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A central feature of quantum mechanics is that
a measurement is intrinsically probabilistic. As a
result, continuously monitoring a quantum sys-
tem will randomly perturb its natural unitary
evolution. The ability to control a quantum sys-
tem in the presence of these fluctuations is of
increasing importance in quantum information
processing and finds application in fields rang-
ing from nuclear magnetic resonance1 to chem-
ical synthesis2. A detailed understanding of this
stochastic evolution is essential for the develop-
ment of optimized control methods. Here we re-
construct the individual quantum trajectories3–5
of a superconducting circuit that evolves in com-
petition between continuous weak measurement
and driven unitary evolution. By tracking indi-
vidual trajectories that evolve between an arbi-
trary choice of initial and final states we can de-
duce the most probable path through quantum
state space. These pre- and post-selected quan-
tum trajectories also reveal the optimal detector
signal in the form of a smooth time-continuous
function that connects the desired boundary con-
ditions. Our investigation reveals the rich inter-
play between measurement dynamics, typically
associated with wave function collapse, and uni-
tary evolution of the quantum state as described
by the Schrödinger equation. These results and
the underlying theory6, based on a principle of
least action, reveal the optimal route from initial
to final states, and may enable new quantum con-
trol methods for state steering and information
processing.

Our experiment focuses on the dynamics of two quan-
tum levels of a superconducting circuit (a qubit), which
can be continuously measured and excited by microwave
pulses. To access individual quantum trajectories, we
make use of the fact that fully projective measure-
ment (or wavefunction collapse) happens over an aver-
age timescale τ controlled by the interaction strength
between the system and the detector. By recording the
measurement signal in time steps much shorter than τ
with high fidelity, we realize a continuous sequence of
weak measurements and track the qubit state as it evolves
in a single experimental iteration. Individual weak mea-
surements have been recently employed in atomic physics
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Figure 1: Setup. (a) A transmon circuit is dispersively
coupled to a three dimensional copper waveguide cavity. Mi-
crowave signals that reflect off the cavity port are amplified by
a Lumped-element Josephson Parametric Amplifier (LJPA)22

operating near the quantum limit. (b) A microwave tone
that probes the cavity near resonance is shown as a phasor in
the X1-X2 plane with zero-point quantum fluctuations shown
by the shaded region. (c) Ground and excited energy lev-
els are shown on the transmon potential. (d) The reflected
microwave tone acquires a qubit state-dependent phase shift
that is smaller than the quantum fluctuations of the measure-
ment signal. After further amplification, the X2 quadrature
of the measurement tone is digitized. (e) The measurement
is calibrated by examining the distributions of measurement
signals for the qubit prepared in the |0〉 (blue) and |1〉 (red)
states.

experiments that probe wave function collapse7 and per-
form state stabilization8. In the domain of supercon-
ducting circuits, weak measurements9 have only recently
been realized due to the challenge associated with high
fidelity detection of near single-photon level microwave
signals. Advances in superconducting parametric ampli-
fiers have enabled continuous feedback control10–12, the
observation of individual quantum trajectories13,14, the
determination of weak values15,16, and entanglement of
qubits17,18.

Our experiment consists of a superconducting trans-
mon circuit19 dispersively coupled to a waveguide
cavity20 (Fig. 1a). Considering only the two lowest levels
of the transmon as a qubit, our system is described by
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the Hamiltonian H = H0 +Hint +HR,

Hint = −~χa†aσz, HR = ~
Ω

2
σy, (1)

where H0 describes the qubit and cavity, ~ is the re-
duced Plank’s constant, a†(a) is the creation (annihila-
tion) operator for the cavity mode, and σy,z are qubit
Pauli operators. HR describes a microwave drive at the
qubit transition frequency which induces unitary evolu-
tion of the qubit state characterized by the Rabi fre-
quency Ω. Hint is the interaction term, characterized
by the dispersive coupling rate χ/2π = −0.6 MHz. This
term describes a qubit state-dependent frequency shift
of the cavity which we use to perform quantum state
measurement in our system. As depicted in Figure 1b-e,
a microwave tone that probes the cavity near its res-
onance frequency will acquire a qubit state-dependent
phase shift. If the measurement tone is very weak, quan-
tum fluctuations of the electromagnetic mode fundamen-
tally obscure this phase shift, resulting in a partial or
weak measurement of the qubit state. We use a near-
quantum-limited parametric amplifier21,22 to amplify the
X2 quadrature of the reflected signal, which is propor-
tional to the qubit state-dependent phase shift. After
further amplification, we digitize the signal in 16 ns time
steps resulting in a measurement signal V (t). Each time
step is small compared to the characteristic measure-
ment time, τ = κ/(16χ2n̄ ηcolηamp), where n̄ is the av-
erage intracavity photon number, κ/2π = 9.0 MHz is
the cavity decay rate, and ηcolηamp is the measurement
quantum efficiency23 that decomposes into separate col-
lection and amplification efficiencies. The characteristic
measurement time is calibrated by examining (Gaussian)
histograms of the measurement results for the qubit pre-
pared in the σz eigenstates |0〉 and |1〉 and is given by
the time it takes to separate the two distributions by two
standard deviations, ∆V = 2σ.

In our experiment, we prepare the qubit along the x
axis of the Bloch sphere by heralding the |0〉 state and
applying a π/2 rotation about the y axis. Then, a mea-
surement tone at 6.8316 GHz continuously probes the
cavity for a variable time t, which weakly measures the
qubit in the σz basis. Finally, we apply further rotations
and perform a projective measurement to conduct quan-
tum state tomography. In figure 2 (top panels) we show
the ensemble averaged tomography for Ω/2π = 0, 0.56,
and 1.08 MHz. From these curves, we extract Ω and the
ensemble decay rate Γ, from which we calculate a total
quantum efficiency ηtot = 1/(2 τ Γ) = ηcolηampηenv = 0.4
where the last factor indicates the (nearly negligible) ex-
tra environmental dephasing ηenv = (1 + κ/8χ2n̄T ∗2 )−1

with T ∗2 = 15µs.
In each iteration of the experiment, we can use the

recorded measurement signal to calculate the best esti-
mate for the qubit state conditioned on the measurement
record. As discussed in the supplementary information,
at each time-step we apply a two step update procedure
to track the evolution of the system density matrix ρ. We

account for the measurement result using a quantum gen-
eralization of Bayes’ rule23,24, and for the Rabi drive by
applying a unitary rotation. Our finite detector efficiency
reflects an imperfect knowledge about the state of the
system and results in a decay of coherence given by rate
γ = Γ− 1/(2τ). From the density matrix ρ, we calculate
expectation values of the Pauli operators conditioned on
the measurement signal, x ≡ Tr[ρσx], y ≡ Tr[ρσy], and
z ≡ Tr[ρσz].

In figure 2a we display a sample trajectory with no
drive (Ω = 0) that shows the stochastic motion of the
qubit state as it evolves under measurement, and is ulti-
mately projected into the |0〉 state. As described in the
methods, we use conditioned quantum state tomography
to reconstruct the trajectory. Figure 2b,c demonstrate
that we can track the state faithfully in the presence of
unitary state evolution induced by a drive at the qubit
frequency. These trajectories highlight the stark differ-
ence between ensemble dynamics and the dynamics of
individual quantum trajectories; while the ensemble de-
cays rapidly to a mixed state, the individual trajectories
remain remarkably pure despite the modest quantum ef-
ficiency of ηtot = 0.4.

Using this ability to track individual trajectories start-
ing from a given initial state, we now consider the
sub-ensemble of trajectories that arrive at a particu-
lar final state at a given time. This sub-ensemble al-
lows us to examine the conditional quantum dynam-
ics of the state that satisfy two boundary conditions,
one in the past, “pre-selection”, and one in the fu-
ture, “post-selection”. This is similar to an analysis
that leads to weak values25–27, and time continuous
generalizations16,28 which consider an additional projec-
tive post-selection measurement. In contrast to that ap-
proach, we use only a single continuous measurement:
the pre-selection is just the initial state, and the post-
selection is simply what the state is when the detector
stops measuring. The resulting average of the measure-
ment output gives a “weak function" that connects the
boundary conditions.

To investigate the full ensemble and post-selected sub-
ensemble dynamics, we perform 105 iterations of the ex-
periment with a measurement duration of 1.424 µs. For
each experiment, we construct the quantum state trajec-
tory by finding x and z for every time step. Figure 3 dis-
plays the measurement dynamics for Ω = 0. We consider
the sub-ensemble of trajectories that had final values
z(1.424 µs) = −0.85±0.03 and x(1.424 µs) = 0.23±0.03.
This analysis allows us to examine properties of the con-
ditional trajectories such as the most likely path that
connects pre- and post-selected states.

The most likely paths can be theoretically calculated
based on a stochastic path integral representation of the
joint probability of the measurement outcomes at every
point in time with boundary condition constraints. The
conditional detector backaction on the quantum state can
be imposed at every timestep with Lagrange multipliers
(px, py, pz) as auxiliary dynamical parameters. Finding
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Figure 2: Quantum trajectories of the quantum state x (blue), y (red), and z (black) are plotted versus time. The upper
panels depict the full ensemble evolution sided by individual trajectories (magenta) and the ensemble average (green) plotted in
the x–z plane of the Bloch sphere. The lower panels depict individual quantum trajectories (dashed curves), with comparison
to their tomographic reconstructions (solid curves). Panels (a), (b), (c) correspond to different values of Rabi drives, Ω/2π =
0, 0.56, and 1.08 MHz, respectively. Here, τ = 315 ns and Γ = 3.85× 106 s−1.

the extremum of the stochastic action leads to equations
of motion for the optimal path connecting the boundary
conditions. As we discuss in supplementary information
this corresponds to optimizing the total path probability
between the states. Since the experiment operates in
the x–z plane of the Bloch sphere, the (deterministic)
equations of motion for the optimized path are

ẋ = − γ x+ Ω z − xz r/τ, (2a)
ż = −Ωx+ (1− z2) r/τ, (2b)
ṗx = + γ px + Ω pz + pxz r/τ, (2c)
ṗz = −Ω px + (pxx+ 2pzz − 1) r/τ, (2d)

where x, z, px, pz, r are now functions of time and r =
z + pz(1 − z2) − pxxz. We note that r may be inter-
preted as the most likely detector estimate of the qubit’s
z-coordinate, where the noisy fluctuations around z have
now been constrained by the Lagrange multipliers px, pz.
This readout relates to the optimal detector signal as
Vopt = ∆V r/2. The solution to these nonlinear equations
admits four constants of motion, which permits the impo-
sition of both initial (xI , zI) and final (xF , zF ) boundary
conditions.

The equations have a simple analytic solution (x̄, z̄)
for Ω = 0. We consider measurement for a time T ,
starting in the initial state (xI = 1, zI = 0), and
ending in a state (xF , zF ) (in this particular case, xF
is determined by the choice of zF ). The solution of
Eqs. (2) is x̄(t) = e−γt sech r̄ t/τ, z̄(t) = tanh r̄ t/τ where
r̄ = (τ/T ) tanh−1 zF , is the detector output of maxi-
mum likelihood. These solutions are plotted in Figure
3 showing agreement with the experimentally obtained
most likely path (see methods).

In figure 4, we display the full ensembles and post-
selected ensembles for the driven case (Ω/2π = 1.08

MHz). Depending on the amount of time between the
initial and final states, the competition between mea-
surement and Schrödinger dynamics produces different
(and nontrivial) optimal routes, showing alternatively
diffusive Rabi oscillation dynamics or quantum jump dy-
namics (where the system is effectively pinned in one
of the eigenstates)6,24,29,30. We compare the experimen-
tal most likely trajectories (see methods) to the most
likely paths obtained from solving Eqs. (2). The equa-
tions were numerically solved with a shooting method to
satisfy both initial and final boundary conditions at dif-
ferent times. These numerical solutions show reasonable
agreement with the experimental most likely curves.

In addition to the quantum paths, the solution of
Eqs. (2) also gives the optimal detector response to move
the quantum system to the target state after a given
time. We compare these optimal signals to the condi-
tioned average detector signals (weak functions) in Fig-
ure 4. The post-selection allows the conditioned average
detector signal to exceed the usual range of [−1, 1] for z.
This behavior is analogous to that of weak values which
can also lie outside their eigenvalue range27.

The ability to find and verify the most likely path be-
tween chosen initial and final quantum states under con-
tinuous measurement advances the field of quantum con-
trol of individual systems and our fundamental under-
standing of quantum measurement. Our detailed exper-
imental and theoretical investigation of the probability
distributions for mapping quantum paths allows for fu-
ture optimization of control parameters to tune the most-
likely behavior in quantum systems.
Methods Details about the sample fabrication, experi-

mental setup, and data analysis are given in the supplemental
information.

To verify that we have accurately tracked the quantum
state of the system, we perform quantum state tomography



4

a b

c -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

z x

Time (μs)

z

Time (μs)

d

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.00.50.0 1.00.50.0-1
.0

-0
.5

0.
0

0.
5

1.
0

x

z

Figure 3: Greyscale histograms of quantum trajectories in
the undriven case for a measurement duration of 1.424 µs.
(a, b) Histogram of all measured z, and x trajectories re-
spectively, beginning from state (xI = 0.97, zI = 0). Repre-
sentative trajectories are shown in color. (c, d) Histogram
of trajectories z, x respectively, conforming to the final cho-
sen boundary condition, zF = −0.85 ± .03. Magenta curves
are most likely trajectories for the experimental data (solid)
and from the theory (dashed). Representative trajectories are
shown in other colors. Here, τ = 1.25 µs, and Γ = 0.94× 106

s−1.

at discrete times along the trajectory. We denote the target
trajectory, which is based on a single run of the experiment,
x̃(t), z̃(t). For each experimental sequence of total measure-
ment duration t we propagate ρ and if x(t) = x̃(t) ± 0.03
and z(t) = z̃(t) ± 0.03, the subsequent tomography results
are included in the tomographic reconstruction of the state
at time t. We repeat this analysis for all time steps between
0 and 1.6 µs, showing good agreement between the individual
trajectories and the tomographic reconstructions.

The experimental most likely path was obtained by com-
puting a path probability for each trajectory and then averag-
ing the trajectories in the top 5-8%. This 5-8% window was
motivated by an independent Monte Carlo simulation with
the same sample size. In the supplemental information we
discuss the detailed estimation of the experimental most likely
path and its correspondence with the solutions of Eqs. (2).
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SUPPLEMENTARY INFORMATION FOR:
“MAPPING THE OPTIMAL ROUTE BETWEEN TWO QUANTUM STATES”

I. EXPERIMENTAL METHODS

This section details information about device parameters, experimental setup and data analysis routines.

A. Device parameters

The qubit consists of two aluminum paddles connected by a double-angle-evaporated aluminum SQUID deposited on double-
side-polished silicon. The qubit is characterized by a charging energy Ec/h = 200 MHz, and a Josephson energy EJ/h = 11
GHz. The qubit is operated with negligible flux threading the SQUID loop with a transition frequency ωq/2π = 4.01057 GHz.
The qubit is located off center of a 6.8316-GHz copper waveguide cavity. With the measurement tone on the qubit transition
frequency was ac-Stark shifted to 4.00748 GHz. Qubit pulses and drive are performed at the ac-Stark shifted frequency.

The Lumped-element Josephson Parametric Amplifier (LJPA) consists of a two-junction SQUID, formed from 2-µA Josephson
junctions shunted by 3 pF of capacitance and is flux biased to provide 20 dB of gain at the cavity resonance frequency. The
LJPA is pumped by two sidebands equally spaced 300 MHz above and below the cavity resonance.

B. Experiment setup

Figure S1 displays a schematic of the experimental setup. Experimental sequences start with an 800-ns readout to herald
the |0〉 state (z = +1), followed by a 16-ns π/2 rotation about the y axis to prepare the qubit along the x axis. After a period
of variable duration, we perform quantum state tomography by applying either rotations about the x and y axes or no rotation
followed by a second 800-ns readout. Tomography results were corrected for the readout fidelity of 95%.

C. Calibration of the measurement

We calibrate the characteristic measurement time τ by examining histograms of the measurement signal for the qubit prepared
in either the |0〉 or |1〉 states. We prepare these states through a herald readout and then digitize the measurement signal for
a variable period of time. The resulting distributions are approximately Gaussian,

P (V | 0) =

√
1

2πσ2
e
− 1

2σ2
(V−∆V/2)2

, (3)

P (V | 1) =

√
1

2πσ2
e
− 1

2σ2
(V+∆V/2)2

. (4)

We fit the distributions to determine ∆V , the voltage separation of the peaks, and the variance σ2. The quantity S = ∆V 2/σ2

increases linearly with integration time, S = 4t/τ , which we fit to determine the characteristic measurement time τ .
To calibrate the initial state and total dephasing rate, we prepare the qubit along the x axis and perform quantum state

tomography after a variable period of time. The tomography results for the full ensemble are shown in Figure 2a (in the
main text), and exhibit exponential decay of coherence at rate Γ. The total quantum measurement efficiency is given by
ηtot = 1/(2Γτ). Note that the total quantum measurement efficiency ηtot = ηcol × ηamp × ηenv, is the product of efficiencies for
collection, for amplification and from extra environmental dephasing. We use the tomography value at t = 0 to determine the
initial state, denoted x0, z0.

To determine the Rabi frequency, Ω, we examine the ensemble tomography results as shown in Figure 2b,c (in the main text).
The ensemble evolution is given by the Lindblad equation with arbitrary Rabi drive, ẋ(t) = −Γx(t) + Ωz(t), ż(t) = −Ωx(t).
With initial state x0 and z0, these equations have an analytic solution,

x(t) = e−Γt/2

(
x0cos λt− Γx0 − 2Ωz0

2λ
sin λt

)
, (5)

z(t) = e−Γt/2

(
z0cos λt+

Γz0 − 2Ωx0

2λ
sin λt

)
, (6)

where λ =
√

Ω2 − (Γ/2)2. We use (6) to determine the Rabi frequency Ω for each measurement strength and Rabi drive
amplitude.
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D. Propagation of the qubit state density matrix

Given the Rabi frequency Ω, the coherence decay rate γ, and the initial qubit state calculated from the values of x0 and z0

at time t = 0, we propagate the initial state to states at later time steps t = dt, 2dt, ..., ndt using a two-step procedure. At any
time t, we first apply a unitary rotation to account for the Rabi drive,

ρ′01 = ρ01 +
Ω

2
(ρ00 − ρ11)dt, (7)

ρ′11 = ρ11 +
Ω

2
(ρ′01 + ρ′10)dt, (8)

where ρ00, ρ01, ρ10, ρ11 are matrix elements of a qubit density matrix ρ(t). With the input values ρ′01, ρ
′
11, we next apply the

Bayesian update to them based on the measurement result V (t) obtained in the time interval between t and t+ dt and get,

ρ11(t+ dt) =
(ρ′11/ρ

′
00) exp(−4V (t)dt/τ∆V )

1 + (ρ′11/ρ
′
00) exp(−4V (t)dt/τ∆V )

, (9)

ρ01(t+ dt) = ρ′01

√
(1− ρ11(t+ dt))ρ11(t+ dt)√

(1− ρ′11)ρ′11

e−γdt. (10)

We use dt = 16 ns as the data sampling interval, and V (t) is the measurement result obtained between t and t + dt. As
discussed in the main text, we validate the state update procedure using conditioned quantum state tomography and find good
agreement between individual trajectories and the tomographic reconstructions.

Moreover, in the time-continuum limit dt → 0, we can approximate the state update procedure Eqs. (7)-(10) with the
differential equations,

ẋ(t) =− γ x(t) + Ω z(t)− x(t)z(t)r(t)/τ, (11)

ż(t) = − Ωx(t) + (1− z(t)2)r(t)/τ, (12)

where r(t) = 2V (t)/∆V is the dimensionless measurement signal and x(t) = Tr[σxρ(t)], z(t) = Tr[σzρ(t)] are the Bloch sphere
coordinates as functions of time.

II. THEORETICAL METHODS

A. Derivation of the ordinary differential equations Eq. (2) in the main text

We consider a set of unitless measurement readouts {rk} = {r0, r1, ..., rn−1} where rk = 2Vk/∆V at times {tk} for k =
0, 1, ..., n− 1 and its corresponding set of qubit states denoted by {qk}. In our experiment, the y component of the qubit Bloch
coordinates is always zero, thus qk is a 2-dimensional vector qk = (xk, zk). We write a joint probability density function of all
measurement outcomes {rk}, the quantum states {qk} and the chosen final state qF , conditioned on the initial state qI as,

P ({qk}, {rk}, qF |qI) = δ2(q0 − qI)δ
2(qn − qF )

(
n−1∏
k=0

P (qk+1|qk, rk)P (rk|qk)

)
. (13)

Here, P (qk+1|qk, rk) is a probability density function of a qubit state at time tk+1 given a qubit state and measurement signal
at previous time tk. Since a qubit state at any time tk+1 is updated deterministically from qk and rk, the density function
P (qk+1|qk, rk) is a delta function with the state update equations. The conditional distribution of the detector output P (rk|qk)
is a probability density function of rk given qk which is,

P (rk|qk) =

√
δt

2πτ

(
1 + zk

2
e−

δt
2τ

(rk−1)2 +
1− zk

2
e−

δt
2τ

(rk+1)2
)
. (14)

By expressing the delta functions in Eq. (13) in Fourier forms with conjugate variables pk = (pxk, p
y
k) for k = −1, 0, ..., n

and other terms in exponential forms, we can write the joint probability density function in a path integral representation
P ({qk}, {rk}, qF |qI) ∝

´
Dp eS . Here Dp is an integral measure over conjugate variables {pk} and S is an action of the

integrals given by,

S =− p−1 · (q0 − qI)− pn · (qn − qF ) +

n−1∑
k=0

{
− pk · (qk+1 − E[qk, rk]) + lnP (rk|qk)

}
, (15a)

=−B +

ˆ T

0

dt
[
− pxẋ− pz ż + px(−γx+ Ωz − xzr/τ) + pz(−Ωx+ (1− z2)r/τ)− (r2 − 2rz + 1)/2τ

]
, (15b)
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Figure 5: Experimental schematic. The weak measurement tone is always on. The projective readout tone is pulsed. The
amplitude and phase of the signal displacement tone are adjusted to displace the measurement signals back to the origin of the
X1X2 plane and allows the LJPA to perform in the linear regime.

where we have used the operator E[qk, rk] for the state update equations and B as a short hand for the first two terms in
Eq. (15a). We note that, in the second line, we have taken the time-continuum limit δt→ 0 and written the action explicitly for
our qubit measurement case with the state update equations Eq. (11)-(12). We have also used shortened notation of variables,
e.g., x = x(t) ≡ limδt→0{x0, x1, ..., xn}. To obtain the most likely path, we then extremize the action Eq. (15b) over all variables
x, z, px, pz, r and obtain the ordinary differential equations as shown in Eq. (2) in the main text,

ẋ = − γ x+ Ω z − xz r/τ, (16a)
ż = −Ωx+ (1− z2) r/τ, (16b)
ṗx = + γ px + Ω pz + pxz r/τ, (16c)
ṗz = −Ω px + (pxx+ 2pzz − 1) r/τ, (16d)

where r = z + pz(1 − z2) − pxxz and the forced boundary conditions are x(t = 0) = xI , z(t = 0) = zI , x(t = T ) = xF , z(t =
T ) = zF . As discussed in the main text, we can analytically solve the ODEs Eqs. (16) when Ω = 0. For the driven case where
Ω 6= 0, we solve the equations numerically using a shooting method.
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Figure 6: From left to right, (1) x and z coordinates of 11 trajectories slightly varied from an optimized solution with boundary
conditions (xI , zI) = (0.88, 0), (xF , zF , TF ) = (−0.683,−0.227, 0.464µs) and the Rabi drive Ω/2π = 1.08 MHz, (2) correspond-
ing conjugate variables px and pz, (3) a plot of the unnormalized probability versus changes of a constant δ1 in the px differential
equation and (4) unnormalized probability versus changes of a constant δ2 in the pz differential equation. In this case, the
optimized solution gives a maximum value of the path probability density.

B. Interpretation of the solutions of the ODEs

Here we discuss the interpretation of the solution of the ODEs Eq. (16) (also Eq. (2) in the main text). The extremization of
the action Eq. (15a) can also be interpreted as a constrained optimization of the last term of Eq. (15a),

∑n−1
k=0 lnP (rk|qk), the

log-likelihood of the trajectory. The constraints are, 1) the qubit state updates qk+1 = E[qk, rk] for k = 0, 1, ..., n − 1, 2) the
pre-selected state q0 = qI , and 3) the post-selected state qn = qF . The conjugate variables {pk} are now act as the Lagrange
multipliers of the constrained optimization. With this interpretation, a solution of the ODEs Eq. (16), therefore, represents
a path with an optimized value of

∑n−1
k=0 lnP (rk|qk) or its exponential

∏n−1
k=0 P (rk|qk), i.e., a measurement path probability

density.

C. The most likely path

The optimized path mentioned in the previous subsection II B can represent either a maximum, a minimum or a saddle
point of the path probability under the constraints. We can determine this by finding paths slightly varied from the optimized
solution, with all constraints still applied. This can be done by adding small constants δ1, δ2 to the right hand side of the
differential equations of the conjugate variables px, pz Eqs. (16c),(16d), leaving the equations of x, z unchanged, and solving
them with the same boundary conditions. Solutions of this modified ODEs will be slightly varied from the optimized path. We,
then, compute their full-path probabilities, comparing with the probability calculated from the optimized path. In Fig. 6, we
show samples of paths from the variational method described here and the unnormalized full-path probability of the surrounding
paths. In this case, it shows that the optimized solution is the most likely path with a maximum value of the path probability
density.

D. The most likely paths from the experimental post-selected trajectories

To find the most likely path from experimental trajectory data, we post-select trajectories starting from the same initial
state qI = (xI , zI) and ending around a final state qF = (xF , zF ) with a small tolerance. Then, we compute the path
probability

∏n−1
k=0 P (rk|qk)drk described in subsection II B using Eq. (14) for each trajectory in the post-selected sub-ensemble.

(In principle, we can also compute the path probability directly from the frequencies of the trajectories, however, the statistical
convergence of the latter method is much slower.) This path probability indicates the relative likelihood for trajectories to be
in a tube of volume dv = dr0dr1 · · ·drn−1 around the given path. We choose the top ∼ 5 - 8% of the post-selected trajectories
that give the largest values of the path probability and average them to obtain an approximation to the most likely path. We
show in Fig. 7 the paths with the same sets of post-selection conditions as used in Figure 4 of the main text. The experimental
most likely paths, even with their jaggedness, closely approximate the theoretical most likely paths, solutions of the ODEs
Eqs. (16). We expect that the approximated curves should converge to the smooth theory curves in the limit of an infinite
ensemble of the post-selected trajectories.

In some cases, we can simply look at a trajectory of local medians (medians of x or z at all time steps) and compare it with
the theoretical most likely path. The median trajectory can practically be a good approximation to the theory curve when
the distribution of the post-selected trajectories is a narrow band, i.e., the post-selected trajectories lie closely around a single
path. As an example, in the case where there is no drive on the qubit, Ω = 0, we show in our theory paper (PRA 88, 042110)
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Figure 7: With the same sets of post-selections condition as used in Figure 4 of the main text, we show the theoretical most likely
paths (dashed blue), the top ∼ 5 - 8% of the post-selected trajectories that give the largest values of the path probability (grey),
and their average (red). The average (red) curves are the approximation of the most likely paths as described in subsection IID.
The top row is for z coordinate and the bottom row is for x coordinate. The post-selection conditions are (from left to right) :
(xF , zF , TF ) = (−0.29, 0.7, 0.464µs), (−0.29, 0.7, 0.944µs), (−0.29, 0.7, 1.424µs) with post-selection tolerance 0.03.

that the median curves agree quite well with the most likely curves, solutions of the ODEs. However, in the driven case where
the qubit trajectories can possibly have different winding numbers around the y-axis resulting in multiple probable paths from
an initial state to a final state, simply finding the medians of the distribution of x or z is not enough to capture their most
likely behaviour. In this paper, we only focus on the cases where there is a single most likely path between any two boundary
states. We will discuss our findings concerning the multiple paths connecting two boundary states in a future work.

E. The most likely time

Besides the path of maximum likelihood taken between the pre- and post-selected states in a fixed time, a complementary
problem in quantum control is that of the optimal waiting time between starting and destination states. In the case where
there is no Rabi drive on the qubit, Ω = 0, we can fix the states at the endpoints and inquire about the most likely time taken
to travel between them. While a path-integral derivation of the most likely time is possible, we give a simpler derivation here
based on the probability distribution of the time-average measurement readout V = (1/n)

∑n−1
k=0 Vk.

In the case with no drive on the qubit, the z-coordinate of the qubit on the Bloch sphere at any time T is solely determined
by the time-average measurement readout V . We can derive the distribution of the final z-coordinate (zF ) at any time T given
the initial z-coordinate (zI), P (zF |zI), from the probability density function P (V |zI). The probability density function of the
average measurement outcome V given the initial qubit’s z-coordinate zI is,

P (V | zI) =P (V | 0)
1 + zI

2
+ P (V | 1)

1− zI
2

=

√
1

2πσ2

(
1 + zI

2
e
− 1

2σ2
(V−∆V/2)2

+
1− zI

2
e
− 1

2σ2
(V+∆V/2)2

)
, (17)

where the variance of the transmon voltage signal measured in δt duration is σ2 = ∆V 2 τ/4 δt. We change variables from
the time-averaged measurement signal V to the final z-component zF by V = τ∆V

2T
(tanh−1 zF − tanh−1 zI). We obtain the

differential measure dV = τ
2T

∆V
(1−z2

F
)
dzF . The probability density function of zF given zI can be computed via a relation

P (V | zI)dV = P (zF | zI)dzF ,

P (zF |zI) =

√
τ

2πT

(1− z2
F )

exp

{
− T

2τ
(r̄2 + 1) +

1

2
ln
( 1− z2

I

1− z2
F

)}
, (18)
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Figure 8: The probability density functions P (zF |zI = 0) are plotted as a function of time T (solid curves) along with
experimental data (dotted curves) with τ = 1.25µs. The red, green, and blue curves are the distribution functions P (zF =
0.2|zI = 0), P (zF = 0.4|zI = 0), and P (zF = 0.6|zI = 0), respectively. The optimized times Topt for the three cases are shown
as the vertical black dashed lines with the labels T0.2, T0.4, T0.6.

where r̄ ≡ τ
T

tanh−1
(
zF−zI
1−zIzF

)
= τ

T
(tanh−1 zF − tanh−1 zI). For the case where the initial state is x = +1, (zI = 0), the

probability density function simplifies to

P (zF |zI = 0) =

√
τ

2πT

(1− z2
F )

3
2

exp

{
− T

2τ
− τ

2T
(tanh−1zF )2

}
. (19)

We then compute the most likely time Topt where the probability density function P (zF |zI) is maximized for the fixed values
of zI and zF . By maximizing the probability function P (zF |zI) with respect to T , we obtain,

Topt = τ

(√
1 + 4 γ̄2 − 1

2

)
, (20)

where γ̄ ≡ tanh−1
(
zF−zI
1−zIzF

)
. We show in Fig. 8 the distributions P (zF |zI = 0) as a function of time T for zF = 0.2, 0.4, 0.6.

They show very good agreement with the experimental data.

III. EXTENDED RESULTS

Here, in Figure 9, we display an extended set of experimental results for different driving and measurement parameters. The
histograms of all quantum trajectories as well as the post-selected trajectories are shown for different Rabi drives, measurement
strengths, and post-selected states at different times.
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{t1 = 464 ns, t2 = 944 ns, t3 = 1.424 µs} are (xF , zF ) = {(−0.78,−.5), (0.7,−.5), (−0.73,−.5)} with a post selection window
of ±0.03. b Trajectories for Ω/2π = 1.08 MHz and τ = 315 ns with (xF , zF ) = {(−0.69,−.5), (0.5,−.5), (−0.73,−.5)}. c
Trajectories for Ω/2π = 0.58 MHz and τ = 315 ns with (xF , zF ) = {(−0.35,−.5), (−0.5,−.5), (−0.56,−.5)}. Note that all the
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