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Abstract: One of the objectives of two-sided matching mechanisms is to pair two groups of agents such
that there is no incentive for pair deviation. The outcome of a match can significantly impact participants.
While much of the existing research in this field addresses the matching with fixed quotas, this is not always
applicable. We introduce the concept of slot stability, recognizing the potential motivation for organizations
to modify their quotas after the match. We propose an algorithm designed to create stable and slot stable
matches by employing flexible, endogenous quotas to address this issue.

1 Introduction

Economic research has played a pivotal role in shaping the development of market institutions, with a partic-
ular emphasis on matching institutions. The conventional framework for addressing the matching problem
involves organizations offering a set number of positions or quotas that need to be filled by applicants.
Within this framework, each applicant can be assigned to at most one position. Matching institutions have
been meticulously crafted to tackle these intricate challenges, aiming to provide a stable solution.

The concept of match stability was originally introduced by Gale and Shapley [1] in their groundbreak-
ing paper (hereafter, GS). They define a match as stable when there is no compelling incentive for a pair
of participants to switch their assignments. Additionally, GS introduced the deferred acceptance algorithm
[1], a widely employed method for achieving stable matches between applicants and organizations. In this
algorithm, applicants submit rank order lists (ROLs) of organizations based on their preferences, while or-
ganizations similarly rank applicants according to their preferences. The outcome of this algorithm results
in a stable match when ROLs truthfully reveal preferences.

The basic matching problem has evolved and extended to cases where preferences are more complex. For
example, the student-project allocation problem deals with matching students to projects that can have
overlapping lecturers while taking into account individual preferences and class capacity constraints. In this
environment, Abraham et al. [2] modify the matching algorithm to ensure stability. Another example is in
the National Resident Matching Program, which assigns interns to different hospitals and specialties. At
first, the algorithm treated every individual’s preference as independent of any other individual’s preference
and gave a stable matching in that environment. However, couples in the match may have joint preferences
because they want to be near each other. The deferred acceptance algorithm does not consider this and
can produce unstable outcomes. In this environment, Roth and Peranson [3] proposed a new matching
algorithm that incorporates couple preferences, although it does not guarantee a stable match. Nonetheless,
computational experiments demonstrate that the algorithm’s outcomes closely approximate stability.

The matching literature currently defines stability under the assumption of fixed quotas. Organizations
state the maximum number of applicants they will accept before the match begins. Rios et al. [4] examined
the Chilean college admission system, where the maximum number of slots can exceed the preset quota.
Matches are based entirely on academic scores, which can have ties. Therefore, quotas can be exceeded if
there is a tie between the accepted worst candidate and any other candidate who wants to join, in which
case they must accept all such candidates. However, this starts by posting a quota and then adjusting it in
light of scores. Limaye and Nasre [5] explore cases where all applicants must be accepted with costly slots.
They then minimize the total cost to get a stable match with minimal cost. However, this does not address
the incentive for the organization to accept these quotas. Here, there is minimal cost, yet there may be some
excellent candidates the organization would be willing to accept at a higher cost.

In the context of university admissions, educational institutions often grapple with a challenging dilemma.
They frequently find themselves with a surplus of highly qualified applicants, compelling them to consider
increasing the number of admitted students beyond their initial enrollment quotas. However, this decision
is not taken lightly, as universities must balance the advantages of admitting exceptional students and the
practical constraints of managing undergraduate enrollment while considering campus resource costs. To
navigate this complex scenario, universities have implemented wait lists for students who have not yet re-
ceived acceptance offers.
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A similar dilemma arises when universities are in the process of recruiting new faculty members. In this
case, while the administration may provide a specific number of available positions, academic departments
may argue for additional positions if confronted with a pool of high-quality candidates. The ability to assess
both the quality of applicants and the associated costs of creating additional positions becomes pivotal in
making these matching decisions.

In this paper, we show that if we expand stability to include organizations offering a different number
of positions, the current algorithms are not necessarily stable. We show how a small change to the deferred
acceptance algorithm allows for endogenous numbers of slots by organizations while guaranteeing this ex-
panded stability. In particular, we propose a matching mechanism that allows ROLs to accommodate these
trade-offs and ensure a stable match that is also slot stable. By slot stable, we mean that every organiza-
tion has no incentive to deviate in their number of openings. We also show that our matching mechanism
considers organizations’ concerns in a wait list system and provides a solution to the endogenous quota
problem.

2 The Environment

Applicants are denoted as a, with indices i = 1, 2, ..., n, and organizations are denoted as o, with indices
j = 1, 2, ...,m. Each organization oj has a number of positions or slots to fill. Each applicant can fill one
slot with at most one organization, and the set of these applicants admitted to oj is denoted as Aj . The
amount of slots filled, sj , is the cardinality of Aj . Let Vi(oj) denote applicant ai’s value if they are matched
with oj . Let Zj(ai) denote oj ’s value if they are matched with ai. Both Vi and Zj are one-to-one functions.
Every ai and oj is individually rational and defined by refusing all matches such that Vi(∅) > Vi(oj) or
Zj(∅) > Zj(ai), i.e., applicants and organizations only rank those that improve their value over remaining
unmatched.

Organization oj has a non-decreasing convex total cost Cj(x) of filling x slots. Specifically Cj(x+1) ≥ Cj(x)
and Cj(x+2)−Cj(x+1) ≥ Cj(x+1)−Cj(x). Denote MCj(x) to be the marginal cost of filling slot number
x defined by Cj(x)−Cj(x− 1). We also assume every ai ranks the organizations based only on Vi, where ai
prefers oj over ok if and only if Vi(oj) > Vi(ok). Likewise, oj ranks the applicants based only on Zj , where
oj prefers ai over ak if and only if Zj(ai) > Zj(ak).

The GS algorithm does not guarantee stability in this environment. Below is an example illustrating the
issue with the fixed quota assumption.

Suppose we have two organizations o1, o2, and three applicants a1, a2, a3. Both organizations have the
same values Zj and costs Cj , with Zj(a1) = 5, Zj(a2) = 4, Zj(a3) = 3, and MCj(1) = 2, MCj(2) = 3.5. For
the applicants their preferences are defined by V1(o2) > V1(o1), V2(o2) > V2(o1), V3(o1) > V3(o2). Exhibit
1 lists participants in the columns, while the rows depict the cost, values, or ranking of the object listed in
the row.
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o1 o2

a1 5 5

a2 4 4

a3 3 3

Organization Zj(ai)

o1 o2

Slot 1 2 2

Slot 2 3.5 3.5

Organization MCj(x)

o1 o2

a1 a1

a2 a2

a3 a3

Organization ROLs

a1 a2 a3

o2 o2 o1

o1 o1 o2

Applicant ROLs

Exhibit 1: Values, Costs and Lists

The applicant-proposing GS algorithm, when each organization has a fixed quota of 2 slots, results in o1
being matched with a3 and o2 being matched with a1 and a2. This yields a stable match, and neither
organization has any incentive to want to change its quota. However, if a2’s preference was V2(o1) > V2(o2),
their ROL would now be o1, o2, and the applicant proposing GS match would have o1 matched with a2 and
a3 and o2 matched with a1. Notice that with o1 having two slots filled, the value of a3 in slot 2 has a value
of 3 but a marginal cost of 3.5, resulting in a loss of .5. Because of this, o1 would prefer to leave the second
slot unfilled since MC1(s2) > Z1(a3). Here o1 set their quota too high.

Now, suppose organizations have the same costs and values as before, but the quotas are 1 for each or-
ganization. Applicant preferences are the same as the first example: V1(o2) > V1(o1), V2(o2) > V2(o1),
V3(o1) > V3(o2). The GS match would have o1 and a2 matched and o2 matched with a1. This match is
stable; however, o2 can do better. Here o2 would be willing to open a slot for a2 and a2 prefers o2 over their
current match, which would cause both to be better off. Here, o2 set their quota too low.

These examples demonstrate that another form of stability concerning organization quotas should be ad-
dressed. First, if organization oj stands to gain by adding a slot for an ai matched with some ou that would
prefer to be matched with oj , it is slot unstable. Second, if organization oj profits by eliminating a slot and
terminating an ai in Aj , it is slot unstable. Hence, we offer the following definition.

Definition: A match is said to be slot stable if and only if

(1) Zj(Aj)− Cj(sj) ≥ Zj(Aj ∪ ai)− Cj(sj + 1) ∀ai /∈ Aj , ai ∈ Au, Vi(ou) < Vi(oj), ∀j ∈ 1, 2, ....,m

and

(2) Zj(Aj)− Cj(sj) ≥ Zj(Aj \ ai)− Cj(sj − 1) ∀ai ∈ Aj , ∀j ∈ 1, 2, ....,m
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This can also be written in terms of marginal costs.

(1a) MCj(sj + 1) ≥ Zj(ai) ∀ai /∈ Aj , ai ∈ Au Vi(oj) > Vi(ou)

and

(2a) Zj(ai) ≥ MCj(sj) ∀ai ∈ Aj

3 Matching Mechanisms

This section assumes that applicants and organizations submit ROLs consistent with their payoffs.1

3.1 Endogenous Number of Positions Applicant-Proposing Algorithm (ENPAP)

3.1.1 Inputs

Applicants submit ROLs listing organizations from their most to least preferred that are better than not
being matched at all. For the organizations, we will need an adjustment where organizations provide a cutoff
list of rankings, henceforth called a ROCL. First, oj lists their applicants in rank order best to least. The
first cutoff, nj,1, is defined by the ordered list of top applicants Bj(nj,1) that would be acceptable within the
nj,1 slots such that |Bj(nj,1)| ≥ nj,1. This list is all of the applicants ranked above nj,1 in the submitted
ROCL. Next, all applicants below nj,1 and above nj,2 are the set of applicants an organization is willing
to accept if less than nj,2 of the Bj(nj,1) were accepted. Bj(nj,2) consists of all of Bj(nj,1) and these new
applicants. This is repeated until nj,n = 0.

Assuming that organizations reveal their preferences, what they should submit is clear. For an applicant to
be ranked above any cutoff, the organization must find the value for the applicant to be higher than the cost
of any slots in that cutoff. Therefore, Bj(nj,1) is also the set of applicants such that Zj(ai) > MCj(nj,1).
This is the top candidates such that the lowest ranked applicant still covers the cost at the margin. Below
nj,1 and above nj,2 would be the applicants that cover the margin at the second cutoff but not the first one.
Bj(nj,2) is the set such that Zj(ai) > MCj(nj,2) which includes Bj(nj,1) and these new applicants. This
logic is repeated for all cutoffs up to nj,n = 0.

For example, using the valuations from our first example, each organization has the following costs and
applicant values: Zj(a1) = 5, Zj(a2) = 4, Zj(a3) = 3, MCj(1) = 2, MCj(2) = 3.5, MCj(3) = 7. Creating
the best possible list for o1 and o2 results in n1 = n2 = 2. This is because the best outcome for both is to
be matched with a1 and a2. Here both o1 and o2 would take both a1 and a2 if they had to pay the marginal
cost in slot 2 to match with them. So far we have [a1, a2, 2, ..., 1]. Next, we check for slot n-1, which in this
case is 1. Both organizations would accept all three candidates if they only had to pay the marginal cost of
slot 1. Therefore, the ROCL for o1 and o2 would be written as [a1, a2, 2, a3, 1].

3.1.2 Algorithm

Using the notation from the GS algorithm, all applicants propose to the organization at the top of their
ROL. Then, every oj looks at their lowest value applicant ak that proposed to them and checks if ak is
acceptable in slot sj by looking at oj ’s ROCL. If ak ranks lower than sj , oj rejects ak and oj is removed from
ak’s ROL. All applicants are tentatively accepted if ak ranks higher than sj . If there is an ak such that ak is
unmatched and has any ok remaining in their ROL, they propose to their top remaining organization, and so
forth. To illustrate this, we use the applicant valuations V1(o1) > V1(o2), V2(o1) > V2(o2), V3(o1) > V3(o2)
and the ROCL [a1, a2, 2, a3, 1] for both o1 and o2. First, each applicant proposes to their highest valued,
individually rational organization depicted below.

1Just like with GS matching, the non-proposing side may not be incentivized to reveal their true rankings. Our mechanisms
ensure that the match with truthful rankings will be stable.
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o1 o2

a1 ∅
a2 ∅
a3 ∅

Applicants first proposal

Looking at the ROCL of o1, [a1, a2,2,a3,1], we eliminate the lowest ranking applicant a3, and a1 and a2 are
tentatively accepted. After being rejected by o1, a3 proposes to o2, who accepts them since a3 was ranked
if there is only one slot to fill for o2.

Theorem 1.1: ENPAP results in a stable match

Proof : Suppose the ENPAP match is unstable, then ∃ai, oj matched with ou, au such that Vi(oj) > Vi(ou)
and Zj(ai) > Zj(au). For ai and oj to not be matched with each other, either ai never proposed to oj or oj
rejected ai.

If ai never proposed to oj , one of two scenarios could have happened.

(ia) ai never put oj on their list. If oj is not on ai’s list, then Vi(∅) > Vi(oj). All ok ranked by ai
must satisfy Vi(∅) < Vi(ok). Therefore, regardless of whether ai is being matched with no one or any ok in
their ROL, Vi(oj) > Vi(ou) is false.

(ib) ai never proposed oj on their ROL. For this to happen, since ai applies to their highest ranked or-
ganization to their lowest ranked organization, ai must have stopped when matched with ou ranked higher
than oj such that Vi(ou) > Vi(oj).

(ii) oj rejected ai. If Zj(ai) < Zj(∅), then the algorithm cannot make a match where Zj(ai) > Zj(au).
Since the algorithm only rejects the lowest ranked applicants, all other applicants tentatively accepted in
the organization at the time must have ranked higher than ai and MCj(s) > Zj(ai) where s in the number
of tentatively accepted applicants. For oj to still want ai compared to one of the applicants they were
matched with, someone ranked even lower than ai must have been accepted later. If au ranks first to s
among Aj , it follows that au must be ranked above at least one other ak that was tentatively accepted while
ai was rejected, meaning Zj(au) > Zj(ak) > Zj(ai). If au was tentatively accepted with s or higher slots,
then Zj(au) > MCj(s) > Zj(ai). This would mean that in either case, a blocking pair does not exist as
Zj(ai) > Zj(au) is false. Q.E.D.

Theorem 1.2: ENPAP results in a slot stable match

Proof : Assume ENPAP results in slot instability, then by definition ∃ak, oj such that

(1) Zj(Aj)− Cj(sj) < Zj(Aj ∪ ai)− Cj(sj + 1) and Vi(ou) < Vi(oj),

or

(2) Zj(Aj)− Cj(sj) < Zj(Aj \ ai)− Cj(sj − 1).

(1) If the first inequality is true, then ∃ai such that MC(sj +1) < Zj(ai) that ranks worse than all the other
tentatively accepted applicants or ∃ai, au such that Zj(ai) > Zj(au) and MCj(sj + 1) < Zj(au). For the
first case, if Vi(ou) < Vi(oj), then ai would have already been matched with oj as ai would have proposed
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to oj before ou and not be rejected. For the second case, if Vi(ou) < Vi(oj), the match would have been
unstable, which is not possible from Theorem 1.1.

(2) If the second inequality is true, ∃ak, that is the lowest value ai ∈ Aj matched together such that
MCj(sj) > Zi(ak). However, the ENPAP algorithm rejects all ai that do not satisfy MCj(sj) < Zj(ai).
Since ak was not rejected by the algorithm, then MCj(sj) < Zj(ak) must be true.

Since the algorithm cannot produce a match that satisfies either condition, the ENPAP must give a slot
stable match. Q.E.D.

Among the set of stable and slot stable matches, an applicant optimal match is the one that assigns ap-
plicants to their highest ranking feasible organization.

Theorem 1.3: ENPAP results in an applicant optimal match

Proof : Using induction and Theorem 1.1, assume that the algorithm does not give an applicant optimal
match. That would mean that there exists an applicant ai that could match with a better organization that
did not. Since this is applicant proposing, assume that no applicant has yet been rejected by an organization
that is achievable for them. This means that no oj has rejected any ai where there exists a stable, slot
stable match with ai matched to oj . If ai was rejected for being unacceptable, it is unachievable. If ai was
rejected in favor of ak, then it is known that the applicant ak prefers the organization ou except for those
that already rejected them. By the inductive assumption, those organizations are unachievable to ak. If we
consider a hypothetical matching that matches ai to the ou and everyone else to an achievable organization,
ak would prefer the ou and vice versa, making it an unstable match. Q.E.D.

3.2 Endogenous Number of Positions Organization-Proposing Algorithm (EN-
POP)

3.2.1 Inputs

We will be using the same inputs of the ROLs and ROCLs as the ENPAP algorithm described in section
3.1.1.

3.2.2 Algorithm

Step 1: Each organization proposes to their top nj,1

Step 2: Each ai chooses their most preferred oj among those that proposed to ai. For all oj not chosen by
ai, ai is removed from their ROCL.
Step 3: Organizations then propose to the top applicants on their lists that satisfy the cutoff criteria. Step
4: Repeat steps 2 and 3 until no applicant has multiple organizations proposing to them.

To illustrate this we use the valuations from before with applicant values resulting V1(o2) > V1(o1), V2(o2) >
V2(o1), V3(o1) > V3(o2), and organization values for both organizations leading to their respective ROCLs
being [a1, a2, 2, a3, 1]. First, each oj submits their optimal organization list, shown below.

o1 o2

a1 a1

a2 a2

Organization Proposing First List
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Since both a1 and a2 have been proposed to by both o1 and o2, they choose between them. In this case both
a1 and a2 choose o2. We then repeat the process where o2 submits the same list, however, o1 submits a new
optimal list [a3] since their preferred candidates a1 and a2 are tentatively in o2’s list. This leads to the final
match below.

o1 o2

a3 a1

∅ a2

Organization Proposing Match

Theorem 2.1: ENPOP results in a stable match
Proof : Assume that there is a blocking pair ai and oj . For this to happen, oj must have put an applicant on
their optimal list that is worse than ai, au, in order for Zj(ai) > Zj(au) to be satisfied. By optimal list con-
struction, this can only occur if ai is unavailable. This only happens when Vi(ou) > Vi(oj) or Vi(∅) > Vi(oj)
is satisfied. This violates Vi(oj) > Vi(ou) therefore, ENPOP must result in a stable match. Q.E.D.

Theorem 2.2: ENPOP results in a slot stable match
Proof : For there to be slot instability, there ∃ai, oj such that either
(1) Zj(Aj)− Cj(sj) < Zj(Aj ∪ ai)− Cj(sj + 1) and Vi(ou) < Vi(oj), or
(2) Zj(Aj)− Cj(sj) < Zj(Aj \ ai)− Cj(sj − 1).

(1) If the first inequality is true, then ∃ai such that MC(sj +1) < Zj(ai) that ranks worse than all the other
tentatively accepted applicants or an ∃ai, au such that Zj(ai) > Zj(au) and MCj(sj +1) < Zj(au). For the
first case, if ai wanted to go to that oj more than their current match ou, they would have been already
matched as ai would be qualified to be put on oj ’s optimal list and accept the offer. For the second case, if
Vi(ou) < Vi(oj) the match would have been unstable, which violates Theorem 2.1.
(2) If the second inequality is true, ∃ai, oj matched together such that MCj(sj) > Zj(ak) However, for that
applicant to have been put into oj ’s optimal list with sj slots, oj must have ranked before sj in their ROL
meaning MCj(sj) < Zj(ak).

Since neither inequality can be true, ENPOP must give a slot stable match. Q.E.D

Theorem 2.3 ENPOP results in an organization optimal match
Proof : Using induction and Theorem 2.1, let’s assume that the algorithm does not give an organization
optimal match. That would mean that there exists an applicant ai that was matched with an organization
higher than their worst achievable organization. Since this is organization proposing assume that no appli-
cant has yet rejected an organization that is achievable for him. This means that no ai has rejected any oj
where there exists a stable, slot stable match with ai matched to oj . If ai rejected an organization for being
unacceptable, it’s unachievable. If ai rejected ou in favor of oj , we know that the organization oj has the
applicant in their optimal list except for those that already rejected them, and by the inductive assumption,
those applicants are unachievable to oj . If we consider a hypothetical matching that matches ai to ou and
everyone else to an achievable organization, ai would prefer oj and oj would prefer ai over at least one other
ak from oj ’s more constrained optimal list making it an unstable match which violates Theorem 2.1. Q.E.D

3.2.3 Wait list Comparison

The ENPOP algorithm closely resembles the wait list systems we see in places like graduate school admis-
sions. Initially, each applicant submits applications to all organizations based on their ROL. Subsequently,
each organization selects their top candidates, taking into consideration the trade-off between marginal costs
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and the applicant’s preferences.

Following this, each applicant chooses the organization that provides them with the highest value among
those who have accepted them. The process then repeats itself, with each organization once again selecting
their preferred candidates, who are likely to accept their offers. In this context, the wait list comprises
individuals whom the organization would consider if more preferred applicants declined their offers to match
with that organization.

Both the ENPOP algorithm and the current wait list system enable organizations to fill vacancies left
by applicants who choose another organization. However, in the wait list, system stability can be compro-
mised by both early acceptances and deadline related decisions.

Let’s examine the scenario of early acceptances. When an applicant, denoted as ai, accepts an early of-
fer from organization oj , there are two possible scenarios to consider in their ROL. First, if there is no
organization ou ranked above oj in ai’s ROL, it reflects ai’s alignment with the ENPOP framework, as they
have secured their best match and have no incentive to deviate.

However, if such an organization ou exists in ai’s ROL, a potential exists for ou to extend an offer to
ai. However, if ai has already accepted oj ’s offer, they may be unable to switch to their preferred organiza-
tion. This situation could lead to an unstable outcome.

Furthermore, we must consider the impact of deadline acceptances. Let’s consider two organizations, o1
and o2, both of which have sent acceptances to a1, a2, and placed a3 on their respective wait lists. If both
a1 and a2 delay their decisions until the last possible moment to choose o1, there may not be enough time
for o2 to send an acceptance offer to a3 from the wait list, leaving insufficient time for a3 to decide. This
dynamic introduces potential instability not observed in the ENPOP or ENPAP frameworks.

3.3 Unique Set of Slot Stable Filled Slots

Next, we show that with costly slots, there is only one set of filled slots that result in a slot stable match.
This uniqueness property highlights the improbable nature of organizations setting fixed quotas where each
organization accepts the exact number of applicants needed to have stability in this environment.

We transform the many-to-one match into a one-to-one match by using the applicant’s ai ROLs and the
organization’s oj ROCLs. For organization oj , they offer 1,2,..., nj slots. Let oj,x denote oj ’s xth slot. For
all slots oj,x, their ROL is defined as the cutoff list Bj(x). Thus, each slot an organization offers now has
its own ROL, which is considered a ”different” organization for the 1-1 match. For every applicant ai, we
set their one-to-one ROLs such that organization oj ’s xth slot oj,x is ranked above organization ok’s yth slot
ok,y if and only if ai ranks oj above ok in their many-to-one ROL. In addition, organization oj ’s xth slot,
oj,x, is ranked above organization oj ’s y

th slot, oj,y, by ai if and only if x > y.

Lemma 1: An ordered many-to-one match is stable and slot stable if and only if the trans-
formed one-to-one match is stable

Proof : Here, and ordered many-to-one match is one such that oj has their most preferred applicant in
Aj in slot one, their second most preferred in slot two, and so forth. For this to be true, three properties
must be true: if the corresponding one-to-one match is stable, then the many-to-one match is stable; if the
one-to-one match is stable, the many-to-one match is slot stable; if the many-to-one match is stable and slot
stable, the one-to-one match is stable.

First, we will show that if the many-to-one match is stable, then the transformed one-to-one match will
be stable. We prove this by contradiction. If the one-to-one match is stable while the many-to-one match
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is unstable, there must exist an applicant ai matched with organization ok and an applicant ak matched
with organization oj such that ai prefers oj to ok and oj prefers ai to ak in the many-to-one match. For
the corresponding one-to-one stable match, ai must be matched with one of ok’s slots, ok,x, and ak must be
matched with one of oj ’s slots, oj,y.

Since ai ranks oj,y above ok,x if ai has oj ranked above ok, then ai must prefer oj,y to ok,x. Since oj,y
shares the same ROL ordering as oj , that would mean that the one-to-one match is unstable as ai would
prefer oj,y and oj,y would prefer ai over ak.

Next, we will show that if the transformed one-to-one match is stable, then the many-to-one match is
slot stable. We will prove this by contradiction. Suppose the one-to-one match is stable while the many-to-
one match is slot unstable, then by definition there exists applicant ai and organization oj such that

(1) MCj(sj + 1) < Zj(ai), ai /∈ Aj , ai ∈ Au, Vi(oj) > Vi(ou)

or

(2) Zj(ai) < MCj(sj), ai ∈ Aj

1) If the first inequality is true, then there exists an applicant ai such that MC(sj + 1) < Zj(ai) and ranks
below all the other tentatively accepted applicants or there exists applicants ai, au such that Zj(ai) > Zj(au)
and MCj(sj+1) < Zj(au). For the first case, if applicant ai prefers organization oj to ou, then ai must prefer
ou,x over oj,y. From the slot side, oj,sj+1 must have ai above not being filled if MCj(sj + 1) < Zj(au) as ai
would be in Bj(sj+1) which defines oj,sj+1’s ROL. Therefore since oj,sj+1 and ai prefer being with each other
versus the original match, the one-to-one match must be unstable. For the second case, if Vi(ou) < Vi(oj),
then ai prefers oj,y over ou,x through construction of ai’s one-to-one ROL. Since oj,y shares the same ROL
as oj , oj,y must prefer ai over there current applicant au. Since both oj,y and ai prefer each other over their
current match, the one-to-one match is unstable.

2) If the second inequality is true, there exists an applicant ak that is the lowest value ai ∈ Aj matched
together such that MCj(sj) > Zi(ak). For this to be true, ak cannot be a part of oj ’s cutoff list Bj(sj). This
would mean that slot oj,sj does not have ak in their ROL. This would make the one-to-one match unstable
as it is not individually rational due to oj,sj preferring not being matched at all.

Lastly, we will show that if the many-to-one match is stable and slot stable, then the transformed one-
to-one match will be stable. We will prove this with contradiction. Suppose the many-to-one match is stable
and slot stable while the many-to-one match is unstable. Then there must exist an applicant ai matched
with slot ok,x and an applicant au matched with slot oj,y such that ai prefers oj,y prefer each other over
their current match. This can happen either if j ̸= k or j = k.

If j ̸= k then ai must prefer organization oj over organization ok as ai ranks oj,y above ok,x if and only if
ai has oj is ranked above ok. Since oj ranks applicants in the same order as its slots, then oj must prefer
ai over the applicant au who is in slot oj,y. Since oj prefers ai over au and ai prefers oj over ok. Then the
many-to-one match must be unstable.

For the case where j = k, that would mean that the many-to-one match is unordered as a lower ranked
applicant must be in a slot higher than the higher ranked applicant.

Therefore an ordered many-to-one match is stable and slot stable if and only if the corresponding one-
to-one match is stable. Q.E.D.
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Theorem 3: For any set of applicants and organizations, there is only one set of filled slots
that is both stable and slot stable

Proof : Lemma 1 shows that these constructed ROLs result in both stable and slot stable outcomes as
with our algorithm. For this and any one-to-one match with strict preferences, Roth and Sotomayor [6] have
shown that the set of unassigned agents (applicants and organizations) is the same for all stable matches.
Therefore, the same slots must be matched for a corresponding one-to-one match to be stable. Hence, since
the set of matched slots is always the same, and the many-to-one match is stable and slot stable, each
organization must have the same number of applicants for all stable, slot stable matches. Q.E.D.

4 Conclusion

We have successfully developed a new matching algorithm that incorporates the cost of supplying slots to
be assigned to applicants by building upon the principles of the original GS algorithm. This new algorithm
ensures stable outcomes by incorporating cutoff points in ROLs to account for the cost of supplying slots.
Additionally, given the nature of the environment with costly slots, we have defined the requirement for
our algorithm to be slot stable and shown the improbability of this occurring endogenously in the current
system. This new concept requires organizations not to be incentivized to change their number of available
slots unilaterally. We have also shown that our algorithm is comparable to the current wait list system used
in college and graduate school admissions when looking at school concerns. Yet, it removes the possibility
of potentially preemptive behavior that can lead to unstable matches.
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