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A GENERALIZED WHITE NOISE SPACE APPROACH
TO STOCHASTIC INTEGRATION FOR A CLASS

OF GAUSSIAN STATIONARY INCREMENT PROCESSES

Daniel Alpay and Alon Kipnis

Communicated by Palle E.T. Jorgensen

Abstract. Given a Gaussian stationary increment processes, we show that a
Skorokhod-Hitsuda stochastic integral with respect to this process, which obeys the Wick-Itô
calculus rules, can be naturally defined using ideas taken from Hida’s white noise space
theory. We use the Bochner-Minlos theorem to associate a probability space to the process,
and define the counterpart of the S-transform in this space. We then use this transform to
define the stochastic integral and prove an associated Itô formula.

Keywords: stochastic integral, white noise space, fractional Brownian motion.

Mathematics Subject Classification: 60H40, 60H05.

1. INTRODUCTION

In this paper we develop a stochastic calculus for the family of centered Gaussian
processes with covariance function of the form

Km(t, s) =

∫
R

eiξt − 1

ξ

e−iξs − 1

ξ
m(ξ)dξ,

where m is a positive measurable even function subject to
∫
R
m(ξ)
ξ2+1dξ <∞.

Note that Km(t, s) can also be written as

Km(t, s) = r(t) + r(s)− r(t− s),

where
r(t) =

∫
R

1− cos(tξ)

ξ2
m(ξ)dξ.

c© AGH University of Science and Technology Press, Krakow 2013 395
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This family includes in particular the fractional Brownian motion, which corresponds
(up to a multiplicative constant) to m(ξ) = |ξ|1−2H , where H ∈ (0, 1). We note that
complex-valued functions of the form

K(t, s) = r(t) + r(s)− r(t− s)− r(0),

where r is a continuous function, have been studied in particular by von Neumann,
Schoenberg and Krein. Such a function is positive definite if and only if r can be
written in the form

r(t) = r0 + iγt+

∫
R

{
eiξt − 1− iξt

ξ2 + 1

}
dσ(ξ)

ξ2
,

where σ is an increasing right continuous function subject to
∫
R
dσ(ξ)
ξ2+1 <∞. See [14,16],

and see [1] for more information on these kernels.
As in [1], our starting point is the (in general unbounded) operator Tm on the

Lebesgue space of complex-valued functions L2(R) defined by

T̂mf(ξ) =
√
m(ξ)f̂(ξ), (1.1)

with domain

D(Tm) =

f ∈ L2(R) ;

∫
R

m(ξ)|f̂(ξ)|2dξ <∞

 ,

where f̂(ξ) = 1√
2π

∫
R e
−iξtf(t)dt denotes the Fourier transform. Clearly, the Schwartz

space S of smooth rapidly decreasing functions belong to the domain of Tm. The
indicator functions

1t =

{
1[0,t], t ≥ 0,

1[t,0], t ≤ 0

also belong to D(Tm). In [1], and with some restrictions on m, a centered Gaussian
process Bm with covariance function Km(t, s) = (Tm1t, Tm1s)L2(R) was constructed
in Hida’s white noise space. In the present paper we chose a different path. We build
from Tm the characteristic functional

Cm(s) = e−
‖Tms‖2L2(R)

2 . (1.2)

It has been proved in [3] that Cm is continuous from S into R. Restricting Cm to
real-valued functions and using the Bochner-Minlos theorem, we obtain an analog of
the white noise space in which the process Bm is built in a natural way. Stochastic
calculus with respect to this process is then developed using an S-transform approach.

The S-transform of an element X(ω) of the white noise space is defined by

SX(s) = E
[
X(·)e〈·,s〉

]
e−

1
2‖s‖L2(R) .
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An S-transform approach to stochastic integration in the white noise setting can
be found in [10], [15, Section 13.3] and in [10]. The main idea is to define the
Hitsuida-Skorohod integral of a stochastic process X(t) with respect to the Brownian
motion B(t) over a Borel set E by∫

E

X(t)δB(t) , S−1

∫
E

S (X(t)) (s)s(t)dt

 .

Namely, the integral of X(t) over the set E is the unique stochastic process Φ(t) such
that for any t ≥ 0 and s ∈ S ,

(SΦ(t)) (s) =

∫
E

S (X(t)) (s)s(t)dt.

Since s(t) = d
dt (s,1t)L2(R), it suggests to extend the last definition of the integral

by replacing the inner product in L2(R) by a different one. In the present work, this
inner product is determined by the spectrum of the process through the operator Tm.
We note that when m(ξ) = |ξ|1−2H , and H ∈ ( 1

2 , 1), the operator Tm reduces, up
to a multiplicative constant, to the operator MH defined in [9] and in [5]. The set
L2
φ presented in [8, equation (3)] is the domain of Tm and the functional Cm was

used with the Bochner-Minlos theorem in [6, (3.5), p. 49]. In view of this, our work
generalized the stochastic calculus for fractional Brownian motion presented in these
works to the aforementioned family of Gaussian processes.

There are two main ideas in this paper. The first is the construction of a probability
space in which a stationary increment process with spectral density m is naturally
defined. This result, being a concrete example of Kolmogorov’s extension theorem on
the existence of a Gaussian process with a given spectral density, is interesting in
its own right. The second main result deals with developing stochastic integration
with respect to the fundamental process in this space. We take an approach based on
the analog of the S-transform in our setting, and show that this stochastic integral
coincides with the one already defined in [2] but in the framework of Hida’s white
noise space.

The paper consists of five sections besides the introduction. In Section 2 we con-
struct an analog of Hida’s white noise space using the characteristic function Cm. In
Section 3 the associated fundamental process Bm is being defined and studied. The
analog of the S-transform is defined and studied in Section 4. In Section 5 we define
a Wick-Itô type stochastic integral with respect to Bm, and prove an associated Itô
formula. In the last section we explain the relation of this integral to previous works
on white noise based stochastic integrals.

2. THE M NOISE SPACE

We set SR to be the space of real-valued Schwartz functions, and Ω = S ′R. We denote
by B the associated Borel sigma algebra. Throughout this paper, we denote by 〈·, ·〉
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the duality between S ′R and SR, and by (·, ·) the inner product in L2(R). In case
there is no danger of confusion, the L2(R) norm will be denoted as ‖ · ‖.

Theorem 2.1. There exists a unique probability measure µm on (Ω,B) such that

e−
‖Tms‖2

2 =

∫
Ω

ei〈ω,s〉dµm(ω), s ∈ SR.

Proof. The function Cm(s) is positive definite on SR since

Cm(s1 − s2) = exp

{
−1

2
‖Tms1‖2

}
× exp {(Tms1, Tms2)} × exp

{
−1

2
‖Tms2‖2

}
,

and the middle term is positive definite since an exponent of a positive definite func-
tion is still positive definite. Moreover, the operator Tm is continuous from S (and
hence from SR) into L2(R). This was proved in [3], and we repeat the argument for
completeness. As in [3], we set K =

∫
R
m(u)
1+u2 du and s](u) = s(−u). For s ∈ S , we

have

‖Tms‖2L2(R) =

∫
R

|ŝ(u)|2m(u)du =

∫
R

|(1 + u2)ŝ(u)|2 m(u)

1 + u2
du ≤

≤ K

∫
R

|s ? s]|(ξ)dξ +

∫
R

|s′ ? (s])′|(ξ)dξ

 ≤
≤ K


∫

R

|s(ξ)|dξ

2

+

∫
R

|s′(ξ)|dξ

2
 ,

where we have denoted convolution by ?. Therefore Cm is a continuous map from SR
into R, and the existence of µm follows from the Bochner-Minlos theorem.

The triplet (Ω,B, µm) will be used as our probability space.

Proposition 2.2. For any s ∈ SR it holds that

E[〈ω, s〉2] = ‖Tms‖2. (2.1)

Proof. We have

e−
1
2‖Tms‖

2

=

∫
Ω

ei〈ω,s〉dµm(ω). (2.2)

Expanding both sides of (2.2) in power series for εs we obtain

E [〈ω, s〉] =

∫
Ω

〈ω, s〉dµm(ω) = 0. (2.3)
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and

E
[
〈ω, s〉2

]
=

∫
Ω

〈ω, s〉2dµm(ω) = ‖Tms‖2. (2.4)

We now want to extend the isometry (2.1) to any function in the domain of Tm.
This extension involves two separate steps: first, an approximation procedure, and
next complexification. For the approximation step we introduce an inner product
defined by the operator Tm. For f and g in D(Tm) we define the inner product

(f, g)m ,
∫
R

f̂ ĝ∗mdξ.

Note that D(Tm) is consist of those functions f in L2(R) that satisfy

‖f‖2m , (f, f)m <∞.

We define the space LSm and Lm to be the closure of S and D(Tm) in the norm
‖ · ‖m, respectively.

Proposition 2.3. We have
Lm = LSm.

Proof. Let f ∈ Dm be orthogonal to any s ∈ S in the norm ‖ · ‖m, i.e.

0 = (s, f)m =

∫
R

ŝf̂∗mdξ, ∀s ∈ S .

It follows that f̂∗m = 0 almost everywhere since it defines the zero distribution on S .
But that also means ∫

R

f̂ f̂∗mdξ = 0,

so f is zero in Lm.

Theorem 2.4. The isometry (2.1) extends to any f ∈ L2(R), where f is real-valued
and in the domain of Tm.

Proof. We first note that, for f in the domain of Tm, we have

Tmf = Tmf. (2.5)

Indeed, since m is even and real, we have

T̂mf =
√
m(f̂)] = (

√
mf̂)] =

(
T̂mf

)]
= T̂mf.
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Let now f be real-valued and in D(Tm) ⊂ Lm. It follows from Proposition 2.3 that
there exists a sequence (sn)n∈N of elements in S such that

lim
n→∞

‖sn − f‖m = 0. (2.6)

In view of (2.5), and since f is real-valued, we have

lim
n→∞

‖sn − f‖m = lim
n→∞

‖Tmsn − Tmf‖L2(R) = lim
n→∞

‖Tmsn − Tmf‖L2(R) = 0. (2.7)

Together with (2.6) this last equation leads to

lim
n→∞

‖Tm(Re sn)− Tmf‖L2(R) = 0. (2.8)

In particular (Tm(Re sn))n∈N is a Cauchy sequence in L2(R). By (2.1), (〈ω,Re sn〉)n∈N
is a Cauchy sequence in Wm. We denote by 〈ω, f〉 its limit. It is easily checked that
the limit does not depend on the given sequence for which (2.6) holds.

We denote by DR(Tm) the elements in the domain of Tm which are real-valued.
Let f, g ∈ DR(Tm). The polarization identity applied to

E[〈ω, f〉2] = ‖Tmf‖2, f ∈ DR(Tm), (2.9)

leads to
E [〈ω, f〉〈ω, g〉] = Re (Tmf, Tmg) .

In view of (2.5), Tmf and Tmg are real and so we obtain the following result.

Proposition 2.5. Let f, g ∈ DR(Tm). It holds that

E [〈ω, f〉〈ω, g〉] = (Tmf, Tmg) . (2.10)

Proposition 2.6. {〈ω, f〉, f ∈ DR(Tm)} is a Gaussian process in the sense that for
any f1, . . . , fn ∈ DR(Tm) and a1, . . . , an ∈ R, the random variable

∑n
i=1 ai〈ω, fi〉 has

a normal distribution.

Proof. By (2.2), for λ ∈ R, we have

E[eiλ
∑n
i=1 ai〈ω,fi〉] =

∫
Ω

eiλ
∑n
i=1 ai〈ω,fi〉dµm(ω) =

=

∫
Ω

ei〈ω,λ
∑n
i=1 aifi〉dµm(ω) =

= e−
1
2λ

2‖
∑n
i=1 aiTmfi‖

2

.

(2.11)

In particular, we have that for any ξ1, . . . , ξn ∈ DR (Tm) such that Tmξ1, . . . , Tmξn
are orthonormal in L2 (R) and for any φ ∈ L2(Rn)

E [φ (〈ω, ξ1〉, . . . , 〈ω, ξ1〉)] =
1

(2π)
n
2

∫
Rn

φ(x1, . . . , xn)

n∏
i=1

e−
1
2xi

2

dx1 · ... · dxn. (2.12)
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Definition 2.7. We set G to be the σ-field generated by the Gaussian elements

{〈ω, f〉, f ∈ DR (Tm)} ,

and denote
Wm , L2 (Ω,G, µm) .

Note that G may be significantly smaller than B, the Borel σ-field of Ω. For
example, if m ≡ 0, then Tm is the zero operator and G = {∅,Ω, 0,Ω\{0}}. We will see
in the following section that the time derivative, in the sense of distributions, of the
fundamental stochastic process Bm in the space Wm has spectral density m(ξ). It is
therefore seems appropriate to refer Wm as the m-noise space. In the case m (ξ) ≡ 1,
Tm is the identity over L2 (R) and µm is the white noise measure used for example in
[10, (1.4), p. 3]. Moreover, by Theorem 1.9 on p. 7 therein, G equals the Borel sigma
algebra and so the 1-noise space coincides with Hida’s white noise space.

Remark 2.8. For two spectral functions m1 and m2, a somewhat obvious question is
whether µm1

and µm2
are equivalent or singular with respect to each other (recall that

any two Gaussian measures on the same locally convex space are either equivalent
or mutually singular [18, Theorem 2.7.2]). Although this question is irrelevant to our
approach, we point out that a sufficient simple condition for equivalence is if Tm1 and
Tm2 are unitary equivalent.

3. THE PROCESS BM

We now define our fundamental stationary increment process Bm : R −→Wm via

Bm(t) , Bm(t, ω) , 〈ω,1t〉.

This process plays the role of the Brownian motion for the Itô formula in the space
Wm. Note that this is the same definition as the Brownian motion in [12], the difference
being the probability measure assigned to (Ω,B).

Theorem 3.1. Bm has the following properties:

(1) Bm is a centered Gaussian random process.
(2) For t, s ∈ R, the covariance of Bm(t) and Bm(s) is

Km(t, s) =

∫
R

eiξt − 1

ξ

e−iξs − 1

ξ
m(ξ)dξ = (Tm1t, Tm1s) . (3.1)

(3) The process Bm has a continuous version under the condition∫
R

m(ξ)

1 + |ξ|
dξ <∞. (3.2)
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Proof. (1) follows from (2.11) and (2.3). To prove (2), we see that by (2.10) we have

E [Bm(t)Bm(s)] = E [〈ω,1t〉〈ω,1s〉] =

= Re (Tm1t, Tm1s) = (Tm1t, Tm1s) ,

since this last expression is real.
To prove (3) we use similar arguments to [3, Theorem 10.2]. For t, s ∈ R,

E
[
(Bm(t)−Bm(s))

2
]

= E
[
〈·,1[s,t]〉2

]
= 2

∫
R

1− cos ((t− s)ξ)
ξ2

m(ξ)dξ,

where the last equality follows by vanishing imaginary part of (3.1). We now compute

2

1∫
0

1− cos(tξ)

ξ2
m(ξ)dξ = 2

1∫
0

t2
2 sin

(
tξ
2

)2

ξ2t2
m(ξ)dξ ≤

≤ C1t
2 (C1 > 0 independent of t).

Using the mean-value theorem for the function ξ → cos(tξ) we have

1− cos(tξ) = tξ sin(tθt), θt ∈ [0, ξ].

Thus,
∞∫

1

1− cos(tξ)

ξ2
m(ξ)dξ = t

∞∫
1

sin(tθt)
m(ξ)

ξ
dξ ≤ t

∞∫
1

m(ξ)

ξ
dξ ≤ C2t,

where we have used (3.2) in the last move. Since Bm(t)−Bm(s) is zero mean Gaussian,
we obtain

E
[
(Bm(t)−Bm(s))

4
]

= C3E
[
(Bm(t)−Bm(s))

2
]
≤ C4 (t− s)2

.

Thus Bm satisfies Kolmogorov-C̆entsov test for the existence of a continuous version.

Our next goal is to define stochastic integration with respect to the process Bm in
the spaceWm. The definition of the Wiener integral with respect to Bm for f ∈ D (Tm)
is straightforward in view of the Hilbert spaces isomorphism (2.4) and given by

τ∫
0

f(t)dBm(t) , 〈ω,1τf〉. (3.3)

Note that since∫
R

m(ξ)|f̂(ξ)|2dξ ≤ sup
ξ∈R

(1 + ξ2)|f̂(ξ)|2
∫
R

m(ξ)

1 + ξ2
dξ,



A generalized white noise space and stochastic integration. . . 403

a sufficient condition for a function f ∈ L2 (R) to be in the domain of Tm is

sup
ξ∈R

(1 + ξ2)|f̂(ξ)|2 ≤ ∞.

This is satisfied in particular if f is differentiable with derivative in L2 (R).
Recall that in the white noise space one may define the Skorokhod-Hitsuda stochas-

tic integral of Xt on the interval [a, b] as

b∫
a

XtdB(t) =

b∫
a

Xt � Ḃmdt,

where Ḃm denotes the time derivative of the Brownian motion and � denotes the
Wick product. The chaos decomposition of the white noise space is used in order to
define the Wick product and appropriate spaces of stochastic distributions, where Ḃm
lives. Chaos decomposition forWm can be obtained by a similar procedure to the one
explained in [9,13, section 3] for the fractional Brownian motion. A space of stochastic
distributions that contains Ḃm and is closed under the Wick product can similarly be
defined.

A somewhat alternative approach, which uses only the expectation and the
Lebesgue integral on the real line, is achieved by using the S-transform [10]. As we
shall see below, an analogue of the S-transform can be naturally defined in the space
Wm, thus allows us to introduce Skorokhod-Hitsuda integral forWm valued processes.

4. THE SM TRANSFORM

We now define the analog of the S transform in the spaceWm and study its properties.
For s ∈ SR we define the analog of the Wick exponential in the space Wm:

e�〈ω,s〉 , e〈ω,s〉−
1
2‖Tms‖

2

Definition 4.1. The Sm transform of Φ ∈ Wm is defined by

(SmΦ)(s) ,
∫
Ω

e�〈ω,s〉Φ(ω)dµm(ω) = E
[
e�〈ω,s〉Φ(ω)

]
, s ∈ SR.

Theorem 4.2. Let Φ,Ψ ∈ Wm. If (SmΦ) (s) = (SmΨ) (s) for all s ∈ S , then Φ = Ψ.

Proof. We follow the same arguments as in [4, Theorem 2.2] with some small changes.
By linearity of the Sm transform, it is enough to prove

(∀s ∈ S : (SmΦ) (s) = 0)⇒ Φ = 0.

Let {ξn}n∈N ⊂ SR be a countable dense set in L2(R) and denote by Gn the σ-field
generated by {〈ω, ξ1〉, . . . , 〈ω, ξn〉}. We may choose {ξn}n∈N such that {Tmξn}n∈N are
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orthonormal. For every n ∈ N, E [Φ|Gn] = φn (〈ω, ξ1〉, . . . , 〈ω, ξn〉) for some measur-
able function φn : Rn −→ R such that

EΦ =

∫
· · ·
∫

Rn

φn(x)e−
1
2x

′xdx <∞,

where x′ denotes the transpose of x; see for instance [7, Proposition 2.7, p. 7]. Thus,
for t = (t1, . . . , tn) ∈ Rn, using (2.12) we obtain

0=

∫
Ω

e�〈ω,
∑n
k=1 tkξk〉Φ(ω)dµm =

∫
Ω

e�〈ω,
∑n
k=1 tkξk〉E [Φ|Gn] dµm(ω) =

=e−
1
2

∑n
k=1 t

2
k‖Tmξk‖

2

∫
Ω

e
∑n
k=1 tk〈ω,ξk〉φn (〈ω, ξ1〉, . . . , 〈ω, ξn〉) dµm(ω) =

=e−
1
2

∑n
k=1 t

2
k‖Tmξk‖

2 1

(2π)
n
2

∫
· · ·
∫

Rn

e
∑n
k=1 tkxkφn (x1, . . . , xn) e−

1
2

∑n
k=1 x

2
kdx1 . . . dxn=

=

∫
· · ·
∫

Rn

φn (x) e−
1
2 (x−t)′(x−t)dx.

Since the last expression is a convolution integral of φn with a positive eigenvector of
the Fourier transform, by properties of the Fourier transform we get that φn = 0 for
all n ∈ N. Since

⋃
n∈N Gn = G, we have Φ = 0.

Note that Theorem 4.2 also proves that the set of linear combinations of random
variables of the form

e〈ω,f〉, f ∈ DR (Tm) ,

is a dense subset in Wm.

Definition 4.3. A stochastic polynomial is a random variable of the form

p (〈ω, f1〉, . . . , 〈ω, f2〉) , f1, . . . , fn ∈ DR (Tm) ,

for some polynomial p in n variables. We denote the set of stochastic polynomials
by P.

Corollary 4.4. The set of stochastic polynomials is dense in Wm.

Proof. We first note that the stochastic polynomials indeed belong to Wm because
the random variables 〈ω, f〉 are Gaussian and hence have moments of any order.

Let Φ ∈ Wm be such that E [Φp] = 0 for each p ∈P. Then for any f ∈ DR(Tm),

E
[
e〈ω,f〉Φ(ω)

]
= E

[ ∞∑
n=0

〈ω, f〉n

n!
Φ(ω)

]
=

∞∑
n=0

E [〈ω, f〉nΦ(ω)]

n!
= 0, (4.1)
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where interchanging of summation is justified by Fubini’s theorem since

∞∑
n=0

E
[
| 〈ω, f〉

n

n!
Φ(ω) |

]
≤
∞∑
n=0

1

(n!)

√
E [〈ω, f〉2n]E

[
Φ(ω)

2
]
≤

≤
∞∑
n=0

√
(2n− 1)!!

(n!)2
‖ Tmf ‖n

√
E
[
Φ(ω)

2
]
≤

≤
∞∑
n=0

2n

n!
‖ Tmf ‖n

√
E
[
Φ(ω)

2
]

=

= e2‖Tmf‖2 ·
√

E
[
Φ(ω)

2
]
<∞.

(We have used the Cauchy-Schwarz inequality and the moments of a Gaussian distri-
bution).

We have shown that E
[
e〈ω,f〉Φ(ω)

]
= 0 for any f ∈ DR(Tm), so by Theorem 4.2

we obtain Φ = 0 in Wm.

Lemma 4.5. Let f, g ∈ DR(Tm). Then

E[e�〈ω,f〉 e�〈ω,g〉] = e(Tmf,Tmg).

Proof.
E[: e〈ω,f〉 :] = e−

1
2‖Tmf‖

2

E[e〈ω,f〉] = 1, (4.2)

since E[e〈ω,f〉] is the moment generating function of the Gaussian random variable
〈ω, f〉 with variance ‖Tmf‖2 evaluated at 1. Thus we get

E[e�〈ω,f〉 e�〈ω,g〉] = e(Tmf,Tmg)E[e�〈ω,f+g〉] = e(Tmf,Tmg).

The following formula is useful in calculating the Sm transform of the multiplica-
tion of two random variables, and can be easily proved using Lemma 4.5.

Sm
(
e�〈ω,f〉 e�〈ω,g〉

)
= e(Tms,Tmf)e(Tms,Tmf)e(Tms,Tmg), f, g ∈ DR(Tm). (4.3)

Proposition 4.6. Let {Φn} be a sequence in Wm that converges in Wm to Φ. Then
for any s ∈ SR the sequence of real numbers {Sm (Φn) (s)} converges to Sm (Φ) (s).

Proof. For any s ∈ SR,

|SmΦn(s)− SmΦ(s)| =
∣∣∣E [e�〈ω,s〉(Φn − Φ)

]∣∣∣ ≤√E
[(
e�〈ω,s〉

)2] ·√E
[
(Φn − Φ)

2
]
.

By direct calculation E
[(
e�〈ω,s〉

)2]
= e‖Tms‖

2

and since E
[
(Φn − Φ)

2
]
−→ 0, the

claim follows.

We can find the Sm transform of powers of 〈ω, f〉 for f ∈ DR(Tm) by the formula
for Hermite polynomials.
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Corollary 4.7. For f ∈ DR(Tm) and s ∈ SR, we have that

(Tms, Tmf)
n

= n!

bn/2c∑
k=0

(
− 1

2

)k (Sm〈ω, f〉n−2k
)

(s) ‖Tmf‖2k

k!(n− 2k)!
, (4.4)

in particular
(Sm〈ω, f〉)(s) = (Tmf, Tms) (4.5)

and
(Sm〈ω, f〉2)(s) = (Tmf, Tms)

2
+ ‖Tms‖2. (4.6)

Proof. From Lemma 4.5 we get

(Sme�〈ω,f〉)(s) = e(Tms,Tmf).

Then

e−
1
2‖Tmf‖

2

Sm

( ∞∑
k=0

〈ω, f〉k

k!

)
(s) =

∞∑
k=0

(Tms, Tmf)
k

k!
(4.7)

By the linearity of the Sm transform and Fubini’s theorem, and replacing f by tf
with t ∈ R we compare powers of t at both sides to get (4.4).

This last corollary can be also formulated in terms of the Hermite polynomials.
Recall that the nth Hermite polynomial with parameter t ∈ R is defined by

h[t]
n (x) , n!

bn/2c∑
k=0

(
− 1

2

)k
xn−2k · t2k

k!(n− 2k)!
(4.8)

(see for instance [15, p. 33]). For f ∈ D(Tm) we define

h̃n (〈ω, f〉) , h[‖Tmf‖]
n (〈ω, f〉) = n!

bn/2c∑
k=0

(
− 1

2

)k 〈ω, f〉n−2k · ‖Tmf‖2k

k!(n− 2k)!
, (4.9)

and we also set h̃0 = 1.
So by (4.4) we have that(

Smh̃n (〈ω, f〉)
)

(s) = (Tms, Tmf)
n
. (4.10)

Using equation 4.4 and Lemma 4.5, one can easily verify the following result.

Proposition 4.8. Let f ∈ DR(Tm). It holds that

e�〈ω,f〉 =

∞∑
k=0

h̃k (〈ω, f〉)
k!

(4.11)

It is possible to define a Wick product in Wm using the Sm transform.
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Definition 4.9. Let Φ,Ψ ∈ Wm. The Wick product of Φ and Ψ is the element
Φ �Ψ ∈ Wm that satisfies

Sm(Φ �Ψ)(s) = (SmΦ)(s)(SmΨ)(s), ∀s ∈ SR,

if it exists.

As this definition suggests, in general the Wick product is not stable in Wm.
From (4.10), the Wick product of Hermite polynomials satisfies

h̃n (〈ω, f〉) � h̃k (〈ω, f〉) = h̃n+k (〈ω, f〉) , n, k ∈ N, f ∈ DR(Tm).

5. STOCHASTIC INTEGRAL

We now use the Sm-transform to define a Wick-Itô type stochastic integral which can
be seen as a version of Hitsuda-Skorokhod integral in Wm, and prove an Itô formula
for this integral. In the next section we also show that for particular choices of m,
our definition of the stochastic integral coincides with previously defined Wick-Itô
stochastic integrals for fractional Brownian motion; see [6, 8]. We set

Bs(t) = Sm (Bm(t)) (s).

By (4.5), we see that

Bs(t) = (Tms, Tm1t) = (T ∗mTms,1t)L2
=

∫
R

m(ξ)ŝ(ξ)
eiξt − 1

ξ
dξ. (5.1)

This function is absolutely continuous with respect to Lebesgue measure and its
derivative is

(Bs(t))′ =

∫
R

m(ξ)ŝ(ξ)eiξtdξ. (5.2)

We note that when Tm is a bounded operator from L2(R) into itself we have by a
result of Lebesgue (see [17, p. 410]), (Bs(t))′ = (T ∗mTms)(t) (a.e.).

Definition 5.1. Let M ∈ R be a Borel set and let X : M −→ Wm be a stochas-
tic process. The process X will be called integrable over M if for any s ∈ SR,
(SmXt) (s)Bs(t)′ is integrable on M , and if there is a Φ ∈ Wm such that

SmΦ(s) =

∫
M

(SmXt) (s)Bs(t)′dt

for any s ∈ SR. If X is integrable, Φ is uniquely determined by Theorem 4.2 and we
denote it by

∫
M
XtdBm (t).
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If T = IdL2(R), this definition coincides with the Hitsuda-Skorokhod integral [10,
Chapter 8]. See also Section 5.

Note that since

|Bs(t)′| ≤
∫
R

m(ξ)|ŝ(ξ)|dξ ≤ sup
ξ
|(1 + ξ2)ŝ(ξ)|

∫
R

m(ξ)

1 + ξ2
dξ <∞,

for any s ∈ S there exists a constant Ks such that∣∣∣ ∫
M

SmXt(s)Bs(t)′dt
∣∣∣ ≤ Ks

∫
M

∣∣∣E [Xte
�〈ω,s〉

] ∣∣∣dt ≤ KsE
[(
e�〈ω,s〉

)2
] ∫
M

E[X2
t ]dt.

Thus a sufficient condition for the integrability of SmXt(s)Bs(t)′ is
∫
M

E[X2
t ]dt <∞.

Proposition 5.2. Any non-random f ∈ DR(Tm) is integrable and we have
τ∫

0

f(t)dBm(t) = 〈ω,1τf〉. (5.3)

Proof. In virtue of (4.5) and the definition of the stochastic integral, we need to show
that

τ∫
0

f(t)Bs(t)′dt = (Tms, Tm1τf) .

Using formula (5.2) and Fubini’s theorem, we have
τ∫

0

f(t)Bs(t)′dt =

τ∫
0

f(t)

∫
R

m(ξ)ŝ(ξ)eiξtdξ

 dt =

=

∫
R

m(ξ)ŝ(ξ)

 τ∫
0

f(t)eitξdt

 dξ =

=

∫
R

m(ξ)ŝ(ξ)
(
f̂1τ (ξ)

)
dξ = (Tms, Tm1τf) .

Proposition 5.3. The stochastic integral has the following properties:

(1) For 0 ≤ a < b ∈ R,

Bm (b)−Bm (a) =

b∫
a

dBm(t).

(2) Let X : M −→Wm an integrable process. Then∫
M

XtdBm(t) =

∫
R

1MXtdBm(t).
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(3) Let X : M −→Wm an integrable process. Then

E

∫
M

XtdBm(t)

 = Sm

∫
M

XtdBm(t)

 (0) = 0.

(4) The Wick product and the stochastic integral can be interchanged: Let
X : R −→Wm an integrable process and assume that for Y ∈ Wm, Y � Xt is
integrable. Then

Y �
∫
R

XtdBm(t) =

∫
R

Y �XtdBm(t).

Proof. The proof of the first three items is easy and we omit it. The last item is proved
in the following way:

Sm
(
Y �

∫
R

XtdBm(t)

)
(s) = (SmY )(s)

∫
M

(SmXt)(s)dBm =

=

∫
M

(SmY )(s)(SmXt)(s)dBm =

= Sm
(∫

R

Y �XtdBm(t)
)

(s).

Example 5.4. For τ ≥ 0, by equation (4.6), we have

τ∫
0

(Tms, Tm1t)
d

dt
(Tms, Tm1t) dt =

1

2
(Tms, Tm1τ )

2
=

1

2
Sm
(
〈ω,1t〉 − ‖Tm1t‖2

)
(s).

Then Bm is integrable on the interval [0, τ ], and we get

τ∫
0

Bm(t)dBm(t) =
1

2
Bm(τ)2 − 1

2
‖Tm1τ‖2.

This reduces to the well known Itô integral identity in the case where m ≡ 1, i.e.
where Tm is the identity operator.

Example 5.5. Let h̃n be defined by (4.9). A similar argument to the one in (5.2)
will show that for any f such that f1t ∈ D(Tm), the function t 7→ (Tms, Tmf1t) is
differentiable with derivative

d

dt
(Tms, Tmf1t) = f(t)

∫
R

m(ξ)ŝ(ξ)e−itξdξ = f(t)Bs(t)′.
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By a similar argument to Proposition 5.2, we get

1

n+ 1
Sm
(
h̃n+1 (〈ω,1τf〉) (t)

)
(s) =

1

n+ 1
(Tms, Tm1τf) =

=

τ∫
0

(Tms, Tmf1t)
n
f(t)Bs(t)′dt =

= Sm

 τ∫
0

f(t)h̃n (〈ω,1tf〉) dBm (t)

 (s),

thus
τ∫

0

f(t)h̃n (〈ω,1tf〉) dBm (t) =
1

n+ 1
h̃n+1 (〈ω,1τf〉) . (5.4)

It follows from (5.4) that for any polynomial p and f with 1tf ∈ D(Tm) the process
p(〈ω,1tf〉) is integrable. This result can be easily extended to the process

t 7→ e〈ω,1tf〉, 1tf ∈ D(Tm),

and we also obtain the following corollary.

Corollary 5.6.
τ∫

0

f(t)e�〈ω,1tf〉dBm(t) = e�〈ω,1tf〉 − 1.

Example 5.7. Let f ∈ DR(Tm). Using (4.3) we can obtain

Sm

e�〈ω,f〉 τ∫
0

e�〈ω,1t〉dBm(t)

 (s) = Sm
(
e�〈ω,f〉 e�〈ω,1τ 〉 − e�〈ω,f〉

)
(s) =

= e(Tms,Tmf)
(
e(Tms,Tm1τ )e(Tmf,Tm1τ ) − 1

)
.

On the other hand,

Sm

( τ∫
0

e�〈ω,f〉 e�〈ω,1t〉dBm(t)

)
(s) =

= e(Tms,Tmf)

τ∫
0

e(Tms,Tm1t)e(Tmf,Tm1t)
d

dt
(Tms, Tm1t) dt =

= e(Tms,Tmf)
(
e(Tms,Tm1τ )e(Tmf,Tm1τ ) − 1

)
−

−
τ∫

0

e(Tms,Tm1t)e(Tmf,Tm1t)
d

dt
(Tmf, Tm1t) dt.
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So in general for an integrable stochastic process X and a random variable Y we have
the somewhat undesirable result

Y

τ∫
0

XtdBm(t) 6=
τ∫

0

Y XtdBm(t).

Compare it with property (4) in Proposition 5.3.

6. ITÔ’S FORMULA

In this section we prove an Itô’s formula. We begin by proving a version of the classical
Girsanov theorem in our setting.

Theorem 6.1. Let f ∈ D(Tm), and let µ be the measure defined by µ(A) =
E[e�〈ω,f〉1A]. The process

B̃m(t) , Bm(t)− (Tmf, Tm1t)

is Gaussian under the probability law µ and satisfies

Eµ[B̃m(t)B̃m(s)] = (Tm1t, Tm1s).

Proof. We will first prove that for all t ≥ 0, B̃m(t) is a Gaussian random variable
relative to the measure µ by considering its moment generating function Eµ

[
eλB̃m(t)

]
,

λ ∈ R,

Eµ
[
eλB̃m(t)

]
= E

[
e〈ω,f〉−

1
2‖Tmf‖

2

eλ〈ω,1t〉−λ(Tmf,Tm1t)
]

=

= e−λ(Tmf,Tm1t) e−
1
2‖Tmf‖

2

E
[
e〈ω,f+λ1t〉

]
.

(6.1)

Since 〈ω, f + λ1t〉 is a zero mean Gaussian random variable with variance

‖Tm (f + λ1t) ‖2 = ‖Tmf‖2 + λ2‖Tm1t‖2 + 2λ (Tmf, Tm1t) ,

its moment generating function evaluated at 1 is given by

E
[
e〈ω,Tmf+λ1t〉

]
= e

1
2‖Tmf‖

2

e
1
2λ

2‖Tm1t‖2eλ(Tmf,Tm1t), (6.2)

and we conclude from (6.1) that

Eµ
[
eλB̃m(t)

]
= e

1
2λ

2‖Tm1t‖2 . (6.3)

Thus for all t ≥ 0, B̃m(t) is a zero mean Gaussian random variable on (Ω,G, µ).
Similar arguments will show that any linear combination of time samples is a Gaussian
variable, and so B̃m(t), t ≥ 0 is a Gaussian process. Finally, by the polarization
formula,

Eµ[B̃m(t)B̃m(s)] = (Tm1t, Tm1s).
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We now interpret integrals of the type
∫ τ

0
Φ(t)dt, where for every t ∈ [0, τ ],

Φ(t) ∈ Wm, as Pettis integrals, that is as

E

 τ∫
0

Φ(t)dt

Ψ

 =

τ∫
0

E[Φ(t)Ψ]dt, ∀Ψ ∈ Wm,

under the hypothesis that the function t 7→ E[Φ(t)Ψ] belongs to L1([0, τ ], dt) for every
Ψ ∈ Wm. See [11, pp. 77–78]. We note that if X is moreover pathwise integrable and
such that the pathwise intregral belongs to Wm, then

τ∫
0

E[|Xt|]dt <∞,

and we can apply Fubini’s theorem to show that both integrals coincide. It is also clear
from the definition of the Pettis integral that it commutes with the Sm transform.

We introduce the conditions

E
[
|F (t,Xt)|e�〈ω,s〉

]
<∞, (6.4)

E
[
|∂F
∂t

(t,Xt)|e�〈ω,s〉
]
<∞, (6.5)

E
[
|∂F
∂x

(t,Xt)|e�〈ω,s〉
]
<∞, (6.6)

for F ∈ C1,2 ([0,∞) ,R).
We now develop an Itô formula for a class of stochastic processes of the form

Xt (ω) =

τ∫
0

f(t)dBm(t) = 〈ω,1τf〉, τ ≥ 0, 1τf ∈ D (Tm) . (6.7)

Theorem 6.2. Let F ∈ C1,2 ([0,∞) ,R) satisfying (6.4)–(6.6), and assume that
‖Tm1tf‖2 is absolutely continuous with respect to the Lebesgue measure as a function
of t. Then we have

F (τ,Xτ )− F (0, 0) =

τ∫
0

∂

∂t
F (t,Xt)dt+

τ∫
0

f(t)
∂

∂x
F (t,Xt) dBm (t)+ (6.8)

+
1

2

τ∫
0

d

dt
‖Tm1tf‖2

∂2

∂x2
F (t,Xt)dt

in Wm.

The proof is based on the proof for the Itô formula in the S-transform approach
to Hitsuda-Skorokhod integration in the standard white noise space found in
[15, Section 13.5].
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Proof. Let s ∈ SR and f ∈ D (Tm). It follows from Theorem 6.1 that for every
t ∈ [0, τ ], Xt(ω) = 〈ω,1tf〉 is normally distributed under the measure

µs(A) , E
[
1A exp

{
〈ω, s〉 − 1

2
‖Tms‖2

}]
= E

[
1Ae

�〈ω,s〉
]

with mean (Tms, Tm1tf) and variance ‖Tm1tf‖2. Thus,

(SmF (t,Xt)) (s) = E
[
e�〈ω,s〉F (t,Xt)

]
= (6.9)

=

∫
R

F (t, u+ (Tm1tf, Tms)) ρ
(
‖Tm1tf‖2, u

)
du,

where ρ(w, u) = 1√
2πw

e−
u2

2w and satisfies

∂

∂w
ρ =

1

2

∂2

∂u2
ρ. (6.10)

Integrating by parts we obtain

∫
R

F (t, u)
∂2

∂u2
ρ(w, u)du =

∫
R

∂2

∂u2
F (t, u)ρ(w, u)du. (6.11)

In view of (6.4)–(6.6) we may differentiate under the integral sign by (6.9), (6.10) and
(6.11) and obtain for 0 ≤ t ≤ τ ,

d

dt
Sm (F (t,Xt)) (s) =

=

∫
R

∂

∂t
F (t, u+ (Tm1tf, Tms)) ρ

(
‖Tm1tf‖2, u

)
du+

+

∫
R

∂

∂x
F (t, u+ (Tm1tf, Tms))

d

dt
(Tm1tf, Tms) ρ

(
‖Tm1tf‖2, u

)
du+

+

∫
R

F (t, u+ (Tm1tf, Tms))
d

dt
‖Tm1tf‖2

∂

∂t
ρ
(
‖Tm1tf‖2

)
du =

= Sm
(
∂

∂t
F (t,Xt)

)
(s) +

d

dt
(Tms, Tm1tf)Sm

(
∂

∂x
F (t,Xt)

)
(s)+

+
1

2

d

dt
‖Tm1tf‖2 · Sm

(
∂2

∂x2
F (t,Xt)

)
(s).
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Hence,

Sm (F (τ,Xτ )− F (0, 0)) (s) =

τ∫
0

Sm
(
∂

∂t
F (t,Xt)

)
(s)dt+ (6.12)

+

τ∫
0

d

dt
(Tms, Tm1tf)Sm

(
∂

∂x
F (t,Xt)

)
(s)dt+

+
1

2

τ∫
0

d

dt
‖Tm1tf‖2 · Sm

(
∂2

∂x2
F (t,Xt)

)
(s)dt.

By the definition of the stochastic integral,

Sm

 τ∫
0

f(t)
∂

∂x
F (t,Xt) dBm(t)

 (s) =

τ∫
0

Sm
(
∂

∂x
F (t,Xt)

)
(s)f(t)Bs(t)dt,

which in view of Example 5.5 equals

τ∫
0

d

dt
(Tms, Tm1tf)Sm

(
∂

∂x
F (t,Xt)

)
(s)dt.

We may now use Fubini’s theorem to interchange the Sm-transform and the pathwise
integral, and obtain that the Sm-transform of the right hand side of (6.8) is exactly
the right hand side of (6.12), which proves the theorem.

7. RELATION TO OTHER WHITE-NOISE EXTENSIONS
OF WICK-ITÔ INTEGRAL

Recall that the white noise space corresponds to m(ξ) ≡ 1, so denoting it W1 is
consistent with our notation, and S1 is the classical S-transform of the white noise
space. We define a map T̃m :Wm −→W1 by describing its action on the dense set of
stochastic polynomials in Wm:

T̃m〈ω, f〉n = 〈ω, Tmf〉n, f ∈ D (Tm) .

Note that since the range of Tm is contained in D(T1) = D(IdL2(R)) = L2(R), this
map is well defined. It is easy to see that T̃m is an isometry between Hilbert spaces.
By continuity, we obtain that

T̃me
〈ω,f〉 = e〈ω,Tmf〉, f ∈ D (Tm) ,

hence (
S1T̃me

〈ω,f〉
)

(Tms) = e(Tms,Tmf) =
(
Sme〈ω,f〉

)
(s).
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So this relation between S1 and Sm can be extended such that for any Φ ∈ Wm,(
S1T̃mΦ

)
(Tms) = (SmΦ) (s).

Let X : [0, τ ] −→Wm be a stochastic process. We have defined its Itô integral as the
unique element Φ ∈ Wm (if exists) having Sm-transform

(SmΦ) (s) =

τ∫
0

(Xt) (s)
d

dt
(Tms, Tm1t) (s)dt.

This suggests that if we define in the white noise the process B̃m as 〈ω, Tm1t〉 and
stochastic integral with respect to B̃m as the unique element Φ ∈ W1(if exists) having
S1-transform

(S1Φ) (s) =

τ∫
0

(Xt) (s)
d

dt
(s, Tm1t)) (s)dt, (7.1)

both definitions coincide in the sense that

T̃m

τ∫
0

XtdBm(t) =

τ∫
0

T̃mXtdB̃m(t). (7.2)

Recall that the fractional Brownian motion can be obtained in our setting by taking
m (ξ) = CH |ξ|1−2H , H ∈ (0, 1), where CH = Γ(1+2H) sin(πH)

2π . The resulting Tm was
defined in [9] and denotedMH there. In the white noise space, the fractional Brownian
motion can be defined by the continuous version of the process {〈ω,MH1t〉}t≥0.
An approach that is based on the definition described in (7.1) for the fractional Brow-
nian motion was given in [4]. Due to Theorem 3.4 there, under appropriate conditions
our definition of the Hitsuda-Skorokhod integral in the case of Tm = MH coincides
in the sense of (7.2) with the Hitsuda-Skorokhod integral defined there. Stochastic
integration in the white noise setting for the family of stochastic processes considered
in this paper can be found in [2], and its equivalence to the integral described here
can be obtained by a similar argument to that of Theorem 3.4 in [4].
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