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     Abstract 

This study investigated the stability of latent classes of students with learning disabilities 

among a heterogeneous sample of elementary-aged children whose first language is Spanish.  To 

this end, children (N = 284) in Grades 1, 2, and 3 at Wave 1 (Year 1) were administered a battery 

of vocabulary, reading, math, and cognitive measures (short-term memory, working memory, 

rapid naming, inhibition) in both Spanish (L1) and English (L2).  These same measures were 

administered one and two years later (Wave 2 and 3).  Two stable latent classes of children at 

risk for learning disabilities (children with comorbid difficulties and children with high order 

difficulties) emerged that were distinct from two latent classes (balanced bilinguals, unbalanced 

bilinguals) of average achievers who varied in second language acquisition. Further, significant 

growth parameters that uniquely predicted the log-odds identifying latent classes across all status 

groups were measures of working memory. Finally, the significant contributions of L2 cognitive 

measures to latent class status were dependent on L1 cognitive performance. The results suggest 

that statistically distinct and stable latent classes of children with learning disabilities emerge 

under the umbrella of English language learners and that growth in the executive processes of 

working memory and first language cognitive performance play an important role in predictions 

of latent class status.  

Keywords: reading and math disabilities, working memory, learning disabilities, latent transition 

analysis, English learners 
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Educational Impact and Implications  

     English learners with Spanish as a first language bring many assets and strengths to L2 

(second language) reading and math tasks, which may transfer from their proficiency in their L1 

(first language). However, confounds exist in the assessment of children with potential learning 

problems who are second language learners who could be provided intervention services.  Some 

of these confounds are due in part to attributing difficulties in second language acquisition and 

reading/math achievement to the same academic skills and cognitive processes as children with 

learning disabilities. Other confounds relate to only testing the child in their second language. 

The present study identified two discrete and stable latent classes of English learning (EL) 

children at risk for learning disabilities (LD) in both language systems separate from average 

achieving children who varied in second language acquisition. Key cognitive measures in the 

predictions of latent class status were naming speed and working memory Specific cognitive 

inefficiencies in L1 were related to cognitive inefficiencies in L2. The present findings suggest 

there are several limitations of longitudinal studies that assess risk only in the child’s second 

language.  
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  Stability of Learning Disabilities, Cognitive Growth, and L1 in English Learners:  

                               A Latent Class and Transition Analysis 

  

English learners (ELs) are a heterogeneous group of students who speak, read, write or 

understand a language other than English in their homes. In U.S. public schools, ELs with 

Spanish as the first language constitute a large percentage of the EL population (73.1%), and are 

more likely to have reading and/or math difficulties in the elementary school years than other 

children learning English as a second language (e.g., Batalova & McHugh, 2010; Hemphill & 

Vanneman, 2011; National Assessment of Educational Progress [NAEP], 2011; 2017, 2020; see 

Kieffer & Thompson, 2018, for a critical review).  Compounding these aforementioned 

difficulties is that many of these EL children with reading and/or math difficulties are not 

provided appropriate intervention services (e.g., Artiles et al., 2006; Mancilla-Martinez et al., 

2019; Morgan & Farkas, 2016; Sullivan et al., 2015). Clearly, not all children with Spanish as a 

first language and learning English as a second language will experience learning difficulties and 

therefore need intervention services. English learners with Spanish as a first language bring 

many assets and strengths to reading and math tasks, which may transfer from their proficiency 

in their L1 (first language). However, confounds do exist in the assessment of children with 

potential learning problems who are second language learners who could be provided 

intervention services (e.g., Francis et al., 2019; Santi et al., 2019; Rojas et al., 2019). Some of 

these confounds are due in part to attributing difficulties in second language acquisition and 

reading/math achievement to the same academic skills and cognitive processes (e.g., Cho et al., 

2019; Farnia & Geva, 2019; Goodrich & Namkung, 2019; Swanson, Kong & Petcu, 2019). 

             The aforementioned issues call for better tools and methods for accurately identifying 
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EL children at risk for reading and/or math difficulties. There have been some notable 

methodological advances made to identify discrete learning groups, such as children with 

learning disabilities (e.g., Grimm et al., 2019) based on latent class analysis (e.g., Lanza et al., 

2013; Muthén & Asparouhov, 2020).  Latent class analysis (LCA) is a statistical method used to 

identify subgroups of individuals characterized by similar multidimensional patterns of responses 

(e.g., Collins & Lanza, 2010). Latent class modeling can be used to identify group membership 

of specific classes of individuals based on proficiency in reading and/or math. Although reading 

and/or math performance in EL children can be represented as a continuous outcome variable, 

the sample may be composed of different groups (or classes) of individuals. This group 

membership is not directly observed in latent growth models even though the distribution of 

children’s reading and/or math proficiency may reflect at least two different latent classes (e.g., 

children at risk and not at risk for learning disabilities). Unfortunately, when focusing only on 

continuous reading and/or math variables, the distributions of these latent classes are not 

observed, even though the continuous variable may reflect a mixture of distributions (see  

Hickendorff et al., 2018, Nylund-Gibson & Choi, 2018; Vermunt, 2007; for review).   

Several studies have used latent growth models to better understand children at risk for 

learning disabilities (e.g. Peng et al., 2016b; Quinn et al., 2020). Although latent growth 

modeling permits the researcher to use the rate at which the processes change over time, it does 

not tell us much about the unidimensionality or the state of EL children at risk for RD and/or 

MD.  That is, the state of risk for learning disabilities may be fairly stable or extremely transient. 

As an example, students may not be identified as at risk for learning disabilities in grade 1, but 

experience difficulties in grade 3. Latent transition analysis (LTA) is well suited for the study of 

latent variables that have the potential of changing over time, as it can be used to test models 
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involving a stage sequential development; this procedure differs from LCA in which individuals 

do not change membership over time. 

To the best of our knowledge, only a few studies have addressed these aforementioned 

issues related to EL children using latent class and latent transition analysis on an array of 

language, achievement, and cognitive measures (Catts et al., 2012; Grimm et al., 2019; Swanson 

et al., 2016; 2021). An earlier study (Author et al., 2016) identified a distinct latent class of EL 

children at risk for reading difficulties at the first testing wave that were also exhibiting 

difficulties three years later. The results indicated an extremely low incidence of children 

identified as good readers in wave 1, being identified as at risk for reading difficulties in the later 

testing waves. There were several limitations in this study, however, which a follow-up study 

addressed (Author et al., 2021). The primary limitation of the earlier work was focusing on EL 

children at risk for reading difficulties defined on English measures of reading. That is, if risk 

status for some EL children is related to learning disabilities, which in turn is assumed to have a 

biological base (see footnote 1), then it must be shown that the disabilities in reading/or math do 

not reside in just one language system. Such was not the case in this study.  

A more recent study (Swanson et al., 2021) considered the classification of elementary 

children at risk for learning disabilities based on performance on English and Spanish normed 

referenced measures of vocabulary, reading, and mathematics. In addition, the transitional 

probabilities between grades at two test waves were analyzed. Discrete groups of EL children at 

risk for both reading disabilities and math disabilities (MD) emerged. However, the stability of 

these latent classes could not be assessed. Although some classes were stables across the two 

time periods others were not.  



LEARNING DISABILITIES 
                                                                                                                                            7 

These earlier studies, however, highlighted some of the difficulties in identifying EL 

children at risk for learning disabilities and whether those disabilities are stable over time. One of 

the difficulties was the reliance on only two-time points (e.g., Swanson et al., 2021). One cannot 

assume that stability over time is isolated to two measurement occasions (Hickendorff et al., 

2018, p. 12).  Further, the shape of data (e.g., linear, quadratic, curvilinear) could not be 

determined (e.g., Rogosa & Gottman, 1995). Perhaps, a more serious difficulty is that children 

exhibiting academic difficulties in one grade will not exhibit academic difficulties in the next 

grade and vice versa. For example in the domain of math, Morgan et al. (2009) examined the 

stability of MD as a function of low performance at various time points. The stability of MD 

from kindergarten to Grade 5 ranged from 28% to 65% of the sample. Likewise, Jordan and 

Hanich (2003) reported that only 18% of students identified as experiencing MD in Grade 2 

retained the same status in Grade 3; however, they also reported that 88% of students identified 

as experiencing comorbid math and reading difficulty retained the same classification. Other 

issues related to determining a stable latent class of EL children at risk for learning disabilities 

reflect changes in definitional criteria (e.g., cut-off scores related to defining risk status change), 

curriculum changes, and/or demands placed on various language, achievement, and/or related 

cognitive processes in the subsequent grades (e.g., see Etmanskie et al., 2016; Martin et al., 

2013, for review). 

To address some of these issues, the current study has three purposes. The first purpose 

determines if children at risk for learning disabilities within a heterogeneous EL sample reflect a 

stable latent class across three testing waves. The second purpose determines if distinct cognitive 

processes predict children at risk for learning disabilities from children who vary in language 

acquisition. The final purpose determines whether cognitive processing in L1 has an impact on 
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L2 processing in determining latent class. The literature addressing each of these purposes 

follows. 

Language Acquisition vs. Learning Disability 

            Children have been defined as at risk for specific learning disabilities by performing 

below a cut-off score point on norm-referenced standardized reading and/or math measures (e.g., 

Brandenburg et al, 2017; Branum-Martin et al., 2013). For example, performance below the 25th 

percentile on standardized norm-referenced reading and/or math measures across several grades 

is a common standard to identify children at risk for reading difficulties (RD) and/or math 

difficulties (MD) (e.g., Fuchs et al., 2006; Geary et al., 2012; Murphy et al., 2007; Siegel & 

Ryan, 1989; Stanovich & Siegel, 1994; Yeung, 2018).  Multiple measures of reading and math 

are included in the identification process because children with reading and math difficulties 

share similar cognitive processing difficulties and/or common dimensions that underlie their risk 

status (Child et al., 2019; Mann, & Miller, 2013, Swanson, 2020; Swanson & Fung, 2016). 1 

No doubt, several criticisms emerge as to identifying children at risk of learning 

disabilities because of a reliance on arbitrary cut-off scores (e.g., Branum-Martin et al., 2013; 

Cirino et al., 2015). Although latent class analysis or mixed analysis allows for the determination 

of discrete latent classes within these cut-off points, these cut-off points have also been 

exacerbated when defining risk status among EL students because such children are not tested in 

their first language (e.g., Peña et al., 2016). This is because children who are learning two 

languages must attain a threshold in their first language before cognitive and academic skills can 

be assessed, as a child’s mastery of their second language is a function of the child’s linguistic 

competence in their first language (e.g., Cummins), 1979; however see Prevoo et al., 2016, for a 

meta-analysis of this literature).  
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  In response to these issues, the current study includes a broad range of manifest 

variables administered over three years to identify difficulties in reading and math on both basic 

[word identification, calculation] and high order tasks [reading comprehension and mathematical 

problem solving] within both language systems.  The study determines if learning disabilities 

appear as a stable latent class or merely a function of variation in second language acquisition.  

Underlying Cognitive Processes 

Current procedures to identify children with potential learning disabilities assume that 

such children experience cognitive constraints, which impede their ability to perform efficiently 

on language and achievement measures (e.g., Geary et al, 2017; Kaushanskaya, & Yoo, 2013;  

Lesaux et al., 2006). Working memory has been identified as one of the most often referred to 

cognitive processes underlying both RD and MD (WM; David, 2012; Peng et al., 2016a, 2016b, 

2018; Swanson et al., 2004), which has also been related to achievement difficulties in EL 

children (e.g., Swanson et al., 2006; 2015). Working memory (WM) is defined as a limited 

capacity system of temporary stores, functions related to the preservation of information while 

simultaneously processing other information, and attention control related to these functions 

(e.g., Baddeley, 2012).2 Cowan (2014) defines WM “as the small amount of information that can 

be held in the mind and used in the execution of cognitive tasks, in contrast with long-term 

memory, which is the vast amount of information saved in one’s life “(p.197). What is not 

apparent from the research is whether a general executive (WM) system or a specialized system 

(STM) captures academic performance across a large range of academic difficulties in EL 

children.  

Working memory has been shown to contribute significant variance to EL children’s 

reading and math achievement, even when domain-specific processes related to reading (e.g., 
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phonological awareness; Swanson et al., 2015) and math (e.g., estimation, numeracy; Swanson et 

al. 2019) are included in the regression modeling.  Although the association between WM and 

reading and/or math has been established in the literature, the processes of WM that underlie 

predictions of reading and/or math performance are unclear (see Peng et al., 2016a; 2016b; 2018; 

for review).  Some studies have suggested that the storage component of WM (referred to as 

verbal short-term memory, STM, or the phonological loop) plays a major role in academic 

performance (e.g., Peng et al., 2016b).  Other studies have noted that academic difficulties are 

tied to the executive component of WM (e.g., Swanson et al., 2015). Although WM or complex 

span tasks share the same processes  (e.g., rehearsal, updating, controlled search) as short-term 

memory (STM) or simple span tasks, simple tasks have a greater reliance on phonological 

processes than WM or complex span tasks (see Unsworth & Engle, 2007, pp. 1045-1046, for a 

review).  Thus, we considered two cognitive models in accounting for language and academic 

proficiency in EL children at risk for learning disabilities: one focuses on processing efficiency 

at a phonological level and the other focuses on executive processes.  

Phonological system. Several studies support the notion that phonological processes 

underlie basic skills in reading and math computation (e.g., McBride-Chang et al., 2012; 

Verhagen & Leseman, 2016). Indeed, one of the components of WM commonly attributed to 

academic and language development is the phonological loop (phonological STM; Baddeley et 

al., 1998; de Abreu & Gathercole, 2012). Because the phonological loop has been found to play a 

major role in second language acquisition and academic achievement of EL children (e.g., de 

Abreu & Gathercole, 2012; Foster et al.,2015; González & Valle, 2000; Gorman, 2012), it could 

be argued that difficulties in higher-order processes, such as reading comprehension or math 

problem solving, are an artifact of phonological storage. That is, the phonological system, via the 
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phonological loop (i.e., phonological store; subvocal rehearsal), influences children’s verbatim 

memory capacity, which in turn supports reading and math performance. These assumptions are 

consistent with some bottom-up models of higher-order processing which view the primary task 

of executive processing as one of relaying the results of lower-level linguistic analyses upward 

through the language system. Phonologically analyzed information is transferred to WM storage, 

which is then transferred (thus freeing storage for the next chunk of phonological information) 

upward through the processing system to promote the online extraction of meaning. One of the 

key mechanisms related to the influence of phonological STM on reading and math tasks is 

naming speed (Georgiou et al., 2013; McBride-Chang et al., 2012). Naming speed has been 

considered a measure of how quickly items can be encoded and rehearsed within the STM 

system (e.g., Bonifacci et al., 2011; Georgiou et al., 2013). 

     Executive system. An alternative model suggests that cognitive processes separate from 

the phonological system, especially those related to the central executive controlling system of 

WM, play an equally important role in the prediction of potential learning disabilities. Thus, in 

contrast to the aforementioned hypothesis that suggests the phonological system plays the 

dominant role in EL children’s academic performance, a second model assumes that executive 

processes (i.e., controlled attention) also play a major role. The influence of WM on measures of 

reading and math would follow automatically with improvements in controlled attention. 

Controlled attention is operationally defined as the residual variance of a complex WM task that 

predicts the criterion task (e.g., reading) when phonological storage (STM) has been partialed out 

in the analysis (e.g., Bayliss et al., 2003; Engle et al., 1999). Two findings underlie this 

assumption: (1) the executive component of WM has been associated with both reading and math 

difficulties (e.g., David, 2012; Martin et al., 2013; Menon, 2016) and (2) proficiency in L1 and 
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L2 positively influence controlled attention, cognitive flexibility, and overall executive 

processing (e.g., Bialystok, 2011).  

 Thus, the influence of the executive component of WM is related to one's ability to 

accurately access information from LTM, monitor possible action sequences (e.g., associative 

links), and update information (e.g., Engle, 2018). A related mechanism in this process is the 

inhibition of competing language systems (Bialystok, 2011; Bialystok & Feng, 2009; Bonifacci 

et al., 2011). Because inhibition has been attributed to WM (e.g., Friedman et al., 2007; 

Getzmann et al., 2018), as well as reading and math difficulties (e.g., Passolunghi & Siegel, 

2004; Toll et al., 2011), individual differences related to WM may play an important role in EL 

children at risk for RD and/or MD. 

Contribution of Spanish (L1) to English (L2) Cognitive Processing 

 Does L1 (Spanish in this case) have an impact on L2 (English in this case) processing in 

determining a latent class for EL children at risk for learning disabilities? This is an important 

question because a large majority of longitudinal studies designed to determine risk test EL 

children in their second language without the inclusion of L1 measures in the analysis (e.g., 

Finders et al., 2021; Morgan et al 2017; Vukovic & Lesaux, 2013). The distinction between 

language acquisition and learning difficulties cannot be assessed unless the role of the first 

language in achievement outcomes is addressed. Thus, the question emerges as to whether L2 

academic difficulties are heightened by difficulties in their first language or can cognitive 

difficulties that potentially underlie the child’s second language operate independently of their 

first language? This is an important theoretical question as to whether access to both language 

systems in EL children provides some advantages in academic performance. This is also an 

important practical question, considering that it has been argued that bilingual instruction has an 
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additive effect on academic performance when compared to only providing training in reading 

and/or math in one language system (e.g., Lindholm-Leary, 2005; Lindholm-Leary & Block, 

2010). The benefits of monitoring two languages have been noted in bilingual children when 

compared to monolingual children on cognitive measures, such as executive processes (e.g., 

Bialystok & Feng, 2009; also see Gunnerud et al., 2020).  However, the research is unclear as to 

whether switching or transferring one form of knowledge to another plays a role in learning 

difficulties in the child’s second language (Choi et al., 2018; Kempert et al., 2011).  

        The interchange between the two language systems among EL children in the present study 

was assessed by comparing L2 cognitive predictors (e.g., STM, naming speed) of latent class 

status with and without L1 predictors entered into the regression model. The relative contribution 

of performance in the Spanish language is tested by comparing the standardized beta weights of 

the predictors in the equation before and after the inclusion of these measures. Although some L1 

measures may not contribute significant variance to overall predictions of latent class status, 

these L1 processes may play a major role in enhancing the predictions of L2 measures. Thus, in 

this context, Spanish measures may serve as a suppressor variable (cf. Conger, 1974) or what has 

also been referred to in the literature as enhancer variables (e.g., McFatter, 1974). Several studies 

have demonstrated the value of well-conducted suppressor analysis (e.g., Gaylord et al., 2010; 

Kim, 2019), and we extend this research by looking at how cognitive variables related to the first 

language play a key role in second language predictions of latent class status.3 

  Taken together, three questions directed this study. 

1. Can a stable latent class of EL children be identified with learning disabilities among 

children who vary in language acquisition?  
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2. Do measures of growth and the level of cognitive performance predict the latent class 

status? 

3. Do Spanish cognitive processes enhance or operate independently of English cognitive 

predictions of latent class status? 

In summary, the present study determines whether a stable latent class emerges related to 

risk for learning disabilities in reading and/or math risk among EL children. Also of interest are 

the potential cognitive measures that predict the latent classes as well as the role cognitive 

processing in the child’s first language (Spanish) plays in such predictions. Thus, to identify 

latent classes at risk for learning disabilities, a battery of Spanish and English normative 

measures in vocabulary, reading and math was administered across three years. We assumed that 

EL children at risk for learning disabilities experience academic difficulties in both language 

systems across the three testing waves. In contrast, children with average vocabulary and 

academic achievement within one language system but not the other were assumed to experience 

potential difficulties related to second language acquisition. To determine children at risk for 

learning disabilities it was necessary to establish that (a) such children’s academic difficulties 

were not due to (a) general intellectual difficulties (e.g., Ferrer et al., 2010) and (b) comorbid 

difficulties, such as those with Attention-Deficit/Hyperactivity Disorder (ADHD; e.g., Boada et 

al., 2012;  Snowling, 2012). Thus, measures of fluid intelligence and behavioral ratings of 

attention were also included in the classification battery. Measures of attention were included 

because children with ADHD are viewed as having primary processing difficulties that are 

distinct from children with learning disabilities (e.g., Willcutt et al., 2005). Further, children with 

learning disabilities are assumed to be in the normal range of intelligence and this represents a 

distinct category of children from those with general intellectual challenges (e.g., Giofrè et al., 
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2017).  

     Method 
Participants 

          This study was approved by the Institutional Review Board at Univeristy of New Mexico, 

Project title: Math problem solving and working memory growth I English learers at risk for 

Math Disabilities, IRB protocol:99581-1.  The study included a sequential-cohort design in 

which children in Grades 1,2,3 were assessed in Years 1, 2, and 3, creating three cohorts (Cohort 

1: Grades 1-3, Cohort 2: Grades 2-4, Cohort 3: Grades 3-5). Two hundred eighty-four (N=284) 

students in grades 1 (n =115), 2 (n =91), and 3 (n =78) from two large urban school districts in 

the southwest United States participated in this study.  The sample was part of a larger federally 

funded longitudinal study assessing cognitive growth among EL children for a three-year period 

(Swanson et al., 2021). Children who were tested in reading and math for at least two testing 

waves in both English and Spanish were the focus of this analysis.  

        The children in this study were designated by their school as English learners (ELs) and 

were selected from 31 elementary classrooms at Wave 1. EL status in the schools was 

determined by a language usage survey in the home and a state-approved English language 

proficiency (ELP) screener. School records indicated children’s primary home language was 

Spanish (> 95%).  The children were later tested and were nested in 23 classrooms at Wave 2 

and 23 classrooms at Wave 3. The complete sample included 132 boys and 152 girls who 

returned signed consent forms.  No significant differences in gender representation emerged at 

wave 1, χ2(df=2, N= 284) = .76, p = .68, or wave 3, χ2(df=2, N= 266) =1.32, p = .52. Thus, there 

was some attrition at wave 3 (N=18) due to children leaving the school district and/or COVID 

restrictions. The largest reduction of participants in wave 3 occurred in the middle cohort of 

children (Cohort 1 N=6, Cohort2 N=10, Cohort 3= N=2).  Estimation procedures to address 
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“missingness” are discussed below.  

        Children in the sample participated in a full or reduced Federal lunch program and 

were drawn from neighborhoods with high Hispanic/Latino representation. The sample was 

drawn from four large elementary urban schools in two large metropolitan areas.  Two of the 

elementary public schools in the sample yielded, according to state reports, the lowest percentage 

of reading and math score proficiency within the state. Minority (Hispanic/Latino) enrollment 

was 95% of the student body that was higher than the state average. The current study also 

included two urban charter schools with a high Hispanic/Latino (> 95%) representation. State 

reports indicated that one of the charter schools at the time of testing (2017-2018) reported that 

only 35% of children were proficient in reading and 29% were proficient in math. A state report 

on the second charter school had also indicated that only 33% of the elementary children were 

proficient in reading and 29% proficient in math on state measures. All students attended a Dual 

Language Immersion program (two-way immersion), following the 90/10 Model. In this model, 

instruction is delivered in 90% Spanish and 10% English in Kindergarten in all subject areas, 

increasing annually until both English and Spanish are taught equally. For our sample, 

specifically, instruction was delivered in 50% English and 50% Spanish by the fourth grade. 

Although students may have received supplemental instruction in either reading and/or math,  

intervention for such children was delivered by the school was independent of our data 

collection. However, six students in our sample had individualized educational programs (IEPs). 

According to parent reports, approximately 53% of the sample spoke only Spanish, 13% spoke 

both English and Spanish, and 33% spoke only English at home. 

  

     Measures Used for Identifying Latent Classes 
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 The study included group and individual administrations of a battery of tests. The series 

of tests were counterbalanced into one of four presentation orders. No Spanish and English 

versions of the same test (except for the Expressive One-word Picture Vocabulary Test, Spanish-

Bilingual Edition; Brownell, 2001) were presented simultaneously. All participants were 

administered both English and Spanish versions of each measure by bilingual graduate students 

and staff researchers. Because the norm-referenced measures for establishing the latent classes 

are commercially available, along with information on their validity and reliability, the measures 

are only briefly reviewed here. Additional detail was provided below for the experimental 

cognitive measures.   

Vocabulary: Receptive and Expressive  

Peabody Picture Vocabulary Test (PPVT). The Peabody Picture Vocabulary Test 

(Dunn & Dunn, 2007) was administered in English. In this task, children were presented with 

four pictures and asked to select the picture that matched the word read aloud in English. Word 

presentation gradually increased in difficulty.  

        Test de Vocabulario en Imágenes Peabody (TVIP). This measure is similar to the 

PPVT in the presentation and administration, except that words are read aloud in Spanish (Dunn 

et al., 1986). The sample reliabilities (KR20) in English (PPVT) were .97, .96, .96 and Spanish 

(TVIP) was .92, .94, and .92 for waves 1, 2 and 3, respectively. 

Expressive One-Word Picture Vocabulary Test - Spanish-Bilingual Edition. The 

Expressive One-Word Picture Vocabulary Test - Spanish-Bilingual Edition (EOWPVT-SBE; 

Brownell, 2001) was used as a measure of English and Spanish expressive vocabulary, in which 

children were presented with a picture and were asked to name the object in the testing language. 
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The sample reliabilities (KR20) in English were .96, .95, .95 and Spanish were .95, .95, and .93 

for waves 1, 2 and 3, respectively. 

Math: Calculation and Word Problem-Solving.  

 Arithmetic calculation. The calculation subtests from the Woodcock-Johnson III 

(Woodcock et al., 2001) were administered for the English presentation, and Cálculo from the 

Batería III Woodcock-Muñoz (Muñoz-Sandoval et al., 2005) was administered to establish norm-

referenced math levels in Spanish. The subtest required written computation of problems that 

increased in difficulty. The sample reliabilities (KR20) for WJ calculation measures in English 

were .76, .80, .82 and Spanish were .70, .68, and .68 for waves 1, 2 and 3, respectively. 

Math word problem-solving. The math applied problem-solving subtest from the 

Woodcock-Johnson III (Woodcock et al., 2001) was administered for the English presentation 

and the Problemas Aplicados from the Batería III Woodcock-Muñoz (Muñoz-Sandoval et al., 

2005) was administered to establish norm-referenced math levels in Spanish. Both of these 

subtests were individually administered and assessed children’s early mathematical operations 

(e.g., counting, addition, and subtraction) through practical problems. To solve each math word 

problem, the subject listened to the formulation, recognized the procedures that must be 

followed, and then performed relatively simple calculations. The sample reliabilities (KR20) in 

English were .76, .84, .89 and Spanish were .83, .67, and .85 for waves 1, 2 and 3, respectively.   

Reading: Word Identification and Passage Comprehension.  

Woodcock-Muñoz Language Survey-Revised (WMLS-R). The WMLS-R Spanish and 

English word identification and passage comprehension subtests were administered. This test 

assessed children’s reading levels in English and Spanish (Woodcock et al., 2005). Depending on 
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the language of administration, the subtests were administered individually to students in English 

or Spanish. 

Word Identification. For the word identification subtest, children were tested 

individually by presenting them with a list of words, which gradually increased in difficulty. The 

words followed regular spelling patterns in this non-timed test. The sample reliabilities word 

identification (KR20) in English was .94, .92, .92, and Spanish were .90.92, .93 for waves 1, 2, 

and 3, respectively. The sample reliabilities word identification (KR20) in English 

was .94, .92, .92, and Spanish were .90.92, .93 for waves 1, 2, and 3, respectively. 

Passage Comprehension. For the passage comprehension subtest, children identified 

specific words that go in the blank spaces of various passages. Early passages were accompanied 

by a corresponding picture and sentences gradually increased in complexity. The sample 

reliabilities for passage comprehension (KR20) in English were .83, .86, .80 and Spanish 

were .84, .81, and .81 for waves 1, 2 and 3, respectively. 

Fluid intelligence and attention. 

 Fluid (nonverbal) intelligence . The Colored Progressive Matrices test (Raven, 1976) 

was used as an indicator of nonverbal reasoning or fluid intelligence. Children were given a 

booklet with patterns on each page, each pattern revealed a missing piece. For each pattern, six 

possible replacement pattern pieces were displayed. Children had to select (circle) the correct 

missing piece of the pattern. Instructions were presented in both English and Spanish. The 

sample reliabilities (KR20) were .81, .83, and .86 for waves 1, 2 and 3, respectively. 

               Classroom Attention.  Attention was assessed by administering the Conners' Teacher 

Ratings Scales-Revised: Short Form (CTRS–R:S; Conners, 1997). The CTRS-R:S is used to 

evaluate students’ problem behaviors by obtaining ratings from teachers. The homeroom teacher 
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was selected for each child and was asked to complete the CTRS–R: S. The primary measure for 

this study was the Attention-Deficit/Hyperactivity index.  

Cognitive Measures Used for Determining Correlates of Latent Class Membership  

The cognitive measures assumed to be related to the latent classifications assessed the 

storage of phonological information (short-term memory and naming speed) and executive 

processing (central executive of working memory, visual-spatial working memory, and 

inhibition). The convergence of the measures for the English and Spanish versions was 

established in an earlier study (see Swanson, Kudo, & Van Horn., 2019, for further discussion), 

and a full description of each cognitive measure is provided in Swanson et al. (2004; 2008; 2015, 

2019).  

The cognitive measures included a translation from English to Spanish as well as a backward 

translation process (re-translating content from the target language back to its source language in literal 

terms).  Although raw score measures were converted to z-scores and latent measures (see below) 

so that responses were on the same scale (M=0, SD=1), English and Spanish words and numbers 

were not balanced (or could not be balanced) for length (e.g., syllables), because Spanish task words and 

numbers are longer on average. The translation could not control for the number of syllables, frequency of 

use, imagery, and meaning across measures. Spanish and English instructions, however, included practice 

items, and the test items corresponded with expected language responses during individual testing.   Thus, 

the backward translation of the items may have led to more memory demands placed on Spanish tasks. 

However, as shown in supplemental Table 3, for the total sample, memory scores for both English and 

Spanish yielded moderate correlations suggesting some shared variance in terms of difficulty. In addition, 

a comparison of effect sizes between average achievers relative to the other groups showed larger effects 

sizes on English than Spanish memory measures. However, it is important to note that the difficulty of 

processing items in one language versus another could not be controlled and may account for some of the 

outcomes.  



LEARNING DISABILITIES 
                                                                                                                                            21 

Phonological Storage and Naming Speed 

  Short-term memory (STM) measures (phonological loop). Four tasks of STM were 

administered in Spanish and English: forward digit span, backward digit span, word span, and 

pseudoword span. The forward and backward digit span tasks (taken from the WISC-III; 

Wechsler, 1991) and Spanish-translated versions of these two tasks were administered. The 

forward digit span task required children to recall sequentially ordered sets of digits that 

increased in number. The backward digit span task required children to recall sets of digits, but 

in reverse order. Backward digit span was included as part of STM since it loads on the same 

factor as forward digit span and is associated with phonological memory (e.g., Colom et al., 

2006). Dependent measures for both tasks were the largest set of items recalled in order (range = 

0 to 8 for forward digit span; range = 0 to 7 for backward digit span). For the translated Spanish 

versions of the forward and backward digit span subtests, identical numbers were presented in 

the same order as the English version. There were no deviations in the procedure, except for the 

language used. The sample reliabilities (KR20) for forward digit in English were .41, .58, .78 and 

Spanish were .74, .65, and .55 for waves 1, 2 and 3, respectively. The sample reliabilities (KR20) 

for backward digit in English were .79, .51, .61 and Spanish were .66, .49, and .45 for waves 1, 2 

and 3, respectively. 

 The word span and pseudoword span tasks were presented in the same manner as the 

forward digit span task. During the word span task, examiners read lists of one or two-syllable, 

high-frequency words that included unrelated nouns and then asked the children to recall the 

words. The pseudoword span task (phonetic memory span task) used strings of one-syllable 

nonsense words, which were presented one at a time in sets of two to six nonwords (e.g., DES, 

SEEG, SEG, GEEZ, DEEZ, DEZ). A parallel version was developed in Spanish for the word 
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span and pseudoword span tasks. The dependent measure for all STM measures was the highest 

set of items retrieved in the correct serial order (range 0 to 7). The sample reliabilities (KR20) for 

word span in English were .76, .74, .67, and Spanish were .76, .74, and .73 for waves 1, 2 and 3, 

respectively. The sample reliabilities (KR20) for pseudoword span in English were .77, .67, .69 

and in Spanish were .74, .68, and .92 for waves 1, 2 and 3, respectively. 

Rapid naming of digits and letters . Several models assume that operations related to 

academic achievement (e.g., math) are time-related (e.g., Bonifacci et al., 2011; Georgiou et al., 

2013), and therefore naming speed was assessed in this study. The administration followed those 

specified in the manual of the Comprehensive Test of Phonological Processing (CTOPP; Wagner 

et al., 2000). For this task, the examiner presented the child with an array of items (e.g., six 

letters or six digits). Depending on the day of administration, children were asked to name the 

items, speaking in English or Spanish, as quickly as possible for each stimulus set. The 

dependent measure was the amount of combined time it took for children to complete each set. 

The number of errors was also taken into account in creating the final score. The sample 

reliabilities (KR20) for letters in English were .94, .91, .89 and Spanish were .95, .91, and .95 for 

waves 1, 2 and 3, respectively. The sample reliabilities (KR20) for numbers in English 

were .94, .90, .85 and Spanish were .93, .89, and .89 for waves 1, 2 and 3, respectively. 

Inhibition and Executive Processing. 

 Inhibition. The use of random generation tasks has been well articulated in the literature 

as a measure of inhibition (e.g., Towse & Cheshire, 2007). The task required children to actively 

monitor candidate responses and suppress responses that would lead to well-learned sequences, 

such as 1-2-3-4 or a-b-c-d (Baddeley, 2007). For this study, each child was asked to write 

numbers (or letters) as quickly as possible, first in sequential order and then in random non-
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systematic order. For example, children were first asked to write numbers from zero to ten in 

order (i.e., 1, 2, 3, 4) as quickly as possible within a 30-second period. They were then asked to 

write numbers as quickly as possible “out of order” within a 30-second period. After correcting 

for information redundancy and the percentage of paired responses, the dependent measure was 

the number of random items written. Children performed these tasks in English or Spanish, on 

separate days. The sample reliabilities (KR20) for letters in English were .70, .70, .74 and Spanish 

were .78, .78, and .71 for waves 1, 2 and 3, respectively. The sample reliabilities (KR20) for 

numbers in English were .58, .68, .72 and Spanish were .66, .74, and .79 for waves 1, 2 and 3, 

respectively. 

  Central executive of WM. The conceptual span, listening sentence span, digit-sentence, 

and updating task were administered in English and Spanish to capture the executive component 

of WM. These tasks required children to hold increasingly complex information in memory 

while simultaneously responding to a question about the task. For example, after children 

listened to a list of words in the conceptual span task, they were asked, “Which word from the 

list did I say, X or Y?” They were then asked to recall words from the list. This balance of 

simultaneous storage and processing is consistent with several studies of WM processing, 

including Daneman and Carpenter's (1980) seminal WM measure. 

  The conceptual span task was used as an indicator of WM processing that involves the 

ability to organize sequences of words into abstract categories. Children listened to a set of 

words that, when re-organized, could be grouped into meaningful categories. For example, they 

were told a word set such as “shirt, saw, pants, hammer, shoes, nails.” After answering a 

distracter question, they were asked to recall the words that “go together” (i.e., shirt, pants, and 

shoes; saw, hammer, and nails). The range of set difficulty was two categories containing two 



LEARNING DISABILITIES 
                                                                                                                                            24 

words each, up to four categories with four words each. A Spanish- translated version was also 

administered on a separate day. Care was taken in the development of the measure to keep the 

abstract categories the same in both languages (e.g., clothes and tools). The dependent measure 

for both versions was the number of items recalled correctly. The sample reliabilities (KR20) for 

conceptual span in English were .74, .69, .70 and Spanish were .73, .60, and .74 for waves 1, 2 

and 3, respectively. 

     The children's adaptation (Swanson, 2013) of Daneman and Carpenter's (1980) listening 

sentence span task was also administered. This task required the presentation of groups of 

sentences, read aloud, for which children tried to simultaneously understand the sentence 

contents and remember the last word of each sentence. The digit sentence task measured the 

participant’s ability to recall numerical information that was embedded within a short sentence. 

The numerical information referenced either a location or address. On this test, the examiner read 

a sentence and then asked the examinee a process question. The examiner then asked the 

examinee to recall the numbers in the sentence. Children performed these tasks in English and 

Spanish, on separate days.  The sample reliabilities (KR20) for listening span in English 

were .51, .59, .77 and Spanish were .31, .36, and .49 for waves 1, 2 and 3, respectively. The 

sample reliabilities (KR20) for digit-sentence span in English were .77, .81, .83 and Spanish 

were .74, .79, and .80 for waves 1, 2 and 3, respectively.  

          Because WM tasks were assumed to tap a measure of controlled attention referred to as 

updating (e.g., Miyake et al., 2000), an experimental Updating task, adapted from Swanson et al., 

(2004), was also administered. A series of one-digit numbers was presented that varied in set 

length from 3, 5, 7, and 9. No digit appeared twice in the same set. The examiner told the child 

that the length of each list of numbers might be 3, 5, 7, or 9 digits long. Children were then told 
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that they should only recall the last three numbers presented. Each digit was presented at 

approximately one-second intervals. After the last digit was presented, the child was asked to 

name the last three digits, in order. The dependent measure was the total number of sets correctly 

repeated (range 0 to 16). For the translated Spanish version, identical numbers were presented in 

the same order as the English version. There were no deviations in the procedure, except for the 

language used. Children performed these tasks in English and Spanish, on separate days. The 

sample reliabilities (KR20) for updating in English were .71, .85, .91 and Spanish were .67, .84, 

and .92 for waves 1, 2 and 3, respectively. 

  Visual-spatial WM. Some studies have noted that difficulties in solving math word 

problems are related to measures that tap the visual-spatial sketchpad (e.g., Ashkenazi et al. 

2013). Thus, two measures were administered to assess visual-spatial WM: Visual Matrix and 

Mapping & Directions (Swanson, 1992; 2013). Instructions for these measures were given in 

both English and Spanish for a single administration of each task. The visual matrix task 

assessed the ability of participants to remember visual sequences within a matrix.  Participants 

were presented a series of dots in a matrix and were allowed five seconds to study the matrix. 

The matrix was then removed and participants were asked, in both English and Spanish, "Are 

there any dots in the first column?" After answering the process question, students were asked to 

draw the dots they remembered seeing in the corresponding boxes of their blank matrix response 

booklet. The task difficulty ranged from a matrix of four squares and two dots to a matrix of 45 

squares and 12 dots. The dependent measure was the number of matrices recalled correctly 

(range of 0 to 11). 

   The mapping and directions task required the child to remember a sequence of 

directions on a map (Swanson, 1992; 2013). The experimenter presented a street map with dots 
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connected by lines; the arrows illustrated the direction a bicycle would go to follow this route 

through the city. The dots represented stoplights, while lines and arrows mapped the route 

through the city. The child was allowed 10 seconds to study the map. After the map was 

removed, the child was asked a process question [i.e., "Were there any stop lights on the first 

street (column)?"]. The child was then presented a blank matrix on which to draw the street 

directions (lines and arrows) and stop lights (dots). Difficulty ranged on this subtest from four 

dots to 19 dots. The dependent measure was the highest set of correctly drawn maps (range = 0 

to 9). The sample reliabilities (KR20) for the matrix task were .95, .95, and .95 and for the 

mapping/direction task were .69, .70, and .79 for waves 1, 2 and 3, respectively. 

Cut-off Point   

A plethora of studies that have examined children at risk have used a cut-off score of the 

25th percentile (90 standard score) on academic measures for both English monolingual (e.g., 

Catts et al., 2012; Gottardo et al., 2008; Lipka et al, 2006; Stanovich & Siegel, 1994) and EL 

children (e.g., Chiappe & Siegel, 2006; Chiappe et al. 2002; Farnia & Geva, 2017; Lesaux et al., 

2006).  However, as noted in our earlier work (Swanson et al., 2016; 2018), the identification of 

latent classes below this specific cut-off point does not validate that cut-off point, but rather the 

results suggest we can identify subgroups to the cut-off to which it was applied.  In terms of 

common cut-off score designations for risk in reading and/or math, the 25th percentile cut-off is 

frequently used to designate risk, and it is useful to use cut-off scores as practiced in the schools. 

For example, Fuchs et al. (2008) provided a justification for dichotomization (cut-offs) in the 

area of learning disabilities (math in this case, see p. 37) to determine risk class by “using a 

common cut-off score designation”. 
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 In sum, the manifest variables (vocabulary, reading, math, fluid intelligence, and 

attention) used to determine discrete groups were dummy coded as reflecting a normative score 

below the  25th percentile or at or above the 25th percentile (1 = below the 25th percentile, 2 = at 

or above the 25th percentile).  The 25th percentile (a 90 standard score) was based on the 

normative data in the test manual from the standardized vocabulary, math, reading, and fluid 

intelligence measures.  The Conners scale was in normative T-scores, with high scores 

representing higher levels of inattention. Therefore, the 25th percentile on the Conners scale was 

a T-score of 61.  

Procedures 

Children were tested individually and in groups after informed consent forms were obtained for 

participation. Ten bilingual graduate students or research assistants trained in test administration 

tested all participants in their schools. Each child was tested individually and in small groups of 

10 to 15 students after informed consent was obtained for participation. For each testing wave, 

children participated in two sessions of individual testing that lasted 30 to 60 minutes and two 

group-testing sessions that lasted approximately 60 minutes and occurred for two consecutive 

days. Group testing occurred for two consecutive days for approximately one hour each day. Measures 

that allowed for group administration were calculation, visual matrix, number generation, and Raven 

Colored Progressive Matrices Test. Individual administration included measures of problem-solving, 

vocabulary, reading, STM, WM, naming speed, and mapping/directions.  One of six presentation 

orders, related to the individually administered tasks, was randomly assigned to each child to 

control for order effects.  Also, the presentation orders of Spanish and English tests were 

counterbalanced across all children.  For the group-administered tests, the presentation order of 

English and Spanish measures for each type of task were also counterbalanced across small 

groups.  
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Statistical Analysis 

Missingness 

 As shown in Supplement Table 1, several of the tasks had missing data. Some children 

dropped out of the study at the final testing wave. In addition, some children could not do the 

tasks (understand English and/or Spanish instructions) in the first testing wave, and therefore 

instead of assigning a value (e.g., 0 or a low standard score of 55), children’s performance was 

assigned as missing data for that task.  For the latent class analysis and latent transition analysis, 

parameters were estimated by maximum likelihood using the EM algorithm, with Newton-

Raphson incorporated into the estimation of regression coefficients (e.g. Lanza et al., 2011). The 

null hypothesis that data are missing completely at random (MCAR) was tested within each 

model and is reported in Table 2. A test of the MCAR was determined by dividing the reported 

log-likelihood for the model by the degrees of freedom. If the probability is not significant 

(p=~1), the results suggested that data were missing at random (Lanza et al., 2011).  

As will be discussed below, the latent transition analysis was followed by a hierarchical 

logistic regression analysis that included the cognitive variables as predictors of latent class 

status. Given the non-normal nature of the outcome variable (latent classes), the use of ML 

estimation was not appropriate.  Instead, the Laplace estimation was used (see. See Raudenbush 

et al., 2000 for discussion). The LaPlace approximation method has performed well in simulation 

studies (e.g., Capanu et al., 2013). 

Latent Class Analysis  

Model fit. Latent class analysis (LCA) was conducted at each testing wave to evaluate 

the model fit before the computing of estimation for the latent transition analysis (cf., Collins & 
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Lanza, 2010). Because LCA is an exploratory analysis, a series of models were computed 

varying the number of latent classes between one and seven (see Masyn, 2013, for a 

comprehensive review).  A combination of statistical indicators and substantive theory was used 

to decide on the best fitting model. Statistical model comparisons included likelihood ratio tests: 

the Lo-Mendell-Rubin Test (LMR) and the Bootstrap Likelihood Ratio Test (BLRT).  Both 

statistical procedures compared the improvement between neighboring class models (i.e., 

comparing models with three vs. four classes, and four vs. five, etc.) and provided p-values.  P-

values were used to determine if there was a statistically significant improvement in fit for the 

inclusion of one more latent class. A non-significant p-value for a K-class indicated that the 

previous K-class with a significant p-value fit the data better. The models with different numbers 

were compared using information criteria (i.e., Bayesian Information Criteria-BIC, Akaike 

Information Criteria-AIC, and Adjusted BIC). Lower values on these fit statistics indicated a 

better model fit. Among the information criterion measures, the Adjusted BIC and BIC indices 

are generally preferred, as is the BLRT for statistical model comparisons (Nylund et al., 2007; 

Nylund-Gibson & Choi, 2018).  The SAS (Lanza et al.,  2011) software was used to examine the 

manifest variables and determine the number of latent classes as well as perform the multilevel 

logistic modeling (see below). The Mplus (Muthén & Muthén, 2012) software was used to 

compute the likelihood ratio using the Lo-Mendell-Rubin Test (LMR) and the Bootstrap 

Likelihood Ratio Test (BLRT).  

Nestedness.  As noted, the data were nested within classrooms. At least 50 level-2 

observations (classrooms in this case) are needed to assure that estimated parameters are 

unbiased (Maas & Hox, 2005). The number of clusters in our sample within each testing wave 

(i.e., 31 classes at Wave1, 23 at Wave 2, and 23 at Wave 3) was not sufficient to use in a 
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multilevel latent class analysis (LCA).  However, a two-level latent class analysis was conducted 

with the categorical variables at each testing wave. In this situation, it is recommended to 

consider entropy values when there is a multilevel structure to the data (see Kaplan & Keller, 

2011, p. 53) because the preferred index (Bayesian Information Criterion, BIC) may 

underestimate the number of classes. 

Latent Transition Analysis 

Latent transition analysis (LTA) was used after the optimal number of latent classes had 

been selected at each time point. The analysis utilized the PROC LTA procedure in SAS version 

9.4 (Lanza et al., 2011). A three-step method was used to determine the LTA model (e.g., 

Asparouhov & Muthén, 2014; Morin et al., 2018; Nylund-Gibson et al., 2014). The first step 

examined whether the same number of latent classes could be identified across three testing 

waves (i.e., configural similarity). Several authors have suggested fitting the covariate after 

determining latent models (Asparouhov & Muthén, 2014) so as not to alter the model. Thus, 

grade level (chronological age) was entered into the analysis when predicting latent classes in the 

subsequent logistic models. The second step integrated the three retained solutions (one at each 

time point) into a single LTA model, allowing for the estimation of transition probability 

solutions estimated across the three testing waves. The latent classes were constrained to be 

equal across the three test waves to examine the transitioning from one class to another over 

time.  In applications of LTA, full measurement invariance is assumed for practical reasons, 

because it ensures that the number and structure of classes are the same across time and allows 

for a straightforward interpretation of transition probabilities. From these analyses, the following 

sets of parameters were estimated: latent class membership probabilities at Time 1, 2 and 3 (δ 

delta parameters), probabilities of transitions between latent classes over time (tau τ parameters), 
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and item response probabilities conditional on latent class membership and time (ρ rho).   

Multiple LTA models were conducted to identify an adequate model fit of the data. 

Multilevel Logistic Model 

Cognitive measures. After determining the number of latent classes, a multilevel logistic 

model, via SAS PROC GLIMMIX software (SAS Institute, 2014), was used to analyze cognitive 

differences between the latent classes. This analysis determined those cognitive variables 

external to the classification measures that played a significant role in predicting latent class 

membership. Because we were not interested in the variance related to individual cognitive tasks, 

but what was common amongst the observed variables, as well as controlling for measurement 

error and enhanced reliability, latent measures served as predictors in the analysis. Previous 

analyses tested the categorization of the variables (i.e., working memory [WM], short-term 

memory [STM], naming speed, and inhibition) and provided a good fit to the data in a previous 

study (Author et al., 2019).  Latent scores were computed by multiplying the z-score of the target 

variable by the standardized factor, loading weight based on the total sample (see Nunnally & 

Bernstein, 1994, p. 508, for calculation procedures).  Latent variables were specified as 

indicators of speed (naming speed for numbers and letters), inhibition (random generation of 

numbers and letters), STM (Digit Forward Span, Word Span, and Phonetic Span), executive 

processing (Conceptual Span, Listening Span, Digit Sentence Span, Updating), and visual-spatial 

WM (Visual Matrix, Mapping & Directions). The correlations among the latent measures of 

cognition (grand mean centered across testing waves) are shown in Supplement Table 2. 

As shown,  measures were converted to a z-score with a mean of 0 and SD of 1, and the 

z-scores for Wave 2 and 3 (shown in Supplement Table 3) were based on the means and standard 

deviations of Wave 1. The means and standard deviations for cognitive measures (E-STM, S-
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STM, E-Speed, S-speed, E-Inhibition, S-Inhibition, E-Executive WM, S-Executive WM, & 

visual-WM) as a function of latent class status and testing wave are shown in Supplement Table 

3. Supplemental Table 5 shows ES comparisons among lantent classes at Wave 1, 2, and 3.  

Model comparisons. Of interest in the logistic model was whether the log-odds of being 

identified within a particular latent class increased or decreased as a function of performance on 

specific cognitive measures. The reference group for the logistic regression was the latent class 

with the largest sample size (c.f., Hosmer & Lemeshow, 2000).  

The equation for estimating the LCs for the unconditional (empty) model was:  

                                                        𝜂ij = 𝛽0j + 𝛽1j 𝑋ij                                            (Eq. 1)  

 Equation 1 represented a simple level-1 model with one student-level predictor, where 𝜂ij   

represented the log odds of reflecting a latent class other than an average achiever for student i in 

classroom j, 𝛽0j is the intercept or the average log odds of being designated at risk in classroom j,  

𝑖j is a student-level predictor for student i in classroom j, and  𝛽1j  represents the slope associated 

with 𝑋ij, showing the relationship between the student-level variable and the log odds of not 

being designated at risk. It is important to note that unlike the hierarchical linear model used to 

analyze the total sample, this model has no error variance at level-1 (see Snijders & Bosker, 

1999; pp. 225-227).  As the effect of the student-level predictor was modeled as fixed or constant 

across classrooms, this was represented as a random intercept-only model.  

                                                       𝜂𝑖j = 𝛾00 + 𝛾10 𝑋𝑖j + 𝛾01𝑊j+ 𝑢0j                                 (Eq. 2)   

The combined level-1 and level-2 model represented the log odds of being designated as 

a latent class at risk for student i  in classroom j ( 𝜂ij ) at a typical classroom ( 𝛾00 ), at the 

student-level ( 𝛾10 𝑋ij ) and classroom-level predictor ( 𝛾01𝑊j ), as well as the classroom-level 

error [𝑢0j, 𝑢0j ~ 𝑁(0,𝜏00 ) ]. 
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The multilevel logistic modeling compared two conditional models (English only, 

Spanish only) and a full model (combined English and Spanish predictors) in determining the 

log-odds of identifying latent classes at the final testing wave. Because the full multilevel model 

had several predictors, and because the analysis included several variance components relative to 

simple linear regressions (Snijders & Bosker, 1999), alpha was set to .05. Bell et al. (2014) 

indicated in their Monte Carlo study that Type I error rates are not substantially inflated across 

multilevel models and conditions. The Bell et al study found across several multilevel design 

factors that the Type I bias was minimal and that 95% confidence interval coverage and Type I 

error rates tend to be conservative and well-controlled, even when modeling hierarchically 

structured data with smaller sample sizes. Also because we determined if the conditional models 

had a better fit than the unconditional model, deviance values (-2LL) and the Akaike’s 

Information Criterion (AIC) were computed. The variance inflation factor (VIF) was computed 

on the fixed effects in the full model (see Table 9). All VIFs were less than 5, which is below 

Cohen et al.’s (2003) cut-off point, and therefore within an acceptable range.  

Transparency and Openness 

 The materials described in the methods section are available from each of the authors, 

and are appropriately cited in the reference section. The data is based upon z-scores (converted 

from raw scores) and normed referenced scores for the latent transition analysis are included in a 

SAS (9.4) file entitled glimixyear123(rR) and is available from the Web site at APA’s repository 

hosted by the Center for Science. The PROC LTA and LCA programs in the analysis were 

downloaded (free download) from www.methodology.psu.edu.  The sample size (N=284) was 

determined by children participating in at least two testing waves during the three year period on 

vocabulary and achievement measures. Participants who participated in only one testing wave 
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were not included in the analysis because the estimation of missing at random and/or the 

estimated value for the child’s missing score could not be computed. A comparison of the two 

groups (retained vs. nonretained at Wave 2) on the Wave 1 manifest variables is shown in 

supplemental Table 6. The univariates yielded a significant advantage (.05/14, alpha=.004) on 

normative measures of Spanish calculation and Spanish word identification in favor of the 

nonretained group.  No significant differences emerged related to gender, χ2 (1,392)=.012, p=.91, 

whereas a significant effect emerged on measures of grade level, χ2 (1,392)=23.27, p < .001. Non 

retained children were more frequently represented in grade 1 than retained children. 

No outliers of children who participated in at least two testing waves were removed from 

the data analysis. Some measures were left out of the analysis (estimation, magnitude judgment) 

because we had no equivalent process measures in reading or they were not memory measures. 

The factor structure used to create the latent variables was reported in Swanson, Kong and Petcu 

(2019). The present work reported was not preregistered, but follows the stated purposes of the 

federal grant.   

   

Results 

Classification Variables    

The means and standard deviations for the classification (manifest) variables for Waves 

1, 2, and 3, as a function of the total sample and the three cohorts, are reported in Supplement 

Table 1. To capture performance changes across the testing waves, differences in the normative 

scores (Wave 3 normative scores minus Wave 1 normative scores) on the classification (manifest 

variables) measures were computed.  As shown in Table 1, the negative difference scores 

showed that several measures (e.g., reading) decreased in normative values from Wave 1 to 
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Wave 3.  To highlight declines we set a reference point of -5.00. As shown in bold, substantial 

declines (negative difference score > - 5.00) on normative tests in the total sample occurred on 

measures of English and Spanish mathematical problem solving and measures of Spanish 

reading comprehension. Declines on the normed manifest measures as a function of each cohort 

were as follows: English and Spanish math and Spanish comprehension for Cohort 1 (grades 1 to 

3), Spanish vocabulary, math, and comprehension for Cohort 2 (grades 2 to 4), and English 

receptive vocabulary, Spanish computation, and Spanish comprehension for Cohort 3 (grades 3 

to 5). The results also show a reduction in sample size at wave 3 for the CTRS measures.  This 

was due to school closure and teachers were unavailable to fill out CTRS forms at the end of the 

school year. 

Latent Class Analysis  

Model Fit.  Latent Class Model models were computed on the total sample (N=284) for 

Waves 1, 2, and 3. The results of our model testing at each testing wave are shown in Table 2.  

Of the indices reported in Table 2, the BIC and the adjusted sample BIC are generally preferred, 

as is the BLRT for statistical model comparisons (e.g., Nylund et al., 2007). In general, as 

shown, the BIC values were lower for the four latent class model (LC4) than for the five latent 

class model (LC5). The lowest adjusted BIC values emerged for the LC4 model.  Both the LMR 

and BLRT yielded non-significant p-values for the solution of the latent class five (LC5) model, 

and significant p-values for the solutions of three latent class models, indicating that the LC4 

model provided an excellent fit to the data.  The LC5 model did not represent an improvement of 

the LC4 model, and the LC4 model was an improvement to the LC3 model.  

As shown in Table 2, the entropy values for the four latent class models were .85, .84, 

and .87 for Waves 1, 2, and 3, respectively. These three values are considered acceptable 
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(Nylund et al., 2007). The null hypothesis that data are missing completely at random (MCAR) 

was tested for each model. For example, the log-likelihood divided by the degrees of freedom for 

the four latent class model at wave 1 (-1901.88/16324) was not significant (p=~1) suggesting the 

data were missing at random. Additional analyses suggested that the missing data were at 

random across all the latent class models. 

Table 3 shows the estimated proportion of samples (based on Delta estimates) for the 

four-class model at each testing wave. Except for Latent class 1, the four-class model represented 

a relatively large number of participants (e.g., proportionally was greater than 5%) within each 

latent class (see Delta estimates). Consistent with Nylund-Gibson and Choi (2018) we also 

inspected the “elbow” of the point of “diminishing returns” in determining the model fit (e.g., 

small decreases in the IC (information criteria) for each additional latent class)  (p. 443-444). 

Given the findings related to each testing wave, we now address our first question. 

 1. Can a stable latent class of EL children be identified with learning disabilities 

among children who vary in language acquisition?  

Transition Analysis  

 To answer the first question, transition probabilities (tau τ parameters) were estimated 

for the total sample to identify the rate of change or stability over time for the latent class groups. 

The transition probabilities are shown in Table 4. Although the four latent class model was 

supported at Waves 1, 2 and 3 separately (establishing configurable similarity), we determined if 

the four latent class model was a good fit for the latent transition (LTA) model. A measurement 

variance model was computed that yielded BIC values of 8867.91, 8686.01, and 8707.38 for the 

LC3, LC4, and LC5 models in LTA, respectively. Because of the elbow between the LC3 and 

LC4 models, one could argue that the LC3 model provided a more parsimonious fit than the LC4 
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model.  However, when we examined moving from the LC4 to the LC3 model, we noted that 

some classes (LC2 and LC4) were being combined, while the classes in the middle of the overall 

data (.00) distribution remained almost unchanged. This is not an unusual finding. As stated by 

Ryoo and colleagues (2018), “model parsimony is not necessarily the goal of LTA. The goal of 

LTA, particularly when it is used in an exploratory vein, is to describe the data by identifying 

classes within the population of observations in the data (p.31).”  Thus, our selection of the LC4 

model provided a more nuanced description of the data.  

Latent class stability.  To further analyze class stability, however, it is useful to 

constrain each element of the matrix of ρ parameters at Wave 1 to be equal to its corresponding 

element at Waves 2 and 3, which has the effect of imposing measurement invariance across time 

(Kam et al., 2016; Nylund-Gibson et al., 2014). This analysis forced the change process to be 

stationary (i.e., forced individuals transitioning between classes to have the same probability 

level of change across the three-time points). This comparison allowed us to check whether the 

latent classes have the same meaning across the three testing waves and three cohorts. The 

objective of researching measurement invariance is to find the lowest level of “inequivalence” 

possible that fits the data well. 

As shown in Table 4, the transition probabilities of the latent classes (τ parameters) for 

the transitional model reflected membership in the same latent class model at three consecutive 

measurement times. Transition probabilities off the diagonal reflected the likelihood of one latent 

class status group at Wave 1 transitioning to a different latent class status group at Wave 2 and a 

latent class group at Wave 2 transitioning to Wave 3.   For example, for the total sample, the LC1 

status group at Wave 1 yielded a 100% estimated chance of maintaining their status at Wave 2 

and an estimated chance of 86% at wave 3. In contrast, the LC2 status group in Wave 1 had only 
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a 49% chance of being in the same group in Wave 2, suggesting that the item estimates were 

highly unstable.  In contrast, the LC3 status group and the LC4 status group estimates were fairly 

stable from Wave 1 to Wave 2 (78% and 93%, respectively) and from waves 2 to 3 (93% and 

81%, respectively).  

          To unpack the transitions that may be occurring across cohorts, the findings were analyzed 

by dividing the analysis into the grade-level cohorts.  As shown in Table 4, the LC2 status group 

classification was the least stable for Cohort 2 (grades 2 to 4) at wave 1 (26%) with 

approximately 59% of the sample falling into the LC4 status group at Wave 2. This latent class 

was also unstable when transitioning at wave 2 from grade 3 to grade 4 (56% probability)  

Labeling of latent classes. The demographic information and the means and standard 

deviations on the manifest variables and cognitive variables as a function of the four latent class 

status groups are reported in Supplement Table 3. A comparison of gender representation among 

the latent classes was not significant, χ2 (3, N=284), 1.67, p=.64.  However, as shown in 

Supplement Table 3, there was a clear pattern within cohorts that the lower grades were most 

likely assigned to the bilingual average achievers' group (LC2, i.e., scores in Spanish 

approximated those in English), whereas English dominant average achievers were most 

frequently represented in the upper grades,  χ2 (6, N=284),= 44.25. 41.16, 44.11, ps < .001, for 

grade level within cohorts 1,2 and 3, respectively. This pattern is consistent with the increasing 

emphasis on English instruction in the upper grades. 

 Table 5 highlights in bold the mean levels of performance at or below standard scores of 

85 at Testing Wave 3, as well as highlights difference scores (Wave 3 minus Wave 1) showing a 

reduction of at least 5 standard score points. To facilitate the labeling of the latent classes, the 

frequency of low mean scores was first considered. As previously indicated, there were four 
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measures of math (English and Spanish problem solving and calculation) and 4 measures of 

reading (English and Spanish measures of word identification and comprehens ion) at each 

testing wave. The number of mean scores for the eight achievement measures in Table 5 that 

were below 85 as a function of the latent class were: 6, 0, 4, and 1 for LC1, LC2, LC3, and LC4, 

respectively. The number of mean difference scores greater than -5 was 6, 7, 5, and 3 for  LC1, 

LC2, LC3, and LC4, respectively. Taken together, we infer that LC 1 and LC3 showed the 

greatest risk for achievement difficulties relative to the other two groups. As shown, the level of 

performance for the LC 1 group yielded low mean scores (< 85 normative standard scores) 

across both math and reading measures.  Thus, we label LC 1 as a comorbid learning disability 

group.  In contrast, LC 3 manifested difficulties that were primarily isolated to high-order tasks, 

such as mathematical problem-solving and reading comprehension. Thus, this group was labeled 

as experiencing learning disabilities on problem-solving tasks. That is, their difficulties were 

isolated to high order tasks (mathematical problem solving and reading comprehension) rather 

than low order tasks, such as calculation and word identification. 

       In terms of bilingual status, the LC 2 group at wave 3 showed achievement and vocabulary 

in the average range on both English and Spanish measures. Thus, we label LC 2 as balanced 

bilingual average achievers. When compared to the LC2 group, LC 4 showed relatively low 

performance on Spanish measures relative to the English measures and therefore this latent class 

was labeled as unbalanced bilingual average achievers.   

  Magnitude differences.  To further facilitate the labeling of the latent classes, the 

magnitude of differences in the manifest variables as a function of latent class status groups was 

computed.  Using Cohen’s (1988) criteria for medium (.50) to large (.80) effect sizes (ESs), ESs 
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at or greater than .80 are shown in bold for performance in Table 6 for Wave 3 (Supplement 

Table 4 reports effect sizes at Wave 1 and Wave 2). 

As shown in Table 6, an advantage was found for the LC2 group when compared to the 

LC1 group across the majority of achievement measures (all ES >.80). A performance advantage 

was also found for the LC2 group when compared to the LC3 group on all math measures. Based 

on effect size differences, the LC1 and LC3 status groups were considered at risk for learning 

disabilities.  

The performance of average achievers (LC2 and LC4) was also compared. A higher level 

of performance occurred in the LC2 status group (balanced bilingual-average achievers) when 

compared to the LC4 status group (unbalanced bilingual-average achievers) at Wave 3 on 

measures of Spanish vocabulary, Spanish math problem solving, and Spanish reading 

comprehension. Thereby further suggesting that the LC 2 reflected a balanced bilingual 

achieving group.  

Item probabilities. Item probabilities (rho estimates) based on the four latent class 

transition models are shown in Table 7. These rho estimates reflected the latent class abilities of 

the given item-response, conditional on the given latent-class membership. The probabilities (rho 

estimates) shown in Table 7 reflect performance below the cut-off threshold of the 25th percentile 

(90 standard score) on the manifest variables. To facilitate discussion, and because there is no set 

standard for determining meaningful probabilities, item latent class abilities above 60% were 

selected, and these values are shown in bold. That is, probabilities above .60 indicated “at-risk” 

status for that particular manifest variable. The results show that all of the parameters of 

vocabulary, reading, and math for the LC1 status group were above .60. The only exception was 

measures of classroom attention. All probabilities for the LC2 group were less than .50 and 
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therefore were consistent with our earlier classifications as a balanced bilingual average achiever 

group. The LC3 status group showed high risk on measures of English vocabulary, English 

problem solving, and English reading comprehension; whereas the LC4 status group showed low 

Spanish reading comprehension and vocabulary. 

In summary, the previous analyses showed a distinct latent and stable class of children 

with comorbid achievement difficulties (LC 1) and difficulties in math problem solving/reading 

comprehension (LC 3) emerged within the data set. The results also suggest variations among 

children in terms of language acquisition. Two latent classes related to variations in language 

acquisition emerged related to average achievement. One latent class included average achievers 

scoring in the average range on both Spanish and English vocabulary (LC 2) measures, whereas 

another latent class of average achievers excelled in their second language relative to their first 

language (LC 4). We now address the second question of the study. 

2. Do measures of growth and the level of cognitive performance predict the latent 

class status? 

Multilevel Logistic Model 

A multilevel logistic model determined those cognitive variables that uniquely predicted 

the log-odds of LC status groups at Wave 3.  Because it is recommended to use the largest 

sample as a reference group (c.f., Hosmer & Lemeshow, 2000), the three latent classes (LC1, 

LC2, LC) were compared to LC4 (unbalanced bilingual average achievers). The estimates for the 

multilevel logistic unconditional model predicting the log odds of being classified in one of the 

latent classes at wave 3, when compared to the LC4 status group, as a function of variables 

external to the classification (cognitive variables), are shown in Table 9. Table 9 shows the three 

intercept values for the LC1 (low achievers-comorbid), LC2 (balanced-average achievers), and 
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LC3 (at risk for math/reading learning disabilities) status groups when compared to the LC4 

status group. 

Empty (unconditional) Model.  The empty model shown in Table 8 was assumed to 

have no error at level-1 (Snijders & Bosker, 1999). The level-1 residual follows a logistic 

distribution with a mean of 0 and a variance of 3.29 (Snijders & Bosker, 1999, p. 227). The 

cross-sectional intercept for clusters (classroom) at Waves 1, 2, and 3 would not converge 

because of too many random effects on the data. Therefore, level two-variance was computed 

from testing Wave 2 because it yielded the largest variance relative to the other cluster effects at 

waves 1 and 3. The estimated intercept (level 2) variance at wave 2 was .32, .40, and .67 for the 

three comparisons (LC 1 vs. LC4; LC2 vs. LC4; LC3 vs. LC4, respectively). The intraclass 

correlation was computed as .30 (.32 + .40 + .67 /.32 + .40 + .67 + 3.29), suggesting that 

approximately 30% of the variability was accounted for by children nested in classrooms at 

Wave 2, leaving approximately 70% of the variability to be accounted for by the latent measures 

(or other unknown factors).   

  Language-specific conditional models. Table 8 also shows two conditional multilevel 

logistic models that simultaneously entered the cognitive measures to predict latent class status at 

wave 3. All predictor measures (intercepts and slopes) were grand mean-centered. The first 

model considered the contribution of English cognitive measures and the second model 

considered the contribution of Spanish cognitive measures in predicting latent class status. As 

shown in Table 8, the estimated level two-variance increased from the empty model to the 

conditional models. In contrast to hierarchical linear models with normal distributions and 

increased level-two variance that would suggest a misfit of the data, models with dichotomous 

data tend to increase level-two variance when adding level 1 variables (see Snijiders &  Bosker, 



LEARNING DISABILITIES 
                                                                                                                                            43 

1999, p. 217, for discussion). As stated by Snijders and Bosker “ adding level 1 variables with 

strong effects will increase estimated level-two variances, and to make the regression 

coefficients of already included variables, if these are uncorrelated with newly included 

variables, larger in absolute size” (p.217). For interpretation of significant level 1 parameters, a 

significant positive beta weight suggested that the log-odds of identifying the two latent classes 

(e.g., LC 1 vs. LC4) increased related to increased performance on that measure. Significant 

negative beta weights suggested the log-odds of identifying the groups decreased based on 

increased performance for that measure. 

As shown in Table 8, significant English predictors of the LC1 vs. LC4 intercept (log 

odds) were the level of performance on the inhibition (b=-.60) and WM (b=-.85) measures.  To 

interpret these findings, as well as other comparisons, it is important to note that the significant 

coefficient of -.60 for inhibition implied that a one-unit change in inhibition would result in a -

.60 unit change in the log odds of identifying the two groups. Table 8 also shows that the level of 

STM and WM performance and the visual-spatial WM slope was significantly related to the log-

odds of the LC3 vs. LC4 intercept. No significant cognitive parameters emerged predicting the 

log-odds of the LC2 vs. LC4 comparison.   

The results for the Spanish predictors are shown at the bottom of Table 8. Significant 

Spanish predictors of the LC1 vs. LC4 log-odds were intercept measures of STM, WM, and 

visual WM and the growth measure of STM.  The level of WM and naming speed performance 

predicted the LC2 vs. LC4 log-odds.  No significant parameters predicted the LC3 vs. LC4 log-

odds. As shown at the bottom of Table 8, the AIC values are reported and allowed for the 

comparisons of nonnested models (Hox, 2010, pp. 45-50).  When comparing the English and 
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Spanish models, the better fit to the data based on the lowest AIC values was the English-only 

model.  

Full conditional model. Table 9 shows the results when measures of English and 

Spanish are simultaneously entered into the model. The log-odds comparing the LC1 vs. LC4 

were predicted by the level of performance on English measures of STM and WM and growth on 

measures of Spanish STM and English WM. Likewise, the log-odds for predicting the LC2 vs. 

LC4 comparison were significantly related to the intercept measures of English STM, English 

naming speed and the growth parameter related to English WM.  Spanish measures that 

significantly predicted the log-odds of the LC2 vs. LC4 comparison were measures of naming 

speed and WM.  Finally, the log-odds for predicting the LC3 vs. L4 comparison were 

significantly related to the measures of English STM, naming speed, and WM and Spanish 

measures of naming speed. Growth on Spanish measures of WM also predicted the log-odds of 

the LC3 vs. LC4 comparison. 

3. Do Spanish cognitive processes enhance or operate independently of English 

cognitive predictions of latent class status? 

Taken together, the entry of the Spanish measures into the Full Multi- level logistic 

regression model yielded three important findings. First, based on a total of eight English 

measures (4 for intercept and 4 for growth), the results indicated that  50% of these measures in 

the LC 1 vs. LC4 comparison, 62% in the LC2 vs LC4 comparison, and 62% in the LC3 vs. LC4 

showed an increase in beta weights when compared to the English only model. The largest 

increase in magnitude for English measures was captured by the level of performance on STM 

(increase -.53) for the LC1 vs. LC4 comparison, naming speed (increase= .52) for the LC2 v. 

LC4, and naming speed (increase= .71) for the LC3 vs. LC 4 comparison. All comparisons in the 
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Full model showed the largest increase in the growth parameters for WM when compared to the 

other English-only model for growth parameters.  

Second, Spanish measures contributed significant variance to the log-odds of balanced 

bilingual and unbalanced bilingual comparisons. The results showed that no significant 

predictors emerged related to the log-odds of identifying the LC2 relative to the LC4 reference 

group in the English-only model. However, significant predictors emerged on measures of STM, 

naming speed, and WM in the Full Model. Finally, the Full Model provided a better fit to the 

data than the English-only model. The statistical contribution of Spanish measures in the Full 

model relative to the English-only model was determined by comparing the deviance values (-

2LL).  There was a significant difference between the Full and English-only model, χ2 (df=8; 

1153.55 – 836.30)= 317.25, p < .001. 

In general, the results show that the beta-weights for L2 cognitive performance increased 

when L1 cognitive measures were entered into the analysis. Although the contribution of Spanish 

measures was most apparent in the LC2 vs. LC4 comparisons, all comparisons showed that entry 

of Spanish measures enhanced the significant role of WM growth in predicting latent class 

status. Thus, the significant predictions of English cognitive measures on latent class status were 

not independent of performance on Spanish cognitive measures. 

Discussion 

            One purpose of this study was to determine if a stable class of EL children at risk for 

learning disabilities could be identified from other EL children who were average achievers but 

varied in first and second language proficiency. Three important findings emerged. First, two 

stable latent class groups at risk for learning disabilities were identified. The LC1 (low math and 

reading) and LC3 status group (low mathematical problem-solving and reading comprehension) 
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showed average intelligence and attention, but stable difficulties in performance across both 

English and Spanish measures of achievement. Second, cognitive variables uniquely predict 

latent class status. Those cognitive measures in the Full Model that played a key role in latent 

class predictions at the intercept level were measures of STM and naming speed. The only 

growth measure that predicted latent classes in the Full Model was WM.  

          Finally, cognitive performance in L1 substantially influenced the magnitude of the 

predictions of L2 cognitive performance on the log-odds of identifying latent classes. The results 

clearly showed that including Spanish measures in the analysis increased the log-odds of 

identifying balanced bilingual average achievers from unbalanced average achievers on measures 

of naming speed, STM, and WM. In addition, the log-odds of identifying both average and 

learning disability groups as a function of growth (i.e., working memory) were significantly 

enhanced by including Spanish measures in the analysis. Taken together, these results suggest 

differences between the latent classes are heightened by difficulties or strengths in their first 

language. Thus, cognitive difficulties that potentially underlie the child’s second language do not 

operate independently of their first language. These results support the notion that there is an 

interchange between the two language systems that underlie latent class status. Whether this 

interchange reflects accenting the key processes in the second language by inhibiting other 

processes and/or providing L1 resources to L2 performance, is discussed below. 

            We now consider three questions that directed this study. 

1. Can a stable latent class of EL children be identified with learning disabilities 

among children who vary in language acquisition?  

The results answer this question in the affirmative. The results showed that latent class 

groups (LC1 and LC 3) emerged for children at risk in reading and/or math in both language 
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systems, and these latent classes had a low probability of transitioning into average achieving 

latent classes. As shown in our analysis (see Table 4), the latent class membership transition 

probabilities for the latent class of EL children at risk for learning disabilities in both reading and 

math (LC1) was approximately 100% from Wave 1 to Wave 2 and approximately 86% from 

Wave 2 to Wave 3. Likewise, the latent class membership transition probabilities for the latent 

class of EL children at risk for learning disabilities primarily on high-order tasks (math problem 

solving and reading comprehension) (LC3) was approximately 78% from Wave 1 to Wave 2 and 

approximately 93% from Wave 2 to Wave 3.  

    Further analysis of probabilities within each cohort suggested the latent classes for 

children at risk for learning disabilities were stable.  Latent class 1 (comorbid low achievers) 

classification was stable across all cohorts and testing waves (100%). Latent class 3 showed 

some instability in Cohort 2 transitioning from wave 1 to wave 2 (65% maintaining 

classification), but the stability increased transitioning from Wave 2 to 3 (95% maintained the 

classification).  

Some comment is necessary on the latent class of average achievers found the least stable 

(LC2). As shown in Table 3, the balanced bilingual achiever (LC2) showed low stability across 

all cohorts. The results further suggest that a large number of these children transition into the 

unbalanced (English dominant) bilingual average achiever group. This finding coincides with a 

decrease in Spanish performance from wave 1 to wave 3. This finding coincides were our 

observation that the language of instruction in the older grades placed a heavier emphasis on 

English instruction, rather than allowing for access to information from both the English and 

Spanish language systems. As English learners continue to develop competencies in their second 

language, there is often a decline in their L1, or Spanish language skills (also see Gottardo et al., 
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2008; for the difference in instructional strategies across grades). When the Spanish language is 

no longer emphasized or supported in the classroom, the opportunities for maintaining and 

continuing to build L1 diminish. Indirect evidence for this outcome was the high incidence of 

English dominant achievers in Wave 1 (LC2) transitioning to low Spanish proficiency (LC4) at 

the second or third testing wave. 

The results also suggest there may be late-emerging difficulties on measures of 

mathematical problem solving and reading comprehension. As shown in Table 4, thirteen percent 

(13%) of children labeled as balanced bilingual average achievers at wave 1 (referred to as LC 2) 

were labeled at risk for learning disabilities in mathematical problem solving and reading 

comprehension (LC 3) at wave 2 and 14% at wave 3. At wave 1, as a group, these children (LC2) 

yielded English and Spanish vocabulary, math, and reading scores in the average range (> 85 

mean standard scores). However, the incidence of late-emerging risk among some of these 

children occurred across all cohorts. For example, when transitioning from Wave 1 to wave 2 

and wave 2 to wave 3, the probabilities by cohort were: 13% and 20% for Cohort 1 (grade 1 to 

grade 2, grade 2 to grade 3), 14% and 0% for Cohort 2 (grade 2 to grade 3, grade 3 to grade 4), 

and 10% and 5% for Cohort 3 (grade 3 to grade 4, grade 4 to grade 5), respectively. Thus, by 

using both language systems that focused on additional performance measures of risk beyond 

reading and receptive language, we were able to identify several children who were average 

achievers at wave 1, but exhibited risk status by wave 3. 

Finding children with late-emerging learning disabilities, especially as it applies to 

reading comprehension, is consistent with the literature (Barber et al., 2022; Cho et al., 2019;  

Miciak et al. 2022; Taboada et al., 2022). Finding latent emergent children among EL children is 

also consistent with our earlier work with monolingual elementary identifying a latent class of 
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students with low achievement in mathematical problem-solving and reading comprehension, but 

average performance in areas of word identification and fluid intelligence (Swanson et al., 2018). 

In addition, the link between comprehension and word problem solving is consistent with the 

notion mathematical word problems are a form of text and decoding and the comprehension of 

text draws upon a common system (cf., Fuchs et al., 2018; Iglesias-Sarmiento et al., 2015).  

Although the cognitive variables that link problem-solving and reading comprehension are still 

under study, some studies suggest that numeracy may mediate both processes (e.g., Spencer et al. 

2022), others mathematic knowledge (Papura et al., 2017), whereas others see working memory 

(e.g., updating, Cornoldi et al . 2012) as playing a mediating role.  Our data cannot address this 

issue. However, as shown in Table 5,  the difference scores on both English and Spanish 

vocabulary were small, whereas large difference scores occurred on the majority of reading and 

math tasks. Thus, one could infer that late-emerging difficulties for some EL children may be 

related to cross-language transfer on reading and math tasks. 

 These aforementioned cross-language difficulties for some children with late-emerging 

learning disabilities appear related to inefficiencies in their first language. That is, the multilevel 

logistic modeling showed that the log-odds of identifying balanced average achieving children 

relative to unbalanced average achievers occurred primarily in the first language (L1) system 

(see Table 8).  The largest beta weights occurred on Spanish measures of naming speed and 

working memory (see Table 8).  

Performance on first language measures also plays an important role in predicting stable 

learning disabilities status. On the surface, the results appear to suggest that L1 processes play a 

more important role in separating children that vary in language acquisition than children with 

stable learning disabilities. That is, the significant effects of entry L1 measures into the full 
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logistic model were more frequent for average achievers than children with LD, suggesting that 

L1 processes play a more important role in language acquisition among average achievers than 

children at risk for learning disabilities.  This inference, however, has to be reconciled with two 

findings. First, 50% of the English measures beta weights in the LC1 group and 62% of the 

English beta weights in the LC3 group were increased when Spanish measures were entered into 

the model.    Second, as shown in supplement Table 5, moderate to large effect sizes occurred on 

the majority of Spanish cognitive measures across all testing waves for the LC1 (comorbid 

learning disabilities) vs  LC2 (balance average achievers) comparison.  In addition, increased 

growth in Spanish WM decreases the log-odd of identifying children with high-order difficulties 

(LC3) when compared to the unbalanced bilingual average achievers (see Table 9). Thus, we 

infer that the identification of children with learning disabilities is related to cognitive processing 

in the L1 system.  In general, we infer that both stable and late-emerging learning disability 

status is best identified by the contribution of L1 measures to L2 cognitive performance. 

    2.  Do measures of growth and the level of cognitive performance predict latent 

class status? 

The results suggest that cognitive measures do uniquely predict latent classes. Cognitive 

measures, such as the levels of STM performance and WM slopes, were associated with latent 

class membership. However, results of the full multilevel logistic regression model do not 

support our hypothesis that latent classes related to language acquisition are primarily predicted 

by measures related to the phonological loop (STM, naming speed) and latent classes related to 

learning disabilities are primarily predicted by measures of the executive component of WM. 

Both the phonological loop (STM, naming speed) and the executive system (WM) predicted the 

language acquisition (LC2 & LC4) and learning disabilities (LC1 and LC3) latent classes.  For 
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example, as shown in Table 9, the odds of significantly identifying children with comorbid 

learning disabilities related to unbalanced bilingual average achievers was related to performance 

on measures of English STM and growth in English WM. Performance on measures of English 

STM, English and Spanish naming speed, and Spanish WM predicted the log odds of 

significantly identifying balanced bilingual average achievers from unbalanced bilingual average 

achievers. Likewise, the log odds of significantly identifying children with learning disabilities in 

math problem solving/ reading comprehension from unbalanced bilingual average achievers was 

on measures of English measures of STM, English and Spanish naming speed, and English WM.  

The only growth parameter that predicted the log-odds of learning disability status (LC1 and 

LC3) or language acquisition status (LC2) relative to the referent group (LC4) were measures of 

WM. 

   3. Do Spanish cognitive processes enhance or operate independently of English 

cognitive predictions of latent class status? 

As shown when comparing the two conditional models in Tables 8 and 9, entry of Spanish 

cognitive measures enhanced predictions of L2 measures (by increasing the magnitude of the 

beta-weights) in determining the log odds of identifying the latent classes. Support for this 

assumption was found by comparing the beta-weights between the two models as well as a 

comparison of the deviance values. The importance of entering Spanish measures is particularly 

salient in the LC2 vs. LC 4 comparison. None of the cognitive measures were significant when 

only English tasks were entered into the analysis, whereas the importance of memory measures 

emerged in the full model. 

      In general, the literature has been unclear as to the degree to which EL children 

experience cognitive benefits related to having access to both language systems. The results 
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reported in Tables 8 and 9 show that L1 cognitive measures enhance the predictability of English 

measures on LC2 vs, LC4  status. For example, as shown in Table 9, the contribution of 

cognitive measures to the log-odds comparing LC2 with LC4 was significant only when Spanish 

measures were entered into the analysis. These findings suggest that L1 cognitive performance 

(in this case Spanish naming speed, STM WM, and inhibition) does influence the contribution of 

L2 cognitive performance to identifying latent classes LC2 from LC4. Even though few English 

cognitive measures were significant in the latent class comparison, the entry of Spanish measures 

boosted the beta weights of several English measures.  These findings are important because 

previous research has been unclear as to whether the relationship between learning disabilities in 

reading and/or math in EL children in the first and second language reflects cognitive costs 

related to the transferring from one language system to another, or if the relationship is merely an 

artifact of L1 or L2 proficiency (e.g., Choi et al., 2018; Kempert et al., 2011).  

Although the aforementioned findings may bring into light the positive influence of L1 

processes on L2  cognition, a clarification should be made of our goals for including Spanish 

measures in our analysis of latent class status. Although the limitations of using repressor 

variables as well as distinguishing such an approach from mediation analysis have been 

discussed in the literature (e.g., Kim, 2019); our goal was to make an accurate prediction of LC 

status as a function of cognitive performance. On a practical level, it has been unclear as to 

whether assessing a child in his/her first language offers any additional information about a 

cognitive processing deficit that can be obtained by just testing a child in the second language. 

This is especially true if the language of instruction is geared primarily toward the child’s second 

language.  
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Our findings suggest, however, that there is a risk in limiting the predictability of latent 

class status in EL children by excluding L1 cognitive variables. An incomplete set of 

independent variables may not only underestimate regression coefficients but in some instances, 

may fail to reject the null hypothesis when it is false (Type II error). Although including 

irrelevant variables in a model can contribute to loss of degrees of freedom and/or 

multicollinearity, several studies suggest those variables will not affect the predictive power of 

the model (e.g., Cohen et al., 2003; Kim 2019; Tzelgov & Henik, 1991). Hence, the risk of 

longitudinal studies excluding Spanish variables outweighs the risk of including such variables in 

the analysis. Our study does bring into question several longitudinal studies that assess risk for 

academic difficulties only in the child’s second language (English). 

Limitations 

There are at least four limitations in the study (see Swanson et al., 2021 for further 

limitations at the earlier testing waves). First, our sampling reflected children who were 

sequential bilinguals (L2 follows L1 development) and therefore may not reflect bilingualism 

when two languages are learned simultaneously (e.g., Sabourin & Vīnerte, 2015). Also, our 

geographic region (e.g., studies conducted in the southwest U.S. versus Canada) may limit the 

generalizability of the findings. Second, we used normative measures, and therefore it is 

important to note that some of the standardized assessments do not report the language 

background of their norming sample or are based primarily on a monolingual English-speaking 

population. When comparing second language (L2) speakers' performance using the standardized 

scores, it is relative to others who speak a single language. Given that there is research showing 

that Spanish-English bilingual children may show different developmental trajectories in both 
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languages (e.g., Hoff, 2017), it is possible to observe 'lower' standard scores as children age, 

reflecting the slower growth. 

Third, because the majority of the sample (> 95%) was participating in the Federal free 

and reduced lunch program, we did not have enough variance to assess the role of SES in the 

performance outcomes. Although participating in a Federal Free lunch program may be 

insensitive to various parameters when assessing SES (Harwell & LeBeau, 2010), participation 

in the program is based on low family income. Greater resources in the home (e.g., access to 

books and homework assistance) would have a positive influence on math and literacy growth in 

children. This issue could not be addressed within our data set. 

Fourth, using the 25th percentile as an “a priori” cut-off score for determining risk for 

learning disabilities is a potential limitation because the same or other groups may have emerged 

with other cut-off scores. Thus, we have not shown that the identification validates a specific cut-

off point; rather the results suggested that the measures were able to identify subgroups to the 

cut-off for which they were applied (Swanson et al., 2016, 2018). Although the 25th percentile or 

below across multiple years has been used as an “a priori cut-off point” to identify children at 

risk for learning disabilities, the issue as to whether other cut-off scores yield similar groups of 

EL children at risk and/or discrete or identifiable groups has not been established. 

            Finally, our results must be considered in light of the limitations inherent in the LTA 

model. Model selection in LCA and LTA is a significant challenge in mixture models (e.g., 

Dziak et al., 2014) because little is known about statistical power in LCA and LTA. Although 

several model selection indices of LTA are available, model selection is best conducted when a 

great deal of attention is paid to model interpretability (Lanza et al., 2010). 

Summary 
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 In summary, this study yielded three important findings.  First, latent classifications of 

children at risk for learning disabilities could be identified among a sample of ELs.  Two latent 

classes at risk for learning disabilities emerged across the three testing waves. Second, children 

at risk for learning disabilities could be separated from children who varied in language 

acquisition on cognitive measures. Finally, the log odds of identifying latent classes at the third 

testing wave are related to the level of performance and growth (slopes) on measures related to 

the phonological loop (STM and naming speed) and the executive component of WM. These 

outcomes of identifying children with potential learning disabilities were further enhanced by 

taking into consideration performance on Spanish measures. Thus, the results suggested that the 

probability of risk for learning disabilities versus language acquisition can be tied to cognitive 

performance in their first language. 
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    Footnotes 
 1The new American Psychiatric Association (2013) Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) does not use the term “learning disabilities” or related terms (e.g., 

dyslexia, math disabilities, reading disabilities). The DSM-5 (2013) uses the term “specific 

learning disorder in reading” or “specific learning disorder in math” and assumes that such 

disorders have a neurological/biological base. In general, researchers use the terms such as 

specific reading disabilities and/or math disabilities to identify children at risk who are of 

average intelligence, but whose performance is below a certain percentile (e.g., 8th, 16th,  25th 

percentile) on a norm-referenced standardized reading and/or math measure (e.g.,  Cirino et al. 

2015;  Siegel & Stanovich, 1994).  In terms of research, it is not uncommon to find children with 

normal intelligence defined as having a reading disability, but also experience serious difficulties 

in math and vice versa (e.g., Mann Koepke & Miller, 2013). This is because both reading and 

math draw upon or overlap with similar cognitive processes (Wang et al., 2020). 

2A model to capture individual differences among latent classes is Baddeley’s 

multicomponent working memory model (2012; Baddeley & Logie, 1999). According to 

Baddeley’s model (Baddeley & Logie, 1999), WM is comprised of a central executive 

controlling system that interacts with a set of two subsidiary storage systems: the speech-based 

phonological loop and the visual-spatial sketchpad.  The speech-based phonological loop is 

responsible for the temporary storage of verbal information; items are held within a phonological 

store of limited duration and are maintained within the store through a subvocal articulation 

process.  The speech-based phonological loop is commonly associated with short-term memory 

(STM) because it involves two major components discussed in the STM literature: a speech-

based phonological input store and a rehearsal process.  The visual-spatial sketchpad is 

responsible for the storage of visual-spatial information over brief periods of time and plays a 
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key role in the generation and manipulation of mental images.  The central executive is involved 

in the control and regulation of the WM system. 

3These variables are called suppressors in regression modeling because they suppress the 

outcomes of irrelevant variance in other predictors causing the suppressed variables to obtain a 

substantial regression weight (e.g., Tzelgov & Henik, 1991). Prediction in the outcome variable 

(in this case latent class status) increases when a suppressor variable (in this case L1 language) is 

added to the equation simply because the suppressor variable is correlated with another predictor 

or set of predictors that are correlated with the outcome variable.  In this case, the suppressor 

variable removes irrelevant predictive variance from other variables and increases the predictor's 

weight thus increasing overall model predictability.  
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Table 1 
Variation in Normative Scores for Manifest Variables from Wave 1 to Testing Wave 3 
   Total Sample  Cohort 1   Cohort 2   Cohort 3  

Variable  N M SD N M SD N M SD N M SD 

Vocabulary             

E-PPVT  266 -1.00 15.80 109 2.66 15.68 81 -0.95 16.97 76 -6.29 13.16 

E-expressive 263 4.57 21.86 108 4.30 24.79 80 4.75 20.03 75 4.77 19.38 

S-TVIP  255 -0.87 18.74 107 -2.95 15.93 78 -5.81 19.54 70 7.80 19.16 

S-expressive 263 0.73 14.11 107 0.30 16.32 80 -0.09 12.5 76 2.18 12.29 

Math              

E-problem-solving 257 -5.71 16.20 109 -12.55 14.56 79 -1.34 14.74 69 0.09 16.44 

E-calculation 262 -5.91 15.21 106 -8.36 18.69 82 -5.67 10.34 74 -2.69 13.66 

S-problem-solving 247 -7.11 15.59 107 -11.77 14.03 75 -4.72 16.41 65 -2.20 15.16 

S-calculation 257 -13.64 14.50 105 -19.86 11.85 80 -10.73 13.09 72 -7.79 16.13 

Reading              

E-wordID  255 1.21 12.66 106 -0.12 13.93 77 1.87 13.46 72 2.48 9.36 

E-compre  258 -3.90 15.93 108 -5.23 18.91 80 -5.15 14.08 70 -0.43 12.10 

S-wordID  227 -3.52 16.65 96 -7.88 15.84 73 -1.73 15.78 58 1.44 17.48 

S-compre  248 -13.52 14.15 104 -16.00 15.32 75 -13.37 12.12 69 -9.96 13.79 

Attention/Fluid 
Intelligence 

            

CTRS  198 0.01 9.14 86 0.88 9.74 74 -0.92 8.45 38 -0.20 9.07 

RAVEN  247 1.05 18.36 100 3.05 18.79 83 0.88 19.23 64 -1.85 16.29 

Cohort 1=grades 1-3, Cohort 2=grades 2-4, Cohort 3-grades 3-5; E-English, S-=Spanish, PPVT=Peabody Picture Vocabulary Test, 
TVIP= The Test de Vocabulario en Imágenes Peabody; Expressive=One-Word Expressive Vocabulary Test, WPS=Word Problem 
Solving test from WJ or Batería, Calculation=Arithmetic Subtest from WJ or Batería, WordID=Word Identification subtest from 
Woodcock-Muñoz, Compre=Passage Comprehension subtest from Woodcock-Muñoz. CTRS=Conners Behavior Rating Scale (T-
score), Fluid Int.=Raven Colored Progressive Matrices Test. Bold=A differences of 5 or more standard scores from Wave 1 to Wave 
3.  
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Table 2  
 
Fit Indices for Seven Latent Class Models for Year 1 (Wave 1) Year 2 (Wave 2). And Year 3(Wave 3)  
           

 Wave   LC=1 LC=2 LC=3 LC=4 LC=5 LC=6 LC=7 

Year 1 (Wave 1)          

 Log-likelihood:  -2096.97 -1999.35 -1924.81 -1901.88 -1890.74 -1868.04 -1862.44 

 G-squared:  1368.05 1172.82 1023.74 977.88 955.6 910.2 898.99 

 AIC:   1396.05 1230.82 1111.74 1095.88 1103.6 1088.2 1106.99 

 BIC:   1447.14 1336.64 1272.3 1311.17 1373.62 1412.96 1486.48 

 CAIC:   1461.14 1365.64 1316.3 1370.17 1447.62 1501.96 1590.48 

 Adjusted BIC:  1402.75 1244.68 1132.77 1124.08 1138.97 1130.74 1156.69 

 Entropy:   1 0.79 0.8 0.85 0.82 0.9 0.81 

 Degrees of freedom:  16369 16354 16339 16324 16309 16294 16279 

 LMR    0 0 0 0.034 0.45 0.57 0.76 

 Bootstrap   0 0  0 1 1 1 

Year 2 (Wave 2)          

 Log-likelihood:  -2189.94 -2017.35 -1908.6 -1865.01 -1844.49 -1828.71 -1807.49 

 G-squared:  1568.1 1222.92 1005.43 918.25 877.21 845.64 803.19 

 AIC:   1596.1 1280.92 1093.43 1036.25 1025.21 1023.64 1011.19 

 BIC:   1647.19 1386.74 1253.99 1251.54 1295.23 1348.4 1390.69 

 CAIC:   1661.19 1415.74 1297.99 1310.54 1369.23 1437.4 1494.69 

 Adjusted BIC:  1602.79 1294.78 1114.46 1064.45 1060.58 1066.18 1060.9 

 Entropy:   1 0.85 0.84 0.84 0.83 0.88 0.88 

 Degrees of freedom:  16369 16354 16339 16324 16309 16294 16279 

 LMR (p values)  0   0.006 0.03 0.77 0.76 

 Bootstrap   0   0 0 1 0.5 

Year 3 (Wave 3)          

 Log-likelihood:  -2234.66 -2062.19 -1988.62 -1958.83 -1923.02 -1909.08 -1893.25 

 G-squared:  1616.11 1271.17 1124.04 1064.45 992.83 964.96 933.3 

 AIC:   1644.11 1329.17 1212.04 1182.45 1140.83 1142.96 1141.3 
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 BIC:   1694.69 1433.95 1371.01 1395.62 1408.2 1464.53 1517.07 

 CAIC:   1708.69 1462.95 1415.01 1454.62 1482.2 1553.53 1621.07 

 Adjusted BIC:  1650.3 1342 1231.5 1208.55 1173.56 1182.33 1187.31 

 Entropy:   1 0.88 0.85 0.87 0.81 0.82 0.82 

 Degrees of freedom:  16369 16354 16339 16324 16309 16294 16279 

 LMR    0 0 0 0 0.32 0.056 0.285 

 Bootstrap   0 0 0 0 0.16 0 1 

Note. LC=Latent Class, AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; CAIC and Adjusted  
BIC corrected for sample size; LMR = Lo-Mendell-Rubin Test; BLRT = Bootstrap Likelihood Ratio Test. Bold= elbow in index 
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Table 3 
Delta Estimates Status Membership Probabilities 
     

Total Sample    

Latent Class 1 2 3 4 

Year  1     : 0.04 0.45 0.2 0.31 

Year  2     : 0.10 0.22 0.22 0.47 

Year  3     : 0.19 0.11 0.23 0.47 

Cohort 1     

Latent Class 1 2 3 4 

Year  1     : 0.02 0.67 0.13 0.18 

Year  2     : 0.08 0.42 0.18 0.32 

Year  3     : 0.16 0.17 0.25 0.43 

Cohort 2     

Status: 1 2 3 4 

Year  1     : 0.05 0.39 0.27 0.29 

Year  2     : 0.14 0.10 0.23 0.52 

Year  3     : 0.28 0.06 0.22 0.44 

Cohort 3     

Status: 1 2 3 4 

Year  1     : 0.07 0.27 0.19 0.48 

Year  2     : 0.06 0.13 0.23 0.58 

Year  3     : 0.11 0.10 0.22 0.57 

LC1=poor achiever-comorbid LD, LC2= balanced bilingual average achiever,  
LC3=children at risk for math problem-solving disabilities, LC4=English dominant  
Average achiever,Cohort 1= grades 1 to 3; Cohort 2=grades 2 to 4; Cohort 3=grades 3 to 5  
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Table 4 
Transition Probabilities by total Sample and Cohort 
  Year 1(rows) to Year 2 (Columns) Year 2 (rows) to Year 3 (Columns) 

Total Sample          

Latent Class 1 2 3 4  1 2 3 4 

1 1.00 0 0 0  0.86 0 0 0.14 

2 0 0.49 0.13 0.38  0 0.51 0.14 0.36 

3 0.22 0 0.78 0  0.07 0 0.93 0 

4 0.05 0 0 0.95  0.19 0 0 0.81 

Cohort 1          

Latent Class 1 2 3 4  1 2 3 4 

1 1.00 0 0 0  0.88 0 0 0.12 

2 0 0.62 0.13 0.25  0.02 0.39 0.20 0.39 

3 0.27 0 0.73 0  0.11 0 0.89 0 

4 0.13 0.05 0 0.81  0.19 0 0 0.81 

Cohort 2          

Latent Class 1 2 3 4  1 2 3 4 

1 1.00 0 0 0  0.85 0 0 0.15 

2 0 0.27 0.14 0.59  0 0.56 0 0.44 

3 0.35 0 0.65 0  0.04 0 0.95 0.02 

4 0.01 0 0 0.99  0.29 0 0 0.71 

Cohort 3          

Latent Class 1 2 3 4  1 2 3 4 

1 0.86 0 0.14 0  1.00 0 0 0 

2 0 0.50 0.10 0.40  0 0.70 0.05 0.25 

3 0 0 1.00 0  0.06 0 0.94 0 

4 0 0 0 1.00  0.07 0.01 0 0.91 

LC1=poor achiever or comorbid LD, LC2= balanced bilingual average achiever, LC3=children at risk for math problem-solving 
disabilities, LC4=English dominant-average achiever, 
Cohort 1= grades 1 to 3; Cohort 2=grades 2 to 4; Cohort 3=grades 3 to 5  
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Table 5 
Means and Standard Deviations of Manifest Variables as a Function of Latent Class at Wave 3 and Difference Scores (Wave 3 minus 
Wave 1) 
Latent Class LC1   LC2   LC3   LC4  
Variable N M SD N M SD N M SD N M SD 
Age (mos) 24 112.33 10.32 69 111.18 13.50 58 115.32 11.94 118 119.67 13.87 
E-ppvt 24 83.14 17.24 68 100.27 16.37 56 77.71 12.07 118 99.89 12.07 
E-expressive 24 94.59 21.47 67 117.00 21.87 56 88.52 16.50 118 120.09 18.83 
S-ppvt 22 82.29 13.29 65 103.02 16.48 57 97.07 15.42 112 90.67 17.13 
S-expressive 24 74.59 10.9 66 89.56 18.29 56 92.26 10.81 118 70.41 10.44 
E-problemsolving 24 73.20 9.85 64 99.21 14.10 56 83.79 14.85 113 96.27 14.16 
E-calculation 24 94.01 14.13 67 114.92 10.20 55 104.84 11.31 118 111.86 11.14 
S-problemsolving 22 75.20 13.54 62 106.78 11.16 57 93.16 10.61 107 97.14 12.33 
S-calculation 23 65.08 12.7 67 91.10 11.5 54 78.21 14.53 118 87.76 14.32 
E-wordID 24 81.30 15.58 63 113.76 10.93 55 100.42 11.85 114 108.26 12.38 
E-compre 24 69.20 13.98 68 99.33 13.21 56 80.22 13.93 117 95.11 12.03 
S-wordID 22 92.12 25.05 52 121.70 9.76 53 118.16 10.14 102 112.38 12.81 
S-compre 21 66.31 11.97 65 90.49 9.55 55 87.91 8.46 111 72.18 12.86 
CTRS 18 51.88 10.06 54 47.89 8.00 40 51.48 9.41 98 50.76 9.85 
RAVEN 24 88.28 15.59 66 105.76 12.79 54 93.83 14.19 116 105.29 12.52 

      Difference      
Variable N M SD N M SD N M SD N M SD 
E-ppvt 24 0.96 19.17 68 1.48 17.41 56 -1.82 14.62 118 -2.43 14.58 
E-expressive 24 2.01 19.39 66 7.34 26.57 56 10.42 15.64 117 0.74 21.37 
S-ppvt 22 -4.73 18.22 65 -0.98 16.62 56 -4.32 16.64 112 1.67 20.72 
S-expressive 24 3.18 14.94 66 -1.72 17.66 55 0.27 12.94 118 1.81 12.06 
E-problemsolving 24 -13.33 11.21 64 -6.43 14.16 56 -8.95 15.95 113 -2.08 17.46 
E-calculation 23 -7.13 16.7 66 -5.23 17.28 55 -6.23 18.75 118 -5.91 11.61 
S-problemsolving 22 -17.57 15.99 62 -6.16 14.02 57 -9.65 13 106 -4.13 16.68 
S-calculation 22 -19.4 19.82 66 -14.86 11.93 54 -17.9 12.49 115 -9.84 14.69 
E-wordID 24 -1.77 16.26 63 0.52 10.67 55 2.11 13.76 113 1.8 12.33 
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E-comprehension 24 -3.05 15.57 66 -6.01 14.5 53 -4.26 16.72 115 -2.70 16.47 
S-wordID 22 -8.46 21.87 52 -10.01 14.72 51 -3.76 17.54 102 0.97 14.56 
S-comprehension 21 -12.5 14.51 65 -14.57 14.31 51 -10.78 10.6 111 -14.36 15.37 
CTRS 15 -2.02 11.43 54 0.61 7.36 37 -0.16 6.37 92 0.03 10.59 
Raven 21 3.23 23.36 65 0.72 19.82 49 -1.02 17.37 112 1.74 16.98 
Note.  Manifest variables are in Normed Scores (M=100, SD=15). E=English, S=Spanish. LC1=poor achiever or comorbid LD, LC2= 
balanced bilingual average achiever, LC3=children at risk for math problem-solving disabilities, LC4=English dominant-average 
achiever, PPVT=Picture Vocabulary Test, Expressive=One-Word Expressive Vocabulary Test, Problem solving=Word Problem-
Solving test from WJ or Batería, Calculation=Arithmetic Subtest from WJ or Batería, Word=Word Identification subtest from 
Woodcock-Muñoz, Comprehension=Passage comprehension subtest from Woodcock-Muñoz. CRTS=Conners Behavior Rating Scale 
(T-score), Raven.=Raven Colored Progressive Matrices Test 
Difference= Score at Wave 3 minus Score at Wave 1. Bold=means scores of risk groups ( < 85 standard score) or negative difference 
scores (wave 3 – wave 1) > -5.00. 
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Table 6. Effect Sizes on Manifest Variables as a Function of Latent Class at Wave 3 

 

Note. aa negative effect size under LC1-LC2 means LC1 has a lower performance than LC2; 
LC1=poor achiever or comorbid LD, LC2= balanced bilingual average achiever, LC3=children at risk for math problem-
solving/reading comprehension disabilities, LC4=English dominant-average achiever, Bold=Effect size .50 or greater for the learning 
disability latent classes. E-English, S-=Spanish, PPVT=Picture Vocabulary Test, Express=One-Word Expressive Vocabulary Test, 
Problem=Word Problem-Solving test from WJ or Batería, Calculation=Arithmetic Subtest from WJ or Batería, WordID=Word 
Identification subtest from Woodcock-Muñoz, Compre=Passage comprehension subtest from Woodcock-Muñoz. CTRS=Conners 
Behavior Rating Scale (T-score), Raven.=Raven Colored Progressive Matrices Test. Bold=effect sizes > .80 comparing risk groups 
(LC1, LC3) to Reference status group (LC4) 
  

Measure LC1 
vs. 
LC2 

LC1 
vs. 
LC3 

LC1 
vs. 
LC4 

LC2 
vs. 
LC3 

LC2 
vs. 
LC4 

LC3 
vs. 
LC4 

Age (mos) 0.04 -0.32 -0.61 -0.33 -0.62 -0.32 
E-ppvt -1.03a 0.39 -1.28 1.55 0.03 -1.84 
E-express -1.03 0.34 -1.32 1.45 -0.15 -1.74 
S-ppvt -1.32 -0.99 -0.51 0.37 0.73 0.39 
S-express -0.90 -1.63 0.40 -0.18 1.39 2.07 
E-problem -1.99 -0.78 -1.71 1.07 0.21 -0.87 
E-calculation -1.84 -0.89 -1.53 0.94 0.28 -0.63 
S-problem -2.67 -1.56 -1.75 1.25 0.81 -0.34 
S-calculation -2.20 -0.94 -1.61 1.00 0.25 -0.66 
E-wordID -2.63 -1.46 -2.08 1.17 0.46 -0.64 
E-compre -2.25 -0.79 -2.09 1.41 0.34 -1.18 
S-wordID -1.87 -1.63 -1.30 0.36 0.78 0.48 
S-compre -2.38 -2.26 -0.46 0.28 1.56 1.36 
CTRS 0.47 0.04 0.11 -0.42 -0.31 0.07 
RAVEN -1.29 -0.38 -1.30 0.89 0.04 -0.88 
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Table 7 
Latent Class as a Function of Item Response Probabilities (Rho Estimates) 
 
Latent Class LC1 LC2 LC3 LC4 

     

Language     

E-PPVT      0.77 0.36 0.88 0.17 

E-expressive 0.57 0.19 0.60 0.07 

S-TVIP 0.82 0.17 0.26 0.59 

S-expressive 0.77 0.31 0.15 0.86 

Math     

E-WPS 0.91 0.07 0.61 0.25 

E-calculation 0.41 0.03 0.11 0.02 

S-WPS 0.88 0.02 0.26 0.29 

S-calculation 0.92 0.15 0.54 0.44 

Reading     

E-wordID    0.79 0.04 0.22 0.07 

E-compre    1.00 0.15 0.75 0.20 

S-wordID    0.54 0.03 0.06 0.12 

S-compre    1.00 0.07 0.45 0.89 

Fluid Intell./Attention    

Raven     0.61 0.22 0.38 0.13 

CTRS 0.21 0.09 0.20 0.17 

E-English, S-Spanish, LC1=poor achiever or comorbid LD, LC2= balanced bilingual average achiever,  
LC3=children at risk for math problem-solving/reading comprehension disabilities, LC4=English dominant-average achiever, 
PPVT=Peabody Picture Vocabulary Test, TVIP= The Test de Vocabulario en Imágenes Peabody, WPS=Word Problem Solving test 
from WJ or Batería, Calculation=Arithmetic Subtest from WJ or Batería, WordID=Word Identification subtest from Woodcock-
Muñoz, Compre=Passage Comprehension subtest from Woodcock-Muñoz. CTRS=Conners Teacher Behavior Rating Scale, Fluid 
Int.=Raven Colored Progressive Matrices Test.  
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Table 8 
Generalized Linear Polytomous Model Predicting Latent Class at Wave 3 from Intercept and Slopes of Cognitive Measures  

  LC1 vs. LC4  LC2 vs. LC4  LC3 vs. LC4  

        

    Empty Model      

Fixed Effects Estimate SE  Estimate SE  Estimate SE  

 Intercept -1.96*** 0.46  -0.46 0.40  -1.46** 0.58  

Random Effect 0.32 0.18  0.40 0.22  0.67 0.35  

    English 
Model 

      

Fixed Effects          

 Intercept -5.05*** 1.35  -0.45 0.46  -2.28*** 0.71  

 E-STM -0.47 0.37  -0.02 0.10  -0.33* 0.17  

 E-Speed 1.36** 0.41  -0.06 0.23  0.44 0.32  

 E-Inhib -0.60* 0.29  0.15 0.10  -0.01 0.19  

 E-WM -0.85*** 0.30  0.16 0.11  -0.68*** 0.14  

 VISWM -0.06 0.18  0.05 0.10  -0.16 0.11  

Growth           

 E-STM 0.12 0.16  0.02 0.08  0.10 0.12  

 E-Speed 0.12 0.21  -0.03 0.13  0.01 0.17  

 E-Inhib -0.21 0.16  0.05 0.09  -0.02 0.1  

 E-WM 0.28 0.28  0.13 0.13  0.16 0.14  

 VISWM 0.03 0.19  -0.09 0.11  -0.31* 0.14  

Random Effect-Level 2         

  0.84 0.61  0.54* 0.27  0.77** 0.31  

    Spanish 
Model 

      

Fixed Effects          

 Intercept -4.74*** 0.78  -0.41 0.45  -1.25* 0.54  

 S-STM -0.48*** 0.16  0.09 0.10  -0.04 0.15  
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 S-Speed 0.23 0.33  -0.57* 0.25  -0.54 0.29  

 S-Inhib -0.90 0.63  0.14 0.21  -0.11 0.19  

 S-WM -0.67** 0.27  0.53** 0.12  -0.09 0.12  

 VISWM -0.41* 0.17  -0.04 0.09  -0.15 0.11  

Growth           

 S-STM 0.35* 0.14  -0.06 0.09  0.07 0.09  

 S-Speed -0.11 0.17  -0.07 0.09  -0.07 0.15  

 S-Inhib -0.33 0.45  0.25 0.19  0.25 0.23  

 S-WM -0.11 0.19  0.11 0.08  -0.13 0.10  

 VISWM 0.06 0.17  -0.06 0.09  -0.13 0.10  

Random Effect-Level 2         

  0.61 0.36  0.48** 0.19  0.49 0.27  

LC1=poor achiever or comorbid LD, LC2= balanced bilingual average achiever, LC3=children at risk for math problem-
solving/reading comprehension disabilities, LC4=English dominant-average achiever, 
E-English, S-=Spanish, STM=Short-Term Memory or Phonological Loop; Speed=Naming Speed, Inhib=Inhibition or Random 
Generation Tasks, WM=Executive component of working memory, Viswm=Visual Spatial working memory.  
Empty model fit indicates for -2LL, AIC and BIC were 1762.21,1774.21, 1781.02, for English only model the fit indices were 
1153.55, 1225.55 and 1266.42, and for the Spanish model they were 1184.73,1256.73.1296.01 respectively.  
*p < .05, **p < .01, ***p < .001 
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Table 9 
Generalized Linear Polytomous Model Predicting Latent Class at Wave 3 
  LC1 vs. LC4  LC2 vs. LC4  LC3 vs. LC4  

Fixed Effects Estimate SE  Estimate SE  Estimate SE  

 Intercept -5.97*** 1.32  -0.61 0.52  -1.94*** 0.62  

 E-STM -1.00*** 0.34  -0.26* 0.12  -0.45** 0.16  

 S-STM -0.09 0.25  0.14 0.12  0.29 0.16  

 E-Speed 1.03 0.54  0.46** 0.17  1.15*** 0.27  

 S-speed -0.09 0.59  -0.87*** 0.25  -1.65*** 0.40  

 E-Inhib -0.59 0.59  -0.03 0.17  -0.03 0.16  

 S-Inhib -0.25 0.69  0.08 0.27  0.04 0.20  

 E-WM -0.80** 0.33  0.17 0.12  -0.73*** 0.20  

 S-WM -0.28 0.43  0.59*** 0.14  0.01 0.14  

 VISWM -0.21 0.20  -0.04 0.12  -0.19 0.11  

Growth           

 E-STM 0.01 0.35  -0.08 0.10  -0.01 0.14  

 S-STM 0.35* 0.15  -0.12 0.10  0.18 0.10  

 E-Speed 0.12 0.39  0.14 0.13  0.13 0.18  

 S-speed -0.29 0.48  -0.12 0.12  -0.34 0.18  

 E-Inhib 0.09 0.30  -0.11 0.15  0.01 0.13  

 S-Inhib -0.33 0.51  0.44 0.28  0.33 0.30  

 E-WM 0.90* 0.38  0.33*** 0.11  0.33 0.18  

 S-WM -0.55 0.32  0.04 0.11  -0.37** 0.14  

 VISWM -0.20 0.24  -0.09 0.12  -0.25 0.15  

Random Effect-Level 2         

  0.56 0.34  0.32* 0.13  0.33* 0.16  

LC1=poor achiever or comorbid LD, LC2= balanced bilingual average achiever, LC3=children at risk for math problem-
solving/reading comprehension disabilities, LC4=English dominant-average achiever, 
E-English, S-=Spanish, STM=Short-Term Memory or Phonological Loop; Speed=Naming Speed, Inhib=Inhibition or Random 
Generation Tasks, WM=Executive component of working memory, Viswm=Visual Spatial working memory. The fit indices were 
8336.30, 956.3 and 1021.76 for -2LL, BIC and AIC, respectively. *p < .05, **p < .01, ***p < .001 
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