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Quaternionic Hardy spaces in the open unit ball

and half space and Blaschke products

Daniel Alpay1, Fabrizio Colombo2 and Irene Sabadini2

1 Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105 Israel
2 Politecnico di Milano, Dipartimento di Matematica, Via E. Bonardi, 9 20133 Milano, Italy

E-mail: dany@math.bgu.ac.il, fabrizio.colombo@polimi.it, irene.sabadini@polimi.it

Abstract. The Hardy spaces H2(B) and H2(H+), where B and H+ denote, respectively, the
open unit ball of the quaternions and the half space of quaternions with positive real part, as
well as Blaschke products, have been intensively studied in a series of papers where they are
used as a tool to prove other results in Schur analysis. This paper gives an overview on the
topic, collecting the various results available.

1. Introduction
In this paper we give an overview of the results available on the Hardy spaces H2(Ω) where Ω
is either the open unit ball of the quaternions or the half space of quaternions with positive real
part. These spaces have been studied in a series of papers, see [1, 2, 3, 4, 5, 6] as a tool to prove
other results in Schur analysis and the purpose of this survey is to collect them in one paper.
For the proofs of the various results, we refer the reader to the original sources.
We will work in the framework of slice hyperholomorphic functions. Several functions spaces
have been considered in this setting, e.g. the Bergman spaces, see [11, 12, 13], Besov, Bloch
and Dirichlet spaces, see [9], the Fock space see [7] while other Hardy spaces Hp(B) are in
[14]. To define the class of slice hyperholomorphic functions, we need some terminology that is
introduced below.
By H we denote the algebra of real quaternions, namely the set of elements of the form
p = x0 + x1i + x2j + x3k where i, j, k is the standard basis of quaternions. Let S be the
set of purely imaginary quaternions with norm 1. Any I ∈ S is such that I2 = −1, so we can
consider the complex plane of elements of the form x+Iy where x, y ∈ R. Let Ω ⊆ H be an open
set and let f : Ω → H be a real differentiable function. Let I ∈ S and let fI be the restriction
of f to the complex plane CI . We say that f is a (left) slice hyperholomorphic function in Ω if,
for every I ∈ S, fI satisfies

1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0.

An analogous definition can be given for right slice hyperholomorphic functions. The class
of (left) slice hyperholomorphic functions includes, in particular, converging power series with
quaternionic coefficients written on the right. For the basic notions and main properties of these
functions we refer the reader to the books [10, 16]. The class of slice hyperholomorphic functions
is not closed, in general, under the pointwise multiplication. However, slice hyperholomorphic
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functions can be multiplied, at least on axially symmetric s-domains, in order to obtain a function
of the same kind using the so-called ?-product. We recall that axially symmetric s-domains
Ω are domains intersecting the real line, which remain connected when intersected with any
complex plane CI and such that whenever an element x + Iy ∈ Ω all the elements of the form
x+ Jy ∈ Ω when J varies in S. In the special case in which Ω is a ball with center at the origin
and if f, g are two slice hyperholomorphic functions they can be written as f(p) =

∑∞
k=0 p

kfk,

g(p) =
∑∞

k=0 p
kgk. Their ∗-product is (f ?g)(p) =

∑∞
k=0 p

k(
∑k

r=0 frgk−r), thus it coincides with
the product defined in [15].
Pointwise multiplication and slice multiplication can be related as in the following result, see
e.g. [10, Proposition 4.3.22]:

Proposition 1.1 Let U ⊆ H be an axially symmetric s-domain, f, g : U → H be slice
hyperholomorphic functions and let us assume that f(p) 6= 0. Then

(f ? g)(p) = f(p)g(f(p)−1pf(p)), (1)

for all p ∈ U . If f(p) = 0 then (f ? g)(p) = 0.

Note that the transformation p → f(p)−1pf(p) is clearly a rotation in H, since |p| =
|f(p)−1pf(p)|.
Note also that if (f ? g)(p) = 0 then either f(p) = 0 or g(f(p)−1pf(p)) = 0.
This latter fact is very well known for polynomials with quaternionic coefficients, see [17],
for which it is also well known that they might have spheres of zeros. Given a nonreal
quaternion α, it can be written as α = α0 + α1i + α2j + α3k = a + Ib where a = α0,
I = (α1i + α2j + α3k)/|α1i + α2j + α3k| ∈ S, b = |α1i + α2j + α3k|. The sphere defined
by α is the set [α] = {a+ Jb | J ∈ S}; it is the set of elements satisfying

p2 − 2ap+ (a2 + b2) = p2 − 2Re(α)p+ |α|2 = (p− α) ? (p− ᾱ) = 0.

This discussion suggests that the definition of multiplicity of a zero has to be given in appropriate
way:

Definition 1.2 We say that the multiplicity of the spherical zero [α] of a function Q(p) is m
if m is the maximum of the integers r such that (p2 + 2Re(α)p+ |α|2)r divides Q(p).
Let αj ∈ H \ R and let

Q(p) = (p− α1) ? . . . ? (p− αn) ? g(p) αj+1 6= ᾱj , j = 1, . . . , n− 1, g(p) 6= 0. (2)

We say that α1 is a zero of Q of multiplicity 1 if αj 6∈ [α1] for j = 2, . . . , n.
We say that α1 is a zero of Q of multiplicity n ≥ 2 if αj ∈ [α1] for all j = 2, . . . , n.
If αj ∈ R we can repeat the notion of multiplicity of α1 where (2) holds by removing the
assumption αj+1 6= ᾱj.

The definition of multiplicity, in the case of a real zero, coincides with the standard notion of
multiplicity since, in this case, the ?-product reduces to the pointwise product. Note that if
a function has a sphere of zeros at [α] with multiplicity n, at most one point on [α] can have
higher multiplicity.
As a consequence of Proposition 1.1 one has (see Corollary 3.3 in [4]):

Corollary 1.3 If limr→1 |f(reIθ)| = 1, for all I fixed in S, then

lim
r→1
|(f ? g)(reIθ)| = |g(eI

′θ)|,

a.e. for θ ∈ [0, 2π) (and I ′ ∈ S depends on θ, I and f).
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2. The Hardy space of the unit ball
The quaternionic Hardy space H2(B) of the unit ball B is defined as the space of square summable
(left) slice regular power series, see [3]:

H2(B) =

{
f(p) =

∞∑
k=0

pkfk : ‖f‖2H2(B) :=
∞∑
k=0

|fk|2 <∞

}
.

The space H2(B) is a right quaternionic Hilbert space if equipped with the inner product

〈f, g〉 =
∞∑
k=0

ḡkfk if f(p) =
∞∑
k=0

pkfk, g(p) =
∞∑
k=0

pkgk. (3)

If f is as in (3) then for a fixed I ∈ S we have

∫ 2π

0
|f(reIθ)|2dθ =

∫ 2π

0

 ∞∑
j,k=0

rk+jfke
I(j−k)θfj

 dθ

=
∞∑

j,k=0

rk+jfk

(∫ 2π

0
eI(j−k)θdθ

)
fj = 2π ·

∞∑
n=0

r2n|fn|2.

This last formula implies that the norm in H2(B) can be equivalently defined as, see [4]:

‖f‖2H2(B) = sup
0≤r<1

1

2π

∫ 2π

0
|f(reIθ)|2dθ (4)

where the value of the integral on the right is the same for each I ∈ S. Observe that the
supremum in (4) can be replaced by the limit as r tends to one. The integrand in (4) depends
on I ∈ S, so one could have put in the definition of the norm also the supremum with respect to
I ∈ S, however since the integral does not depend on the choice of I the supremum with respect
to I ∈ S is not needed.

Remark 2.1 The space H2(B) can be alternatively characterized as the reproducing kernel
Hilbert space with reproducing kernel

kH2(B)(p, q) =

∞∑
n=0

pnqn. (5)

The function kH2(B)(·, q) belongs to H2(B) for every q ∈ B and the fact that kH2(B)(p, q) is a
reproducing kernel means for any function f ∈ H2(B) as in (3),

〈
f, kH2(B)(·, q)

〉
H2(B)

=
∞∑
k=0

qkfk = f(q). (6)

An important feature of slice hyperholomorphic functions which is important in the sequel is
the following formula:

Theorem 2.2 (Representation Formula) Let Ω ⊆ H be an axially symmetric s-domain and let
f : Ω → H be a slice regular function. The following equality holds for all q = x + Iy ∈ Ω,
J,K ∈ S:

f(x+ Iy) = (J −K)−1[Jf(x+ Jy)−Kf(x+Ky)] + I(J −K)−1[f(x+ Jy)− f(x+Ky)]. (7)
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This formula implies that if we have two points on a same sphere, the value of the function
at any other point on the sphere is uniquely determined by the values in the first two points.
Moreover we have:

Proposition 2.3 The finite collection of functions {kH2(B)(·, qi)} based on distinct points
q1, . . . , qk ∈ B is (right) linearly independent in H2(B) if and only if none three of these points
belong to the same 2-sphere.

The linear dependence of three functions kH2(B)(·, pi) based on equivalent points explains in an
alternative way that the restriction of any function f ∈ H2(B) to any 2-sphere is completely
determined by the values of f at any two points of this sphere.
The following result, see [1, Theorem 3.3], [3, Theorem 6.2] shows that Schur functions are
contractions on H2(B):

Theorem 2.4 Let S : B→ H. The following are equivalent:

(i) S is slice regular on B and |S(p)| ≤ 1 for all p ∈ B.

(ii) The operator MS of left ?–multiplication by S

MS : f 7→ S ? f (8)

is a contraction on H2(B), that is, ‖S ? f‖H2(B) ≤ ‖f‖H2(B) for all f ∈ H2(B).

The matrix-valued version of this result is in [4, Theorem 4.6]. In analogy to the complex
case we introduce the Hardy space H∞(B) of bounded slice regular functions on B with norm
‖S‖∞ = supp∈B |S(p)| < ∞ and the space M(H2(B)) of bounded multipliers, that is, the
functions S : B → H such that the operator MS of left ?–multiplication (8) is bounded on
H2(B). By its definition, the set of slice hyperholomorphic functions on B which are bounded
by 1 and denoted by R(B,B) is the closed unit ball of H∞(B), see [1, Corollary 3.5]. Moreover,
we have the following consequence of Theorem 2.4.

Corollary 2.5 H∞(B) =M(H2(B)) and ‖S‖∞ = ‖MS‖ for every S ∈ H∞(B).

2.1. Blaschke products
We now recall the notion of Blaschke factors and products, see [5, 4, 6]. According to the fact
that the zeros of a slice hyperholomorphic functions can also be spheres, we will introduce two
different types of Blaschke factors.

Definition 2.6 Let a ∈ H, |a| < 1. The function

Ba(p) = (1− pā)−? ? (a− p) ā
|a|

(9)

is called Blaschke factor at a.

Remark 2.7 Let λ(p) = 1 − pā and let us apply formula (1) to the products λc(p) ? λ(p) and
λc(p) ? (a− p). We have

Ba(p) = (λc(p) ? λ(p))−1λc(p) ? (a− p) ā
|a|

= (λc(p)λ(p̃))−1λc(p)(a− p̃) ā
|a|

= λ(p̃)−1(a− p̃) ā
|a|

= (1− p̃ā)−1(a− p̃) ā
|a|
,

(10)

where p̃ = λc(p)−1pλc(p). Formula (10) gives the Blaschke factor Ba(p) in terms of the pointwise
multiplication.
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The following property extends the analogous property in the complex case:

Theorem 2.8 Let a ∈ H, |a| < 1. The Blaschke factor Ba(q) has the following properties:

(i) it takes the unit ball B to itself;

(ii) it takes the boundary of the unit ball to itself;

(iii) it has a unique zero for p = a.

In [4, Theorem 5.6] we proved the following result:

Theorem 2.9 Let {aj} ⊂ B, j = 1, 2, . . . be a sequence of nonzero quaternions such that
[ai] 6= [aj ] if i 6= j and assume that

∑
j≥1(1− |aj |) <∞. Then the function

B(p) := Π?
j≥1(1− pāj)−? ? (aj − p)

āj
|aj |

, (11)

where Π? denotes the ?-product, converges uniformly on the compact subsets of B.

The Blaschke factor vanishing at the sphere [a] is given in the following definition:

Definition 2.10 Let a ∈ H, |a| < 1. The function

B[a](p) = (1− 2Re(a)p+ p2|a|2)−1(|a|2 − 2Re(a)p+ p2) (12)

is called Blaschke factor at the sphere [a].

The definition of B[a](p) does not depend on the choice of the point a that identifies the 2-sphere.
Indeed all the elements in the sphere [a] have the same real part and module. We also have, see
[6]:

Proposition 2.11 The ?-inverse of Ba and B[a] are Bā−1, B[a−1] respectively.

The following result is the analogue of Theorem 2.9:

Proposition 2.12 A Blaschke product having zeros at the set of spheres

Z = {([c1], ν1), ([c2], ν2), . . .}

where cj ∈ B, the sphere [cj ] is a zero of multiplicity νj, j = 1, 2, . . . and
∑

j≥1 νj(1− |cj |) <∞
is given by ∏

j≥1

(B[cj ](p))
νj .

By Theorem 2.9 and 2.12 we can prove the following general result, see [4, 6]:

Theorem 2.13 A Blaschke product having zeroes at the set

Z = {(a1, n1), . . . , ([c1],m1), . . .}

where aj ∈ B, aj have respective multiplicities nj ≥ 1, aj 6= 0 for j = 1, 2, . . ., [ai] 6= [aj ] if i 6= j,
ci ∈ B, the spheres [cj ] have respective multiplicities mj ≥ 1, j = 1, 2, . . ., [ci] 6= [cj ] if i 6= j and∑

i,j≥1

(
ni(1− |ai|) + 2mj(1− |cj |)

)
<∞ (13)

is of the form ∏
i≥1

(B[ci](p))
mi

?∏
i≥1

?ni∏
j=1

(Bαij (p)),

where nj ≥ 1, α11 = a1 and αij are suitable elements in [ai], and if αij ∈ H \R αi j+1 6= αij, for
j = 2, 3, . . ..
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In the case in which one has to construct a Blaschke product having a zero at ai with multiplicity
ni by prescribing the factors (p− ai1) ? · · · ? (p− aini), aij ∈ [ai] for all j = 1, . . . , ni, the factors
in the Blaschke product must be chosen accordingly, see [4, 6].

Definition 2.14 A Blaschke product of the form

B(p) =
r∏
i=1

(B[ci](p))
mi

?s∏
i=1

?ni∏
j=1

(Bαij (p)), (14)

is said to have degree d =
∑r

i=1 2mi +
∑s

j=1 nj.

Let us denote by H(B) the quaternionic Hilbert space with reproducing kernel KB. We have,
see [6]:

Theorem 2.15 Let B(p) be a Blaschke product as in (14). Then dim(H(B)) = degB.

Theorem 2.16 Let Ba be a Blaschke factor. The operator

Ma : f 7→ Ba ? f

is an isometry from H2(B) into itself.

The following problem is the simplest Beurling-Lax type problem in the present setting and
we show below how to solve it:

Problem 2.17 Given N points a1, . . . , aN ∈ B, and M spheres [c1], . . . , [cM ] in B such that the
spheres [a1], . . . [aN ], [c1], . . . , [cM ] are pairwise non-intersecting, find all f ∈ H2(B) such that

f(ai) = 0, i = 1, . . . , N, (15)

and
f([cj ]) = 0, j = 1, . . . ,M. (16)

Theorem 2.18 There is a Blaschke product B such that the solutions of Problem 2.17 are the
functions f = B ? g, when g runs through H2(B).

3. The Hardy space of the half-space
Let us consider the half-space H+ of the quaternions q such that Re(q) > 0 and set Π+,I =
H+ ∩CI . We will denote by fI the restriction of a function f defined on H+ to Π+,I . We define

H2(Π+,I) = {f slice hyperholomorphic in H+ :

∫ +∞

−∞
|fI(Iy)|2dy <∞},

where f(Iy) denotes the nontangential value of f at Iy. Note that these value exist almost
everywhere, in fact any f ∈ H2(Π+,I) when restricted to a complex plane CI can be written as
fI(x + Iy) = F (x + Iy) + G(x + Iy)J where J is any element in S orthogonal to I, and F,G
are CI -valued holomorphic functions. Since the nontangential values of F and G exist almost
everywhere at Iy, also the nontangential value of f exists at Iy a.e. on Π+,I , see [2].
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Remark 3.1 In alternative, we could have defined H2(Π+,I) as the set of slice

hyperholomorphic functions f such that supx>0

∫ +∞
−∞ |fI(x + Iy)|2dy < ∞. However note

that fI(x + Iy) = F (x + Iy) + G(x + Iy)J , see the above discussion, and so |fI(x + Iy)|2 =
|F (x+ Iy)|2 + |G(x+ Iy)|2. Thus, from the result in the complex case, we have

sup
x>0

∫ +∞

−∞
|fI(x+ Iy)|2dy = sup

x>0

∫ +∞

−∞
|F (x+ Iy)|2dy + sup

x>0

∫ +∞

−∞
|G(x+ Iy)|2dy

=

∫ +∞

−∞
|F (Iy)|2dy +

∫ +∞

−∞
|G(Iy)|2dy

=

∫ +∞

−∞
|fI(Iy)|2dy.

(1)

In H2(Π+,I) we define the scalar product

〈f, g〉H2(Π+,I) =

∫ +∞

−∞
gI(Iy)fI(Iy)dy,

where fI(Iy), gI(Iy) denote the nontangential values of f, g at Iy on Π+,I . This scalar product
gives the norm

‖f‖H2(Π+,I) =

(∫ +∞

−∞
|fI(Iy)|2dy

) 1
2

,

(which is finite by our assumptions).

Proposition 3.2 Let f be slice hyperholomorphic in H+ and assume that f ∈ H2(Π+,I) for
some I ∈ S. Then for all J ∈ S the following inequalities hold

1

2
‖f‖H2(Π+,I) ≤ ‖f‖H2(Π+,J ) ≤ 2‖f‖H2(Π+,I).

An immediate consequence of this result is:

Corollary 3.3 A function f ∈ H2(Π+,I) for some I ∈ S if and only if f ∈ H2(Π+,J) for all
J ∈ S.

We now introduce the Hardy space of the half space H+, see [2, Definition 4.4]:

Definition 3.4 We define H2(H+) as the space of slice hyperholomorphic functions on H+ such
that

sup
I∈S

∫ +∞

−∞
|f(Iy)|2dy <∞. (2)

We have:

Proposition 3.5 The function

k(p, q) = (p̄+ q̄)(|p|2 + 2Re(p)q̄ + q̄2)−1 (3)

is slice hyperholomorphic in p and q̄ on the left and on the right, respectively in its domain of
definition, i.e. for p 6∈ [q̄]. The restriction of 1

2πk(p, q) to CI × CI coincides with kΠ+(z, w).
Moreover we have the equality:

k(p, q) = (|q|2 + 2Re(q)p+ p2)−1(p+ q). (4)

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012009 doi:10.1088/1742-6596/597/1/012009

7



The function k(p, q) can also be constructed by taking the left ?-inverse with respect to the
variable p or the right ?-inverse with respect to the variable q, that is

k(p, q) = (|q|2 + 2Re(q)p+ p2)−1(p+ q) = (p+ q̄)−?

or
k(p, q) = (p̄+ q̄)(|p|2 + 2Re(p)q̄ + q̄2)−1 = (p− q̄)−?r .

Proposition 3.6 The kernel 1
2πk(p, q) is reproducing, i.e. for any f ∈ H2(H+)

f(p) =

∫ ∞
−∞

1

2π
k(p, Iy)f(Iy)dy.

For some computations, it is useful to know that the kernel k(p, q) satisfies (see [2, Proposition
4.7])

pk(p, q) + k(p, q)q = 1.

We know that if {φn(z)} is an orthonormal basis for H2(Π+,I), for some I ∈ S, then

k(z, w) =

∞∑
n=1

φn(z)φn(w), (5)

and so the kernel k(z, w) is positive definite. In [2, Proposition 4.8] we have proved the following:

Proposition 3.7 Let {φn(z)} be an orthonormal basis for H2(Π+,I), for some I ∈ S, and let
{Φn(q)} = {ext(φn(z))} be the sequence of the slice hyperholomorphic extensions of its elements.
Then {Φn(q)} is an orthonormal basis for H2(H+), and

k(p, q) =

∞∑
n=0

Φn(p)Φn(q).

Example 3.8 As an example of decomposition using an orthonormal basis, we consider

Φn(p) =
√

2(p+ 1)−n−1(p− 1)n.

We have

k(p, q) =
∞∑
n=0

Φn(p)Φn(q) = 2
∞∑
n=0

(p+ 1)−n−1(p− 1)n(q̄ − 1)n(q̄ + 1)−n−1.

We now introduce the Blaschke factors in the half space H+, see [2].

Definition 3.9 For a ∈ H+ set

ba(p) = (p+ ā)−? ? (p− a).

The function ba(p) is called Blaschke factor at a in the half space H+.

Remark 3.10 The function ba(p) is defined outside the sphere [−a] as it can be easily seen by
rewriting it as

ba(p) = (p2 + 2Re(a)p+ |a|2)−1(p+ a) ? (p− a) = (p2 + 2Re(a)p+ |a|2)−1(p2 − a2)

and it has a zero for p = a.
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We have the following result which characterizes the convergence of a Blaschke product:

Theorem 3.11 Let {aj} ⊂ H+, j = 1, 2, . . . be a sequence of quaternions such that∑
j≥1 Re(aj) <∞. Then the function

B(p) := Π?
j≥1(p+ āj)

−? ? (p− aj), (6)

converges uniformly on the compact subsets of H+.

As in the unit ball case, we have two kinds of Blaschke factors. In fact, products of the form

ba(p) ? bā(p) = ((p+ ā)−? ? (p− a)) ? ((p+ a)−? ? (p− ā))

can be written as

ba(p) ? bā(p) = (p2 + 2Re(a)p+ |a|2)−1(p2 − 2Re(a)p+ |a|2),

and they admit the sphere [a] as set of zeros. Thus if we want to construct a Blaschke product
vanishing at some assigned spheres, it is convenient to introduce the following:

Definition 3.12 For a ∈ H+ set

b[a](p) = (p2 + 2Re(a)p+ |a|2)−1(p2 − 2Re(a)p+ |a|2).

The function ba(p) is called Blaschke factor at the sphere [a] in the half space H+.

Note that the definition is well posed since it does not depend on the choice of the point a. As
a consequence of Theorem 3.11 we have:

Corollary 3.13 Let {cj} ⊂ H+, j = 1, 2, . . . be a sequence of quaternions such that∑
j≥1 Re(cj) <∞. Then the function

B(p) := Πj≥1(p2 + 2Re(cj)p+ |cj |2)−1(p2 − 2Re(cj)p+ |cj |2), (7)

converges uniformly on the compact subsets of H+.

Thus we can prove the following [2, Theorem 4.14]:

Theorem 3.14 A Blaschke product having zeros at the set

Z = {(a1, µ1), (a2, µ2), . . . , ([c1], ν1), ([c2], ν2), . . .}

where aj ∈ H+, aj have respective multiplicities µj ≥ 1, [ai] 6= [aj ] if i 6= j, ci ∈ H+, the spheres
[cj ] have respective multiplicities νj ≥ 1, j = 1, 2, . . ., [ci] 6= [cj ] if i 6= j and∑

i,j≥1

(
µj(1− |aj |) + 2νi(1− |ci|)

)
<∞

is given by ∏
i≥1

(b[ci](p))
νi

?∏
j≥1

?µj∏
k=1

(bajk(p))?µj ,

where a11 = a1 and ajk ∈ [aj ] are such that αj+1 6= ᾱj, j = 1, . . . , n − 1, if αj ∈ H \ R,
k = 1, 2, 3, . . . , µj.
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We conclude this section by proving that the operator of multiplication by a Blaschke factor
is an isometry. In the proof we are in need of the notion of conjugate of a function f . Given a
slice hyperholomorphic function f consider its restriction to a complex plane CI and write it,
as customary, in the form fI(z) = F (z) + G(z)J where J is an element in S orthogonal to I

and F,G are CI -valued holomorphic functions. Define f c(p) = ext(F (z̄)−G(z)J) as the unique

extension of the function F (z̄) − G(z)J , see e.g. [10]. Note that if f(p) =
∑

n≥0 p
nan then

f c(p)
∑

n≥0 p
nān. We have the following, see [2]:

Lemma 3.15 Let f ∈ H2(H+). Then ‖f‖H2(H+) = ‖f c‖H2(H+).

Theorem 3.16 Let ba be a Blaschke factor. The operator

Mba : f 7→ ba ? f

is an isometry from H2(H+) into itself.

More generally, a function S slice hyperholomorphic in the right-half-plane will be such that
MS is a contraction from the Hardy space of the right half-plane into itself if and only it is
bounded by one in modulus there. The operator range

√
I −MSM∗S with the lifted norm is

then the associated de Branges Rovnyak space. For more information see [2], and [8].
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