error across networks in Fig. S1A. In Fig. S1B
we plot individual network-average values (for the first 10 of the 50
networks to improve visibility).

In order to quantify spiking variability that was due to slow-
switching or bistable activity, we also calculated the ŜT value used by
Schaub and colleagues25 to investigate slow-switching behavior. This
measure quantifies spiking variability over time by taking the average
firing rate in each cluster i ∈ {1,…, C} in 100ms non-overlapping bins.
Then, for each cluster with firing rates in T timebins we get a sequence
of firing rates Fi = [fi(t1), fi(t2),…, fi(tT)] where tk represents the kth time
bin, for which we calculate the standard deviation σT(i), and then sum
to obtain an initial measure of spiking variability.

ST =
1
C

XC

i = 1

σT ðiÞ ð14Þ

We then normalize this value by subtracting a bootstrapped value
SBoot calculated on shuffled data (shuffling each neuron’s cluster
membership), averaged over 20 random shuffles.

ŜT = ST � SBoot ð15Þ

Like for CV, we calculated a single ŜT value for each network, and
plot grand means and standard error across networks in Fig. S1C. For
Fig. S1D we once again plot individual network-average values for the
first ten of fifty networks.

Network selection for threshold-aligned analyses
Priorworkhad shown that clusterednetworks exhibitfluctuations for a
critical range of clustering coefficients (2 < REE < 5 typically, although
this depends on network specifics; refs. 24, 25). Because we generated
network structures pseudo-randomly (setting the seed for random
generation using MATLAB’s rng command), the critical range was
slightly different for each network. We identified an REE value suitable
for simulation in each network by visually inspecting activity at a range
of values. We selected REE values for each network such that the net-
work exhibited fluctuations at the given value for both 100% fast and
50% slow synapses, but exhibited winner-take-all behavior in at least
one case if we increased the REE by 0.3. Prior work had linked the REE

value demarking the transition to the winner-take-all regime to the
leading eigenvalue of the connectivity matrix exceeding a value of 125.
However, our simulations didnot exhibit such a relation, likely because
that prior work used non-dimensionalized equations for simulating
our activity whereas we used the dimensionalized versions of those
equations.

Threshold alignment
We hypothesized that spontaneous fluctuations trigger movements
upon crossing a threshold, leading to slow ramping in trial-averaged
activity. To investigate this hypothesis, we simulated 10-second trials
100 times for each of the 20 network architectures and then aligned to
threshold-crossings (defined below). We identified the most-active
cluster across all simulated trials and aligned to threshold crossings in
that cluster (reflecting the notion that threshold crossings in only
some subpopulation of SMA would lead to a movement). If no
threshold crossing was detected in a trial, the trial was omitted from
further analyses.

Threshold crossings were defined as the time at which the
most-active cluster crossed 50% of its maximum normalized firing
rate across the entire simulation period. This was obtained by
averaging firing rates across neurons in each cluster, subtracting the
mean firing rate of the first 500ms, and then dividing by the max-
imum firing rate on each trial. The choice to use a different
threshold for each network was motivated by the fact that the
magnitude and other features of fluctuations were heterogeneous
across different networks even with similar clustering coefficients.
Our choice of 50% of the maximum normalized firing rate was
motivated by Fried and colleagues’7 finding that increasing neurons
reached about 50% of their maximum normalized firing rate right
before movement (Fig. 4 in ref. 7). Only trials where crossing
occurred more than 3 s into the trial were retained for analysis of
neural data (as is commonly done in self-initiated action
paradigms7), as we were looking at changes across this period.

Neurons were categorized as increasing or decreasing by com-
paring their firing rates in the 400ms before threshold crossings to
theirfiring rates during a baseline period (−3 to−2 s, rank-sum testwith
a cut-off of p = 0.01, as in ref. 7). Firing rates were smoothed with a
gaussian kernel (width 400ms), then averaged across response types
(increasing and decreasing) to get a single trace for each network.
Those traces were then averaged across networks for Fig. 2A; the
shaded regions reflect the confidence intervals across networks.

Our EEG proxy was obtained by averaging the post-synaptic
potentials (PSPs) onto excitatory neurons41. We retained the PSPs onto
eachneuron (RI in the above equations).We then sub-selected the PSPs
to retain only those going onto excitatory neurons, averaging across
neurons toobtain a single EEGproxyper trial.We then averaged across
trials to get a single EEG proxy trace per network. Those traces were
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again averaged across networks for Fig. 2B, and the shaded regions
reflect the confidence intervals across networks.

Autocorrelation at the single-neuron and cluster level was
obtained using the autocorr function in MATLAB on the firing rates
(smoothed using a moving average filter with a window of 10ms to
avoid smoothing artifacts; then averaged across neurons in each
cluster for cluster-average firing rates) for each −3 to 0.5-second trial
aligned to threshold-crossings. Those traces were then averaged
across trials to get a single autocorrelation trace for each neuron or
cluster. Then, those traceswere averaged across neurons or clusters to
get a single trace per network and then averaged across networks to
obtain grand averages for Fig. 2C.

Neuron Categorization & Response Profiles
We categorized empirical and simulated neurons as increasing or
decreasing following the process described by Fried et al.7. We com-
pared firing rates in the 400ms before threshold crossing or move-
ment to firing rates during a baseline period (−3 to −2 s) using a non-
parametric rank-sum test. Neurons that significantly increased
(decreased) their activity relative to baseline were categorized as
increasing (decreasing; cut-off was p =0.01). Notably, this process
omits neurons with more complex response profiles (e.g. Figure 3 in
Fried et al. 7), but these are out of the scope of this study.

MFC neurons had a mixture of response profiles. In particular,
some neurons slowly ramped their firing rates up or down before
movement, and others exhibited a steep jump up or down before
movement. Simulated neurons tended to exhibit the same type of
response (slow ramp or steplike), but responses in empirical data were
mixed and therefore required amethod to distinguish them. To do so,
we followed a process similar to the supplementary analysis con-
ducted by Fried et al.7 (supplementary analysis/Fig. S2 in their article).
We fit a sigmoid function to the trial-averaged smoothed firing rates
(400ms Gaussian) using nonlinear least-squares via the Levenberg-
Marquardt algorithm inMATLAB.We fit a different sigmoiddepending
on if the neuron was increasing or decreasing:

FW � �1ð Þd
1 + expð�ðx � t0Þ=αÞ

+ FB ð16Þ

Here FB is the firing rate at baseline, FW is the firing rate in the
400ms before movement. t0 is the (fitted) sigmoid inflection point. α
is the (fitted) inverse-gain parameter (i.e. higher values of α corre-
spond to a smoother ramp). And d is 0 for increasing neurons and 1 for
decreasing ones. We selected an inverse-gain of 0.4 as the cut-off for
steplike versus slow ramp response profiles based on visualizing
averaged firing rates from the Fried et al.7 (2011) dataset (see Fig. 2C).
Thus, neurons with an α parameter greater than 0.4 were categorized
as slow-ramping, and neurons with an α parameter less than 0.4 were
categorized as steplike.

Decoding Analyses
We also assessed whether above-chance decoding accuracy in the
seconds beforemovement7,37 might emerge from aligning fluctuations
like those in our networks to threshold-crossings. For simulated data,
at each time point, we compared spike counts in the time bin [t-0.4, t] s
to spike counts in the baseline of (−3, −2.6) s for all neurons. We first
constructed a pseudopopulation of neurons for which we had more
than 40 trials by grouping them into one dataset for purposes of the
decoding analysis. We trained a linear discriminant analysis classifier
on 80% of the data and recorded its performance on a reserved 20%
test set (i.e., 5-fold cross-validation). Figure 3A shows the average
accuracy and standard error across 5 cross-validation splits for indi-
vidual networks (the same splits were used for Ksyn =0 and Ksyn =0:5),
as well as performance on 100 random splits of the data to assess
chance-level performance. For empirical data, we constructed a

pseudo population of all recorded MFC neurons. We aggregated
across subjects with at least 50 trials and conducted the same analysis
as above, with time relative to movement onset rather than threshold-
crossing.

To assess the temporal generalization of decoding (Fig. 3B), we
completed a similar analysis as above. However, rather than splitting
the data at a single timepoint into a training and testing set, we trained
the classifier on the data from a given time point and then tested the
trained classifier on a different time point40. Therefore, the main
diagonal (train and test timepoint are the same) corresponds to the
classifiers’ training accuracy; the off-diagonal results refer to the clas-
sifiers’ test accuracy.

Simulating ramping spike-trains
We simulated spike trains where we knew that the ground-truth was a
gradual ramp in order to see if the asymmetry we observed in our
temporal generalization analysis (where decoders trained to differ-
entiate activity from a baseline generalize better into the future than
into the past) is due to ramping. We simulated 50 spike trains for a
pseudopopulation of 20 neurons. Half of the neurons increased their
firing rates from 5Hz to 8Hz, and the other half decreased their firing
rates from 8Hz to 5Hz. We simulated 3 s of activity (labeled as −3 to 0
to match other analyses) and generated spike trains in 50ms bins,
where the instantaneous firing rate was obtained by linearly inter-
polating the starting and ending firing rates. Then, we conducted the
same temporal generalization analysis as above using a baseline of
[−3,−2.6]. We found a striking asymmetry in the AUCs such that
decoders generalized better into the future than into the past (one-
tailed rank-sum test on upper vs lower triangle of AUC matrix,
p <0.001; Fig S4D).

Analysis of pairwise correlations at baseline
Our model suggests that early ramping reflects fluctuations in clus-
tered networks aligned to threshold-crossings. Crucially, those fluc-
tuations emerge naturally due to the clustered connectivity, and also
because neurons that ramp up tend to be in the same cluster, and
those that ramp down tend to belong to clusters other than the one
ramping up. However, in our model, connectivity is static, as would be
expected in biological networks at the time scales inwhichwe simulate
here. Neurons in the same cluster therefore show correlated activity
across the entire trial, not just during ramping. Hence, our model
predicts that neurons that ramp in up or down together before
movement or threshold crossings should have correlated activity even
before ramping onset.

We thus investigated pairwise correlations at baseline in empirical
neurons in a baseline period of (−3.5, −2.5) (a baseline of (−3, −2.5) was
used for simulated data becausewe did not save data earlier than −3 s).
We first smoothed (Gaussian kernel, 400ms wide), then soft-
normalized (divided by the square root of the maximum firing rate39)
firing rates, and finally down-sampled to a sample every 50ms to avoid
inflating correlations due to autocorrelations in the data. After that, we
correlated firing rates between every pair of neurons that were
recorded in the same session, keeping track of whether the pair was
both increasing, both decreasing, one increasing and one decreasing,
or involved a neuron that didn’t change its firing rate (for these ana-
lyses we categorized neurons with a steplike response as “other” in
order to focus solely on slow-rampingbehavior). At that point, we used
linear mixed-effects models (LME; with the network or subject as a
random intercept) to investigate whether correlation structure at
baseline depended on later ramping behavior. We found that
increasing and decreasing pairs show significantly correlated activity
at baseline. In contrast, increasing-decreasing pairs do not; they also
show significantly lower correlations than increasing-increasing pairs
and decreasing-decreasing pairs. Notably, running the same analysis
without separating slow ramping and steplike responses led to all
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shown statistical tests in Fig. 4C becoming highly significant (both
increasing vs increasing-decreasing p =0.001; both increasing vs other
p =0.013; both decreasing vs increasing-decreasing p < 0.001; both
decreasing vs other p <0.001; LME post-hoc tests, Tukey correction),
aswell as the difference between increasing-decreasing andother pairs
becoming significant (p = 0.040). Additionally, omitting pairwise
comparisons involving two neurons on the same channel (accounting
for potential issues due to spike sorting) largely did not change the
results for decreasing-decreasing pairs, which had many examples.
However, only few slow ramping increasing-increasing pairs remained
after this correction, reducing statistical power and leading to insig-
nificant differences between increasing-increasing vs increasing-
decreasing pairs (p =0.439), and increasing-increasing vs other pairs
(p = 0.777). However, the estimated correlation was similar to
decreasing neurons after that correction, sowe suggest that the lack of
statistical power is the main cause of these differences.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Simulated data generated and analyzed in this study are provided in
the Source Data file. Source data are provided with this paper.

Code availability
Code used for simulating data & analyzing simulated data
are available on Github (https://github.com/jgavenas42/
SlowRampingSpikingNetwork).
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