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Abstract

We present a comprehensive introduction to spacetime algebra that emphasizes its prac-
ticality and power as a tool for the study of electromagnetism. We carefully develop this
natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus
on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary
that appears throughout the electromagnetic theory properly corresponds to the unit
4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic
fields are combined into a single complex and frame-independent bivector field, which
generalizes the Riemann-Silberstein complex vector that has recently resurfaced in stud-
ies of the single photon wavefunction. The complex structure of spacetime also underpins
the emergence of electromagnetic waves, circular polarizations, the normal variables for
canonical quantization, the distinction between electric and magnetic charge, complex
spinor representations of Lorentz transformations, and the dual (electric-magnetic field
exchange) symmetry that produces helicity conservation in vacuum fields. This latter
symmetry manifests as an arbitrary global phase of the complex field, motivating the use
of a complex vector potential, along with an associated transverse and gauge-invariant
bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our de-
tailed treatment aims to encourage the use of spacetime algebra as a readily available
and mature extension to existing vector calculus and tensor methods that can greatly
simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

Keywords: spacetime algebra, electromagnetism, dual symmetry, Riemann-Silberstein
vector, Clifford algebra
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If we include the biological sciences, as well as the physical sciences, Maxwell’s
paper was second only to Darwin’s “Origin of Species”. But the importance of
Maxwell’s equations was not obvious to his contemporaries. Physicists found it
hard to understand because the equations were complicated. Mathematicians found
it hard to understand because Maxwell used physical language to explain it.

Freeman J. Dyson [1]

This shows that the mathematical language has more to commend it than being
the only language which we can speak; it shows that it is, in a very real sense,
the correct language. . . . The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a wonderful gift which
we neither understand nor deserve.

Eugene P. Wigner [2]

1. Introduction

For the rest of my life I will reflect on what light is.

Albert Einstein [3]

1.1. Motivation

At least two distinct threads of recent research have converged upon an interesting
conclusion: the electromagnetic field has a more natural representation as a complex vec-
tor field, which then behaves in precisely the same way as a relativistic quantum field for a
single particle (i.e., a wavefunction). It is our aim in this report to clarify why this conclu-
sion is warranted from careful considerations of the (often overlooked) intrinsic complex
structure implied by the geometry of spacetime. We also wish to draw specific parallels
between these threads of research, and unify them into a more comprehensive picture. We
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find that the coordinate-free, geometrically motivated, and manifestly reference-frame-
independent spacetime algebra of Hestenes [4–9] is particularly well suited for this task,
so we provide a thorough introduction to this formalism in order to encourage its use
and continued development.

The first thread of preceding research concerns the development of a first-quantized
approach to the single photon. Modern quantum optical experiments routinely consider
situations involving only a single photon or pair of photons, so there has been substan-
tial motivation to reduce the full quantized field formalism to a simpler ‘photon wave
function’ approach that more closely parallels the Schrödinger or Dirac equations for
a single electron [10–31]. Such a first-quantization approach is equivalent to classical
electromagnetism: it represents Maxwell’s equations in the form of a relativistic wave
equation for massless spin-1 particles. The difficulty with this pursuit has stemmed from
the fact that the photon, being a manifestly relativistic and massless spin-1 boson, is
nonlocalizable. More precisely, the position of a single photon is ill-defined [32–37], and
photons have no localizable number density [19, 20, 26, 36], which makes it impossible to
find a position-resolved probability amplitude in the same way as for electrons1. Never-
theless, the energy density of a single photon in a particular inertial frame is localizable,
and closely corresponds to what is actually measured by single photon counters.

Following this line of reasoning, a suitable ‘photon wave function’ can be derived from
general considerations as an energy-density amplitude in a particular inertial reference
frame [18, 19, 24, 25], which directly produces a complex form of the usual electric and

magnetic fields ~E and ~B in that frame

~F = [ ~E/c + ~Bi]/
√
µ0. (1.1)

Furthermore, the quantum mechanical derivation that produces (1.1) also produces
Maxwell’s vacuum equations in an intriguing form that resembles the Dirac equation
for massless spin-1 particles [10–31] (shown here in both the momentum-operator nota-
tion and the equivalent coordinate representation)

i~ ∂t ~F = c|p| χ̂ ~F , i~ ∂t ~F = c~ ~∇× ~F , (1.2a)

~̂p · ~F = 0 , − i~ ~∇ · ~F = 0. (1.2b)

Here c|p| is the energy of a single photon, and χ̂ = ~̂s · ~̂p/|p| is the helicity operator

that projects the spin-1 matrix operator ~̂s onto the direction of the momentum operator
~̂p = −i~~∇, which produces the curl (~̂s · ~∇)~F = i~∇ × ~F . The second equation (1.2b)
appears as an auxiliary transversality condition satisfied by radiation fields far from
matter [36, 39].

Treating the complex vector (1.1) as a single-particle wave function in the first-
quantized quantum mechanical sense produces consistent results, and suggests that this
vector should be a more natural representation for classical electromagnetic fields as well.2

1The absence of a probability density for photons follows from the Weinberg–Witten theorem [38]
that forbids conserved four-vector currents for relativistic massless fields with spins higher than 1/2
[22, 26].

2The factor of ~ cancels in Maxwell’s equations (1.2) because the photon is massless. This explains
the absence of this obviously quantum factor in classical electromagnetism.
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Indeed, the practical classical applications of (1.1) have been emphasized and reviewed
by Bialynicki-Birula [19, 40], who noted that this complex vector was also historically
considered by Riemann [41] and Silberstein [42, 43] in some of the earliest investigations
of electromagnetism. Remarkably, performing the standard second-quantization proce-
dure using the complex Riemann–Silberstein wave function (1.1) identically reproduces
the correctly quantized electromagnetic field [26, 28]. Moreover, if the number of pho-
tons in (1.2) is increased to two using the standard bosonic symmetrization procedure,
the resulting equations of motion precisely reproduce the Wolf equations from classical
coherence theory [26, 44] in a consistent way.

The explicit appearance of the momentum, spin, and helicity operators in (1.2) con-
nects the complex field vector (1.1) to the second thread of research into the local mo-
mentum, angular momentum, and helicity properties of structured optical fields (such
as optical vortices, complex interference fields, and near fields) [45–85]. The develop-
ment of nano-optics employing structured light and local light-matter interactions has
prompted the careful consideration of nontrivial local dynamical properties of light, even
though such properties are usually considered to be unobservable in orthodox quantum-
mechanical and field-theory approaches.

Indeed, it was traditionally believed that spin and orbital angular momenta of light
are not meaningful separately, but only make sense when combined into the total angular
momentum [39, 86, 87]. However, when small probe particles or atoms locally interact
with optical fields that carry spin and orbital angular momenta, they clearly acquire
separately observable intrinsic and extrinsic angular momenta that are proportional to
the local expectation values of the spin ~̂s and orbital ~̂r× ~̂p angular momentum operators
for photons, respectively. [47, 52–58, 74]. (Akin to this, the spin and orbital angular-
momentum contributions of gluon fields in QCD are currently considered as measurable
in spite of the field-theory restrictions [88].) Similarly, the local momentum density of
the electromagnetic field (as well as any local current satisfying the continuity equation)
is not uniquely defined in field theory, so only the integral momentum value has been
considered to be measurable. Nevertheless, when a small probe particle is placed in an op-
tical field it acquires momentum proportional to the canonical momentum density of the
field, i.e., the local expectation value of ~̂p [64, 69, 85]. Remarkably, this same canonical
momentum density of the optical field (and not the Poynting vector, see [64, 68, 74, 85])
is also recovered using other methods to measure the local field momentum [59–62, 70–
72], including the so-called quantum weak measurements [66, 69, 89–91]. Such local weak
measurements of the momentum densities in light fields (i.e., analogues of the probabil-
ity current for photons in the above ‘photon wave function’ approach) simultaneously
corroborate predictions of the Madelung hydrodynamic approach to the quantum theory
[92, 93], the Bohmian causal model [94, 95], and the relativistic energy-momentum tensor
in field theory [68, 69, 74, 96]. In the quantum case, these local densities correspond to
the associated classical mean (background) field, so can be observed only by averaging
many measurements of the individual quantum particles [91].

Most importantly for our study, the reconsideration of the momentum and angular
momentum properties of light has prompted discussion of the helicity density of electro-
magnetic fields. Recently it was shown that this helicity density naturally appears in
local light-matter interaction with chiral particles [76–81, 85, 97]. However, while in the
quantum operator formalism the helicity χ̂ is an intuitive combination of the momen-
tum and spin operators, the field-theory picture of the electromagnetic helicity is not so
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straightforward.
Namely, electromagnetic helicity [68, 98–108] is a curious physical electromagnetic-

field property that is only conserved during vacuum propagation. Unlike the momen-
tum and angular momentum, which are related to the Poincaré spacetime symme-
tries according to Noethers theorem [123], the helicity conservation corresponds to the
more abstract dual symmetry that involves the exchange of electric and magnetic fields
[68, 99, 101, 102, 105–108] (which was first discussed by Heaviside and Larmor [124, 125],
and has been generalized to field and string theories beyond standard electromagnetism
[109–122]). Due to this intimate relation with the field-exchange symmetry, the defini-
tion of the helicity must involve the electric and magnetic fields and their two associated
vector-potentials on equal footing. Furthermore, the consideration of the dual symmetry,
which is inherent to the vacuum Maxwell’s equations (1.2), recently reignited discussion
regarding the proper dual-symmetric description for all vacuum-field properties, includ-
ing the canonical momentum and angular-momentum densities [64, 68, 106, 126]. These
quantities are dual asymmetric in the traditional electromagnetic field theory [68, 127].
Notably, the dual electric-magnetic symmetry become particularly simple and natural
when the electric and magnetic fields and potentials are combined into the complex
Riemann–Silberstein form (1.1) [68, 112]. Indeed, the continuous dual symmetry of the
vacuum electromagnetic field takes the form of a simple U(1) global phase-rotation

~F 7→ ~F exp(iθ). (1.3)

It is this continuous ‘gauge symmetry of the photon wave function’ that produces the
conservation of optical helicity as a consequence of Noether’s theorem. Moreover, the
whole Lagrangian electromagnetic field theory in vacuum, including its fundamental local
Noether currents (energy-momentum, and angular momentum), becomes more natural
and self-consistent with a properly complex and dual-symmetric Lagrangian [68]. This
provides further evidence that the complex form of (1.1) is a more fundamental repre-
sentation for the electromagnetic field.

In this report we clarify why the complex Riemann–Silberstein representation (1.1)
has fundamental significance for the electromagnetic field. To accomplish this goal, we
carefully construct the natural (Clifford) algebra of spacetime [4] and detail its intrin-
sic complex structure. We then derive the entirety of the traditional electromagnetic
theory as an inevitable consequence of this spacetime algebra, paying close attention to
the role of the complex structure at each stage. The complex vector (1.1) will appear
naturally as a relative 3-space expansion of a bivector field, which is a proper geometric
(and thus frame-independent) object in spacetime. Moreover, this bivector field will have
a crucial difference from (1.1): the scalar imaginary i will be replaced with an algebraic
pseudoscalar I (also satisfying I2 = −1) that is intrinsically meaningful to and required
by the geometric structure of spacetime. This replacement makes the complex form of
(1.1) reference-frame-independent, which is impossible when the mathematical represen-
tation is restricted to the usual scalar imaginary i. We find this replacement of the
scalar i with I to be systematic throughout the electromagnetic theory, where it appears
in electromagnetic waves, elliptical polarization, the normal variables for canonical field
mode quantization, and the dual-symmetric internal rotations of the vacuum field. Ev-
idently, the intrinsic complex structure inherent to the geometry of spacetime has deep
and perhaps under-appreciated consequences for even our classical field theories.
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This report is organized as follows. In Section 1.2 we briefly summarize some of the
most interesting insights that we will uncover from spacetime algebra in the remainder
of the report. In Section 2 we present a brief history of the formalism for the electromag-
netic theory to give context for how the spacetime algebra approach relates. In Section
3 we give a comprehensive introduction to spacetime algebra, with a special focus on the
emergent complex structure. In Section 4 we briefly extend this algebra to a spacetime
manifold on which fields and calculus can be defined. In Section 5 we derive Maxwell’s
equations in vacuum from a single, simple, and inevitable equation. In Section 6 we con-
sider three different potential representations, which are all naturally complex due to the
dual symmetry of the vacuum field. In Section 7 we add a source to Maxwell’s equation
and recover the theory of electric and magnetic charges, along with the appropriately
symmetrized Lorentz force and its associated energy-momentum and angular momentum
tensors. In Section 8 we revisit the electromagnetic field theory. We start with the field
Lagrangian and modify it to preserve dual symmetry in two related ways, derive the
associated Noether currents, including helicity, and remark upon the breaking of dual
symmetry that is inherent to the gauge mechanism. We conclude in Section 9.

1.2. Insights from the spacetime algebra approach

To orient the reader, we summarize a few of the interesting insights here that will
arise from the spacetime algebra approach. These lists indicate what the reader can
expect to understand from a more careful reading of the longer text. Note that more
precise definitions of the quantities mentioned here are contained in the main text.

The Clifford product for spacetime algebra is initially motivated by the following
basic benefits of its resulting algebraic structure:

• The primary reference-frame-independent objects of special relativity (i.e., scalars,
4-vectors, bivectors / anti-symmetric rank-2 tensors, pseudo-4-vectors, and pseu-
doscalars) are unified as distinct grades of a single object known as a multivector.
An element of grade k geometrically corresponds to an oriented surface of dimension
k (e.g., 4-vectors are line segments, while bivectors are oriented plane segments).

• The associative Clifford product combines the dot and wedge vector-products into
a single and often invertible product (e.g., for a 4-vector a−1 = a/a2).

• The symmetric part of the Clifford product is the dot product (Minkowski metric):
a ·b = (ab+ba)/2. Thus, the square of a vector is its scalar pseudonorm a2 = εa|a|2
with signature εa = ±1.

• The antisymmetric part of the Clifford product is the wedge product a ∧ b =
(ab − ba)/2 (familiar from differential forms), which generalizes the 3-vector cross
product (×).

• The sign ambiguity of the spacetime metric signature (dot product) is fixed to
(+,−,−,−) from general considerations that embed spacetime into a larger se-
quence of (physically meaningful) nested Clifford subalgebras.

From this structure we obtain a variety of useful and enlightening mathematical uni-
fications:
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• The Dirac matrices γµ (usually associated with quantum mechanics) appear as
a matrix representation of an orthonormal basis for the 4-vectors in spacetime
algebra, emphasizing that they are not intrinsically quantum mechanical in nature.
The matrix product in the matrix representation simulates the Clifford product.
One does not need this matrix representation, however, and can work directly with
γµ as purely algebraic 4-vector elements, which dramatically simplifies calculations
in practice.

• The Dirac differential operator ∇ =
∑
µ γ

µ∂µ appears as the proper vector deriva-
tive on spacetime, with no matrix representation required.

• The usual 3-vectors from nonrelativistic electromagnetism are spacetime bivectors
that depend on a particular choice of inertial frame, specified by a timelike unit
vector γ0. A unit 3-vector ~σi = γiγ0 = γi ∧ γ0 that is experienced as a spatial axis
by an inertial observer thus has the geometric meaning of a plane-segment that is
obtained by dragging the spatial unit 4-vector γi along the chosen proper-time axis
γ0.

• The Pauli matrices are a matrix representation of an orthonormal basis of relative
3-vectors ~σi, emphasizing that they are also not intrinsically quantum mechanical
in nature. The matrix product in the matrix representation again simulates the
Clifford product.

• Factoring out a particular timelike unit vector γ0 from a 4-vector v =
∑
µ v

µγµ =
(v0 + ~v)γ0 produces a paravector (v0 + ~v) as a sum of a relative scalar v0 and
relative vector ~v =

∑
i vi~σi. Thus relative paravectors and proper 4-vectors are

dual representations under right multiplication by γ0.

• The usual 3-gradient vector derivative ~∇ = γ0 ∧∇ =
∑
i ~σi∂i is the spatial part of

the Dirac operator in a particular inertial frame specified by γ0.

• The d’Alembertian is the square of the Dirac operator ∇2 = ∂2
0 − ~∇2.

• Directed integration can be defined using a Riemann summation on a spacetime
manifold, where the measure dkx becomes an oriented k-dimensional geometric
surface that is represented within the algebra. This integration reproduces and
generalizes the standard results from vector analysis, complex analysis (including
Cauchy’s integral theorems), and differential geometry.

All scalar components of the objects in spacetime algebra are purely real numbers.
Nevertheless, an intrinsic complex structure emerges within the algebra due to the geom-
etry of spacetime itself:

• The “imaginary unit” naturally appears as the pseudoscalar (unit 4-volume) I =
γ0γ1γ2γ3 = ~σ1~σ2~σ3, such that I2 = −1. This pseudoscalar plays the role of the
scalar imaginary i throughout the electromagnetic theory, without the need for any
additional ad hoc introduction of a complex scalar field.

• The Hodge-star duality operation from differential forms is simply the right mul-
tiplication of any element by I−1 = −I. This operation transforms a geometric
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surface of dimension k into its orthogonal complement of dimension 4−k (e.g., the
Hodge dual of a 4-vector v is its orthogonal 3-volume vI−1, or pseudo-4-vector).

• The quaternion algebra of Hamilton (1, i, j,k) that satisfies the defining relations,
i2 = j2 = k2 = ijk = −1 also appears as the (left-handed) set of spacelike planes
(bivectors) in a relative inertial frame: i = ~σ1I

−1, j = −~σ2I
−1, k = ~σ3I

−1. The
bivectors ~σiI

−1 directly describe the planes in which spatial rotations can occur,
which explains why quaternions are particularly useful for describing spatial rota-
tions.

In addition to the complex structure, Lie group and spinor structures also emerge:

• The bivector basis forms the Lie algebra of the Lorentz group under the Lie (com-
mutator) bracket relation [F,G] = (FG−GF)/2. Thus, bivectors directly generate
Lorentz transformations when exponentiated.

• The Lorentz group generators are the 6 bivectors Si = ~σiI
−1 and Ki = ~σi. Thus,

writing the 15 brackets of the Lorentz group [Si,Sj ] = εijkSk, [Si,Kj ] = εijkKk

and [Ki,Kj ] = −εijkSk in terms of a particular reference frame produces simple
variations of the three fundamental commutation relations [~σi, ~σj ] = εijk~σkI that
are usually associated with quantum mechanical spin (using a Pauli matrix repre-
sentation). Indeed, the bivectors ~σiI

−1 are spacelike planes that generate spatial
rotations when exponentiated (just as in quantum mechanics), while ~σi are the
timelike planes, and thus generate Lorentz boosts when exponentiated.

• The usual 3-vector cross product is the Hodge-dual of the bivector Lie bracket:
F × G = [F,G]I−1. Thus, the set of commutation relations [~σi, ~σj ] = εijk~σkI
between the 3-vectors ~σi are simply another way of expressing the usual cross-
product relations ~σi × ~σj = εijk~σk.

• General spinors ψ appear as the (closed) even-graded subalgebra of spacetime
algebra (i.e., scalars α, bivectors F, and pseudoscalars αI). Lorentz and other
group transformations acquire a simplified form as double-sided products with
these spinors (e.g., exponentiated generators like ψ = exp(−α~σ3I − φI) = [cosα−
sinα~σ3I][cosφ− sinφI]), just as is familiar from unitary transformations in quan-
tum mechanics and spatial rotations expressed using quaternions.

All these mathematical benefits produce a considerable amount of physical insight
about the electromagnetic theory in a straightforward way:

• The electromagnetic field is a bivector field F with the same components Fµν as the
usual antisymmetric tensor. This tensor is the corresponding multilinear function
F(v, w) = v · F · w =

∑
µν vµF

µνwν that contracts its two 4-vector arguments (v
and w) with the bivector F.

• The electromagnetic field is an irreducibly complex object with an intrinsic phase
F = f exp(ϕI). This phase necessarily involves the intrinsic pseudoscalar (unit 4-
volume) I of spacetime, and is intimately related to the appearance of electromagnetic
waves and circular polarizations, with no need for any ad hoc addition of a complex
scalar field.
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• The continuous dual (electric-magnetic exchange) symmetry of the vacuum field is
a U(1) internal gauge-symmetry (phase rotation) of the field: F 7→ F exp(θI). This
symmetry produces the conservation of helicity via Noether’s theorem.

• Bivectors decompose in a relative inertial frame into a complex pair of 3-vectors
F = ~E + ~BI, which clarifies the origin of the Riemann–Silberstein vector. Both
real and imaginary parts in a particular frame are thus physically meaningful.
Moreover, the geometric properties of I keep F reference-frame-independent, even
though the decomposition into relative fields ~E = (F · γ0)γ0 and ~BI = (F ∧ γ0)γ0

still implicitly depends upon the chosen proper-time axis γ0 in the relative 3-vectors
~σi = γiγ0 that form the basis for ~E and ~B.

• All of Maxwell’s equations in vacuum reduce to a single equation: ∇F = 0.

• All of Maxwell’s equations with sources (both electric and magnetic) also reduce
to a single equation: ∇F = j, where j = je + jmI is a complex representation of
both types of source, je = (cρe + ~Je)γ0 and jm = (cρm + ~Jm)γ0.

• The scalar Lorentz invariants of the electromagnetic field are the invariant parts of

its square: F2 = (| ~E|2 − | ~B|2) + 2( ~E · ~B)I.

• A circularly polarized plane wave is intrinsically complex with the simple expo-

nential form F(x) = (sk) exp[±(k · x)I], with spacelike unit vector s = ~E0γ0,

coordinates x = (ct + ~x)γ0, and null wavevector k = (ω/c + ~k)γ0 such that

k2 = |ω/c|2−|~k|2 = 0 is the usual dispersion relation. The sign of I corresponds to
the invariant handedness (i.e., helicity) of the wave. Expanding the exponential in

the relative frame γ0 yields F = ~E + ~BI with the relative fields ~E = ~E0 cos(~k · ~x−
ωt/c)±~κ× ~E0 sin(~k ·~x−ωt/c) and ~B = ~E0 sin(~k ·~x−ωt/c)∓~κ× ~E0 cos(~k ·~x−ωt/c),

with unit vector ~κ = ~k/|~k| indicating the propagation direction.

• The vector-potential representation is F = ∇z = (∇∧ ae) + (∇∧ am)I, where z =

ae+amI is a complex representation of both electric ae = (φe+ ~A)γ0 and magnetic

am = (φm + ~C)γ0 4-vector potentials, each satisfying the Lorenz-FitzGerald gauge
conditions ∇ · ae = ∇ · am = 0. Maxwell’s equation then has the simple wave
equation form ∇2z = j with the correspondingly complex source current j =
je + jmI.

• A transverse and gauge-invariant bivector potential representation can be defined

in a particular inertial frame Z = z⊥γ0 = ~A⊥ − ~C⊥I, where F = (∇Z)γ0. This
complex potential appears in the definition of the conserved optical helicity.

• The complex scalar Hertz potential Φ = Φe + ΦmI for vacuum fields appears as

Z = (~∇× ~Π)IΦ with a chosen unit direction vector ~Π, and satisfies ∇2Φ = 0.

• The proper Lorentz force is d(mw)/dτ = F · (qw) = 〈F(qw)〉1, where w is a proper
4-velocity of a particle with charge q and mass m.

• Making the charge q complex with a dual-symmetry phase rotation q 7→ qeθI =
qe + qmI produces an equivalent magnetic monopole description using the corre-
sponding phase-rotated field F 7→ FeθI . The proper Lorentz force that includes
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these magnetic monopoles is still d(mw)/dτ = 〈F(qw)〉1. Choosing electric sources
is an arbitrary convention that essentially fixes this duality gauge freedom and
breaks the dual symmetry of the fields.

• The symmetric (Belinfante) energy-momentum tensor is a bilinear function of the
electromagnetic field and a chosen proper-time direction γ0 that has a simple
quadratic form: T sym(γ0) = Fγ0F̃/2 = ( ~E + ~BI)( ~E − ~BI)γ0/2 = (ε+ ~P )γ0. This

tensor recovers the usual energy density ε = (| ~E|2 + | ~B|2)/2 and Poynting vector
~P = ~E× ~B in the relative frame γ0, and has the same invariant mathematical form
as the symmetric energy-momentum current for the Dirac theory of electrons.

• The corresponding (Belinfante) angular momentum tensor is a wedge product

M sym(γ0) = x ∧ T sym(γ0) = [ε~x − (ct)~P ] + ~x × ~PI−1 of a radial coordinate x
with the energy-momentum tensor. The resulting angular momentum is a bivector
that includes both boost and spatial-rotation angular momentum, which are dis-
tinguished by the extra factor of I in the spatial-rotational part (exactly as ~σiI

−1

indicates a plane of rotation, while ~σi indicates a boost plane).

• The dual-symmetric Lagrangian density for the vacuum electromagnetic field is
the scalar Ldual(x) = 〈(∇z)(∇z∗)〉0/2, which is a simple kinetic energy term
for the complex vector potential field z = ae + amI. This expands to the sum
of independent terms for the electric and magnetic vector potentials: Ldual =
〈(∇ae)2〉0/2 + 〈(∇am)2〉0/2. Each term is identical in form to the traditional elec-
tromagnetic Lagrangian that only includes the electric part ae.

• The conserved Noether currents of the dual-symmetric Lagrangian produce the
proper conserved dual-symmetric canonical energy-momentum tensor, orbital and
spin angular momentum tensors, and the helicity pseudovector.

• In the presence of only electric sources je, the dual symmetry of the Lagrangian
is broken. The symmetry-breaking of this neutral vector boson doublet is en-
tirely analogous to the boson doublet that is broken in the electroweak theory
by the Brout-Englert-Higgs-Guralnik-Hagan-Kibble (BEHGHK, or Higgs) mecha-
nism. According to this analogy, the second independent magnetic vector potential
am that appears in the simple dual-symmetric electromagnetic Lagrangian may
become related to the neutral Z0 boson when additional interaction terms of the
Standard Model are included.

2. A brief history of electromagnetic formalisms

In Science, it is when we take some interest in the great discoverers and their
lives that it becomes endurable, and only when we begin to trace the development
of ideas that it becomes fascinating.

James Clerk Maxwell [128]

The electromagnetic theory has a meandering mathematical history, largely due to the
fact that the appropriate mathematics was being developed in parallel with the physical
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principles. As a result of this confusing evolution, the earlier and more general algebraic
methods have been rediscovered and applied to electromagnetism only more recently. We
summarize the highlights of this history in Table 1 for reference.

The original nonrelativistic unification of the physical concepts by Maxwell [129–133]
was described as a set of 20 coupled differential equations of independent scalar vari-
ables. To conceptually simplify these equations down to 2 primary coupled equations
that were easier to understand and solve, Maxwell later adopted and heavily advocated
[134] the algebra of quaternions, which was developed by Hamilton [135, 136] as a gen-
eralization of the algebra of complex numbers to include three independent “imaginary”
axes that can describe rotations in three-dimensional space. The quaternionic formula-
tion of electromagnetism was heavily attacked by Heaviside [124, 137], who reformulated
Maxwell’s treatment into 4 coupled equations using an algebra of 3-vectors (with the
familiar dot and cross products), which was developed by Gibbs [138] as a simple sub-
set of the algebraic work of Grassmann [139] and its extensions by Clifford [140]. This
3-vector reformulation of Heaviside has since remained the most widely known and used
formulation of electromagnetism in practice, with the electric field ~E as a polar 3-vector
and the magnetic field ~B as an axial 3-vector.

The relativistic treatment of electromagnetism has subsequently followed a rather
different mathematical path, however, and now deviates substantially from these earlier
foundations. Lorentz [141–143] first applied his eponymous transformations to moving
electromagnetic bodies using the Heaviside formulation. His initial results were corrected
and symmetrized by Poincaré [144, 145], who suggested that the Lorentz transformation
could be considered as a geometric rotation of a 4-vector that had an imaginary time
coordinate (ct)i scaled by a constant c (corresponding to the speed of light in vacuum).
This was the first unification of space and time into a single 4-vector entity of spacetime.
The need for this invariant constant c was independently noticed by Einstein [146], and
elevated to a postulate for his celebrated special theory of relativity that removed the
need for a background aether. The 4-vector formalism suggested by Poincaré was fully
developed by Minkowski [147], but Einstein himself argued against this construction [148]
until his later work on gravitation made it necessary [149].

The 4-vector formalism of Poincaré and Minkowski was meanwhile developed by
Sommerfeld [150, 151], who emphasized that the electromagnetic field was not a 4-vector
or combination of 4-vectors, but instead was a different type of object entirely that he
called a “6-vector”. This 6-vector became intrinsically complex due to the imaginary
time (ct)i; specifically, it had both electric and magnetic components that differed by a
factor of i and transformed into one another upon Lorentz boosts. Riemann [41] and
Silberstein [42, 43] independently noted this intrinsic complexity while working in the
Heaviside formalism, which prompted them to write the total nonrelativistic field as the
single complex vector (1.1) in agreement with the relativistic 6-vector construction of
Sommerfeld.

Historically, however, the further development of the spacetime formalism of Poincaré
led in a different direction. Minkowski [152] dropped the explicit scalar imaginary i at-
tached to the time coordinate in favor of a different definition of the 4-vector dot product
that produced the needed factor of −1 directly. This change in 4-vector notation removed
the ad hoc scalar imaginary, but also effectively discouraged the continued development
of the 6-vector of Sommerfeld (and the Riemann-Silberstein vector) by making the com-
plex structure of spacetime implicit. In the absence of an explicit complex structure
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History of Electromagnetic Formalisms

Year Nonrelativistic Relativistic

1844 Exterior Algebra (Grassman)

1853 Quaternions (Hamilton)

1861 Scalar Components (Maxwell)

1878 Geometric Algebra (Clifford)

1881 Quaternions (Maxwell)

1892 3-Vectors (Gibbs & Heaviside)

1899 Differential Forms (Cartan)

1901 Complex 3-Vectors (Riemann)

1905 4-Vectors with Imaginary Time (Poincaré)

1907 Complex 3-Vectors (Silberstein)

1908 4-Vectors (Minkowski)

1910 Complex 6-Vectors (Sommerfeld)

1911 Exterior Algebra (Wilson & Lewis)

1916 Tensor Scalar Components (Einstein)

1918 Differential Forms (Weyl)

1966 Spacetime Algebra (Hestenes)

Table 1: A brief history of the development of mathematical formalisms for representing the electromag-
netic theory, showing the purely mathematical developments in italic font and their use in electromag-
netism unitalicized. The bolded formalisms are the two most commonly used today: the nonrelativistic
3-Vectors of Gibbs preferred by Heaviside, and the relativistic tensor scalar components preferred by
Einstein. Spacetime algebra was introduced by Hestenes in 1966 following Clifford’s 1878 generalization
of Grassman’s original 1844 exterior algebra that directly describes oriented geometric surfaces. Impor-
tantly, this spacetime algebra contains and generalizes all the other formalisms in a simple and powerful
way.
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to distinguish the electric and magnetic field components, these components were re-
assembled into a rank-2 antisymmetric tensor (i.e., a multilinear antisymmetric function
taking two vector arguments), whose characteristic components could be arranged into
a 4x4 antisymmetric matrix

[Fµν ] =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 . (2.1)

Although the same components are preserved, this tensor formulation is more difficult
to directly relate to the 3-vector formalism.

Of particular concern for practical applications, the familiar 3-vector cross product
of Gibbs could no longer be used with the updated Minkowski 4-vector formalism, and
its component representation with tensors like (2.1) was less conceptually clear. With-
out this cross product, laboratory practitioners had reduced physical intuition about the
formalism, which hampered derivations and slowed the adoption of the relativistic for-
mulation. In fact, an algebraic solution to this problem in the form of the wedge product
had already been derived by Grassmann [139] and Clifford [140] (as we shall see shortly),
and had even been adopted by Cartan’s theory of differential forms [153]. However, this
solution remained obscure to the physics community at the time (though it was partly
rediscovered by Wilson and Lewis [154]). As such, the readily available methods for
practical calculations with 4-vectors and tensors were either

(a) to convert the equations back into the nonrelativistic 3-vector notation and abandon
manifest Lorentz covariance, or

(b) to work in component-notation like Fµν above (and akin to the original papers by
Maxwell), effectively obscuring the implicit algebraic structure of the relativistic
theory.

The choice between these two practical alternatives has essentially created a cultural
divide in the development and understanding of electromagnetism: the approach using
nonrelativistic 3-vectors is still dominant in application-oriented fields like optics where
physical intuition is required (e.g., [155]), while the component notation is dominant in
theoretical high energy physics and gravitational communities that cannot afford to hide
the structural consequences of relativity (though Cartan’s differential forms do occasion-
ally make an appearance, e.g., [156]). To make the component notation less cumbersome,
Einstein developed an index summation convention for general relativity [157] (where re-
peated component indices are summed3: v · w = vµwµ), which has now been widely
adopted by most practitioners who use component-based manipulations of relativistic
quantities. Indeed, the formal manipulations of components using index-notation has
essentially become synonymous with tensor analysis.

An elegant solution to this growing divide in formalisms was proposed a half-century
later by Hestenes [4], who carefully revisited and further developed the geometric and
algebraic work of Grassmann [139] and Clifford [140] to construct a full spacetime algebra.
In modern mathematical terms, this spacetime algebra is the orthogonal Clifford algebra

3Note that we will not use this convention in this report for clarity.
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[158] that is uniquely constructed from the spacetime metric (dot product) proposed by
Minkowski. This modern formalism has the great benefit of preserving and embracing all
the existing algebraic approaches in use (including the complex numbers, the quaternions,
and the 3-vectors of Gibbs), but it also extends them in a natural way to allow simple
manipulations of relativistically invariant objects. For example, using spacetime algebra
the electromagnetic field can be written in a relativistically invariant way (as we shall
soon see) as

F = [ ~E/c + ~BI]/
√
µ0, (2.2)

which has the same complex form as the Riemann–Silberstein vector (1.1). Importantly,
however, the algebraic element I satisfying I2 = −1 is not the scalar imaginary i added in
an ad hoc way as in (1.1), but is instead an intrinsic geometric object of spacetime itself
(i.e., the unit 4-volume) that emerges automatically alongside the 3-vector formalism of
Gibbs. The geometric significance of the factor I makes the expression (2.2) a proper
geometric object that is invariant under reference-frame changes, unlike (1.1). Moreover,
the scalar components of (2.2) are precisely equivalent to the tensor components (2.1)
even though F is not understood as an antisymmetric tensor. It is a geometric object
in spacetime called a bivector, which is a modern refinement of the 6-vector concept
introduced by Sommerfeld. The manifestly geometric significance of the electromagnetic
field made manifest in this approach reaffirms and augments the topological fiber bundle
foundations of modern gauge-field theories that was observed by Yang and Mills [159–
162], Chern and Simons [163], and many others in theoretical high energy physics [164–
170].

The spacetime algebra of Hestenes has been heavily developed by a relatively small
community [6–8, 171–178], but has recently been growing in popularity as a useful tool,
and has been cross-pollinating with other modern mathematical investigations of Clifford
algebras [158, 179, 180]. Indeed, spacetime algebra has been mentioned in a growing num-
ber of recent textbooks about algebraic approaches to physics and mathematics based on
the work of Grassmann, Clifford, and Hestenes more generally [5, 9, 181–188]. Neverthe-
less, many of these treatments have under-emphasized certain features of spacetime that
will be important for our discussion (such as its intrinsic complex structure) so we include
our own introduction to this formalism that is tuned for applications in electromagnetism
in what follows, assuming no prior background.

3. Spacetime algebra

Mathematics is taken for granted in the physics curriculum—a body of immutable
truths to be assimilated and applied. The profound influence of mathematics on
our conceptions of the physical world is never analyzed. The possibility that math-
ematical tools used today were invented to solve problems in the past and might
not be well suited for current problems is never considered.

David Hestenes [6]

Physically speaking, spacetime algebra [4–7] is a complete and natural algebraic lan-
guage for compactly describing physical quantities that satisfy the postulates of special
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relativity. Mathematically speaking, it is the largest associative algebra that can be
constructed with the vector space of spacetime equipped with the Minkowski metric.
It is an orthogonal Clifford algebra [158], which is a powerful tool that enables mani-
festly frame-independent and coordinate-free manipulations of geometrically significant
objects. Unlike the dot and cross products used in standard vector analysis, the Clif-
ford product between vectors is often invertible and not constrained to three dimensions.
Unlike the component manipulations used in tensor analysis, spacetime algebra permits
compact and component-free derivations that make the intrinsic geometric significance
of physical quantities transparent.

When spacetime algebra is augmented with calculus then it subsumes many disparate
mathematical techniques into a single comprehensive formalism, including (multi)linear
algebra, vector analysis, complex analysis, quaternion analysis, tensor analysis, spinor
analysis, group theory, and differential forms [5, 171–173]. Moreover, for those who are
unfamiliar with any of these mathematical techniques, spacetime algebra provides an
encompassing framework that encourages seamless transitions from familiar techniques
to unfamiliar ones as the need arises. As such, spacetime algebra is also a useful tool for
pedagogy [6, 7].

During our overview we make an effort to illustrate how spacetime algebra contains
and generalizes all the standard techniques for working with electromagnetism. Hence,
one can appreciate spacetime algebra not as an obscure mathematical curiosity, but rather
as a principled, practical, and powerful extension to the traditional methods of analysis.
As such, all prior experience with electromagnetism is applicable to the spacetime algebra
approach, making the extension readily accessible and primed for immediate use.

3.1. Spacetime

Recall that in special relativity [146] one postulates that the scalar time t and vector
spatial coordinates ~x in a particular inertial reference frame always construct an invariant
interval (ct)2 − |~x|2 that does not depend on the reference frame, where c is the speed
of light in vacuum. An elegant way of encoding this physical postulate is to combine
the scaled time and spatial components into a proper 4-vector x = (ct, x1, x2, x3) with a
squared length equal to the invariant interval [144, 145, 147]. The proper notion of length
is defined using the relativistic scalar (dot) product between two 4-vectors, which can be
understood as a symmetric bilinear function η(a, b) that takes two vector arguments a and
b and returns their scalar shared length. This dot product is known as the Minkowski
metric [152]. In terms of components a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) in a
particular inertial frame, this metric has the form a · b ≡ b · a ≡ η(a, b) = a0b0 − a1b1 −
a2b2 − a3b3. The proper squared length of a 4-vector x is therefore x · x. Since there
is one positive sign and three negative signs in this dot product, we say that it has a
mixed signature (+,−,−,−) and denote the vector space of 4-vectors as M1,3 to make
this signature explicit4.

4Note that there is a sign-ambiguity in the spacetime interval, so one can seemingly choose either
(+,−,−,−) or (−,+,+,+) for the metric signature, the latter being the initial choice of Poincaré. How-
ever, this choice is not completely arbitrary from an algebraic standpoint: it produces geometrically
distinct spacetime algebras [158]. We choose the signature here that will produce the spacetime alge-
bra that correctly contains the relative Euclidean 3-space as a proper subalgebra, which we detail in
Section 3.8.
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All physical vector quantities in special relativity are postulated to be 4-vectors in
M1,3 that satisfy the Minkowski metric. These vectors are geometric quantities that do
not depend on the choice of reference frame, so they shall be called proper relativistic
objects in what follows. Importantly, the Minkowski metric is qualitatively different from
the standard Euclidean dot product since it does not produce a positive length. Indeed,
the mixture of positive and negative signs can make the length of a vector positive,
negative, or zero, which produces three qualitatively different classes of vectors. We
call these classes of vectors timelike, spacelike, and lightlike, respectively. As such, we
can write the length, or pseudonorm, of a 4-vector a as a · a = εa|a|2 in terms of a
positive magnitude |a|2 and a signature εa = ±1 that is +1 for timelike vectors and −1
for spacelike vectors. For lightlike vectors the magnitude |a|2 vanishes; thus, unlike for
Euclidean vector spaces, a zero magnitude vector need not be the zero vector.

The Minkowski metric η and the vector spaceM1,3 are sufficient for describing proper
vector quantities in special relativity, such as time-space (ct, ~x) and energy-momentum
(E/c, ~p). Since the laws of physics do not depend on the choice of reference frame, we
expect that all physical quantities should be similarly represented by proper geometric
objects like vectors. However, the electromagnetic field presents us with a conundrum:
the polar 3-vector ~E of the electric field and axial 3-vector ~B of the magnetic field in
a particular reference frame do not combine into proper 4-vectors. Relativistic angular
momentum suffers a similar dilemma: the polar 3-vector ~N = (ct)~p− (E/c)~x of the boost
angular momentum (also known as the dynamic mass moment) and the axial 3-vector
~L = ~x×~p of the orbital angular momentum in a particular reference frame do not combine
into proper 4-vectors. To resolve these dilemmas, the components of these vectors are
typically assembled into the components Fµν and Mµν of rank-2 antisymmetric tensors,
as we noted in (2.1) for the electromagnetic field [127, 189]. This solution, while formally
correct at the component level, is conceptually opaque. Why does a single rank-2 tensor
Fµν decompose into two 3-vector quantities ~E and ~B in a relative frame? How does a
rank-2 tensor, which is mathematically defined as a multilinear function with two vector
arguments, conceptually correspond to a physical quantity like the electromagnetic field
or angular momentum? Is there some deeper significance to the mathematical space
in which the tensors Fµν and Mµν reside? Do the proper tensor descriptions have
any geometric significance in Minkowski space? Evidently, the vector space M1,3 does
not contain the complete physical picture implied by special relativity, since it must be
augmented by quantities like Fµν and Mµν .

3.2. Spacetime product

To obtain the complete picture of special relativity in a systematic and principled
way, we make a critical observation: any physical manipulation of vector quantities
uses not only addition, but also vector multiplication. Indeed, standard treatments of
electromagnetism involving relative 3-vectors use both the symmetric dot product and
the antisymmetric vector cross product to properly discuss the physical implications of
the theory. The vector spaceM1,3 only specifies the relativistic version of the dot product
in the form of the Minkowski metric. Without introducing the proper relativistic notion
of the cross product the physical picture of spacetime is incomplete.

Mathematically, the introduction of a product on a vector space creates an algebra.
Hence, we seek to construct the appropriate algebra for spacetime from the vector space
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M1,3 by introducing a suitable vector product. We expect this vector product to be
generally noncommutative, since the familiar cross product is also noncommutative5. We
also expect the vector product to enlarge the mathematical space in order to properly
accommodate quantities like the electromagnetic field tensor Fµν .

To accomplish these goals, we define the appropriate spacetime product to satisfy the
following four properties for any vectors a, b, c ∈M1,3:

a(bc) = (ab)c (Associativity) (3.1a)

a(b+ c) = ab+ ac (Left Distributivity) (3.1b)

(b+ c)a = ba+ ca (Right Distributivity) (3.1c)

a2 = η(a, a) = εa|a|2 (Contraction) (3.1d)

Note that we omit any special product symbol for brevity. The contraction property
(3.1d) distinguishes the resulting spacetime algebra as an orthogonal Clifford algebra
[158] that is generated by the metric η and the vector spaceM1,3. This Clifford algebra
is the largest associative algebra that can be constructed solely from spacetime, so it
will contain all other potentially relevant algebras as subalgebras. Indeed, this nesting
of algebras will be quite useful for practical calculations, as we shall see.

Decomposing the resulting associative vector product into symmetric and antisym-
metric parts produces the proper spacetime generalizations to the 3-vector dot and cross
products that we were seeking [140]:

ab = a · b+ a ∧ b. (3.2)

The symmetric part of the product,

a · b ≡ 1

2
(ab+ ba) = b · a = η(a, b), (3.3)

is precisely the scalar (dot) product inherited from the spacetime structure ofM1,3. The
last equivalence follows from the contraction relation (a+ b)2 = η(a+ b, a+ b) demanded
by property (3.1d).

The antisymmetric part of the product,

a ∧ b ≡ 1

2
(ab− ba) = −b ∧ a, (3.4)

is called the wedge product and is the proper generalization of the vector cross product to
relativistic 4-vectors6. It produces a qualitatively new type of object called a bivector that
does not exist a priori inM1,3, as anticipated. A bivector (a∧b) produced from spacelike
vectors a and b has the geometric meaning of a plane segment with magnitude equal to
the area of the parallelogram bounded by a and b, and a surface orientation (handedness)
determined by the right-hand rule; this construction is illustrated in Figure 1. Hence,

5Note that algebraic noncommutativity has nothing a priori to do with the noncommutativity in
quantum mechanics.

6This is precisely Grassman’s exterior wedge product [139], adopted by Cartan when defining differ-
ential forms [153].

19



Figure 1: The wedge product a∧b between spacelike vectors a and b produces an oriented plane segment
known as a bivector. Conceptually, the vector a slides along the vector b, sweeping out a parallelogram
with area |a ∧ b|. The orientation of this area follows the right-hand rule, and may be visualized as a
circulation around the boundary of the plane segment. Importantly, a bivector is characterized entirely
by its magnitude and orientation, so the plane segment resulting from a wedge product may be deformed
into any shape that preserves these two properties. Conversely, a bivector (of definite signature) may
be factored into a wedge product between any two vectors that produce the same area and orientation
a ∧ b = c ∧ d; if the two chosen factors are also orthogonal (i.e., c · d = 0), then the bivector is a simple
product of the orthogonal factors c ∧ d = cd.

the wedge product generalizes the cross product by directly producing an oriented plane
segment, rather than a vector normal to that surface. This generalization is important
in spacetime since there is no unique normal vector to a plane in four dimensions. We
will see in Sections 3.4, 3.6, and 5 that the electromagnetic field is properly expressed as
precisely such a bivector.

The vector product (3.2) combines the nonassociative dot and wedge products into
a single associative product. The result of the product thus decomposes into the sum of
distinct scalar and bivector parts, which should be understood as analogous to expressing
a complex number as a sum of distinct real and imaginary parts. Just as with the study
of complex numbers, it will be advantageous to consider these distinct parts as composing
a unified whole, rather than separating them prematurely. We will explore this similarity
more thoroughly in Section 3.5.

A significant benefit of combining both the dot and wedge products into a single
associative product in this fashion is that an inverse may then be defined

a−1 =
a

a2
, (3.5)

provided a is not lightlike (i.e., a2 6= 0). Note that a2 = εa|a|2 is a scalar by property
(3.1d), so it trivially follows that a−1a = aa−1 = 1. Importantly, neither the dot product
nor the wedge product alone may be inverted; only their combination as the sum (3.2)
retains enough information to define an inverse.

3.3. Multivectors

By iteratively appending all objects generated by the wedge product (3.4) to the
initial vector space M1,3, we construct the full spacetime algebra C1,3. This notation
indicates that the spacetime algebra is a Clifford algebra generated from the metric
signature (+,−,−,−). Importantly, all components in this Clifford algebra are purely
real—we will not need any ad hoc addition of the complex scalar field in what follows.
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Figure 2: Graded basis for the spacetime algebra C1,3. Each multivector M ∈ C1,3 decomposes into
a sum of distinct and independent grades k = 0, 1, 2, 3, 4, which can be extracted as grade-projections
〈M〉k. The oriented basis elements of grade-1 {γµ}3µ=0 are an orthonormal basis (γµ · γν = ηµν) for
the Minkowski 4-vectors M1,3. An oriented basis element of grade-k, such as γµν ≡ γµγν = γµ ∧ γν =
−γν ∧ γµ (with µ 6= ν), is constructed as a product of k of these orthonormal 4-vectors. Interchanging
indices permutes the wedge products, which only changes the sign of the basis element; hence, only the
independent basis elements of each grade are shown. The color coding indicates the signature of each
basis element (see Section 3.3.2), with blue being +1 and red being −1. The boxes and shading indicate
useful dualities of the algebra: the solid and dashed boxes are (Hodge) dual under right multiplication
of the pseudoscalar I = γ0123 (see Section 3.5), while within each box the shaded region is dual to
the unshaded region under right multiplication of the timelike basis vector γ0 (see Section 3.6). These
dualities are further detailed in Figures 4 and 5.

The repeated wedge products produce 5 linearly independent subspaces of the total
algebra, known as grades, which are illustrated in Figure 2. Each grade is a distinct type
of “directed number” [176]. The real scalars (pure numbers) α ∈ R are grade 0, while the
4-vectors (line segments) a ∈ M1,3 are grade 1. The bivectors (plane segments) (a ∧ b)
appearing in (3.4) are grade 2. Successive wedge products will also produce trivectors
(pseudovectors, 3-volume segments) (a∧b∧c) of grade 3 and quadvectors (pseudoscalars,
4-volume segments) (a∧ b∧ c∧ d) of grade 4, which completes the algebra. We will refer
to the elements of a grade-k subspace as k-blades in what follows to disambiguate them
from the grade-1 vectors.

For concreteness, we systematically generate a complete graded basis for C1,3 as all
independent products of the vectors {γµ}3µ=0 in a chosen basis ofM1,3. The rich structure
of the resulting graded basis is also detailed in Figure 2. We choose the starting vector
basis to be orthonormal γµ · γν = ηµν in the sense of the Minkowski metric, so γ2

0 = 1
and γ2

j = −1 for j = 1, 2, 3. The choice of notation for the basis is motivated by a deep
connection to the Dirac γ-matrices that we will clarify in Section 3.8.

The basis of 0-blades is the real number 1. The basis of 1-blades is the chosen set
of four orthonormal vectors γµ themselves. The (16 − 4) = 12 possible products of
these vectors that produce bivectors (i.e., with µ 6= ν) γµγν = γµ ∧ γν ≡ γµν = −γνµ
produce only (16 − 4)/2 = 6 independent bivectors γ10, γ20, γ30, γ12, γ23, γ31 due to the
antisymmetry of the wedge product; these independent elements form the oriented basis
of 2-blades. Similarly, products of orthogonal vectors with these bivectors γµγνγδ =
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γµ ∧ γν ∧ γδ ≡ γµνδ produce only 4 independent trivectors γ123, γ120, γ230, γ310 that form
the oriented basis of 3-blades. Finally, the product of all four orthogonal vectors produces
only a single independent element γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 ≡ γ0123 that serves as
the basis for the 4-blades. Hence, there are 24 = 16 independent basis elements for the
spacetime algebra, partitioned into 5 grades of “4 choose k,” 4!/k!(4− k)!, independent
basis k-blades.

The 4-blade γ0123 geometrically signifies the same unit 4-volume in any basis, and
will be particularly important in what follows, so we give it a special notation

I ≡ γ0123. (3.6)

This algebraic element is the pseudoscalar for spacetime. That is, its scalar multiples
αI act as scalars that flip sign under an inversion of the handedness of spacetime (i.e.,
flipping the orientation of any one basis direction). The notation of I is motivated by the
fact that I2 = γ2

0γ
2
1γ

2
2γ

2
3 = (1)(−1)(−1)(−1) = −1, so it will perform a similar function

to the scalar imaginary i. Indeed, the element I provides spacetime with an intrinsic
complex structure without any ad hoc introduction of the scalar complex numbers7. We
will detail this complex structure in Section 3.5.

Any multivector M ∈ C1,3 in the spacetime algebra may be written as a sum of
independent k-blades

M = α+ v + F + T + βI (3.7)

where the Greek letters α, β are real numbers, the lowercase Roman letter v is a vector
with 4 real components, the boldface Roman letter F is a bivector with 6 real com-
ponents, and the Fraktur letter T is a trivector with 4 real components. Each of these
independent grades are distinct and proper geometric objects. We shall see in Section 3.5
that in practice we can dramatically simplify the description of multivectors by exploiting
dualities of the algebra; in particular, we will be able to dispense with trivectors (and
their elaborate notation) altogether by rewriting them as pseudovectors T = vI. To keep
these distinctions conceptually clear, we shall make an effort to maintain useful notational
conventions throughout this work that are summarized in Table 2 for reference.

Each k-blade in a multivector can be extracted by a suitable grade-projection, denoted
as 〈M〉k. For example, the bivector projection of (3.7) is 〈M〉2 = F. Notably, the scalar
projection satisfies the cyclic property

〈MN〉0 = 〈NM〉0 (3.8)

for any two multivectors M and N , so is an algebraic trace operation. In fact, this trace
is entirely equivalent to the matrix trace operation, which can be verified by considering
a (Dirac) matrix representation of the spacetime algebra C1,3 that simulates the noncom-
mutative vector product using the standard matrix product. We will comment more on
such a matrix representation in Section 3.8, but we shall not require it in what follows.

7It is worth emphasizing that there is no unique square root of −1. There are many algebraic elements
in C1,3 that square to −1, each with distinct geometric significance. The scalar imaginary i of standard
complex analysis does not specify any of this additional structure; hence, it is often enlightening to
determine whether a particular

√
−1 is implied by a generic i that appears in a traditional physics

expression. We will show in what follows that I is indeed the proper physical meaning of i throughout
the electromagnetic theory.
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Notation Description

α, β, ω scalars (real numbers)
a, b, v, w 4-vectors
F, G bivectors
vI pseudovectors
αI pseudoscalars
M multivector
ζ = α+ βI complex scalar
z = v + wI complex vector
∇ 4-gradient, Dirac operator
T(b), T (b) tensor, adjoint tensor

γµ orthonormal basis (Lorentz frame) for 4-vectors
γµ = γ−1

µ reciprocal basis for 4-vectors
~E, ~B relative 3-vectors
~σi = γiγ0 orthonormal basis for 3-vectors
~∇ = γ0 ∧∇ relative 3-gradient
∂0 = γ0 · ∇ relative time derivative
Fµν , vµ scalar components (µ = 0, 1, 2, 3)
F ij , vk spatial scalar components (i, j, k = 1, 2, 3)
ηµν Minkowski metric tensor
δµν Euclidean metric tensor / Kronecker delta
εijk, εµνδκ anti-symmetric Levi-Civita symbols

Table 2: Notational distinctions. Proper (frame-independent) quantities (top) have the different grades
distinguished by font type, boldface, and capitalization for simplicity, while relative (frame-dependent)
quantities (bottom) conform to traditional vector or index annotations for clarity.
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Grade Blade Type Physical Examples

0 Scalars charge q
mass m
proper time τ

1 Vectors coordinates x
proper velocity w = dx/dτ
energy-momentum p
force dp/dτ
electric potential ae
electric current je

2 Bivectors electromagnetic field F = ~E + ~BI

angular momentum M = x ∧ p = − ~N + ~LI−1

torque dM/dτ
vorticity ∇∧ w

3 Pseudovectors magnetic potential amI
magnetic pseudocurrent jmI
helicity pseudocurrent XI

4 Pseudoscalars magnetic charge qmI
phase ϕI

Table 3: Examples of common physical quantities by grade. All these physical quantities appear in
any proper description of relativistic physics, and fit naturally within the graded structure of spacetime
algebra.
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Figure 3: The product aF between a vector a (green) and bivector F (red) decomposes into a vector
a ·F and a trivector a ∧F part. A spacelike F is an oriented plane segment that may be deformed into
a parallelogram F = a‖ ∧ c that shares a side with the part of the spacelike vector a = a‖ + a⊥ that
is parallel to F (yellow). The contraction extracts the orthogonal vector c = a · F (black), while the
inflation drags the bivector F along the perpendicular vector a⊥ (blue) to produce an oriented trivector
volume a⊥ ∧ F.

All proper physical quantities in spacetime must either correspond to pure k-blades,
or multivectors that combine k-blades of differing grades. These are the only frame-
independent objects permitted by the constraints of special relativity. Hence, the ex-
pansion (3.7) of a general multivector indicates the full mathematical arena in which
relativistic physics must occur. The algebraic structure allows us to manipulate each of
these proper objects with equal ease and finesse.

The added complication of multivectors M ∈ C1,3 over the original 4-vectors v ∈M1,3

may seem excessive and intimidating at first glance; however, as we have been suggesting,
the added structure contained in a full multivector is in fact necessary for a proper
description of spacetime quantities. Indeed, as we will see in more detail in Sections 3.4
and 3.6, each distinct blade of a general multivector is in fact a familiar type of object
that appears in the standard treatments of relativistic physics. We summarize several
examples in Table 3 for reference. The multivector construction unifies all these quantities
into a comprehensive whole in a principled way. Moreover, the Clifford product provides
them with a wealth of additional structure, which we will exploit to make manipulations
of multivectors simple in practice.

3.3.1. Bivectors: products with vectors

We will see in the following sections that several dualities of spacetime algebra allow
a complete understanding in terms of scalars, vectors, and bivectors. Out of these three
fundamental objects bivectors are the least familiar, so we shall make an effort to clarify
their properties as we progress through this introduction.

We now consider how bivectors and vectors relate to one another in more detail,
defining two useful operations (contraction and inflation) in the process. It is worth
emphasizing that all operations in spacetime algebra are derived from the fundamental
vector product and sum, so are introduced for calculational convenience, conceptual
clarity, and for contact with existing formalisms. For reference, we list all of the auxiliary
operations that will be introduced in this report in Table 4.

A product between a vector a and a bivector F can be split into two terms (vector
and trivector) in an analogous way to the product of vectors in (3.2)

aF = a · F + a ∧ F. (3.9)
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Description Notation & Definition

Clifford product ab

vector dot product a · b = (ab+ ba)/2 = b · a
vector wedge product a ∧ b = (ab− ba)/2 = −b ∧ a

projection to grade-k 〈M〉k
algebraic trace 〈M〉0

Hodge duality M 7→MI−1

relative frame duality M 7→Mγ0

bivector contraction a · F = (aF− Fa)/2 = −F · a
bivector inflation a ∧ F = (aF + Fa)/2 = F ∧ a
bivector dot product F ·G = (FG + GF)/2 = G · F
commutator bracket [F,G] = (FG−GF)/2 = −[G,F]
bivector cross product F×G = [F,G]I−1 = −G× F

reversion (transpose) (ab)∼ = ba

(MN)∼ = ÑM̃

positive magnitude |M |2 = |〈M̃M〉0|2 + |〈M̃M〉4I−1|2

signature εM = 〈M̃M〉0/|M |2

complex conjugation (α+ βI)∗ = (α− βI)
(v + wI)∗ = (v − wI)
[f eϕI ]∗ = f e−ϕI

relative reversion M† = γ0M̃γ0

( ~E + ~BI)† = ~E − ~BI

Table 4: Algebraic operations. From the fundamental Clifford product we define a variety of convenient
operations that are useful for calculations.
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The vector and trivector parts are constructed respectively as

a · F ≡ 〈aF〉1 =
1

2
(aF− Fa) = −F · a, (3.10)

a ∧ F ≡ 〈aF〉3 =
1

2
(aF + Fa) = F ∧ a. (3.11)

Notably, the grade-lowering dot product, or contraction, is antisymmetric while the
grade-raising wedge product, or inflation, is symmetric, which is opposite to the vec-
tor product case (3.2). The use of the dot product to lower the grade and the wedge
product to raise the grade has become conventional [5].

The geometric meaning of these products can be ascertained for spacelike F by de-
composing the vector a = a⊥ + a‖ into parts perpendicular (a⊥) and parallel (a‖) to
the plane of F. After factoring F into constituent orthogonal vectors (i.e., b · c = 0),
F = b ∧ c = bc, we find

aF = abc =
1

2
a‖(bc− cb) + a⊥ ∧ b ∧ c, (3.12)

Fa = bca =
1

2
(bc− cb)a‖ + a⊥ ∧ b ∧ c, (3.13)

so the dot and wedge products have the simple forms

a · F = a‖ · F = (a‖ · b)c− (a‖ · c)b, (3.14)

a ∧ F = a⊥ ∧ F = a⊥ ∧ b ∧ c. (3.15)

For spacelike a, b, c, these expressions have intuitive geometric interpretations. The con-
traction a · F produces a vector in the plane of F that is perpendicular to a‖. Indeed,
choosing b = a‖ so F = a‖ ∧ c yields a · F = c. The wedge product a ∧ F produces
a trivector with magnitude equal to the volume of the parallelipiped constructed from
dragging the plane segment F along a perpendicular vector a⊥. These constructions are
illustrated in Figure 3.

3.3.2. Reversion and inversion

Before we continue, we make a brief diversion to define another useful operation on the
spacetime algebra known as reversion [5], which reverses the order of all vector products:
(ab)∼ = ba. The reverse distributes across general multivector products recursively

(AB)∼ = B̃Ã, and is the algebraic equivalent of the transpose operation for matrices (as

can be verified using a matrix representation). The reverse inverts itself (M̃)∼ = M ,
which makes it an involution on the algebra. The reverse is also summarized in Table 4
for reference.

The reverse of a bivector F is its negation F̃ = −F, which can be seen by splitting
each basis element of F into orthogonal factors γµν = γµγν = γµ ∧ γν . The reversion of
the factors then flips the wedge product γ̃µν = γνγµ = γν ∧γµ = −γµ∧γν = −γµν , which
results in a negation. Each grade of the general multivector in (3.7) can be reversed in
an analogous way according to

M̃ = α+ v − F− T + βI. (3.16)
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Notably, the pseudoscalar reverses to itself Ĩ = γ3210 = γ0123 = I.
As a useful application of the reversion, the product of a pure k-blade M = 〈M〉k

with its reverse M̃ produces a scalar. As an example, for M = γ123 we have M̃M =
γ321γ123 = γ32(γ1)2γ23 = −γ3(γ2)2γ3 = γ2

3 = −1. The resulting positive magnitude

|M |2 ≡ |M̃M | = 1 is a product of the magnitudes of the factors of M , while the sign

εM ≡ M̃M/|M |2 = −1 is a product of the signatures of the factors. Hence, the reversed-
square of a pure k-blade

M̃M = MM̃ = εM |M |2 (3.17)

produces a notion of pseudonorm for M with a net signature εM and positive magnitude
|M |2, in exact analogy with the definition (3.1d) for vectors8. It follows that if |M |2 6= 0,
then

M−1 ≡ M̃

M̃M
(3.18)

is the inverse of a pure k-blade M that satisfies M−1M = MM−1 = 1, in analogy with
(3.5).

3.4. Reciprocal bases, components, and tensors

To connect with the standard tensor-analysis treatments of the electromagnetic field,
where it is considered to be an antisymmetric rank-2 tensor Fµν , we now briefly consider
the various ways of expanding proper multivector quantities in components. We shall see
that we immediately recover and clarify the standard tensor analysis formulas, making
the tensor analysis techniques available as a restricted consequence of spacetime algebra.

Given a reference basis γµ forM1,3, it is convenient to introduce a reciprocal basis of
vectors

γµ = (γµ)−1, γµγν = γµ · γν = δµν (3.19)

defined by the algebraic inverse (3.5). This is an equally valid basis of vectors for M1,3

that satisfies the same metric relation γµ · γν = ηµν = ηµν . It also follows from the
inverse that γ0 = γ0, while γj = −γj for j = 1, 2, 3, so the reciprocal basis is the spatial
inversion of the reference basis γµ.

Any multivector M is a geometric object that can be expanded in any basis, including
the reciprocal basis. For example, a vector v has the expansions

v =
∑
µ

vµγµ =
∑
µ

vµγ
µ (3.20)

in terms of the reference basis and the reciprocal basis. Traditionally, the components
vµ = γµ · v in the reference basis are called the contravariant components of v, while
the components vµ = γµ · v in the reciprocal basis are the covariant components of
v; we see here that they can be interpreted as different ways of expressing the same

8It will be shown in Section 3.5.1 that bivectors F may not have a well-defined signature of ±1.
Nevertheless, these reversion equations will still be valid.
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geometric object. Evidently from (3.20) we have v · γν = vνηνν = vν , which shows how
the two component representations are related by the metric (which effectively “raises”
or “lowers” the index).

Since the graded basis elements of the spacetime algebra are constructed with the
antisymmetric wedge product from the reference (or reciprocal) vector basis, then one
can also expand a k-blade into redundant components that will be the same as the com-
ponents of a rank-k antisymmetric tensor. For example, a bivector F may be expanded
into components as

F =
1

2

∑
µ,ν

Fµνγµ ∧ γν =
1

2

∑
µ,ν

Fµνγ
µ ∧ γν . (3.21)

The components Fµν = γµ ·F ·γν = γν ·(γµ ·F) = (γν∧γµ) ·F = γνµ ·F = (γµν)−1 ·F can
be extracted using the contractions defined in Section 3.3.1, and are usually called the
rank (2,0) (contravariant) components of F, while the components Fµν = γµ · F · γν are
the rank (0,2) (covariant) components of F. Similarly, the components Fµν = γµ ·F · γν
and F ν

µ = γµ · F · γν are rank (1,1) (matrix) components for F. There are overtly 16
real components in each case, of which only (16− 4)/2 = 6 are nonzero and independent
due to the antisymmetry; these six independent components correpond precisely to the
components of F when expanded more naturally in a bivector basis. The factor of 1/2 in
(3.21) ensures that the redundant components (differing only by a sign) are not double-
counted.

The various ranked tensor components corresponding to F all refer to the action of
the same antisymmetric tensor F, which is a multilinear function

F(a, b) ≡ a · F · b = b · (a · F) = (b ∧ a) · F (3.22)

=
∑
µν

aµFµνb
ν =

∑
µν

aµF
µνbν =

∑
µν

aµF
µ
ν b

ν =
∑
µν

aµF νµ bν

that takes two vector arguments a =
∑
µ a

µγµ =
∑
µ aµγ

µ and b =
∑
ν b

νγν =
∑
ν bνγ

ν

and produces a scalar through a total contraction with the bivector F. We use the
underbar notation F for functions to disambiguate them from products of multivectors.
Note that the different ranks of components for the tensor F correspond to different ways
of expanding the arguments a and b into different bases.

Importantly, the electromagnetic field is intrinsically a bivector F and not its associ-
ated antisymmetric tensor F, which is the multilinear function that performs contractions
with F to produce a scalar; the confusion between these two distinct concepts arises be-
cause they have the same characteristic components Fµν . Component-based tensor anal-
ysis obscures this subtle conceptual distinction by neglecting the k-blades themselves in
favor of the functions that can be defined by contractions with these k-blades, all while
emphasizing component descriptions that depend on particular basis expansions. More
distressingly, one cannot construct more general multivectors or the Clifford product us-
ing tensor notation. As a result, we regard component-based tensor analysis as a part
of—but not a replacement for—the spacetime algebra used in this report.

29



Figure 4: Hodge duality illustrated using the same basis as Figure 2. Right multiplication by the
pseudoscalar I = γ0123 converts an algebraic element to its dual, which is an orthogonal complement in
the geometric sense. For example, the dual of a trivector γ123 is its unique normal vector γ123(−I) = γ0.
Dual elements have opposite signatures, indicated here by the flip in color coding.

3.5. The pseudoscalar I, Hodge duality, and complex structure

The expansion (3.7) of a multivector in terms of elements of differing grade is similar
to the expansion of a complex number into its real and imaginary parts, as we emphasized
in Section 3.3. In fact, this similarity is more than an analogy because the pseudoscalar
I also satisfies I2 = −1, which makes the subalgebra of the form ζ = α+ βI completely
equivalent in practice to the complex scalar numbers. Hence, we do not need to addi-
tionally complexify the algebra in order to reap the benefits of complex analysis; the
complex algebraic structure automatically appears within the spacetime algebra itself.

The pseudoscalar I has intrinsic geometric significance that goes well beyond the
theory of scalar complex numbers, however, and has several additional interesting and
useful properties. It commutes with elements of even grade (i.e., scalars, pseudoscalars,
and bivectors), but anticommutes with elements of odd grade (i.e., vectors and trivec-
tors). More surprisingly, a right product with I is a duality transformation from grade
k to its orthogonal complement of grade (4 − k). For example, the dual of a vector is
its unique oriented orthogonal trivector γ0I = γ0γ0γ1γ2γ3 = γ123, while the dual of a
trivector is its unique normal vector γ123I = (γ0I)I = −γ0. This duality is illustrated
for the entire graded basis in Figure 4. We will see in Section 5.2 that this duality is
intimately connected to the field-exchange dual symmetry of the electromagnetic field.

The duality transformation induced by I is equivalent to the Hodge-star transfor-
mation in differential forms (though is arguably simpler to work with), and splits the
spacetime algebra into two halves that are geometric complements of each other. Ex-
ploiting this duality, we can write any multivector M in an intrinsically complex form
(in the sense of I) that pairs quantities with their duals

M = ζ + z + F. (3.23)

We illustrate this decomposition in Figure 5. The complex scalar ζ and complex vector
z parts have the form

ζ ≡ α+ βI, z ≡ v + wI = v − Iw, (3.24)
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Figure 5: Complex structure of the spacetime algebra. The complementary Hodge-dual halves of the
algebra illustrated in Figure 4 become intrinsically complex pairings by factoring out the pseudoscalar
I = γ0123 that satisfies I2 = −1. The complex scalars and vectors have parts that are independent
geometric objects. However, the bivectors are self-dual and irreducibly complex objects that cannot be
further decomposed into frame-independent parts.

where α, β are real scalars, and v, w are 4-vectors. As anticipated, the trivector T = wI =
−Iw has been expressed as the orthogonal complement of a vector (i.e., a pseudovector),
which is a useful simplification.

Some care has to be taken with manipulations of complex vectors z, since I anti-
commutes with vectors. As a result, complex scalars and vectors only quasi commute

ζz = (α+ βI)z = z(α− βI) 6= zζ, (3.25)

while complex scalars and bivectors commute normally: ζF = Fζ. Thus, the pseu-
doscalar I is only algebraically equivalent to the usual notion of the scalar imaginary i
when restricted to the even graded subalgebra of complex scalars and bivectors.

3.5.1. Bivectors: canonical form

A bivector like the electromagnetic field, F, is an interesting special case for the
complex decomposition (3.23) of a general multivector, since the full bivector basis is
already self-dual. We can see this by computing the duality for a particular basis

γ10I = −γ23, γ20I = −γ31, γ30I = −γ12, (3.26)

γ23I = γ10, γ31I = γ20, γ12I = γ30.

Geometrically, these duality relations express the fact that in 4-dimensions the orthogonal
complement to any plane is another plane (not a normal vector as in 3-dimensions). We
can express these relations more compactly by collecting cyclic permutations and writing
γi0I = −εijkγjk and γjkI = εijkγi0, where i, j, k = 1, 2, 3 and εijk is the completely
antisymmetric Levi-Civita symbol (no summation implied).

This self-duality of the bivector basis makes the signature of a general bivector mixed.
That is, although each basis bivector has a well-defined signature, γi0γ̃i0 = (1)(−1) = −1
or γjkγ̃jk = (−1)(−1) = 1, a general bivector F will be a mixture of these two different
signatures. Indeed, consider the simple mixed bivector F = γ10 + γ23 as an example.
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Computing its reversed square produces

F̃F = [γ01 + γ32][γ10 + γ23], (3.27)

= γ01γ10 + γ01γ23 + γ32γ10 + γ32γ23,

= γ2
1γ

2
0 + γ0123 + γ3210 + γ2

2γ
2
3 ,

= (−1)(1) + I + I + (−1)(−1),

= 2I.

The cross-terms between the basis elements of different signature produce a complex
signature εF = I attached to its positive magnitude |F|2 = 2. Thus, mixing bases of
differing signature is automatically handled by the algebra by making the total signature
complex.

More generally, the reversed square of any bivector F will produce FF̃ = εF |F|2,
where εF = α + βI is a complex signature with unit magnitude α2 + β2 = 1. As such,
this signature can be written using a phase angle by using the same algebraic techniques
as standard complex analysis: εF = exp(2ϕI) = cos 2ϕ+I sin 2ϕ. It follows that a general
bivector F must have a canonical (i.e., frame-independent) form with an intrinsic phase

F = f exp(ϕI) = f (cosϕ+ I sinϕ) (3.28)

that mixes the bivector subspaces of different signature. Here we define f to be the
canonical bivector for F that we choose to have a definite negative signature f f̃ = −|F|2
(for reasons that will become clear in Section 3.6). Its dual fI then has a definite
positive signature, while the square produces the positive magnitude f2 = |F|2. It is
worth emphasizing that the existence of this canonical complex form of a bivector is not
at all apparent when working solely with its real components Fµν .

The phase and canonical bivector can be directly extracted from F according to

ϕ =
1

2
tan−1 `2

`1
, f = F exp(−ϕI), (3.29)

where `1 = 〈F2〉0 = |F|2 cos 2ϕ and `2 = 〈F2〉4I−1 = |F|2 sin 2ϕ are the scalar parts of its
square F2 = `1 + `2I. Note that for null bivectors (F2 = 0) the decomposition (3.28) is
not unique and the phase ϕ becomes degenerate (just as with standard complex analysis).
This potentially degenerate intrinsic phase of a bivector will become very important in
our discussion of electromagnetic waves in Section 5.4.

3.5.2. Bivectors: products with bivectors

A product between two bivectors F and G can be split into three distinct grades
(scalar, bivector, and pseudoscalar), in contrast to the two grades in the vector-vector
and vector-bivector products of (3.2) and (3.9),

FG = 〈F ·G〉0 + [F,G] + 〈F ·G〉4. (3.30)

We will find it instructive to consider the scalar and pseudoscalar parts together as the
same complex scalar F ·G.

The symmetric part of the product produces this complex scalar, which we can better
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understand by making the canonical decompositions F = f exp(ϑI), G = g exp(ϕI)
according to (3.28),

F ·G ≡ 1

2
(FG + GF) = (f · g) exp[(ϑ+ ϕ)I]. (3.31)

Since f and g have fixed signature, f · g = (fg + gf)/2 is a real scalar. In fact, it
will become clear after we introduce the relative 3-vectors in Section 3.6.1 that this real
scalar is completely equivalent to the usual (Euclidean) dot product from non-relativistic
3-vector analysis, which motivates this choice of notation.

It follows that the total dot product between arbitrary bivectors will have scalar and
pseudoscalar parts of the form

〈F ·G〉0 = (f · g) cos(ϑ+ ϕ), (3.32)

〈F ·G〉4 = (f · g) sin(ϑ+ ϕ)I. (3.33)

Note that the intrinsic phases of F and G play a critical role in these products, and
produce wave-like interference factors. It is worth emphasizing that these factors arise
solely from the structure of spacetime itself, and not from any additional assumptions.

The antisymmetric part of FG is written as a commutator bracket that produces
another bivector

[F,G] ≡ 〈FG〉2 =
1

2
(FG−GF). (3.34)

We will explore the deep significance of this commutator bracket in Section 3.7, where
it will play the role of a Lie bracket for the Lorentz group (motivating this choice of
notation). For completeness here, we also define the bivector cross product as the (Hodge)
dual of the commutator bracket

F×G ≡ [F,G]I−1. (3.35)

After we introduce the relative 3-vectors in 3.6.1 it will become clear that this cross prod-
uct is completely equivalent to the traditional 3-vector cross product (again, motivating
this choice of notation).

3.5.3. Complex conjugation

At this point we define another useful operation: complex conjugation. It follows
from (3.28) that the proper inverse (3.18) of a bivector F has the canonical form

F−1 =
f

|F|2
exp(−ϕI) (3.36)

which must additionally invert the intrinsic phase of the complex scalar that appears in
its signature.

To more compactly write this inverse, we introduce a complex conjugation of the
spacetime algebra as a flip in sign of the pseudoscalar. For a multivector M , as in (3.23),
this produces

M∗ = M |I 7→−I = (α− βI) + (v − wI) + f exp(−ϕI). (3.37)
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(a) Spacetime split (b) Relative frame duality

Figure 6: Spacetime split and paravectors. (a) Performing a spacetime split of Figure 5 selects a timelike
vector γ0 that corresponds to a particular inertial reference frame. This procedure partitions the proper
bivectors into relative parts spanned by a 3-vector basis ~σi = γi0 and its dual ~σiI = −εijkγjk. (b) Each
half of the split algebra then satisfies a secondary duality relation under right multiplication by γ0. This
duality maps proper 4-vectors to relative paravectors, and vice versa. As a result, the entire spacetime
algebra may be expanded in terms of relative paravectors and duality factors, which provides an explicit
embedding of traditional nonrelativistic 3-vector analysis inside spacetime algebra.

Geometrically, the flip in pseudoscalar sign corresponds to changing the orientation
(handedness) of spacetime. Since (M∗)∗ = M , conjugation is also an involution on
the algebra.

For complex vectors, the conjugation is equal to reversion z̃ = (v+wI)∼ = v+ Iw =
v − wI = z∗, since I anticommutes with vectors, which is a useful property. However,
this anticommutation also forces us to be careful about applying conjugation to products,
since it does not generally distribute across products that involve vectors, e.g., (zM)∗ 6=
M∗z∗, (zM)∗ 6= z∗M∗. Nevertheless, conjugation does distribute over products involving
only complex scalars and bivectors, just as in standard complex analysis. To aid memory
about some of these subtler properties, we have collected a few commonly encountered
identities in Table 5.

With this operation we can write the proper complex generalization of the blade
inverse (3.18)

ζ−1 =
ζ∗

ζ∗ζ
, z−1 = (z∗z)−1z∗, F−1 =

F∗

F∗F
, (3.38)

since the quantities ζ∗ζ = α2 + β2, z∗z = z̃z = v2 +w2 + 2(v ·w)I, and F∗F = f2 = |F|2
are all invertible scalars9.

3.6. Relative frames and paravectors

To connect the spacetime algebra C1,3 with standard 3-vector analysis, we express the
duality of the spacetime algebra in another way that selects a particular inertial reference
frame. To do this, we decompose the bivector basis into the three elements that involve
a specific timelike vector γ0,

~σi ≡ γi0 = γi ∧ γ0, (3.39)

9Note that z∗z produces a complex scalar, so (z∗z)−1 recursively follows the complex scalar rule in
(3.38). Moreover, the inverse z−1 written here is both a left and right inverse, even though (z∗z)−1 and
z∗ do not commute in general. That is, the explicit right inverse is z−1 = z∗(zz∗)−1 = [(zz∗)−1]∗z∗ =
(z∗z)−1z∗, which is the same expression.
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Algebraic Identities

Dot-wedge conversion: v · (wI) = −(vI) · w = (v ∧ w)I
v ∧ (wI) = −(vI) ∧ w = (v · w)I
(vI) · F = v ∧ (FI) = (v · F)I
(vI) ∧ F = v · (FI) = (v ∧ F)I
v · F · w = w · (v · F) = (w ∧ v) · F

Trace cyclicity: 〈ABC〉0 = 〈CAB〉0
〈ABC〉4 = 〈ABCI−1〉0I

Bivector-pseudoscalar commutation: ζF = Fζ
(ζF)∗ = ζ∗F∗ = F∗ζ∗

Vector-pseudoscalar anti-commutation: (v + wI) = (v − Iw)
z∗ = z̃
ζz = zζ∗

(zM)∗ 6= z∗M∗

Relative frame splits: I = γ0123 = ~σ1~σ2~σ3

v = (v0 + ~v)γ0 = γ0(v0 − ~v)

∇ = γ0(∂0 + ~∇) = (∂0 − ~∇)γ0

F = ~E + ~BI

3-vector products: ~E ~B = ~E · ~B + ~E × ~BI

〈 ~A~B ~C〉4 = ~A · ( ~B × ~C)I

〈 ~A~B ~C〉2 = ( ~A · ~B)~C − ( ~A× ~B)× ~C

= ( ~A · ~B)~C + ~A( ~B · ~C)− ( ~A · ~C) ~B

Relative reversion: ζ† = ζ∗

F† = ~E − ~BI

γ0F̃ = F†γ0

(~σj~σk)† = ~σk~σj

Table 5: Commonly encountered algebraic identities. All of these may derived in straightforward ways
from the fundamental Clifford product, but we include them here for reference.
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with i = 1, 2, 3, and their duals ~σiI = −εijkγjk. This spacetime split of the bivector basis
into an inertial frame is illustrated in Figure 6(a). The elements ~σi directly correspond
to the three spatial directions γi orthogonal to γ0. Importantly, they will act as a
basis for the 3-vector quantities that are used in standard vector analysis treatments of
electromagnetism. As such, we notate these basis elements using standard vector arrows
and refer to them as relative 3-vectors. Geometrically, one can conceptualize the relative
3-vectors that are experienced by an inertial observer as plane segments in spacetime
that are obtained by dragging the spatial frame γi along the timelike direction γ0 of the
observer’s worldline. As we will make clear in Section 3.8, the 3-vectors ~σi also have
a deep connection to the standard Pauli spin matrices, which motivates our choice of
notation.

3.6.1. Bivectors: spacetime split and cross product

In terms of this relative 3-vector basis, a bivector takes the simple form

F = E1γ10 + E2γ20 + E3γ30 +B1γ32 +B2γ13 +B3γ21 = ~E + ~BI (3.40)

involving a relative 3-vector and the dual of a relative 3-vector

~E = E1~σ1 + E2~σ2 + E3~σ3, ~BI = [B1~σ1 +B2~σ2 +B3~σ3] I. (3.41)

Unlike the canonical decomposition (3.28), splitting the bivector into dual relative pieces
in this manner requires the specification of a particular timelike vector γ0 in the basis
(3.39), which spoils the frame-independence of each relative piece. Only the total bivector
F produced in the sum (3.40) is a proper geometric object. We choose the suggestive

labels ~E and ~B here to anticipate their correspondence to the electromagnetic field vectors
in Section 5, but we can already see at this stage the inevitable equivalence in form of
F to the Riemann-Silberstein complex vector (1.1). As with the complex canonical form
of a bivector, the existence of this complex spacetime split is not at all apparent when
working solely with its real components Fµν .

Briefly, we note that the product between a vector and a bivector that we defined
in Section 3.3.1 can be used to compute the spacetime split (3.40) according to (noting
γ−1

0 = γ0)
F = Fγ0γ

−1
0 = (F · γ0)γ0 + (F ∧ γ0)γ0. (3.42)

The first term contracts (i.e., lowers the grade of) F to a vector perpendicular to γ0 and
then multiplies by γ0 to produce the relative 3-vector basis ~σi = γiγ0. The second term
inflates (i.e., raises the grade of) F to a trivector including γ0 and then contracts out the
γ0 part, leaving behind the dual basis ~σiI = −εijkγjγk.

Similarly, we can now revisit the cross product between two bivectors, defined in
Section 3.5.2 as the dual of the commutator bracket: F×G = [F,G]I−1. If we compute
this cross product for the relative basis elements ~σi we find

~σ1 × ~σ2 = ~σ3, ~σ2 × ~σ3 = ~σ1, ~σ3 × ~σ1 = ~σ2. (3.43)

These are precisely the defining relations for the familiar relative 3-vector cross product,
which motivates its standard notation. Thus, the bivector cross product forms a closed
nonassociative (Gibbs) subalgebra for relative 3-vectors that is entirely embedded within
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the spacetime algebra in a natural way. Hence, all the standard manipulations with
the vector cross product still apply to the relative 3-vectors in the spacetime algebra.
Moreover, the conceptual meaning of the cross product is enriched, since it is induced by
the more general associative product of spacetime algebra.

3.6.2. Paravectors

Using the spacetime split (3.40) for the bivectors, we can rewrite a general multivector
(3.23) in the following way

M =
[
(α+ ~E) + v

]
+
[
(β + ~B) + w

]
I, (3.44)

where α, β are scalars, v, w are proper 4-vectors, and ~E, ~B are relative 3-vectors.
We have further partitioned each half of the complex expansion (3.44) into even

(α + ~E) and odd (v) grades. These partitions have four components each and are also
dual to each other upon right multiplication by the chosen timelike unit vector γ0. We
illustrate this duality in Figure 6(b). As an important example, the coordinate 4-vector
x becomes

xγ0 = [ctγ0 + x1γ1 + x2γ2 + x3γ3]γ0, (3.45)

= ct+ x1γ10 + x2γ20 + x3γ30,

= ct+ ~x,

which is the sum of a relative scalar time and a 3-vector of the relative spatial coordi-
nates. This combination of a relative scalar and a relative 3-vector is commonly called a
paravector [182, 184] and is often written as a tuple (ct, ~x) instead of a sum to indicate
that the scalar and 3-vector parts of a 4-vector should be considered part of the same
unified whole. Interestingly, the paravector that appears here as a sum of a scalar and a
3-vector is closely related to the original use of quaternions by Maxwell [134] to describe
the essential unification of temporal and spatial parts of a 4-vector. We will comment
more on the close relation between the 3-vectors that appear here and quaternions in
Section 3.7.

We see that right-multiplication of a 4-vector by γ0 isolates the relative quantities
that correspond to the inertial frame of γ0. Left multiplication flips the sign of the 3-
vector part due to the wedge product in the 3-vector basis: γ0x = ct − ~x. Thus, we
can consistently recover the invariant coordinate interval in a direct way by using the
paravector duality

x2 = xγ0γ0x = [ct+ ~x][ct− ~x] = (ct)2 − |~x|2. (3.46)

Observe that this style of derivation has completely bypassed the need to expand the
expression in explicit components to obtain the final result. This is a general and con-
venient property of working with spacetime algebra: transitioning between proper and
relative expressions is a component-free and straightforward exercise.

Using the vector-paravector duality, we can further expand the multivector (3.44)
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Multivector Part Parity Scalar 4-vector Bivector

α proper scalar × X × ×
βI proper pseudoscalar X X × ×
δ relative scalar × × X ×
ωI relative pseudoscalar X × X ×
~p polar 3-vector X × X ×
~E polar 3-vector X × × X

~a axial 3-vector × × X ×
~B axial 3-vector × × × X

M =
[
(α+ ~E) + (δ + ~p)γ0

]
+
[
(β + ~B) + (ω + ~a)γ0

]
I

Table 6: Transformation properties of the relative parts of a multivector M in a particular frame. Each
checkmark indicates that the associated quantity changes sign under a spatial parity inversion, or is a
proper scalar quantity that does not depend upon a specific Lorentz frame, or has components that
change covariantly with the frame like parts of a proper 4-vector, or has components that change like
parts of a proper bivector. These transformation properties are traditionally used to distinguish the
distinct relative parts of a spacetime multivector.

into a fully frame-dependent form relative to γ0

M =
[
(α+ ~E) + (δ + ~p)γ0

]
+
[
(β + ~B) + (ω + ~a)γ0

]
I, (3.47)

that involves only paravectors (with scalar parts α, δ, β, ω and vector parts ~E, ~p, ~B,~a
discussed below) and the appropriate duality factors γ0 and I. These paravectors are the
quantities usually considered in frame-dependent treatments of relativistic systems that
use traditional vector analysis. However, the geometric origins of the quantities involved
become obscured when they are lifted outside the spacetime algebra.

We can recover some distinguishing information about the scalars by examining their
behavior under frame transformations and spatial reflections, which we summarize in
Table 6. The scalar α is invariant under both frame transformations and spatial reflec-
tions, so is a proper scalar. The scalar β flips sign under spatial reflections but does
not change under a frame transformation, so is a proper pseudoscalar. The scalar δ
is invariant under spatial reflections but changes under a frame transformation, so is a
relative scalar (i.e., temporal) part of a 4-vector. The scalar ω flips sign under a spatial
reflection and changes under a frame transformation, so is a relative pseudoscalar part
of a 4-pseudovector.

Similarly, we can distinguish the 3-vectors by looking at spatial reflections and frame
transformation properties. The vectors ~E, ~p flip sign under a spatial reflection, so are
polar relative 3-vectors. The vectors ~B,~a do not flip sign under a spatial reflection, so are
axial relative 3-vectors. However, while the combination of components (δ, ~p) transforms
as a proper 4-vector and (ω,~a) transforms as a proper 4-pseudovector, the combination
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of components in ( ~E, ~B) transforms as what is usually considered as an antisymmetric
rank-2 tensor (i.e., a bivector), as we indicated in Section 3.1 and further elucidated in
Section 3.4.

For convenience, we also summarize the various expansions of a general multivector
in Table 7. Comparing the proper expression of (3.7) to the frame-dependent expression
of (3.47) makes the geometric origins of all these transformation properties clear. The
proper combinations of relative quantities correspond to distinct geometric grades of
a spacetime multivector. This geometric structure is left implicit in standard vector
or tensor analysis methods, even though the transformation properties remain. The
spacetime algebra makes this structure explicit, intuitive, and easily manipulated in
calculations.

3.6.3. Relative reversion

To isolate the distinct quantities that are relevant for a particular frame, it is useful
to define a relative reversion involution

M† = γ0M̃γ0 (3.48)

=
[
(α+ ~E) + (δ − ~p)γ0

]
+
[
−(β + ~B) + (ω − ~a)γ0

]
I.

Comparing with (3.47), note that this γ0-dependent involution has the effect of the proper
complex conjugation for the complex scalars

ζ† = (α+ βI)† = α− βI = ζ∗, (3.49)

but has the effect of conjugation with respect to the spacetime split for the complex
bivectors

F† = ( ~E + ~BI)† = ~E − ~BI 6= F∗. (3.50)

Importantly, this type of conjugation is not frame-independent, but depends on the
relative frame γ0 due to the spacetime split.

In contrast, the relative reversion of a 4-vector only flips the sign of the relative
3-vector part

v† = [(δ + ~p)γ0]† = (δ − ~p)γ0, (3.51)

(wI)† = [(ω + ~a)γ0I]† = (ω − ~a)γ0I,

which is intrinsically different from complex conjugation.
Using the appropriate relative reversions, we can then extract the relative parts of
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Multivectors

Graded Form M = α+ v + F + wI + βI

α : scalar
v : vector
F : bivector
wI : pseudovector
βI : pseudoscalar

Complex Form M = ζ + z + F

ζ = α+ βI : complex scalar
z = v + wI : complex vector
F = f exp(ϕI) : (irreducibly) complex bivector

Relative Form M =
[
(α+ ~E) + (δ + ~p)γ0

]
+
[
(β + ~B) + (ω + ~a)γ0

]
I

α : proper scalar
~E : relative polar 3-vector part of F
δ : relative scalar part of v
~p : relative polar 3-vector part of v
βI : proper pseudoscalar
~B : relative axial 3-vector part of F
ωI : relative pseudoscalar part of wI
~a : relative axial 3-vector part of wI

Table 7: Multivector expansions into distinct geometric grades, intrinsically complex parts, and relative
parts that depend upon a particular choice of Lorentz frame.
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each geometric object in a systematic way

α =
ζ + ζ†

2
, β =

ζ − ζ†

2I
, (3.52)

~E =
F + F†

2
, ~B =

F− F†

2I
,

δ =
v + v†

2
γ−1

0 , ~p =
v − v†

2
γ−1

0 ,

ω =
wI + (wI)†

2
I−1γ−1

0 , ~a =
wI − (wI)†

2
I−1γ−1

0 .

Note that we have to be careful about the order of the inversions in the case when
elements do not commute.

3.7. Bivectors: commutator bracket and the Lorentz group

We now revisit the commutator bracket that we briefly defined for bivectors in Sec-
tion 3.5.2. Surprisingly, this commutator bracket makes the bivectors a closed nonasso-
ciative Lie algebra [5]. Indeed, this feature has motivated the notation of the bracket.
To see which Lie algebra the bivectors belong to, we compute the 15 following bracket
relations between all six bivector basis elements:

[γ12, γ23] = γ31, [γ23, γ31] = γ12, [γ31, γ12] = γ23, (3.53)

[γ10, γ20] = −γ12, [γ20, γ30] = −γ23, [γ30, γ10] = −γ31,

[γ31, γ10] = γ30, [γ12, γ20] = γ10, [γ23, γ30] = γ20,

[γ12, γ10] = γ20, [γ23, γ20] = γ30, [γ31, γ30] = γ10,

[γ23, γ10] = 0, [γ31, γ20] = 0, [γ12, γ30] = 0.

We can simplify these bracket relations to a more familiar form by introducing the
temporary (but standard) notations S1 = γ23, S2 = γ31, S3 = γ12 and K1 = γ10,
K2 = γ20, K3 = γ30, and combining cyclic permutations

[Si,Sj ] = εijkSk, [Ki,Kj ] = −εijkSk, [Si,Kj ] = εijkKk. (3.54)

These are precisely the Lie bracket relations that define the generators for the Lorentz
group, where Si generate spatial rotations, and Ki generate boosts. That is, the closed
bivector subalgebra under the commutator bracket is precisely the Lie algebra of the
Lorentz group. This connection between bivectors and the Lorentz group is extremely
useful in practice for manipulating objects in spacetime.

As a consequence of this correspondence, exponentiating the commutator bracket of a
spacetime bivector produces a restricted (proper, orthochronous) Lorentz transformation
that is continuously connected to the identity. For example, to spatially rotate a bivector
F by an angle θ in the plane S3 = ~σ3I

−1 (i.e., around the relative axis ~σ3), then we would
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use the following exponentiation

exp(θ [S3, ·]) F = F + θ[S3,F] +
θ2

2
[S3, [S3,F]] + . . . , (3.55)

= exp(θ S3/2) F exp(−θ S3/2),

= exp(−Iθ ~σ3/2) F exp(Iθ ~σ3/2).

The ability to resum an exponentiated commutator back into a double-sided product is
an important identity that is commonly used in quantum-mechanics10. Indeed, the final
form of the rotation in (3.55) is identical in form to the spatial rotation of a quantum
mechanical spin, where the vector ~σ3 is usually interpreted as a Pauli matrix. We will
return to this point in the next few sections.

As another important historical note, this double-sided product also appears as the
proper form of a spatial rotation when using quaternions, where

i ≡ S1 = ~σ1I
−1, j ≡ −S2 = −~σ2I

−1, k ≡ S3 = ~σ3I
−1 (3.56)

are the usual “imaginary” quaternion elements11 that all square to −1 and satisfy Hamil-
ton’s defining relation ijk = −1 [135, 136]. Note that the quaternion basis differs from
the 3-vector basis by a factor of I−1 (i.e., the dual-basis), which is the fundamental reason
that Maxwell’s attempt to use them for describing relative spatial directions [134] was
fraught with problems and eventually fell out of favor (despite leaving behind the legacy

of using ı̂, ̂, and k̂ to denote the spatial unit vectors). Quaternions are fundamentally
related to spatial rotations, not spatial directions.

Another important and enlightening example of the Lorentz group is the boost from a
frame with timelike vector γ0 to a different frame moving at a relative velocity ~v = |v|~σ3

with respect to γ0. Recall that a relative vector such as ~v = |v|γ3∧γ0 is really a bivector,
so it can directly act as a generator for the appropriate Lorentz boost. Indeed, note that
the relative unit vector ~σ3 = γ30 is also equal to a boost generator ~σ3 = K3. The proper
hyperbolic angle (i.e., rapidity) for the boost rotation is determined by the magnitude
of the velocity α = tanh−1|v|/c, while the proper plane of rotation is simply the relative
unit vector itself ~σ3. Hence, the active Lorentz boost that rotates a bivector F from the
~v frame back into the reference γ0 frame has the form

F′ = exp(−α [~σ3, ·]) F = exp(−α~σ3/2) F exp(α~σ3/2). (3.57)

Again, the conversion of the exponentiated commutator to a double-sided product makes
the expression simpler. Note that the only difference in form between the boost (3.57)
and the spatial rotation (3.55) is the factor of I in the exponent that changes the signature
of the spacetime rotation.

To simplify (3.57), we split the bivector F = F‖ + F⊥ into pieces parallel F‖ and

10This equivalence and the resulting half-angle is a manifestation of the double-covering of the spatial
rotation group SO(3) by the special unitary group SU(2), which is in turn isomorphic to the Spin(3)
group generated by the rotation bivectors Si = ~σiI

−1.
11Note the odd change in sign for j: Hamilton accidentally defined a left-handed set, which has caused

significant confusion about the proper application of quaternions in physics, and has obfuscated their
equivalence to the rotation generators made apparent here.
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perpendicular F⊥ to ~v, implying that ~v commutes with F‖ but anti-commutes with F⊥.
The Lorentz transformation then becomes

F′ = exp(−α~σ3/2) F exp(α~σ3/2), (3.58)

= F‖ + exp(−α~σ3) F⊥,

= F‖ + exp(− tanh−1|v|/c~σ3) F⊥,

= F‖ + [cosh(tanh−1|v|/c)− sinh(tanh−1|v|/c)~σ3] F⊥,

= F‖ +
1− ~v/c√
1− (v/c)2

F⊥,

where the boost dilation factor γ = (1 − (v/c)2)−1/2 appears to scale only the perpen-

dicular part of F. If we make a spacetime split F⊥ = ~E⊥ + ~B⊥I of the perpendicular
bivector, then the transformed version is

F′⊥ = γ(1− ~v/c)F⊥ = γ(1− ~v/c)( ~E⊥ + ~B⊥I), (3.59)

= γ[( ~E⊥ +
~v

c
× ~B⊥) + ( ~B⊥ −

~v

c
× ~E⊥)I],

where we have simplified the bivector product ~v ~E⊥ = ~v × ~E⊥I, since ~v · ~E⊥ = 0 (and

similarly for ~B). Up to choices of units, this is precisely the transformation that we
expect from a boost of the electromagnetic field [155, 189].

3.7.1. Spinor representation

Recall that in (3.57) we converted the exponentiated commutator bracket into a
double-sided product. Such a double-sided product is a more natural algebraic repre-
sentation of a group transformation that can be extended from bivectors to the entire
algebra. Specifically, if we notate the product factors as U = exp(−α~σ3/2), then the
transformation in (3.57) has the form

F′ = U F Ũ , (3.60)

where we have used ~̃σ3 = −~σ3. The factors satisfy the normalization condition UŨ =
ŨU = 1. Hence, this form of the transform makes it clear how the transformation
preserves the product structure of the algebra,

GH 7→ UGŨUHŨ = U(GH)Ũ , (3.61)

precisely in the same manner that unitary representations of group transformations pre-
serve product structure in quantum mechanics.

We call the quantity U that appears in (3.60) a rotor to emphasize that a Lorentz
transformation has the geometric form of a rotation through spacetime. Specifically,
the rotation generators Si = ~σiI

−1 square to −1 and produce spatial rotations, while
the boost generators Ki = ~σi square to +1 and produce hyperbolic rotations in space-
time. Since the rotor representation of a Lorentz transformation produces a geometrically
meaningful rotation, the bivector F can be replaced in (3.60) with any geometric object
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that can be rotated. Indeed, any multivector M can be Lorentz transformed according
to M ′ = UMŨ .

A rotor U is an example of a spinor ψ, which is an element of the even-graded
subalgebra of the spacetime algebra [158] that may be decomposed as

ψ = ζ + F, (3.62)

where ζ = α+ βI is a complex scalar and F is a bivector. This even-graded subalgebra
is closed under the full Clifford product. As an example of this decomposition, the boost
rotor exp(−α~σ3/2) can be expanded in terms of hyperbolic trigonometric functions as
cosh(α/2) − ~σ3 sinh(α/2), which is a sum of a scalar and a bivector. Similarly, the
spatial rotor exp(−θ I~σ3/2) can be expanded in terms of circular trigonometric functions
as cos(θ/2)− I~σ3 sin(θ/2).

Spinors also produce transformations of any multivector according to a double-sided
product that preserves the product structure of the algebra. For example, if ψψ̃ = ψ̃ψ =
1, then M 7→ ψMψ̃ is a spinor representation of a group transformation. Hence, the
rotor form of (3.60) can also be understood as a spinor representation of the restricted
Lorentz transformation. Similarly, if ψψ∗ = ψ∗ψ = 1, then M 7→ ψMψ∗ is another kind
of group transformation that preserves the product structure of the algebra.

An example transformation of this latter type that we will find particularly useful in
what follows is the global phase rotation characterized by the spinor ψ = exp(−θI/2).
Interestingly, this phase rotation only affects complex vectors since I commutes with
complex scalars and bivectors. That is, for a general multivector M = ζ + z + F in
complex form, we have

ψMψ∗ = ζ + z exp(θI) + F, (3.63)

which is a proper group transformation since ψψ∗ = ψ∗ψ = 1. This phase transformation
is responsible for the field-exchange dual symmetry of the electromagnetic field, which
we will detail in Section 5.2.

3.8. Pauli and Dirac matrices

A vast notational simplification of the Lorentz bracket relations (3.54) occurs when
we use the duality relations to rewrite the bivectors Ki = ~σi and their duals Si = ~σiI

−1

in terms of a particular Lorentz frame of relative 3-vectors. The pseudoscalar I commutes
with all bivectors and squares to −1, so all 15 bracket relations reduce to simple variations
of the three fundamental relations

[~σi, ~σj ] = εijk~σkI, (3.64)

which are simply another way of expressing the 3-vector cross products (3.43) in the
relative frame. Observe that the relations (3.64) are also precisely the bracket relations
that define the Pauli spin matrices used in quantum mechanics. Moreover, note that the
relative 3-vector basis satisfies the relation

~σi~σj + ~σj~σi = 2δij , (3.65)
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which indicates that the relative 3-vectors ~σi form a Euclidean Clifford subalgebra C3,0
in their own right.

In terms of this frame-dependent split, the proper pseudoscalar I can be written as
I = ~σ1~σ2~σ3. That is, I is also the appropriate pseudoscalar (apparent unit 3-volume) for
any relative frame, which is a nontrivial property. It also commutes with every element
of this relative frame, making it completely equivalent in practice to a scalar imaginary
i. Similarly, the relative reversion operation ψ† = γ0ψ̃γ0 that we defined in (3.48) is the
true reversion of the relative basis ~σi within this subalgebra: (~σj~σk)† = ~σk~σj . As such,
it also acts as the appropriate complex conjugation for the frame-dependent subalgebra
according to (3.50). The fact that this relative complex conjugation is distinct from the
global complex conjugation is not at all obvious when working solely within a relative
frame. This subalgebra and relative conjugation is precisely what appears in the usual
treatments of the Riemann-Silberstein vector (e.g., [40]).

Collecting these properties together, it is clear that the familiar Pauli matrices and
complex scalar imaginary i can be viewed as a matrix representation of a particular
spacetime split of the spinor subalgebra of spacetime. The matrix product simulates the
noncommutative vector product. Indeed, this direct connection to the Pauli matrices
has motivated our notation ~σi for the relative 3-vector basis [8]. Within the spacetime
algebra, however, ~σi are not matrices—they are a bivector basis associated with the
three spatial directions in a particular frame. Hence matrix constructions like

∑
i a
i~σi

that appear in quantum mechanics can be understood to define relative 3-vectors ~a in
spacetime algebra (e.g., the reference spatial direction along which a spin can be aligned).
There is nothing intrinsically quantum mechanical about these constructions.

Notably, the representation-free nature of spacetime algebra has exposed the deep
structural relationship between the relative spatial directions, the cross product of rel-
ative 3-space, the Lie bracket relations of the Lorentz group, the quaternion algebra, the
commutation relations of the Pauli spin matrices, and even the imaginary unit i that
appears in these commutation relations. Using standard mathematical methods, these
topics do not appear to have such an obvious connection. Indeed, the natural appear-
ance of all these topics solely from a systematic construction of the geometry of spacetime
highlights the deep geometric significance of their relation to one another.

As we briefly indicated at the beginning of this introduction, the embedding of Clif-
ford algebras C3,0 ⊂ C1,3 motivated our choice of metric signature for spacetime to be
(+,−,−,−). In fact, this embedding is part of a larger sequence of Clifford algebra
embeddings C2,4 ⊃ C4,1 ⊃ C1,3 ⊃ C3,0 ⊃ C0,2 ⊃ C0,1 ⊃ C0,0 illustrated in Table 8,
which corresponds to, in order: conformal space (Penrose twistors), relativistic electron
(Dirac spinors), spacetime/electromagnetism (Maxwell spinors), relative 3-space (Pauli
spinors), quaternions (Hamilton spinors), complex numbers (Schrödinger spinors), and
the real numbers. The connection between this sequence and the successive approxima-
tions of quantum mechanical particles has been emphasized in [96, 190–192]. The other
choice of spacetime signature (−,+,+,+) produces a distinct algebra C3,1 that does not
belong to this sequence of algebras.

At this point we revisit the dot-product relation (3.3) for the 4-vectors γµ of the
spacetime algebra C1,3

γµγν + γνγµ = 2ηµν . (3.66)

This relation was historically used to define the Dirac γ-matrices that appear in the Dirac
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Clifford Algebras Physics Connections Spinor Types

C2,4 Conformal space Penrose twistors

C4,1 Dirac electron Dirac spinors

C1,3 Spacetime / EM Maxwell spinors

C3,0 Relative 3-space Pauli spinors

C0,2 Quaternion rotations Hamilton spinors

C0,1 Complex (wave-like) phases Schrödinger spinors

C0,0 Real numbers Scalars

Table 8: The Clifford algebras in the nesting sequence of closed subalgebras C2,4 ⊃ C4,1 ⊃ C1,3 ⊃ C3,0 ⊃
C0,2 ⊃ C0,1 ⊃ C0,0, and their connection to common physics concepts, as well as the distinct types
of spinors in quantum mechanics. Note how the (+,−,−,−) signature of the spacetime algebra C1,3
appears naturally in the middle of this sequence.

equation for the relativistic electron. We can thus view the Dirac matrices as a repre-
sentation of the noncommutative spacetime algebra of 4-vectors γµ, where the matrix
product simulates the noncommutative product. Indeed, our notation γµ is motivated
by this connection [4]. As with the Pauli matrices, however, there is no need to con-
struct such a matrix representation for the spacetime algebra to be well-defined. Matrix
constructions like /p =

∑
µ p

µγµ that appear in the Dirac theory can be understood to
define proper 4-vectors p in the spacetime algebra. Again, there is nothing intrinsically
quantum mechanical about these constructions.

4. Spacetime calculus

Modern physical developments have required a mathematics that continually shifts
its foundation and gets more abstract. Non-euclidean geometry and noncommu-
tative algebra, which were at one time were considered to be purely fictions of the
mind and pastimes of logical thinkers, have now been found to be very necessary
for the description of general facts of the physical world. It seems likely that this
process of increasing abstraction will continue in the future.

Paul A. M. Dirac [193]

With the spacetime algebra C1,3 now in hand, we consider how to construct fields
on which we can perform calculus. This is the minimal extension of the algebra that is
required to describe electromagnetism. Formally speaking, we replicate the spacetime
algebra C1,3 at every point x on a flat spacetime manifold so that it acts as a tangent
algebra in which multivectors M(x) can be locally defined. Collecting all the spacetime
points x and their tangent algebras C1,3(x) produces a Clifford fiber bundle. This bundle
is the appropriate mathematical space to define multivector fields M(x), such as the
electromagnetic field, and to perform calculus on those fields.
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The astonishing feature of the spacetime calculus that we will briefly construct over
this bundle is that it permits the directed integration of multivector quantities by treating
the points x themselves as vectors. This generalization recovers the usual scalar integra-
tion permitted by differential geometry as a special case, but also recovers the theorems
of complex analysis and their generalizations. Moreover, it permits a coordinate-free
definition of the vector derivative ∇ and a simple statement of the fully general funda-
mental (Stokes) theorem of calculus. We give a brief review here to give the essential
background, but emphasize that more extensive and rigorous treatments may be found
in [5, 8, 9, 171, 172, 174].

4.1. Directed integration

Each vector point x =
∑
µ x

µγµ on the oriented spacetime manifold corresponds to an

oriented 4-volume d4x = dx0∧dx1∧dx2∧dx3 that can be decomposed into infinitesimal
vector segments dxµ = |dx|γµ (i.e., differentials) that point along coordinate directions12.

One can then define a directed integration on the manifold as a Riemann summation of
multivector products over a particular region Sk of dimension k. To do this, one encloses
each point x of Sk in a finite oriented k-volume ∆kx = |∆x|k Ik, where Ik =

∧
j γj is the

unit k-volume element that encodes the orientation of the region Sk at the point x. One
then computes a sum over all these points in the limit that the bounding intervals |∆x|
vanish and the number of points x increases to infinity in the standard way [171]∫

Sk

M1(x)dkxM2(x) = lim
|∆x|→0

∑
x∈Sk

M1(x)∆kxM2(x). (4.1)

The noncommutativity of the multivectors M1(x), M2(x) with the directed volume seg-
ment dkx permits both right and left products in the integrand, which contrasts sharply
with the usual definition of a scalar integral.

To understand the difference between scalar integration and directed integration,
consider a k-volume Sk that has no boundary. The directed integral of this closed region
must vanish

∫
Sk

dkx = 0. For example, if one sums small vectors around a curve, the
net vector sum will be the vector connecting the start and end point of the curve; for a
closed loop with no boundary points, this sum is simply zero. The volume of Sk, on the
other hand, is given by the standard scalar integral of the undirected volume elements,
which can be obtained from the directed integral by inverting the directed measure

Vol(Sk) =

∫
Sk

|dkx| =
∫
Sk

dkx I−1
k (4.2)

12Formally speaking, the manifold can be constructed such that each oriented k-blade dkx has an
oriented boundary ∂dkx =

∑
j(d

k−1x+j − dk−1x−j ) of (k − 1)-blades centered at pairs of boundary

points x±j . For example, a vector segment dx has two ordered boundary points separated by the scalar

interval |dx|, a plane segment d2x has two ordered pairs of boundary line segments each separated
by |dx|, and a small cube of volume d3x has three pairs of boundary sides separated by |dx|. These
nested boundary relationships are formally constructed as an oriented chain complex via a limiting
refinement procedure ∆kx → dkx that shrinks finite oriented volumes down to infinitesimal size [174].
The orientation information for each ∆kx is encoded as a k-blade in the spacetime algebra at the
corresponding point x.
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using the unit k-volume element Ik for the measure dkx = |dkx|Ik. For a closed loop, this
scalar integral will evaluate to the net length of the loop. As a side note, the implicit
wedge products in dkx that are used to compute the scalar measure |dkx| in (4.2) are what
produces the Jacobian determinant factor in the scalar integral when the coordinates are
changed.

4.2. Vector derivative: the Dirac operator

If the spacetime points x are expanded into coordinates x =
∑
µ x

µγµ using a standard
basis γµ, then a proper vector derivative ∇ can be defined using the reciprocal basis γµ

∇ =
∑
µ

γµ
↔
∂ µ, (4.3)

where
↔
∂ µ =

←
∂ µ +

→
∂ µ is the usual partial derivative ∂µ = ∂/∂xµ along the coordinate

xµ = γµ · x that generally acts both to the left and to the right (one can think of this
bidirectionality as a special case of the product rule for derivatives). The form of (4.3) is
precisely the same as the Dirac operator that is usually constructed with gamma matrices
and used in the Dirac equation. However, we see here that this operator has the natural
interpretation as the proper vector derivative for a spacetime manifold with no matrix
representation required.

4.2.1. Coordinate-free definition

For completeness, we emphasize that the directed integration permits a coordinate-
free definition of the vector derivative in (4.3) as a generalized difference quotient [171]

M1(x)∇M2(x) = lim
Vol(S4)→0

∫
∂S4

M1(x′)[d3x′I−1(x)]M2(x′)

Vol(S4)
. (4.4)

Here the numerator is the directed integral of the fields M1(x) and M2(x) over the
boundary ∂S4 of the spacetime region S4, while the denominator is the scalar integral
of S4 that produces the volume Vol(S4) in (4.2). The local duality factor of the unit
4-volume I−1(x) in the numerator produces the normal vectors dual to the (trivector)
boundary surfaces of ∂S4.

The resulting derivative ∇ is thus a proper 4-vector algebraically that acts as a total
derivative on both fields. When expanding it in local coordinates, one precisely obtains
the form of the Dirac operator (4.3). In practice, one often needs to consider only the one-
sided action of ∇ on a field, usually from the left, which amounts to setting M1(x) = 1
in (4.4). Note that the algebraic and differential properties of ∇ can be treated inde-
pendently according to (4.3). When it is not clear from context, it is conventional to
use overdot notation to indicate which quantities are being differentiated in an expres-
sion, with the position of ∇ indicating its algebraic role as a vector (e.g., ∇̇(a · ḃ) only
differentiates b, but constructs a proper 4-vector) [9].
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4.2.2. The relative gradient and d’Alembertian

The derivative ∇ can be restricted along any k-blade M = 〈M〉k. Specifically, the
tangential derivative along M is defined as

∇M = M−1(M · ∇), (4.5)

which computes only the derivative along the surface M . When M is a unit vector a,
then a = a−1, so the tangential derivative recovers the usual directional derivative from
vector calculus. Similarly, the complementary derivative is ∇MI−1 = M−1(M ∧ ∇),
which computes the derivative along the orthogonal surface MI−1 dual to M . The total
derivative decomposes into a sum of these complementary derivatives ∇ = ∇M +∇MI−1

since M−1(M · ∇) +M−1(M ∧∇) = (M−1M)∇ = ∇.
Most usefully for our purposes here, we can decompose the derivative in terms of a

frame relative to γ0 by using tangential derivatives,

∇ = γ2
0∇ = γ0(∂0 + ~∇) = (∂0 − ~∇)γ0, (4.6)

where ∇γ0 = γ0(γ0 · ∇) = γ0∂0 is the tangential derivative along γ0 and ∇γ0I−1 =

γ0(γ0 ∧∇) = γ0
~∇ is its dual. The frame-dependent 3-vector derivative

~∇ = γ0 ∧∇ =
∑
i

~σi∂i (4.7)

that appears in the decomposition (4.6) is precisely the relative 3-gradient operator used
in standard vector analysis.

This decomposition of ∇ into a relative frame also makes it clear that ∇2 is the
d’Alembertian operator

∇2 = (∂0 − ~∇)γ2
0(∂0 + ~∇) = ∂2

0 − ~∇2 = �. (4.8)

In this sense, ∇ is the natural “square-root” of the d’Alembertian operator in spacetime,
which was originally suggested by Dirac [194].

4.2.3. Example: field derivatives

The derivative of a scalar field α(x) produces the total gradient vector field

∇α(x) = γ0[∂0α(x) + ~∇α(x)], (4.9)

that includes the proper derivative along the timelike coordinate. Taking the dual of
this equation via right multiplication by I immediately produces the derivative of a
pseudoscalar field α(x)I. It follows that the derivative of a complex scalar field ζ(x) =
α(x) + β(x)I is a complex vector field z(x) = ∇ζ(x) = ∇α(x) + [∇β(x)]I.

The derivative of a vector field v(x) = [v0(x) + ~v(x)]γ0 produces a scalar field and a
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bivector field (i.e., a spinor field)

∇v(x) = ∇ · v(x) +∇∧ v(x), (4.10)

= (∂0 − ~∇)γ2
0(v0 − ~v),

= [∂0v0 + ~∇ · ~v] + [−(∂0~v + ~∇v0) + ~∇× ~vI].

The scalar part ∇ · v is the total divergence of v(x), while the bivector part ∇∧ v is the
proper generalization of the curl of v(x) to spacetime. Taking the dual of this equation
produces the derivative of a trivector field v(x)I, which produces a pseudoscalar field and
a bivector field (i.e., a spinor field). It follows that taking the derivative of a complex
vector field z = a + gI generally produces a spinor field ∇z(x) = ψ(x) = ζ(x) + F(x)
with a complex scalar part ζ = ∇· a+ (∇· g)I and a bivector part F = ∇∧ a+ (∇∧ g)I.

The derivative of a bivector field F(x) = ~E(x) + ~B(x)I produces a vector field and a
trivector field

∇F(x) = ∇ · F(x) +∇∧ F(x), (4.11)

= γ0(∂0 + ~∇)( ~E + ~BI),

= γ0

[
~∇ · ~E + ∂0

~E − ~∇× ~B
]

+ γ0

[
~∇ · ~B + ∂0

~B + ~∇× ~E
]
I,

which can be understood as a single complex vector field. Since derivatives of both
complex scalars ζ and bivectors F produce complex vector fields z, it follows that spinors
ψ = ζ + F and complex vectors z are duals under the action of the derivative ∇.

Note that we can also write (4.11) in terms of the intrinsic phase of F(x) defined in
Eq. (3.28)

∇F(x) = ∇[f(x) exp([ϕ(x) + ϕ0]I)], (4.12)

= [∇f(x)] exp([ϕ(x) + ϕ0]I) + [∇ϕ(x)]F(x)I

to show that the intrinsic bivector derivative ∇f and the gradient of the local phase ∇ϕ
contribute to the complex vector field. However any global intrinsic phase exp(ϕ0I) of
F is a constant overall factor. This distinction between local and global phases holds for
complex scalar and vector fields as well.

4.3. Fundamental theorem

The fundamental theorem of calculus readily follows from the integral definition of the
derivative (4.4) and takes a particularly elegant form in terms of the tangential derivative
along some surface Sk of dimension k [171]∫

Sk

M1(x)dkx∇Sk
M2(x) =

∫
∂Sk

M1(x)dk−1xM2(x). (4.13)

This is the generalized Stokes theorem of calculus that states that the boundary integral
is equal to the volume integral of the derivative. Computing this for various dimensional
surfaces and k-blade fields reproduces all the standard variations of Stokes theorem, in-
cluding the divergence theorem, the various Green’s theorems, and the usual fundamental
theorem of calculus in one dimension [172].
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4.3.1. Example: Cauchy integral theorems

More surprisingly, if we consider the integration of appropriate Green’s functions that
invert the tangential derivative∇Sk

, then we obtain and generalize the celebrated Cauchy
integral theorems of complex analysis [9, 172]. First, for any field M(x) that satisfies
∇S2M(x) = 0 everywhere in a closed planar region S2, the following boundary integral
vanishes according to (4.13) ∮

∂S2

dxM(x) = 0. (4.14)

Second, the Green’s function that inverts the planar derivative is ∇S2
[2π(x − x′)]−1 =

δ(x− x′). Hence, if N(x) = α−1x
−1 +M(x) is a modification of M(x) that adds a pole,

then we obtain the residue theorem∮
∂S2

dxN(x) = α−1

∫
S2

|d2x|I2∇S2x
−1 = 2πI2α−1, (4.15)

where I2 is the unit bivector for S2 that squares to −1. Third, multiplying M(x) with the
Green’s function and then integrating produces the remaining Cauchy integral theorem∮

∂S2

dx (x− x′)−1M(x) =

∫
S2

I2|d2x|∇(x− x′)−1M(x) = 2πI2M(x′). (4.16)

To rewrite these formulas in the standard form from complex analysis, we can ex-
pand the 2-vector x = αr + βy = ζr, where r is a unit 2-vector that points along the
“real axis,” y is a unit 2-vector that points along the “imaginary axis,” and ζ = α+ βI2

is the “complex scalar” corresponding to x, with I2 = yr being the unit planar area.
Importantly, however, by considering different dimensional surfaces and using the funda-
mental theorem (4.13) with the correct Green’s functions for derivatives along different
k-volumes ∇Sk

, it is possible to generalize the Cauchy theorems above to the whole
spacetime algebra [9, 172].

5. Maxwell’s equation in vacuum

One scientific epoch ended and another began with James Clerk Maxwell.

Albert Einstein [195]

The ultimate importance of the Maxwell theory is far greater than its immediate
achievement in explaining and unifying the phenomena of electricity and mag-
netism. Its ultimate importance is to be the prototype for all the great triumphs
of twentieth-century physics.

Freeman J. Dyson [1]

With the spacetime algebra developed in the previous two sections now in hand,
we can explore the physical structure of electromagnetism as expressed with this proper
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geometric language. Wherever possible, we shall remind the reader of the previous math-
ematical results as they become relevant to the physics in what follows. As we shall see,
all of electromagnetism essentially emerges without any additional effort directly from
the geometric structure of spacetime algebra that we have already developed.

To proceed, we briefly examine the derivative of a bivector field that we calculated in
Eq. (4.11) to make the following observation: the simplest differential equation that one
can write for F

∇F = 0 (5.1)

is equivalent to all four of Maxwell’s equations in vacuum, up to appropriate choices of
constants that define units for the bivector components. This almost automatic appear-
ance of Maxwell’s vacuum equation is remarkable, since the deceptively simple differential
equation (5.1) is trivially postulated solely from our careful development of the algebraic
and differential structure of a spacetime manifold, with no reference to additional physical
assumptions. We will return to this intriguing point later in Section 8.

5.1. Relative frame form

We can prove the equivalence of (5.1) to the usual form of Maxwell’s equations in a

relative frame with timelike vector γ0 by writing F in terms of relative polar ( ~E) and

axial ( ~B) parts obtained via the contractions in Eq. (3.42)

F = Fγ0γ
−1
0 = (F · γ0)γ0 + (F ∧ γ0)γ0 = ~E + ~BI (5.2)

Applying the identity (4.11) to (5.1) then yields

∇F(x) = γ0

[
~∇ · ~E + ∂0

~E − ~∇× ~B
]

+ γ0

[
~∇ · ~B + ∂0

~B + ~∇× ~E
]
I, (5.3)

The independent vector and trivector parts of (5.1) can be separated, after which the
duality factors γ0 and I cancel, yielding the two paravector equations for the γ0 frame13

~∇ · ~E + (∂0
~E − ~∇× ~B) = 0, (5.4)

~∇ · ~B + (∂0
~B + ~∇× ~E) = 0.

Finally, the relative scalar and 3-vector parts of each paravector can be separated to
produce the standard Gibbs 3-vector form for the four vacuum Maxwell equations [155,
189]

~∇ · ~E = 0, ~∇× ~B = ∂0
~E, (5.5)

~∇ · ~B = 0, ~∇× ~E = −∂0
~B.

Rescaling these vectors with constant factors that set the (SI) units ~E 7→ ~E
√
ε0,

~B 7→ ~B/
√
µ0, and expanding ∂0 7→ c−1∂t makes the equivalence apparent. Furthermore,

13These two paravector equations are in fact equivalent to Maxwell’s preferred quaternion formulation
of electromagnetism [134]. However, as mentioned in Section 3.7, in place of the basis 3-vector direc-
tions ~σi he used the (left-handed set of) basis quaternions (i, j,k) = (~σ1I−1,−~σ2I−1, ~σ3I−1), which
geometrically correspond to rotation planes and thus caused numerous subtle problems.
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Electromagnetic Field

Spacetime Algebra:
F = ~E + ~BI

G = FI−1 = ~B − ~EI

Differential Forms:
F =

1

2

∑
µν

Fµνdx
µ ∧ dxν

G = ?F

Tensor Components:
Gµν = −1

2

∑
αβ

εµναβF
αβ

Ei = Fi0, Bi = Gi0

Gibbs 3-Vectors:
( ~E, ~B)

( ~B,− ~E)

SI Units: ~E 7→
√
ε0 ~E, ~B 7→ ~B/

√
µ0, c ≡ 1/

√
ε0µ0

CGS Units: ~E 7→ ~E/
√

4π, ~B 7→ ~B/
√

4π

Table 9: The electromagnetic field F and its dual G, as expressed in various formalisms. In spacetime
algebra F is a bivector, and its dual G is obtained by right-multiplication with the pseudoscalar I−1.
In differential forms F is a 2-form (antisymmetric rank-2 tensor) with components Fµν , and its dual
G is obtained with the Hodge-star transformation ?. In component notation, this Hodge-star is the
total contraction of Fµν with the fully anti-symmetric Levi-Civita symbol εµναβ . The standard Gibbs

3-vector notation is reference-frame-dependent, but the 3-vectors of ~E and ~B can still be appropriately
paired.

with these replacements and the identity c = 1/
√
ε0µ0, it is clear that the proper bivector

field
F =

√
ε0 ~E + ~BI/

√
µ0 =

√
ε0( ~E + c ~BI) = ( ~E/c + ~BI)/

√
µ0 (5.6)

is precisely equivalent to the Riemann-Silberstein complex electromagnetic field vector
(1.1). Importantly, however, the pseudoscalar factor of I that appears here has rich
physical meaning that is not apparent when using the scalar imaginary i appearing in
other treatments (e.g., [40]). For brevity, we will omit the constants in the discussion
to follow, since they may be easily restored when needed. The various formulations of
the electromagnetic field and Maxwell’s vacuum equation are compared in Tables 9 and
10 for reference, along with a reminder of the proper unit scalings for both SI and CGS
conventions.

Equation (5.1) is manifestly proper, but the four equations (5.5) are not so obviously
invariant under changes of the inertial reference frame. We can see the effect of choosing
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Maxwell’s Equation in Vacuum

Spacetime Algebra: ∇F = 0 F = ~E + ~BI

⇓

∇ · F = 0, ∇∧ F = 0

⇓

~∇ · ~E + (∂0
~E − ~∇× ~B) = 0

~∇ · ~B + (∂0
~B + ~∇× ~E) = 0

⇓

~∇ · ~E = 0, ~∇× ~B = ∂0
~E

~∇ · ~B = 0, ~∇× ~E = −∂0
~B

Differential Forms: dG = d?F = 0, dF = d?G = 0

Tensor Components: ∂νF
µν = 0, ∂νG

µν = 0

Gibbs 3-Vectors:
~∇ · ~E = 0, ~∇× ~B = ∂0

~E

~∇ · ~B = 0, ~∇× ~E = −∂0
~B

SI Units: ~E 7→
√
ε0 ~E, ~B 7→ ~B/

√
µ0, c ≡ 1/

√
ε0µ0

CGS Units: ~E 7→ ~E/
√

4π, ~B 7→ ~B/
√

4π

Table 10: Maxwell’s vacuum equation, as expressed in various formalisms. Notably, only spacetime
algebra permits the formulation as the single boxed equation for the electromagnetic bivector field F,
which can be algebraically expanded into various other forms as needed. Shown are successive expansions
that are equivalent to the formalisms of differential forms, paravectors / quaternions, and Gibbs 3-vectors,
respectively, to show how they are all naturally contained within spacetime algebra.
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a different frame by splitting F = ~E′+ ~B′I along a different timelike vector γ′0 according
to (3.42). This produces different relative 3-vector fields

~E′ = (F · γ′0)γ′0 = ( ~E · γ′0)γ′0 + ( ~BI · γ′0)γ′0, (5.7)

~B′I = (F ∧ γ′0)γ′0 = ( ~E ∧ γ′0)γ′0 + ( ~BI ∧ γ′0)γ′0,

which must also satisfy (5.5) (proved by the same derivation). These different relative

fields accordingly mix the components of ~E and ~B, even though they produce the same
proper bivector field F = ~E + ~BI = ~E′ + ~B′I. The subtle and important role of the
pseudoscalar I in managing the implicit relative bases ~σi = γiγ0 and ~σ′i = γ′iγ

′
0 becomes

apparent when comparing these different frame expansions: using a scalar imaginary i
would not preserve the frame invariance in the same way.

The mixing of components from such a change of frame will have precisely the same
form as a Lorentz boost, such as the one derived in (3.59). To prove this, we note that
we can always write the new frame vector γ′0 as a Lorentz boost of the old frame γ0 with

some relative velocity ~v. This boost has the spinor representation γ′0 = ψγ0ψ̃ with the
rotation spinor ψ = exp(−αv̂/2), where the velocity unit 3-vector v̂ = ~v/|v| also acts
as the plane of rotation for the boost, and α = tanh−1 |v|/c is the appropriate rapidity
(rotation angle). This Lorentz transformation produces the relation

γ′0 = ψγ0ψ̃ = exp(−αv̂)γ0 =
1− ~v/c√

1− (|v|/c)2
γ0. (5.8)

After defining γ = [1 − (|v|/c)2]−1/2 to be the usual time-dilation factor for brevity, we
can then directly expand F into the relative fields of the γ′0 frame using (5.2)

F = Fγ′0γ
′−1
0 = γ2Fγ0γ0(1− ~v/c)(1 + ~v/c) (5.9)

= γ2( ~E + ~BI)(1− ~v/c)(1 + ~v/c),

= γ2[ ~E + ~BI − ~E · (~v/c)− ~B · (~v/c)I + ~B × (~v/c)− ~E × (~v/c)I](1 + ~v/c),

= [ ~E‖ + γ( ~E⊥ + ~v × ~B⊥/c)] + [ ~B‖ + γ( ~B⊥ − ~v × ~E⊥/c)]I,

which is the same form as the direct Lorentz boost of F derived in (3.59).

5.2. Global phase degeneracy and dual symmetry

Notably, the Maxwell’s vacuum equation Eq. (5.1) is invariant under global phase
transformations, such as those considered in (3.63). To understand the implications of
this symmetry of Maxwell’s equation, we will briefly revisit how this transformation acts
on the electric field itself.

Specifically, we apply a phase rotation using the spinor representation ψ = exp(−θI/2)
to Eq. (5.1) to find

ψ(∇F)ψ∗ = e−θI/2(∇F)eθI/2 = ∇(eθI/2FeθI/2) = ∇F exp(θI) = 0, (5.10)

which shows that the phase rotation cancels. Note that this phase transformation is
equivalent to modifying the intrinsic phase of F 7→ F exp(θI). This added phase mixes
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~E and ~B at every point x in the same way14 while leaving the inertial frame the same

F exp(θI) = (cos θ ~E − sin θ ~B) + (sin θ ~E + cos θ ~B)I. (5.11)

The interesting special case of the angle θ = −π/2 exchanges the relative fields ~E

and ~B up to a sign at every point x. The resulting bivector is dual to F and is typically
given a special notation

G = FI−1 = ~B − ~EI, (5.12)

which can also be written in tensor component notation as

Gµν = ?Fµν = −1

2

∑
α,β

εµναβFαβ (5.13)

using the Hodge-star operation from differential forms (or the completely antisymmetric
Levi-Civita symbol εµναβ) as shown in Table 9 [68]. The dual bivector G has been
particularly useful for studies in magnetic monopoles [101, 102, 193, 197–213] and optical
helicity [68, 103–108, 214], and will play an interesting role in the Lagrangian treatment
described in Section 8.

This exchange freedom of the vacuum Maxwell equation [124, 125] has historically
been called the dual symmetry of the vacuum Maxwell fields [68, 99, 101, 102, 105–108],
and has prompted considerable study into similar dualities in field and string theories
beyond standard electromagnetism [109–122]. We see here that it appears as a structural
feature of a bivector field on spacetime that exploits a global phase symmetry of the
equation of motion. Note that the bivector magnitude |F|2 ≡ F∗F = G∗G is always
manifestly invariant under dual symmetry.

5.3. Canonical form

We now revisit the expansion of the electromagnetic field into its canonical form,
introduced in Section 3.5.1. These expansions do not require Maxwell’s equation, but
will be useful in what follows.

Computing the square of F = ~E + ~BI produces two proper scalar fields as a single
complex scalar

F2 = |F|2 exp(2ϕI) = (| ~E|2 − | ~B|2) + 2( ~E · ~B)I. (5.14)

These scalars are precisely those used to construct Lagrangian densities for the electro-
magnetic field [215]. The first scalar is precisely the usual electromagnetic Lagrangian,
while the second term is the “axion” contribution that has been extensively discussed
in particle physics [216]. We will return to the issue of electromagnetic Lagrangians in
Section 8.

14Note that we could consider converting this global gauge transformation of F into a local gauge
transformation in the usual way by defining a covariant derivative using an auxiliary scalar field (see
Sections 8.9.1 and 8.9.2), but we shall not do so here. However, see [196] for an interesting connection
between performing this procedure here and the electroweak theory of particle physics.
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Denoting the two proper scalars as

`1 = 〈F2〉0 = | ~E|2 − | ~B|2, (5.15)

`2 = 〈F2〉4 I−1 = 2( ~E · ~B), (5.16)

they determine the intrinsic local phase of F according to (3.29)

ϕ =
1

2
tan−1 `2

`1
, (5.17)

which demonstrates that this phase is also a proper scalar field.
The canonical bivector corresponding to F can then be computed according to (3.29)

f = F exp(−ϕI) = (cosϕ~E + sinϕ~B) + (− sinϕ~E + cosϕ~B)I, (5.18)

where we can expand the trigonometric functions in terms of `1 and `2 as

cosϕ =

√√√√1

2

(
1 +

`1√
`21 + `22

)
, sinϕ =

√√√√1

2

(
1− `1√

`21 + `22

)
. (5.19)

This transformation performs a rotation of the relative fields in the complex plane of the
spacetime split at each local point x, while leaving the chosen frame of γ0 invariant.

The proper complex conjugate of the field can be computed in a similar way according
to (3.37),

F∗ = f exp(−ϕI) = F exp(−2ϕI) =
(`1 ~E + `2 ~B) + (−`2 ~E + `1 ~B)I√

`21 + `22
. (5.20)

It follows that the dual-symmetric field magnitude has the explicit and intuitive form

|F|2 = F∗F =
√
`21 + `22. (5.21)

Note that when `2 ∝ ~E · ~B = 0 the proper phase vanishes ϕ = 0 and the bivector
field is purely canonical F = F∗ = f = ~E + ~BI. Indeed the pseudoscalar part in
the pseudonorm (5.14) vanishes in this case. The magnitude |F|2 = |`1| becomes the

pseudonorm involving only the traditional Lagrangian density `1 = | ~E|2− | ~B|2, albeit in
a manifestly dual-symmetric form (due to the absolute value).

Similarly, note that when `1 = | ~E|2 − | ~B|2 = 0 the proper phase is ϕ = π/4 and the
canonical bivector field has the symmetrized form

f =
1√
2

[( ~E + ~B) + (− ~E + ~B)I]. (5.22)

The conjugate becomes the dual F∗ = FI−1 = ~B − ~EI up to the sign of `2, and the
magnitude becomes the other proper scalar |F|2 = |`2| = 2| ~E · ~B| in a manifestly dual-
symmetric form.
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When `1 = `2 = 0 then |F|2 = 0, making F a null bivector. The phase ϕ(x)
correspondingly becomes degenerate. Similarly, the phase of F∗ will also be degenerate,
but will always be the negative of the degenerate phase of F. For such a null field, the
conditions | ~E| = | ~B| and ~E · ~B = 0 hold according to (5.14).

5.4. Electromagnetic waves

Although a null vacuum field F has a globally degenerate phase, it must still satisfy
Maxwell’s equation (5.1). The constraining derivative therefore breaks the local phase
degeneracy by connecting the local values of ϕ(x) at nearby points x. Only the global
phase remains arbitrary in the form of the dual symmetry of the solution.

To see how Maxwell’s equation (5.1) breaks the phase degeneracy of a null field for
a specific and important solution, consider a field F = f exp[ϕ(x)I] with a constant
canonical bivector f . Maxwell’s equation (5.1) then takes the simpler form

∇F = [∇ϕ] f = 0. (5.23)

If ∇ϕ 6= 0 and f 6= 0 then both factors must be null factors that cannot be inverted,
making F a null bivector. Since f is constant for all x, then [∇ϕ] must not vary with x
in order to satisfy (5.23); hence the phase must be linear ϕ = ϕ0±x ·k in terms of a null
wavevector k = ∇ϕ with units inverse to x. Furthermore, the constraint k f = 0 implies
that the constant bivector f can be written in terms of this null wavevector as

f = sk = s ∧ k = −k ∧ s (5.24)

for some constant spacelike vector s orthogonal to k: s · k = 0. Since the global phase is
arbitrary, we set ϕ0 = 0, and thus obtain the (monochromatic) plane wave solutions

F(x) = (sk) exp[±(k · x)I]. (5.25)

Importantly, this complex form of the plane wave solution arises with no ad hoc
introduction of the complex numbers [173], unlike the usual treatment of electromagnetic
plane waves. The factor of I is the intrinsic pseudoscalar for spacetime, and both the
“real” and “imaginary” parts of the expression produce meaningful and necessary parts of
the same proper bivector. Note that the six components of F are now entirely contained
in the specification of the null vector k and the spacelike orientation vector s orthogonal
to k.

If we perform a spacetime split of k = γ0(ω − ~k) to put (5.25) in more standard

notation (setting c = 1 for convenience), we find that the null condition k2 = (ω+~k)(ω−
~k) = ω2 − |~k|2 = 0 implies the usual dispersion relation |~k| = |ω| in any frame15. Hence,
we can factor out a frame-dependent frequency as a magnitude k = ω k0 to isolate a purely
directional null factor k0 = γ0(1− ~κ) that contains the relative unit vector ~κ ≡ ~k/|~k| for
the chosen frame.

It follows from this decomposition that Maxwell’s equation (5.23) can also be written
as the eigenvalue constraint ~κf = f , which makes f an eigenbivector of the relative unit

15Note that choosing a different frame will boost the frequency ω (i.e., red- or blue-shift it from the
Doppler effect), but will leave the null vector k and the dispersion relation invariant.
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vector ~κ (in any frame). Performing a spacetime split f = sk = ~E + ~BI then reduces

this constraint to two copies of the equation ~κ~E = ~BI, in accordance with the null
condition | ~E| = | ~B|, which implies ~κ × ~E = ~B since there is no scalar term. Therefore,

~κ · ~E = ~κ · ~B = 0 and the three relative vectors ~κ~E ~B = +I| ~E|| ~B| form a right-handed
oriented set of basis vectors in any relative frame. Consequently, the appropriately scaled
directional factor ωs for the null bivector f = sk = ωsk0 is simply the purely spatial part
of its spacetime split, ωs = ~Eγ0.

The canonical bivector for the plane wave (5.25) is therefore

f = ωsk0 = ( ~Eγ0)k0 = ~E(1− ~κ) = (1 + ~κ) ~E. (5.26)

Hence, in a relative frame ~Eγ0 determines a reference orientation and notion of amplitude
| ~E| for f , while the purely directional null factor k0 = γ0(1−~κ) provides the proper wave
orientation. The full relative-frame version of (5.25) thus has the familiar form

F = ~E (1− ~κ) exp[±(ωt− ~k · ~x)I], (5.27)

= ( ~E + ~κ× ~EI) exp[∓(~k · ~x− ωt)I],

= [ ~E cos(~k · ~x− ωt)∓ ~κ× ~E sin(~k · ~x− ωt)]

+ [ ~E sin(~k · ~x− ωt)± ~κ× ~E cos(~k · ~x− ωt)]I.

We emphasize that an overall frequency scaling factor ω has been absorbed into the
amplitude of ~E in the frame γ0 by convention, so this relative amplitude will also change
with the reference frame due to the Doppler effect. Indeed, we will see later in Section
7.5.1 that the energy-density of the field (which contains the square of this relative
amplitude) is a frame-dependent quantity.

The relative form (5.27) makes it clear that the pure plane wave solution (5.25) with
−I is right-hand circularly polarized in the traditional sense. In each relative spatial
plane orthogonal to the relative wavevector direction ~κ (i.e., ~κ · ~x = 0), the relative

vectors ~E and ~B = ~κ × ~E rotate around the axis ~κ at a frequency ω with increasing t.
This rotation shows that a circularly polarized wave has a definite helicity [45, 46, 48–
85], which is a manifestation of the spin-1 nature of the electromagnetic field. Choosing
the opposite sign of the pseudoscalar +I in (5.25) correspondingly produces a left-hand
circularly polarized plane wave by flipping the sign of the phase in (5.27), effectively
flipping both the propagation direction ~κ and the direction of rotation with increasing t.
It is now also clear that the dual-symmetric global phase freedom of the solution (5.25)
corresponds to the arbitrary phase offset of the polarization rotation (5.27); that is, the

relative vectors ~E and ~B may be arbitrarily rotated in unison around the propagation
axis ~κ without changing the solution (in any frame).

To go beyond the monochromatic plane wave solution, we observe that in addition
to flipping the sign of I in (5.25), we can also scale the magnitude ω of k arbitrarily. We
can thus exploit the fact that Maxwell’s equation is linear to construct new solutions as
superpositions of all possible values of ω. It follows that for any given directional null
vector k there exists an infinite number of corresponding (polychromatic) wave-packet
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solutions determined by scalar spectral weight functions α(ω)

F = sk

∫ ∞
−∞

dω α(ω) exp[−ω (k · x)I], (5.28)

= sk

∫ ∞
0

dω [α+(ω) exp[−ω (k · x)I] + α−(ω) exp[ω (k · x)I]],

where α±(ω) = α(±|ω|). The function α(ω) can absorb the magnitude of s for each
choice of ω, making s2 = −1 a spacelike reference unit vector by convention. This total
field F is a linear superposition of the right- and left-hand circularly polarized plane
waves at each positive scalar frequency |ω|, and still satisfies Maxwell’s vacuum equation
(5.1) by construction. Note that when α+ = α∗− the integral becomes purely real and the
resulting polarization is linear. In general, coefficients α+ and α− determine the Jones
vector of the wave polarization in the basis of circular poalrizations, which are attached
to the coordinate frame spacified by the vector s orthogonal to k.

The two signed solutions with ±|ω| are traditionally called the positive-frequency and
negative-frequency plane wave solutions of Maxwell’s vacuum equation, respectively. Here
we see that the positive factor |ω| arises from the degeneracy of the null vector k with
respect to scaling. However, the sign of ±1 directly corresponds to a choice of handedness
for I that determines a particular circular polarization (i.e., helicity). These features are
invariant in (5.28) because null vectors and the handedness of I do not depend on any
particular reference frame.

The solution (5.28) can also be understood as a Fourier transform of the spectral
function α(ω), which can be simply evaluated to obtain

F = sk α̃(−k0 · x) = ( ~E0 + ~κ× ~E0I) α̃(~κ · ~x− ct), (5.29)

in terms of the relative unit-vector direction ~E0. The (complex scalar) amplitude α̃ is the
Fourier-transform of α(ω) that completely determines the packet shape of the traveling
wave. The bivector prefactor provides an overall linear polarization for a traveling wave
packet by default, with electric and magnetic parts phase-offset by an angle of π/2. This
polarization can be made elliptic or circular, however, when α̃ has additional complex
structure (as demonstrated in (5.27) for the monochromatic circularly polarized case).

We can also go beyond a simple plane wave solution altogether to construct a more
general (not necessarily null) solution from (5.25) as a superposition of plane waves in all

null wavevector directions k. To do this we can rewrite the null factor as k = γ0(|~k| −~k)

in a particular reference frame γ0, after which the components of ~k can be integrated as
a 3-vector to obtain

F =

∫∫∫ ∞
−∞

d3~k s(~k) k0(~k) [α+(~k) e−(k·x)I + α−(~k) e(k·x)I ], (5.30)

where k0 = k/|~k| = γ0(1−~κ) is a purely directional factor in the frame γ0, and where the

reference directions s(~k) = ~E0(~k)γ0 are orthogonal to each ~κ: s(~k) · k(~k) ∝ ~E0(~k) ·~κ = 0.
This integral (5.30) can be understood as the construction of F through a spatial Fourier
transform.

The functions α±(~k) encode the spectral decomposition and magnitude of the field.
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The unit vectors s(~k) encode the reference polarizations for each traveling mode of the

field. Notably, the functions α±(~k) that appear here become the foundation for the
canonical (“second”) quantization of the field in quantum field theory (after normaliza-
tion), where they become the raising and lowering operators for specific field modes up to
appropriate scaling factors [39]. We will not further explore this quantization procedure
here, but the interested reader can find excellent discussions of how to quantize the field
using the complex Riemann-Silberstein vector in Refs. [26, 40].

6. Potential representations

By performing particular operations on symbols, we acquire the possibility of ex-
pressing the same thing in many different forms.

James Clerk Maxwell [217]

For more general solutions of Maxwell’s equation in vacuum (5.1), it can be useful
to construct the bivector field F from auxiliary potential fields. There are three types
of potential that are particularly convenient to use: 1) a vector potential, 2) a bivector
potential, and 3) a scalar Hertz potential. We will consider each in turn, and show their
explicit relationship.

6.1. Complex vector potential

The standard vector potential construction follows from the ansatz

F = ∇z, (6.1)

where z is some initially unspecified multivector field. This ansatz is compared with
other formalisms in Table 11. Due to the fundamental theorem (4.13), this ansatz can
only describe conservative fields that vanish when integrated around the boundary of
any closed surface, such as a loop.

Since F is a pure bivector field, ∇z must satisfy the following conditions. First, z
must be a vector field to produce a bivector with a derivative. Second, the dual symmetry
of F forces z to be correspondingly complex. Specifically, a phase-rotation of F induces
the transformation

F 7→ F exp(θI) = (∇z) exp(θI) = ∇(zeθI) = ∇(e−θI/2zeθI/2), (6.2)

which is a phase rotation ψzψ∗ of z with a spinor representation ψ = exp(−θI/2), exactly
as used in (5.10) and (3.63).

It follows that z must be a complex vector field of the form

z = ae + amI (6.3)
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Vector Potentials

Spacetime Algebra: F = ∇z z = ae + amI

⇓

F = Fe + FmI
Fe = ∇∧ ae, Fm = ∇∧ am
∇ · ae = ∇ · am = 0

⇓

F = ~E + ~BI, ae = (φe + ~A)γ0, am = (φm + ~C)γ0

~E = −~∇φe − ∂0
~A− ~∇× ~C

~B = −~∇φm − ∂0
~C + ~∇× ~A

Differential Forms: F = Fe + i ?Fm
Fe = dae, Fm = dam

Tensor Components:
(Fe)µν =

1

2
(∂µ(ae)ν − ∂ν(ae)µ)

(Fm)µν =
1

2
(∂µ(am)ν − ∂ν(am)µ)

Gibbs 3-Vectors:
~E = −~∇φe − ∂0

~A− ~∇× ~C

~B = −~∇φm − ∂0
~C + ~∇× ~A

Table 11: Vector potential representations of the vacuum electromagnetic field, as expressed in vari-
ous formalisms. Notably, spacetime algebra most naturally motivates an intrinsically complex vector
potential z. Nevertheless, one can also manually simulate this structure using differential forms with
a scalar imaginary i and the Hodge star ? (e.g., [68, 196]), after interpreting the independent electric
(ae) and magnetic (am) vector potentials as one-forms ae,m with the same components. As we discuss

in Section 8.3, imposing the additional constraint Fe = FmI = F/
√

2 can optionally symmetrize the
contributions of the two vector potentials so that they describe the same (vacuum) field F [68, 196].
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with separate (“electric” ae and “magnetic” am) parts16, that satisfies the equation

∇z = ∇∧ ae +∇ · (amI) = ∇∧ ae + (∇∧ am)I = F, (6.4)

along with the additional Lorenz-FitzGerald conditions17

∇ · ae = ∇ · am = 0. (6.5)

As a result, the potential fields must be manifestly transverse ∇ae = ∇∧ ae and ∇am =
∇∧ am.

This transversality implies that there is an additional gauge freedom in the definition
(6.1) of z due to the invariance under the replacement z′ = z + ∇ζ. Provided that18

∇2ζ = 0, each new z′ will produce the same field according to ∇z′ = ∇z + ∇2ζ =
∇z = F. Moreover, each new z′ will also satisfy the Lorenz-FitzGerald conditions since
∇ · ∇ζ = ∇2ζ = 0.

6.1.1. Plane wave vector potential

If we revisit the null plane wave solution of (5.25), and use the relation F = ∇z,
we can infer that the potential z for a polarized plane wave must have the simple form
(being careful to remember that I anticommutes with 4-vectors)

z = exp[∓(k · x)I](Is) = (Is) exp[±(k · x)I], (6.6)

where the spacelike vector s determines a reference polarization direction and amplitude.
To verify that this is the appropriate potential, we take its derivative

∇z = (∇e∓(k·x)I)Is = (kI)e∓(k·x)IIs = −kse±(k·e)I = (sk)e±(k·e)I , (6.7)

which reproduces (5.25). A second derivative will annihilate the null factor k to produce
Maxwell’s equation in the form ∇2z = 0.

The complexity of the vector potential z is critical for obtaining (6.6). There are
intrinsic phases in the traveling wave factor exp(±(k · x)I). Furthermore, this is the
vector potential for a null solution F2 = (∇z)2 = 0, so the global intrinsic phase of the
solution must be degenerate as a general structural property of null bivectors.

Moreover, we know from the derivation of the plane wave (5.27) that the directional

vector s = ~Eγ0 should be orthogonal to k in any frame. This constraint is another way
of expressing the Lorenz-FitzGerald condition ∇ · z = 0 for the gauge freedom since

∇ · z = ±I(s · ∇) exp[±(k · x)I] = ±(s · k) exp[±(k · x)I] = 0. (6.8)

16Note that we will use the subscripts e and m throughout this report to distinguish the quantities
that will become naturally associated with electric and magnetic charges in Section 7 (not to be confused
with the relative electric and magnetic fields, which can both be produced by either type of charge). To
recover traditional electromagnetism, all quantities with magnetic subscripts can be neglected, but we
keep the discussion general.

17This condition is also known as the Lorenz gauge, which only partially fixes the gauge freedom to
be more natural for manifestly relativistic treatments of the field.

18Note that if ζ = α + βI such that ∇2ζ 6= 0, then we obtain ∇z′ = F + ∇2ζ with F = ∇ ∧ (a +
∇α) + [∇∧ (g +∇β)]I = 〈∇z′〉2. Adding this projection in the field definition provides a more general
(but less natural) gauge freedom that does not preserve the Lorenz-FitzGerald conditions.
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We also know from the derivation of (5.27) that the vector s arises as a factor of a null

bivector that can always be written in a relative frame as purely spatial vector s = ~E0γ0.
It then follows that ~E0 ·~k = 0, which makes the plane wave potential manifestly transverse
in any relative frame: ~∇ · (zγ0) = ±( ~E0 · ~k) exp[∓(~k · ~x − ωt)I] = 0. This property will
become important in Section 6.2.

It follows from (6.6) that the vector potential for the null wave packet in (5.28) has
the form

z = Is

∫ ∞
−∞

dω

ω
α(ω) e−ω (k·x)I , (6.9)

= Is

∫ ∞
0

dω

ω

[
α+(ω) e−ω (k·x)I − α−(ω) eω (k·x)I

]
,

where the derivative produces a sign flip between the spectral functions α±. The potential
for the superposition of plane waves in (5.30) thus has the corresponding form

z = I

∫∫∫ ∞
−∞

d3~k

|~k|
s(~k) [α+(~k) e−(k·x)I − α−(~k) e(k·x)I ], (6.10)

where the remaining factor of |~k| can be absorbed into α± as units and convention

dictate. These potentials are also manifestly transverse in any frame since s(~k) · k = 0

by construction for each null plane wave propagating in direction ~k.

6.1.2. Relative vector potentials

We perform a spacetime split of the vector potentials ae = γ0(φe − ~A) and am =

γ0(φm − ~C) into relative scalar potentials φe, φm, and relative vector potentials ~A, ~C.
Note that for these relative quantities, we try to conform to existing notation conventions.
The notation ~C for the magnetic vector potential has become standard in studies of dual
symmetry in vacuum [68, 99, 101, 102, 105, 106, 108]. With these relative potentials, we
can expand the field into a relative form

F = ∇z = (∂0 − ~∇)[(φe − ~A) + (φm − ~C)I], (6.11)

= [−∂0
~A− ~∇φe − ~∇× ~C] + [−∂0

~C − ~∇φm + ~∇× ~A]I,

where we have used the Lorenz-FitzGerald conditions (6.5) written in the relative frame,

∂0φe +∇ · ~A = ∂0φm +∇ · ~C = 0. (6.12)

This split implies that the relative fields may be written as

~E = −~∇φe − ∂0
~A− ~∇× ~C, ~B = −~∇φm − ∂0

~C + ~∇× ~A, (6.13)

in terms of the relative potentials.
Under a gauge transform z′ = z + ∇ζ, with ζ = ζa + ζgI, these relative vector

64



potentials become

z′γ0 = (φe + ~A) + (φm − ~C)I + (∂0 − ~∇)(ζa − ζgI), (6.14)

= (φe + ∂0ζa) + ( ~A− ~∇ζa) + (φm − ∂0ζg)I − (~C − ~∇ζg)I.

Thus, the relative scalar and vector potentials can become mixed both by Lorentz trans-
formations and gauge transformations in general. One must fix both the inertial reference
frame and the gauge in order to completely fix the form of the potential.

6.1.3. Constituent fields

The decomposition of the field (6.4) can be interpreted as constructing the total
field F = Fe + FmI from two constituent bivector fields that are derived from each
vector potential separately. The “electric” part, Fe = ∇ ∧ ae, will become naturally
associated with electric charge in Section 7, while the “magnetic” part, Fm = ∇ ∧ am,
will be correspondingly associated with magnetic charge. However, the dual symmetry
of vacuum makes these constituent fields interchangable. For example, we can exchange
their roles by taking the dual of F as in (5.12)

G = FI−1 = (∇∧ am)− (∇∧ ae)I = Fm − FeI = ~B − ~EI. (6.15)

If we perform a spacetime split of each piece of the total field, Fe = ~Ee + ~BeI and
FmI = ~Em + ~BmI (so Fm = ~Bm − ~EmI), then we find that the relative fields can be
written as

~Ee = −~∇φe − ∂0
~A, ~Be = ~∇× ~A, (6.16)

~Em = −~∇× ~C, ~Bm = −~∇φm − ∂0
~C.

The total relative fields include contributions from both potentials, ~E = ~Ee + ~Em, ~B =
~Be + ~Bm.

Note that we will use the subscripts of e and m throughout this report to signify
the eventual associations of physical quantities with either electric or magnetic charges.
Traditionally, the electromagnetic field couples only to electric charges, so is described
by Fe and its associated electric vector potential ae. Therefore, to recover traditional
electromagnetism, we can simply neglect all “magnetic” quantities with an m subscript
in what follows. However, in the absence of charges (as in vacuum) there is no such
constraint, so we keep the formulas dual-symmetric.

6.2. Bivector potential

We can make an important simplification of the gauge freedom of the complex vector
potential z if we introduce the locally transverse ~A⊥, ~C⊥ and longitudinal ~A‖, ~C‖ parts

of the relative vector potentials ~A = ~A⊥ + ~A‖ and ~C = ~C⊥ + ~C‖ in a particular frame
γ0. These pieces of the vector potentials are defined to satisfy

~∇ · ~A⊥ = ~∇ · ~C⊥ = 0, (6.17)

~∇× ~A‖ = ~∇× ~C‖ = 0. (6.18)
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As a result, the gauge transform (6.14) produces

z′⊥γ0 = ~A⊥ − ~C⊥I = z⊥γ0, (6.19)

z′‖γ0 = (φe + ∂0ζa) + ( ~A‖ − ~∇ζa) + (φm − ∂0ζg)I − (~C‖ − ~∇ζg)I. (6.20)

That is, in any local frame the transverse part of the vector potential is gauge-invariant.
This invariance leads to an interesting observation. After separating the vector po-

tential z into a transverse and longitudinal piece in a particular frame, we can define a
corresponding transverse bivector potential (e.g., as in [68])

Z = z⊥γ0 = ~A⊥ − ~C⊥I, (6.21)

and longitudinal spinor potential

ψz = z‖γ0 = (φe − φmI) + ( ~A‖ − ~C‖I). (6.22)

Both of these potentials can now be easily manipulated as proper geometric objects,
even though their definitions involve a particular frame γ0. Moreover, only the spinor
potential ψz depends on the choice of gauge according to (6.19), which makes the bivector
Z a gauge-invariant potential (restricted to the γ0 frame). This separation of the total
potential into a gauge-invariant part Z and a gauge-dependent part ψz in a particular
frame is known as the Chen decomposition [88, 218], and is important for the meaningful
separation of the orbital and spin parts of the angular momentum (as we shall see in
Section 8.5).

According to Maxwell’s vacuum equation (5.1), we can then write

∇F = ∇2z = ∇2(Z + ψz)γ0 = 0. (6.23)

In the absence of sources, the frame-dependent factor of γ0 simply cancels to further
simplify the analysis. Moreover, since ψz can be changed arbitrarily by the choice of
gauge, according to (6.20), we can always fix the gauge to set the longitudinal potential
ψz to zero in the local frame (i.e., choosing the Coulomb, or radiation gauge). After
fixing the gauge in this manner, we can write Maxwell’s vacuum equation (5.1) solely in
terms of the transverse bivector potential

∇2Z = ∇2( ~A⊥ − ~C⊥I) = 0. (6.24)

This bivector potential is summarized in Table 12 along with several of its derivatives
(from the next section) for reference.

6.2.1. Plane wave bivector potential

As a notable special case, we showed that the plane wave potential (6.6) must be
manifestly transverse in any relative frame in Section 6.1.1. Thus we can immediately
write the corresponding gauge-invariant bivector potential for a plane wave

Z = z⊥γ0 = (Isγ0) exp[∓(k · x)I] = I exp[∓(k · x)I] ~E0. (6.25)
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Bivector Potentials for Vacuum Fields

Transverse Bivector Potential: Z = z⊥γ0 = ~A⊥ − ~C⊥I
Field Relation: F = (∇Z)γ0 (z‖ = 0)
Vacuum Equation: ∇2Z = 0

Hertz Bivector Potential: Z = −[~∇,Π] = −~∇×ΠI

Field Relation: F = ∇γ0[~∇,Π] = (I∂0 + ~∇×)(~∇×Π)

Vacuum Equation: ∇2(~∇× ~Π) = (∂2
0 − ~∇2)(~∇×Π) = 0

Hertz Scalar Potential: Π = ~ΠΦ

Field Relation: F = ∇γ0[~∇, ~Π]Φ = (I∂0 + ~∇×)(~∇× ~Π)Φ

Vacuum Equation: ∇2Φ = (∂2
0 − ~∇2)Φ = 0

Table 12: Various bivector potential representations of the vacuum electromagnetic field. All such
representations fix a particular reference frame γ0, and fix the gauge to make the longitudinal part
of the vector potentials vanish z‖ = 0 (i.e., fixing the Coloumb gauge). With this simplification, the
bivector potential Z contains the same information as the vacuum field F without added freedom. As
such, expanding this fundamental bivector potential into various forms permits alternative strategies for
solving Maxwell’s vacuum equation.

Note that this bivector potential is already essentially equivalent to the total field bivector
F. There is no remaining arbitrariness in the potential, which emphasizes that the
bivector potential is a gauge-invariant representation in the γ0 frame.

The corresponding bivector potentials for the plane wave superpositions follow in a
similar way from (6.9) and (6.10)

Z = I ~E0

∫ ∞
−∞

dω

ω
α(ω) eω (k·x)I , (6.26)

= I ~E0

∫ ∞
0

dω

ω
[α+(ω) eω (k·x)I − α−(ω) e−ω (k·x)I ],

Z = I

∫∫∫ ∞
−∞

d3~k

|~k|
~E0(~k) [α+(~k) e(k·x)I − α−(~k) e−(k·x)I ]. (6.27)

The only appreciable difference in structure from the vector potentials is the flip in sign
of the phase factors associated with each α±, which occurs since γ0 and I anticommute.
Moreover, since the same functions α± occur here as in the vector potentials in Sec-
tion 6.1.1 and the plane wave fields in Section 5.4, the same procedure can be used to
canonically quantize the bivector potential directly, if desired.
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6.2.2. Field correspondence

The relative fields associated with Z still depend upon the defining frame γ0

F = (∇Z)γ0 = ∇z⊥. (6.28)

Thus, both the transversality properties of Z and its relation to the field F depend on
the frame γ0. Nevertheless, for any frame γ0 it is possible to construct the transverse Z
for that frame.

Using the correspondence (6.28), the relative fields have the form [98, 103–105]

~E = −∂0
~A⊥ − ~∇× ~C⊥, ~B = −∂0

~C⊥ + ~∇× ~A⊥, (6.29)

which can be understood as the appropriate simplification of (6.13). Interestingly, the

equations (6.29) plus the transversality conditions ~∇· ~A⊥ = ~∇· ~C⊥ = 0 resemble the four
Maxwell’s equations in vacuum (5.5) that we started with [105, 178]. This resemblance
stems from the fact that the derivative of the bivector potential Z has the same structural
form (4.11) that also produced Maxwell’s equations (5.5).

6.3. Hertz potentials

Solving equations with vector and bivector potentials can be simpler than solving
the main bivector equation (5.1), but it would be simpler still to solve equations using a
scalar potential. Hence, we are motivated to make another ansatz to further reduce the
vector potential z or the bivector potential Z by using another derivative.

A naive attempt at performing such a reduction is to assume that z = ∇φ for some
complex scalar potential φ. However, this attempt fails since the resulting field F = ∇2φ
would be a scalar. Hence, we instead consider simplifying the bivector potential Z further.

6.3.1. Hertz bivector potential

A suitable reduction was found by Hertz [219], who (after translating to the language
of spacetime algebra) exploited the fact that the commutator bracket in Eq. (3.34) for
bivectors produces another bivector. That is, if we write z = Zγ0 = −γ0Z

†, with a
bivector potential Z† = ~A⊥ + ~C⊥I, then we can make the ansatz

Z† = −[~∇,Π] = −~∇×ΠI, (6.30)

making Z† the dual of the relative curl of a second-order19 bivector potential Π. Note the
restriction to a particular relative frame γ0 implicit in the relative gradient ~∇ = γ0 ∧∇;
this is the same fixed frame used to define Z.

The second-order bivector potential Π = ~Πe + ~ΠmI is known as a Hertz potential for
the field, and can be decomposed into electric ~Πe and magnetic ~Πm relative vector parts.

19Curiously, we can perform this trick as many times as we like by making each relative potential the
curl of another generating potential. This ability to keep increasing the number of derivatives was also
noticed in [105, 178]. We could also use the form Z† = ∇Πγ0 to mirror the field definition (6.28), which
would add an extra time derivative to the curl.
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The resulting field equation has the form [40]

F = ∇z = ∇Zγ0 = −∇γ0Z
†, (6.31)

= ∇γ0[~∇,Π] = (∂0 − ~∇)(~∇×Π)I = (I∂0 + ~∇×)(~∇×Π),

where the last equality uses the fact that the relative divergence of a curl vanishes.
Maxwell’s equation in vacuum then mandates

∇F = ∇2z = −γ0∇2Z† = −γ0∇2(~∇×Π)I = 0. (6.32)

That is, the relative curl of the Hertz potential must satisfy the d’Alembert wave equation

∇2(~∇×Π) = (∂2
0 − ~∇2)(~∇×Π) = 0. (6.33)

This general construction by Hertz is quite useful for applications, such as describing
dipole radiation fields or rectangular waveguide modes [220]. However, the construction
still involves a bivector potential, so we will simplify it further.

6.3.2. Hertz complex scalar potential

We can avoid the complication of the Hertz bivector potential Π = ~ΠΦ by factoring
it into a complex scalar potential Φ and a fixed reference unit-3-vector ~Π in the relative
frame. This reference direction is usually chosen to have physical significance, such as the
propagation axis for a paraxial beam or the dipole-radiation axis [40, 221]. The Maxwell
constraint on the scalar function Φ can then be written

∇2(~∇× ~Π)Φ = (~∇× ~Π)∇2Φ = 0, (6.34)

making it sufficient for the potential Φ to be a complex scalar solution of the d’Alembert
wave equation

∇2Φ = (∂2
0 − ~∇2)Φ = 0. (6.35)

Since this relativistic scalar wave equation is well-understood, and may be systemati-
cally solved by separation of variables in a myriad of coordinate systems (e.g., [222]),
constructing solutions of Maxwell’s equation from solutions of this scalar wave equation
is a powerful method for generating nontrivial solutions to Maxwell’s equation in vacuum
[40].

Given such a wave solution Φ, an associated electromagnetic field is

F = ∇γ0[~∇, ~Π]Φ = (I∂0 + ~∇×)(~∇× ~Π)Φ. (6.36)

As we mentioned earlier, the frame-specific differential factor γ0[~∇, ~Π] is a consequence
of fixing the frame to define the transverse potential Z. The resulting bivector field
F will always be a proper (frame-independent) geometric object. This Hertz potential
technique has been used to great effect by Hertz [219], Whittaker [223], Debye [224], and
others [40, 225, 226].

The use of dual-symmetric fields and spacetime algebra makes the origin of the Hertz
potentials particularly transparent. In particular, their construction relies upon further
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decomposing a complex 4-vector potential z into a transverse bivector potential Z, after
which that potential can be decomposed into a second-order bivector potential Π, which
in turn can be decomposed into a complex scalar potential Φ. Notably, the starting vector
potential z is only complex when the dual symmetry of the vacuum Maxwell equation is
preserved.

7. Maxwell’s equation with sources

The theory I propose may therefore be called a theory of the Electromagnetic
Field because it has to do with the space in the neighbourhood of the electric or
magnetic bodies, and it may be called a Dynamical Theory, because it assumes
that in the space there is matter in motion, by which the observed electromagnetic
phenomena are produced.

James Clerk Maxwell [133]

The simplest modification to Maxwell’s equation in vacuum (5.1) that we can make is
to add a source field. Since the derivative of a bivector field can only produce a complex
vector field, this modification produces

∇F = j, (7.1)

where the complex current j = je + jmI acts as the appropriate source field, and admits
both vector (electric) and trivector (magnetic) parts. Note that this equation is no longer
intrinsically invariant under the simple phase-rotation F 7→ F exp(θI) due to the presence
of the source current j; we will clarify this important point in Section 7.4.

Taking a second derivative decouples (7.1) into the set of equations

∇2F = (∇∧ je) + (∇∧ jm)I, (7.2)

∇ · je = ∇ · jm = 0. (7.3)

The first equation (for the bivector part) indicates that F satisfies a wave equation with a
complex source equal to the curl of j. The second equation (for the scalar part) indicates
the source satisfies a (charge-current) continuity equation.

7.1. Relative frame form

After breaking the source j = je + jmI into vector and trivector parts, the equation
(7.1) implies the two independent equations

∇ · F = je, ∇∧ F = jmI, (7.4)

which, under the spacetime splits F = ~E+ ~BI, je = γ0(cρe− ~Je), and jm = γ0(cρm− ~Jm),
expand to the four equations

~∇ · ~E = cρe, ∂0
~E − ~∇× ~B = − ~Je, (7.5)

~∇ · ~B = cρm, ∂0
~B + ~∇× ~E = − ~Jm,
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Maxwell’s Equation with Sources

Spacetime Algebra: ∇F = ∇2z = j j = je + jmI

⇓

∇ · F = ∇2ae = je, ∇∧ F = ∇2amI = jmI

⇓

F = ~E + ~BI, je = (cρe + ~Je)γ0, jm = (cρm + ~Jm)γ0

ae = (φe + ~A)γ0, am = (φm + ~C)γ0

~∇ · ~E + (∂0
~E − ~∇× ~B) = ∇2(φe − ~A) = cρe − ~Je

~∇ · ~B + (∂0
~B + ~∇× ~E) = ∇2(φm − ~C) = cρm − ~Jm

⇓

~∇ · ~E = ∇2φe = cρe, ∂0
~E − ~∇× ~B = −∇2 ~A = − ~Je

~∇ · ~B = ∇2φm = cρm, ∂0
~B + ~∇× ~E = −∇2 ~C = − ~Jm

Differential Forms:
F = Fe + i ?Fm, ?d ?Fe = ? d ? dae = −je

? d ?Fm = ? d ? dam = −jm

Tensor Components: ∂νF
µν
e = jµe , ∂νF

µν
m = jµm, Fµν = Fµνe + i?Fµνm

Gibbs 3-Vectors:
~∇ · ~E = cρe, ∂0

~E − ~∇× ~B = − ~Je
~∇ · ~B = cρm, ∂0

~B + ~∇× ~E = − ~Jm

SI Units :

(c ≡ 1/
√
ε0µ0)

( ~E, ~C, φe) 7→
√
ε0 ( ~E, ~C, φe), ( ~B, ~A, φm) 7→ ( ~B, ~A, φm)/

√
µ0

( ~Je, ρe) 7→
√
µ0 ( ~Je, ρe), ( ~Jm, ρm) 7→ √µ0 ( ~Jm, ρm)/c

CGS Units: ~E 7→ ~E/
√

4π, ~B 7→ ~B/
√

4π, j 7→
√

4π j/c

Table 13: Maxwell’s equation with both electric and magnetic sources, as expressed in various formalisms.
As with the vacuum case in Tables 10 and 11, only spacetime algebra permits the formulation as the single
boxed equation involving either the bivector field F or the complex vector potential field z = ae + amI,
while treating both electric sources je and magnetic sources jm on equal footing as a single complex
source j = je + jmI. In contrast, the differential-form approach becomes strained with a nonzero
magnetic source (one-form) jm [198], but simplifies to a form similar to the vacuum case in Table 10 for
purely electric sources je. Note that for the SI unit scalings, we use the Ampere-meter convention for
magnetic charges. 71



according to (4.11). These are the familiar Maxwell’s equations that include both electric
and magnetic charges [101, 102, 193, 197–213]. Similarly, the continuity equation for the
sources (7.3) produces the two equations

c∂0ρe + ~∇ · ~Je = 0, c∂0ρm + ~∇ · ~Jm = 0, (7.6)

which each have the familiar form [155].

7.2. Vector potentials revisited

If F is generated by a vector potential, F = ∇z = ∇(ae + amI), then Maxwell’s
equation (7.1) is equivalent to a complex vector wave equation with a source

∇2z = j. (7.7)

In this form it becomes clear that the electric potential ae couples directly to the electric
source je, while the magnetic potential am couples directly to the magnetic source jm.
Hence the total complex field F = (∇∧ ae) + (∇∧ am)I = Fe + FmI can be equivalently
constructed by solving the two independent equations

∇Fe = ∇2ae = je, ∇Fm = ∇2am = jm (7.8)

that each have the same form as (7.1), but involve only non-complex vector fields and
bivectors of fixed signature. Evidently the constituent fields Fe and Fm are noninteract-
ing, completely independent, and distinguished only by how they couple to distinct types of
electromagnetic charge. In particular, note how the e and m subscripts for all quantities
are consistently matched; for traditional electromagnetism that considers only electric
charges, the “magnetic” terms (with subscripts m) can thus be neglected.

In terms of a relative frame with ae = (φe + ~A)γ0 and je = (cρe + ~Je)γ0, the wave
equation ∇2ae = je expands to

(∂2
0 − ~∇2)(φe + ~A)γ0 = (cρe + ~Je)γ0, (7.9)

which further splits into the two wave equations [155]

(∂2
0 − ~∇2)φe = cρe, (∂2

0 − ~∇2) ~A = ~Je. (7.10)

These two equations are implicitly coupled by the Lorenz-FitzGerald condition ∇ · ae =
∂0φe + ~∇ · ~A = 0, which can be applied to the first equation in order to produce the
modified form

~∇2φe + ∂0(~∇ · ~A) = −cρe, (∂2
0 − ~∇2) ~A = ~Je. (7.11)

A similar split also applies to the equation ∇2am = jm involving the magnetic potential.

7.3. Lorentz force

Similar to the appearance of Maxwell’s equation (7.1), the corresponding Lorentz force
law arises quite naturally from the structure of spacetime itself. To see this, consider
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what happens when the field F = ~E + ~BI is contracted with a 4-vector w = (w0 + ~w)γ0.
According to (3.10), we have the general structure

F · w =
1

2
[Fw − wF], (7.12)

=
1

2
[( ~E + ~BI)(w0 + ~w) + (w0 + ~w)( ~E − ~BI)]γ0,

= ( ~E · ~w)γ0 + [w0
~E + ~w × ~B]γ0.

Now consider what happens if w is a proper velocity vector w = dx/dτ , which implies
w2 = c2. Inserting the spacetime split of x yields dx/dτ = d/dτ [ct+ ~x]γ0 = [d(ct)/dτ +
d~x/dτ ]γ0. Denoting dt/dτ = γ as the time dilation factor, we see that d~x/dτ = γd~x/dt =
γ~v is the scaled relative velocity ~v. From w2 = c2 = w2

0 − |~w|2 = γ2(c2 − |~v|2) we find
the standard formula γ = (1− |~v/c|2)−1/2. Hence, we have the relative components

w0 = γc =
c√

1− |~v/c|2
, ~w = γ~v, (7.13)

as well as the elegant and useful relations [9]

γ =
dt

dτ
=
w

c
· γ0,

d~x

dτ
= w ∧ γ0,

~v

c
=
w ∧ γ0

w · γ0
. (7.14)

Inserting (7.13) into (7.12) produces the suggestive relation

F · w = γc
[
~E · ~v

]
γ0 + γ

[
c ~E + ~v × ~B

]
γ0. (7.15)

Inverting factors and multiplying by a scalar charge q0 then produces

[F · (q0w)]
dτ

dt
γ0 = q0c ~E · ~v + q0

[
c ~E + ~v × ~B

]
. (7.16)

The vector part on the right hand side is precisely20 the Lorentz force d~p/dt in a relative
frame with ~p = m~v, while the scalar part on the right hand side is precisely the corre-
sponding rate of work dE/d(ct) with E = γmc2. It follows that the simple contraction of
F and a 4-vector current q0w produces the proper Lorentz force

dp

dτ
= F · (q0w), (7.17)

where p = (E/c + ~p)γ0 is the proper 4-vector energy-momentum.
We can expand upon this result by considering what happens if the vector current

q0w is allowed to be a complex vector current j = q0w exp(θI) similar to (7.1). Since
F · (wI) = (F ∧ w)I is the proper contraction that produces a vector, we must also

20The choice of units for ~E, ~B, and q0 will induce appropriate scaling factors (see Table 14).
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Lorentz Force Law

Proper Force Law:
dp

dτ
= 〈Fj〉1 = 1

2 [Fj + (Fj)∼] = qe F · w + qm (F ∧ w)I

p ≡ mw, j ≡ qw, q ≡ q0e
θI = qe + qmI

Proper Velocity: w ≡ dx

dτ
= γ(c + ~v)γ0, w2 = c2

γ c ≡ dt

dτ
= w · γ0 = c(1− |~v/c|2)−1/2

γ ~v ≡ d~x

dτ
= w ∧ γ0

Relative Force Law:
dp

dτ

dτ

dt
γ0 =

dE
d(ct)

+
d~p

dt

E ≡ γmc2, ~p ≡ m~v, qe = q0 cos θ, qm = q0 sin θ

dE
d(ct)

= qec ~E · ~v + qmc ~B · ~v

d~p

dt
= qec ~E + qmc ~B + qe ~v × ~B − qm ~v × ~E

Relative Velocity:
~v

c
≡ w ∧ γ0

w · γ0
, γ ≡ w

c
· γ0

SI Units:

(c ≡ 1/
√
ε0µ0)

~E 7→
√
ε0 ~E, ~B 7→ ~B/

√
µ0, qe 7→

√
µ0 qe, qm 7→

√
µ0 qm/c

CGS Units: ~E 7→ ~E/
√

4π, ~B 7→ ~B/
√

4π, q0 7→
√

4π q0/c

Table 14: The Lorentz Force Law, as expressed in spacetime algebra. We show the proper (frame-
independent) formulation that supports both electric and magnetic charges, combined as a single complex
charge q = qe+qmI. We also show the expansion of this force law in terms of a particular reference frame
γ0. Notably, the proper and relative velocities are related by elegant contraction formulas in spacetime
algebra.
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consider the wedge of the bivector field with the velocity w

F ∧ w =
1

2
[Fw + wF], (7.18)

=
1

2
[( ~E + ~BI)(w0 + ~w)− (w0 + ~w)( ~E − ~BI)]γ0,

= [ ~B · ~w]γ0I
−1 + [w0

~B − ~w × ~E]γ0I
−1.

The total contraction of F with j = q0w exp(θI) = je + jmI then has the form

dp

dτ
= 〈Fj〉1 = F · je + (F ∧ jm)I =

1

2
[Fj + (Fj)∼] , (7.19)

where the grade-1-projection makes the expression particularly elegant, while the last
equality follows from the reversion properties F̃ = −F and j̃ = j∗ (recall Sections 3.3,
3.3.2 and 3.5.3). We summarize this proper Lorentz force that admits a complex source
j in Table 14 for reference.

We must be careful to be fully consistent, however. That is, the physical momentum p
is a vector quantity that can be decomposed into a mass-scaled velocity p = mw (at least
for classical point particles). Thus, if we make the current complex q0w 7→ q0w exp(θI) =
j, as in (7.19), then the charge must become complex

q = q0 exp(θI) = qe + qmI, (7.20)

leading to distinct electric and magnetic parts of the charge

qe = q0 cos θ, qm = q0 sin θ, (7.21)

such that the observed charges have a well-defined ratio qm/qe = tan θ. (We will clarify
the intimate connection between this ratio and the dual symmetry of the field in the next
section.)

Inserting the relation j = w[q0 exp(θI)] into (7.19) with w = dx/dτ as before yields
the relative expression

dp

dτ

dτ

dt
γ0 =

dE
d(ct)

+
d~p

dt
, (7.22)

where E = γmc2, ~p = m~v, and where

dE
d(ct)

= qec ~E · ~v + qmc ~B · ~v, (7.23a)

d~p

dt
= qec ~E + qmc ~B + qe ~v × ~B − qm ~v × ~E. (7.23b)

After restoring units, these equations are precisely the correction to the Lorentz force
law that properly accounts for the addition of magnetic monopoles [101, 102, 193, 197–
213]. This monopole description arises directly from the complexity of the current j and
asserting that the total field F should couple to this complex current. We summarize
these relative expressions in Table 14 for reference, along with both the SI and CGS unit
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conventions.

7.4. Dual symmetry revisited

We are now in a position to consider the meaning of dual symmetry in the presence
of an electromagnetic source current j. The two equations that we must examine are
Maxwell’s equation (7.1) and the Lorentz force law (7.19), which we reproduce here for
convenience in terms of both the field F and the vector potential z

∇F = ∇2z = j,
dp

dτ
= 〈Fj〉1 = 〈(∇z)j〉1. (7.24)

Keep in mind that j = qw and p = mw for classical point particles, where w = dx/dτ is
the proper velocity.

It is now apparent that both these equations are invariant under a simultaneous phase
rotation of both the vector potential z and the current j, using the spinor ψ = exp(−θI/2)
from (5.10)

z 7→ ψzψ∗, j 7→ ψjψ∗. (7.25)

Specifically, note that since ψzψ∗ = z exp(θI) and ψjψ∗ = j exp(θI), Maxwell’s equation
becomes

(∇2z) exp(θI) = j exp(θI), (7.26)

so the phase factors cancel. Similarly, the Lorentz force law is also invariant

〈(∇zeθI)jeθI〉1 = 〈(∇z)je−θIeθI〉1 = 〈(∇z)j〉1. (7.27)

Thus, while it may initially appear that the dual symmetry of Maxwell’s equation
(7.1) is broken in the presence of a source current j, this is only strictly true if the
description of the current is left unchanged. An equivalent physical picture is obtained
if the current is also changed (via the same phase rotation of the coupling charge q). As
such, choosing electric charges to be the primary type of charge is an arbitrary convention.
Regardless of how one describes the fundamental charges, the same forces (and thus the
same physics) will still be described, as long as the fields are correspondingly transformed
[213].

In addition to this equivalence of representation, there is another important subtlety
that appears when we consider a field solution of Maxwell’s equation ∇F = j. Specifi-
cally, any solution to this equation will be the combination of a homogeneous solution F0

of the vacuum equation ∇F0 = 0 and a particular solution that includes the source j. We
can consider these two independent solutions to correspond to distinct vector potentials
z = z0 + zs that satisfy distinct equations of motion

∇2z0 = 0, ∇2zs = j. (7.28)

However, as noted above, we can always rotate the source j to become purely electric je
using some phase rotation ψ = exp(−θI/2)

∇2(ψzsψ
∗) = ψjψ∗ = je. (7.29)
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After this rotation, there is no magnetic source, so the trivector part of the rotated
potential 〈ψzsψ∗〉3 must satisfy the vacuum Maxwell equation, and therefore should be
absorbed into the homogeneous equation as part of the vacuum potential z0. That is, the
rotated source potential is a pure (electric) vector potential as,e, while the homogeneous
vacuum potential will still be generally complex

ψzsψ
∗ = as,e, ψz0ψ

∗ = a0,e + a0,mI. (7.30)

Thus, there is a profound difference between the independent source and vacuum parts
of a field solution. The source piece must have a description as a pure vector potential
matched with an electric source; this pair can then be jointly rotated into equivalent
descriptions with both electric and magnetic sources as desired. In contrast, the vacuum
piece is always manifestly dual-symmetric and thus admits an irreducibly complex vector
potential description (such that no phase rotation exists that will make the vacuum po-
tential a pure vector). Notably, this decomposition of the potential into distinct vacuum
and matter parts is important in treatments of the quantized electromagnetic field [39].
We will return to this decomposition in Sections 8.3, 8.9.2 and Figure 7.

7.5. Fundamental conservation laws

Before turning our attention to macroscopic fields, we first provide a brief but en-
lightening derivation of the symmetric energy-momentum stress tensor21, as well as its
associated angular momentum tensor [31, 127]. These derivations will impose general
constraints on the form of any local modifications to these tensors, which will become
important in their Lagrangian derivation via Noether’s theorem in Section 8.

7.5.1. Energy-momentum stress tensor

Conceptually, the energy-momentum tensor is a function T(b) that maps a constant
vector direction b into the flux of energy-momentum that is passing through the hy-
persurface orthogonal to b. This flux of energy-momentum should satisfy a continuity
relation

b · dp
dτ

+∇ · T(b) = 0, (7.31)

stating that the rate of change of the energy-momentum (the Lorentz force (7.19))
projected along the direction of b should correspond to the divergence of the energy-
momentum flux through the surface orthogonal to b. (This statement is analogous to

how the current continuity equation c∂0ρ+ ~∇· ~J = 0 from (7.3) relates the rate of change
of the charge density to the divergence of the charge flux, or current.)

We can simplify (7.31) using the adjoint tensor22 T that corresponds to the tensor
T according to the vector dot product relation d · T(b) = T (d) · b. Applying this adjoint

21This symmetric tensor is also known as the Belinfante–Rosenfeld stress-energy tensor, or the kinetic
stress-energy tensor [31, 68, 88, 127].

22The underbar and overbar notation for a tensor and its adjoint is a useful notational device [9], so
we adopt it here.
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relation to (7.31) yields [9]

b ·
[
dp

dτ
+ T (∇)

]
= 0, (7.32)

keeping in mind that ∇ still differentiates the adjoint tensor T . Since b is arbitrary, we
can dispense with it to find a direct constraint equation for the adjoint, in which we can
substitute the Lorentz force law (7.19) to find

T (∇) = −dp
dτ

= −〈Fj〉1. (7.33)

After substituting Maxwell’s equation (7.1) for the source j, we obtain

T (∇) = −1

2

[
F(∇F) + (F̃∇)F̃

]
= −1

2
F∇F. (7.34)

Therefore, we can infer that the adjoint of the energy-momentum stress tensor must have
the elegant quadratic form

T sym(b) = −1

2
FbF =

1

2
FbF̃ =

1

2
fbf̃ , (7.35)

which is the simplest dual-symmetric form that involves the field bivector F = f exp(ϕI).
This form is also symmetric (in the sense of the adjoint T sym = Tsym) since

T sym(d) · b = 〈T sym(d)b〉0 = −〈FdFb〉0 = −〈dFbF〉0 = d · T sym(b) (7.36)

by the cyclic property of the scalar projection (3.8). Any proposed modification to
this fundamental symmetric tensor must have a vanishing divergence, according to the
general continuity equation (7.31). This symmetric tensor is summarized for reference in
Table 15.

To verify that this symmetric energy-momentum stress tensor gives us the results we
expect, we compute the energy-momentum flux through the surface perpendicular to γ0

(restoring the SI unit scaling factors from (5.6)),

T sym(γ0) =
1

2
Fγ0F̃ =

1

2
FF†γ0, (7.37)

=
1

2

[
~E + ~BI

] [
~E − ~BI

]
γ0,

=

[
1

2

(
| ~E|2 + | ~B|2

)
+ ~E × ~B

]
γ0 ≡ (ε+ ~P )γ0.

The first term is the energy density ε of the field, which is relative to a particular frame
γ0, as we anticipated in Section 5.4. The second term is the Poynting vector ~P that gives
the corresponding relative field momentum [9]. The two together construct the proper

field energy-momentum T(γ0) = (ε+ ~P )γ0 that will be measured by an observer traveling
along a worldline pointing in the γ0 direction.

As another example, we can compute the energy-momentum flux through a surface
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perpendicular to γi (i = 1, 2, 3) using γi = γiγ
2
0 = ~σiγ0,

T sym(γi) =
1

2
FγiF̃ =

1

2
F~σiF

†γ0, (7.38)

=
1

2

[
~E + ~BI

]
~σi

[
~E − ~BI

]
γ0,

=

[
1

2

(
~E~σi ~E + ~B~σi ~B

)
+

1

2

(
~E~σi ~B − ~B~σi ~E

)
I−1

]
γ0.

This form emphasizes the bilinear nature of the tensor with respect to the fields. The
vector products can be expanded into a more familiar form by using the identity

~E~σi ~B = ~B( ~E · ~σi) + ~E( ~B · ~σi)− ( ~E · ~B)~σi − ( ~E × ~B) · ~σiI, (7.39)

to produce

T sym(γi) = −
[
~E × ~B · ~σi

]
γ0 (7.40)

+

[
~E( ~E · ~σi) + ~B( ~B · ~σi)−

1

2

(
| ~E|2 + | ~B|2

)
~σi

]
γ0.

The first term is the projection of the Poynting vector ~P onto the direction ~σi. The
second term is the contraction of the Maxwell stress tensor along the direction ~σi.

7.5.2. Angular momentum tensor

Conceptually, angular momentum is a bivector that indicates a plane of rotation.
The rotation in question is that of a coordinate vector as it rotates to track movement
associated with a linear momentum. For a classical point particle, the plane segment
containing this rotation is produced explicitly by a wedge product M = x∧ p between a
coordinate 4-vector x and a 4-momentum p [189]. Indeed, after introducing the spacetime
splits p = (E/c + ~p)γ0, x = (ct+ ~x)γ0 we have

x ∧ p =
xp− px

2
= [E~x/c− (ct)~p] + ~x× ~pI−1 ≡ − ~N + ~LI−1. (7.41)

The second term ~LI−1 of (7.41) involves I, and is part of the angular momentum that

agrees with the usual notion of the relative angular momentum as the cross product ~L =
~x× ~p. Within spacetime algebra, however, we see that this cross product is the Hodge-
dual of the proper angular momentum bivector ~LI−1 that generates spatial rotations as
a Lorentz transformation, just as discussed in (3.55) of Section 3.7. In contrast, the first

term − ~N of (7.41) is a bivector of opposite signature that generates boost rotations, as
discussed in (3.57) of Section 3.7. The total invariant notion of angular momentum in
spacetime includes both spatial rotation and boost components, since the 4-dimensional
rotations in spacetime are Lorentz transformations that can be of either type.

With this intuition, the angular momentum tensor23 for the electromagnetic field is
straightforward to obtain directly from the adjoint symmetric energy-momentum tensor

23Specifically, this is the Belinfante-Rosenfeld angular momentum tensor [31, 68, 88, 127].
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Symmetric Energy-Momentum Tensor

Spacetime Algebra: T sym(b) = Tsym(b) =
1

2
FbF̃

⇓

T sym(γ0) =
1

2
Fγ0F̃ =

1

2
FF†γ0 = (ε+ ~P )γ0

T sym(γi) =
1

2
F~σiF

†γ0 = [~P · ~σi + ~E( ~E · ~σi) + ~B( ~B · ~σi)− ε~σi]γ0

ε =
1

2

(
| ~E|2 + | ~B|2

)
, ~P = ~E × ~B

Tensor Components: Tµνsym = T νµsym =
∑
α

FµαF ν
α −

1

4
ηµν

∑
α,β

FαβFβα

Associated Angular Momentum Tensor

Spacetime Algebra: M sym(b) = x ∧ T sym(b) Msym(R) = Tsym(R · x)

⇓

M sym(γ0) = − ~N + ~JI−1,

~N = (ct)~P − ε ~x, ~J = ~x× ~P

Tensor Components: Mαβγ
sym = xα T βγsym − xβ Tαγsym

Table 15: The symmetric energy-momentum tensor and its associated angular momentum tensor, shown
in both spacetime algebra and tensor component notation. Notably, spacetime algebra emphasizes that
the energy-momentum tensor T sym is a simple quadratic form of the field F, which maps a vector
direction b into the energy-momentum flux passing through a surface orthogonal to b, exactly as the
energy-momentum current for the Dirac equation of the electron [9, 87, 96]. It is a symmetric tensor,
meaning it equals its adjoint Tsym, and is easily expanded algebraically into the usual expressions

containing the energy-density of the field ε, the Poynting vector ~P , and the Maxwell stress tensor.
Similarly, the associated angular momentum tensor Msym is a function that maps a vector direction b
into the angular momentum flux through a surface orthogonal to b, and expands to the usual boost-
momentum ~N and rotational-angular-momentum ~J vectors for the field. The adjoint of this tensor Msym
is a function that maps a plane of rotation (bivector) R into an energy-momentum flux.
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T sym(b). As seen in the last section, this latter tensor produces an energy-momentum
density associated with a particular direction b. Hence, taking the wedge product of that
energy-momentum density will produce its associated angular momentum density

M sym(b) = x ∧ T sym(b). (7.42)

As with the energy-momentum tensor, the angular momentum tensor M sym is a function
that maps a constant vector direction b into the angular momentum flux passing through
the hypersurface orthogonal to b. This tensor is also summarized for reference in Table 15.

Applying the angular momentum tensor to the timelike direction γ0 produces the
intuitive result

M sym(γ0) = x ∧ T sym(γ0) = [ε~x− (ct)~P ] + ~x× ~PI−1 ≡ − ~N + ~JI−1, (7.43)

with the energy-density and Poynting vector as in (7.41), and where ~N is the boost

angular momentum and ~J is the rotational angular momentum of the electromagnetic
field. According to commonly accepted notations, we denote the rotational angular
momentum of the field as ~J (not to be confused with the charge current!), because it

includes both the orbital (~L) and spin (~S) parts [48–51] (see Section 8.7 below).
Just as the energy-momentum tensor T sym has an adjoint tensor Tsym, the angular

momentum tensor M sym also has an adjoint. We can compute this adjoint by contracting
the tensor with any pure bivector R, which should be understood as the plane segment
for a rotation (i.e., generating a Lorentz transformation as in Section 3.7)

R ·M sym(b) = 〈RxT sym(b)〉0 = 〈Tsym(〈Rx〉1)b〉0 = Tsym(R · x) · b, (7.44)

yielding the adjoint tensor

Msym(R) = Tsym(R · x). (7.45)

This adjoint tensor is a function that takes the plane of rotation R, contracts it with the
coordinate direction x to find the orthogonal direction b such that R = b∧x‖ = bx‖ (see
the discussion in Section 3.3.1), and then returns the energy-momentum flux Tsym(b)
through the hypersurface perpendicular to that direction.

As an example, applying Msym to a bivector R = γiγ0 = ~σi that generates boost
rotations produces

Msym(~σi) = Tsym(~σi · x) = (ct) Tsym(γi)− xi Tsym(γ0), (7.46)

which is the correct energy-momentum flux through the hyperplane perpendicular to the
part of the coordinate vector x that lies in the boost rotation plane R = ~σi.

7.6. Macroscopic fields

The preceding discussion has assumed the free propagation of a (microscopic) field
F through vacuum. In the presence of a medium, however, it is useful to partition
the total field into a macroscopic distinction between a free part Ff that is coupled to
freely moving charges in the conduction bands of the medium, and a bound part Fb
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that is coupled to the bound charges held rigid by the lattice structure of the medium
[155, 227]. Such a partitioning of the fields and sources must have the general form

F = Ff + Fb, j = jf + jb. (7.47)

To see how the macroscopic fields in (7.47) are expressed in a relative frame, we
consider the spacetime splits (using conventional (SI) units)

Ff = ~D/
√
ε0 +

√
µ0
~HI, Fb = −~P/

√
ε0 +

√
µ0

~MI. (7.48)

Here ~D is the usual electric displacement, ~H is the macroscopic magnetic field, ~P is
the electric polarization field of the medium, and ~M is the magnetization field of the
medium24. From the definition (7.47) we see that the total electromagnetic field F =√
ε0 ~E + ~BI/

√
µ0 is related to the macroscopic fields in the following way

ε0 ~E = ~D − ~P,
~B

µ0
= ~H + ~M, (7.49)

which agrees with the standard definition of the electric polarization and magnetization
vectors [155, 227].

Imposing Maxwell’s equation (7.1) on the partitions in (7.47) then couples the fields
and sources in a nontrivial way

∇Ff = jf − (∇Fb − jb). (7.50)

We can then define the split (7.47) to force the final bracketed term of (7.50) to vanish,
which purposefully couples the free macroscopic field with only the free charge-currents.
This definition forces the separation of the total field into two equations

∇Ff = jf , ∇Fb = jb. (7.51)

The first of these split equations is Maxwell’s macroscopic equation for free charges. The
second is a constraint equation that defines the electromagnetic polarization field that is
bound to the medium [155, 227]. Note that the bound charges jb will generally respond
to the total field F, so will shift around while staying confined to the lattice structure,
creating an indirect coupling between the two split equations in (7.51). We will return
to this important point later.

In terms of a relative frame, the free fields ~D and ~H satisfy the macroscopic Maxwell’s
equations in (7.51)

~∇ · ~D = cρe,f , ∂0
~D − ~∇× ~H = − ~Je,f , (7.52)

~∇ · ~H = cρm,f , ∂0
~H + ~∇× ~D = − ~Jm,f ,

that involve only the free charge-currents. Similarly, the bound fields ~P and ~M satisfy

24Note that we use calligraphic script here for the polarization and magnetization to disambiguate
them from momentum and angular momentum in other sections. They will only be used within this
section.
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the constraint equations from (7.51)

−~∇ · ~P = cρe,b, −∂0
~P − ~∇× ~M = − ~Je,b, (7.53)

~∇ · ~M = cρm,b, ∂0
~M− ~∇× ~P = − ~Jm,b,

that involve only the bound charge-currents.
The subtlety that arises from this separation of the total source into free and bound

parts is that the partition could implicitly contain complementary induced charge-currents
ji that emerge from complicated interactions with the medium. That is, one can generally
arrange for the relation

jf = jf,0 + ji, jb = jb,0 − ji, (7.54)

such that the total source is j = jf + jb = jf,0 + jb,0, so any induced part cancels and
is only visible to the separation of the macroscopic fields. Interestingly, the induced
charge-current ji could change the apparent nature of the separated charge-current. For
example, even if one considers a purely electric (vector) total charge-current, j = je,
an exotic material (e.g., [228–232]) could induce an effective magnetic (trivector) part,
ji = jm,iI, to the total free charge-current, jf = je,f + jm,iI. The free macroscopic field
Ff will then be sensitive to this induced magnetic source, which will appear as apparent
magnetic monopoles embedded in the medium [213].

To see this behavior more clearly in the relative frame, consider the case when the
total current j = je = (cρe + ~Je)γ0 is purely electric (as is traditional and expected),

but a magnetic part jiI = (cρm,i + ~Jm,i)γ0I is then induced by an exotic medium (e.g.,
[228–232]). In this case, according to (7.1) and (7.47), the following macroscopic and
microscopic equations will be satisfied

~∇ · ~D = cρe,f , ∂0
~D − ~∇× ~H = − ~Je,f , (7.55)

~∇ · ~H = cρm,i, ∂0
~H + ~∇× ~D = − ~Jm,i,

ε0~∇ · ~E = cρe, ε0∂0
~E − ~∇× ~B/µ0 = − ~Je,

~∇ · ~B = 0, ∂0
~B + ~∇× ~E = 0.

Note that the divergence equation for ~H and the curl equation for ~D acquire induced
magnetic source terms, even though the corresponding equations for the total fields ~B
and ~E show no evidence of such a magnetic source.

The standard practice [155, 227] to simplify the large set of equations (7.55) is to
drop the middle four equations and consider only the remaining four equations that are
hybridized between the macro- and microscopic fields and involve only the free electric
charge

~∇ · ~D = cρe,f , ∂0
~D − ~∇× ~H = − ~Je,f , (7.56)

~∇ · ~B = 0, ∂0
~B + ~∇× ~E = 0.

These equations are then supplemented by the first constraint equation in (7.53) that
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Macroscopic Maxwell’s Equations

Microscopic: ∇F = j F = ~E + ~BI

~∇ · ~E = cρe, ∂0
~E − ~∇× ~B = − ~Je

~∇ · ~B = cρm, ∂0
~B + ~∇× ~E = − ~Jm

Macroscopic: F = Ff + Fb Ff = ~D + ~HI Fb = −~P + ~MI

~E = ~D − ~P ~B = ~H + ~M j = jf + jb

Free fields: ∇Ff = jf

~∇ · ~D = cρe,f , ∂0
~D − ~∇× ~H = − ~Je,f

~∇ · ~H = cρm,f , ∂0
~H + ~∇× ~D = − ~Jm,f

Bound fields: ∇Fb = jb

−~∇ · ~P = cρe,b, −∂0
~P − ~∇× ~M = − ~Je,b

~∇ · ~M = cρm,b, ∂0
~M− ~∇× ~P = − ~Jm,b

Reduced set: ∇ · Ff = jf ∇∧ F = jmI ∇ · Fb = jb

~∇ · ~D = cρe,f , ∂0
~D − ~∇× ~H = − ~Je,f

~∇ · ~B = cρm, ∂0
~B + ~∇× ~E = − ~Jm

−~∇ · ~P = cρe,b, −∂0
~P − ~∇× ~M = − ~Je,b

SI Units :

(c ≡ 1/
√
ε0µ0)

~E 7→
√
ε0 ~E, ~B 7→ ~B/

√
µ0, je 7→

√
µ0 je, jm 7→

√
µ0 jm/c

~D 7→ ~D/
√
ε0, ~H 7→ √µ0

~H, ~P 7→ ~P/
√
ε0, ~M 7→ √µ0

~M

CGS Units:
~E 7→ ~E/

√
4π, ~B 7→ ~B/

√
4π, j 7→

√
4π j/c

~D 7→ ~D/
√

4π, ~H 7→ ~H/
√

4π, ~P 7→
√

4π ~P, ~M 7→
√

4π ~M

Table 16: Macroscopic Maxwell’s equations. The total microscopic field F is partitioned into a free part
Ff and a bound part Fb, each coupled to free jf and bound jb charge-currents in a medium, respectively.

The bound field contains the electric polarization ~P and magnetization ~M densities of the medium, while
the free field contains the electric displacement ~D and magnetic field strength ~H. Out of the total set
of equations implied by Maxwell’s microscopic equation, a reduced set of the indicated three equations
is typically considered, augmented by phenomenological constitutive relations between F and Ff .
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involves the bound electric charge

−~∇ · ~P = cρe,b, −∂0
~P − ~∇× ~M = − ~Je,b. (7.57)

All six of this reduced set of equations then involve only the electric part of the charge,
regardless of any magnetic charge that may have been induced by the medium. This
simplification avoids any consideration of the induced magnetic source in favor of a
purely electric description.

Note that the six standard equations (7.56) and (7.57) for macroscopic fields can be
equivalently written in a frame-independent way as the triplet of equations [9]

∇ · Ff = jf , ∇∧ F = jmI, ∇ · Fb = jb. (7.58)

The first equation involves the free electric charge. The second becomes the Bianchi
identity for the total field when the total magnetic source jm is zero. The third is the
constraint for the bound electric charge. It is important to remember, however, that
these three equations arise as only part of the fully separated equations in (7.51), which
are parts of Maxwell’s single equation for the total (microscopic) field (7.1). All these
relationships are summarized for reference in Table 16.

The information that is lost by neglected the middle equations in (7.55) can be phe-
nomenologically restored by determining a constitutive relation between the macroscopic
fields ~D and ~H and the total microscopic fields ~E and ~B. As mentioned previously, such
a relation should exist because the configuration of the bound charge-current jb will gen-
erally depend upon the total field F in the medium, which in turn alters the constraint
for the electromagnetic polarization in (7.47) that determines the macroscopic fields.
Determining the effective functional dependence of this polarization field is a nontrivial
and material-specific phenomenological problem [155, 227]. In the simplest case there

is no medium (and thus no electromagnetic polarization), so ~D = ε0 ~E and ~H = ~B/µ0

according to (7.49). In the next simplest case the relation is linear and one can define

new constants ε and µ such that ~D = ε ~E and ~H = ~B/µ. More generally, the appropri-
ate constitutive relations depend on the total field F, and are frequency-dependent (i.e.,
dispersive) [155, 227, 233].

It is also worth remarking that there is a considerable interest to artificial media and
materials that restore the dual symmetry of vacuum on the level of macroscopic medium
parameters (e.g., ε=µ) [19, 107, 108, 214, 234–236]. The conservation of the optical
helicity associated with such symmetry (see Section 8.8 below) provides a new insight
into the light propagation and scattering dynamics.

8. Lagrangian formalism

It is impossible to study this remarkable theory without experiencing at times the
strange feeling that the equations and formulas somehow have a proper life, that
they are smarter than we, smarter than the author himself, and that we somehow
obtain from them more than was originally put into them.

Heinrich Hertz [237]
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You can recognize truth by its beauty and simplicity. When you get it right, it is
obvious that it is right—at least if you have any experience—because usually what
happens is that more comes out than goes in.

Richard P. Feynman [238]

It is worth emphasizing that up to this point we have introduced no physical postulates
other than the need for spacetime itself (and thus its associated algebra). We made
the casual observation that a proper spacetime bivector F naturally splits into polar
and axial 3-vector parts F = ~E + ~BI with respect to a particular reference frame in
Eq. (3.40), and noted that these parts transform under a Lorentz boost exactly as we
expect the electromagnetic field to transform in Eqs. (3.59) and (5.9). We then found
that the structure of the simplest bivector differential equation ∇F = 0 in Eq (5.1) is
precisely Maxwell’s equation in vacuum, while the next simplest modification ∇F = j
in Eq. (7.1) is Maxwell’s equation that properly includes both electric and magnetic
sources, albeit in a compact form as a single complex vector current j. We also made
the casual observation that contracting the bivector F with such a complex current j
gives the correct Lorentz force equation dp/dτ = 〈Fj〉1 that supports both electric and
magnetic charges in Eq. (7.19). Combining the Lorentz force law and Maxwell’s equation
using a general conservation constraint in Eq. (7.31) then produces the correct symmetric

energy-momentum stress tensor T(γ0) = Fγ0F̃/2 in Eq. (7.35) as a simple quadratic form
of the field (which is the same functional form as the energy-momentum current of the
Dirac electron [9, 87, 96]).

Despite the richness of these emergent characteristics of the spacetime geometry, all
suggestive notation, terminology, and constant unit factors have been window-dressing
for features that are essentially inevitable when considering the simplest dynamics one
can ascribe to any bivector field in spacetime, bereft of physical interpretation a priori.
The fact that these features exactly correspond to the electromagnetic theory of both
electric and magnetic charges is remarkable unto itself. More importantly, however, this
fact prompts a careful reassessment of the physical foundations and postulates of classical
electromagnetic field theory.

The more complete physical foundation of electromagnetism comes from a Lagrangian
field-theory perspective. Fundamentally, the electromagnetic field F emerges as a neces-
sary consequence of preserving a local U(1) gauge symmetry (i.e., a local phase rotation)
in the Lagrangian for a complex (charged) matter field [168], as we will detail in Section
8.9.1. However, with such a Lagrangian approach it becomes clear that the vector po-
tential z acts as the dynamical gauge field that preserves the charge symmetry, with the
usual electromagnetic field F = ∇z arising only as a derivative quantity. Thus, the vector
potential z will be our new starting point, from which we will systematically derive the
corresponding conserved physical quantities of the field.

8.1. Traditional vacuum-field Lagrangian

As we have shown in Sections 5.2 and 6, the dual symmetry of the vacuum Maxwell’s
equation ∇2z = 0 implies that the vector potential should be invariant under the global
phase symmetry z 7→ z exp(θI) in vacuum, and thus must be intrinsically complex. This
symmetry poses a problem for the traditional electromagnetic Lagrangian, which can be
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written in various equivalent forms:

Ltrad(x) =
〈(∇z)2〉0

2
=
〈F2〉0

2
=
`1
2

=
| ~E|2 − | ~B|2

2
=

1

4

∑
µν

FµνF
νµ. (8.1)

We will motivate why this Lagrangian appears from a gauge theory perspective in Sec-
tion 8.9.1. Traditionally z = ae is considered to be a pure (electric) vector potential that
generates a single associated constituent field Fe = ∇ ∧ ae [29, 127, 155]. Indeed, recall
that the subscripts e and m throughout this report refer to the electric and magnetic
types of charge, so in the traditional electromagnetism (with only electric charges) all
“magnetic” (subscript m) quantities can be neglected. However, we keep z = ae + amI
complex here, since no electric or magnetic charge exists in vacuum to select either ae or
am as a preferred vector potential.

The traditional Lagrangian (8.1) is not dual-symmetric, and, hence, is problematic for
the description of dual-symmetric vacuum fields that require such a complex potential. To
see this explicitly, we expand the complex vector potential z in (8.1) into its constituent
parts, impose the Lorenz-FitzGerald conditions ∇·ae = ∇·am = 0 discussed in Section 6,
and define the two constituent fields Fe = ∇ ∧ ae = ~Ee + ~BeI and Fm = ∇ ∧ am =
~Bm − ~EmI such that F = ∇z = Fe + FmI, as in Section 6.1.3, then the traditional
Lagrangian expands into the form

Ltrad(x) =
〈F2

e〉0 − 〈F2
m〉0

2
+ 〈Fe · FmI〉0, (8.2)

=
1

2
[| ~Ee|2 − | ~Be|2 + | ~Em|2 − | ~Bm|2]− [ ~Ee · ~Bm + ~Be · ~Em],

which shows an intrinsic interplay between the constituent fields25 that alters the original
structure of (8.1).

This additional structure appears because the traditional Lagrangian (8.1) is not
invariant under the dual symmetry phase rotation z 7→ z exp(θI). Instead, it transforms
as

Ltrad(x) 7→ `1
2

cos 2θ − `2
2

sin 2θ, (8.3)

and oscillates between the two proper scalars `1 = | ~E|2 − | ~B|2 and `2 = 2 ~E · ~B of
the total field as the phase is changed [68]. (As we noted in Section 5.3, the second
term that appears here is the “axion” term proposed in [216] using precisely this dual-
symmetric phase-rotation.) The lack of global phase invariance of the Lagrangian (8.1)
is problematic for maintaining the dual-symmetric complexity of the vector potential z.
However, one can always avoid this problem by explicitly breaking the dual-symmetry
to keep z = ae a pure (electric) vector potential, as in the traditional approach. In
this case the constituent fields associated with the magnetic vector potential am vanish
( ~Em = ~Bm = 0) in (8.2).

We are thus motivated to consider a simple correction to the traditional Lagrangian

25Again, the subscripts of e and m on the constituent relative fields indicate that they would normally
be associated with either electric or magnetic charges, which do not exist in vacuum.
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that addresses these shortcomings for the description of a vacuum field. We wish to mod-
ify the Lagrangian to make it manifestly dual-symmetric under a global phase rotation
of z.

8.2. Dual-symmetric Lagrangian

We can correct the traditional Lagrangian in a simple way to make it properly dual-
symmetric by adding a complex conjugate to the traditional expression

Ldual(x) =
1

2
〈(∇z)(∇z∗)〉0. (8.4)

Notably, this modification makes the Lagrangian a simple quadratic form for the complex
vector field z, which is the expected form for the kinetic energy of such a field. This form
is thus a logical choice for a properly dual-symmetric Lagrangian. We must now verify
that this modification produces sensible results.

In terms of constituent fields, (8.4) expands into the following equivalent forms:

Ldual(x) =
〈(∇ae)2〉0

2
+
〈(∇am)2〉0

2
=
〈F2

e〉0
2

+
〈F2

m〉0
2

, (8.5)

=
1

2
(| ~Ee|2 − | ~Be|2) +

1

2
(| ~Bm|2 − | ~Em|2),

=
1

4

∑
µν

[(Fe)µν(Fe)
νµ + (Fm)µν(Fm)νµ].

Perhaps surprisingly, the dual-symmetric form of (8.4) is simply the sum of two copies
of the traditional Lagrangian (8.2), one for each independent constituent field ae and am
in the complex vector potential z = ae + amI. Notably, a dual-symmetric Lagrangian of
precisely this form was previously considered in [196, 209, 210, 212] from a different start-
ing point. The traditional and dual-symmetric Lagrangians are compared for reference
in Table 17.

8.3. Constrained dual-symmetric Lagrangian

The fact that the dual-symmetrized Lagrangian (8.4) explicitly involves the second
constituent field Fm as an independent but necessary field prompts the question whether
this second field is really independent in vacuum, or should be further constrained. In
particular, if one believes the total dual-symmetric field F = Fe + FmI should be the
true electromagnetic field, then one can postulate that the different constituent fields
Fe = ∇ ∧ ae and Fm = ∇ ∧ am actually describe the same total field. We can thus
consider imposing an additional nontrivial constraint to force these two constituent fields
to give equal contributions to the measurable vacuum field

Fe = FmI =
Fmeas√

2
, (8.6)

so ~Ee = ~Em = ~Emeas/
√

2 and ~Be = ~Bm = ~Bmeas/
√

2, and the total field magnitude is
preserved:

|F|2 = F∗F = F∗eFe + F∗mFm → F∗measFmeas = |Fmeas|2. (8.7)
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Electromagnetic Lagrangian Densities

Traditional: z = ae ≡ a F = ∇ae = Fe

Ltrad(x) =
〈(∇a)2〉0

2
=
〈F2〉0

2
=

1

4

∑
µν

FµνF
νµ

Dual-symmetric: z = ae + amI F = ∇z = Fe + FmI

Ldual(x) =
〈(∇z)(∇z∗)〉0

2
=
〈F2

e〉0
2

+
〈F2

m〉0
2

=
1

4

∑
µν

[(Fe)µν(Fe)
νµ + (Fm)µν(Fm)νµ]

Constrained: Fe → FmI → Fmeas/
√

2 = GmeasI/
√

2

Ldual(x)→ 〈F
2
meas〉0
4

+
〈G2

meas〉0
4

=
1

8

∑
µν

[FµνF
νµ +GµνG

νµ]

Table 17: Electromagnetic Lagrangians in the traditional and dual-symmetric field theories. The tra-
ditional Lagrangian is a kinetic term for only the constituent vector potential ae associated with elec-
tric charge. The dual-symmetric Lagrangian is a kinetic term for the full complex vector potential z,
and preserves the dual symmetry of vacuum. The electric ae and magnetic am vector potentials con-
tribute to this Lagrangian as independent fields that each satisfy a copy of the traditional Lagrangian
[196, 209, 210, 212]. In the constrained formalism, the two vector potentials of the dual-symmetric
Lagrangian describe the same (measurable) vacuum field Fmeas in a symmetrized way [68, 106]. Note
that with this constraint the dual-symmetric Lagrangian formally vanishes; however, the constraint can
be implemented using a Lagrange multiplier, or as a final step.
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With this constraint we find that Fm = FmeasI
−1/
√

2 = Gmeas/
√

2, so the two con-
stituent fields become precisely proportional to the measurable field Fmeas and its Hodge-
dual Gmeas = FmeasI

−1.
Inserting the constraint (8.6) into (8.5) produces

Ldual(x)→ 〈F
2
meas〉0 + 〈G2

meas〉0
4

=
1

8

∑
µν

(FµνF
νµ +GµνG

νµ). (8.8)

The functional form of this constrained Lagrangian density is then precisely equal to
the dual-symmetric form recently postulated in [68, 106]. Curiously, this constrained
form identically vanishes since G2

meas = (FmeasI
−1)2 = −F2

meas. Thus, the constraint
(8.6) should be imposed either as a Lagrange multiplier constraint in the dual-symmetric
Lagrangian (8.4), or as a final step in derivations that retain both constituent fields Fe
and Fm [68, 106].

Notably, the constraint (8.6) also forces the vector potential z to be irreducibly com-
plex. Indeed, if one could rotate z to a pure vector potential a0 with some phase rotation
z = a0 exp(θI), then the constraint (8.6) would force the measurable field Fmeas to iden-
tically vanish. To see this, note that z = ae + amI = a0 exp(θI), so ae = a0 cos θ and
am = a0 sin θ. Therefore, Fe = cos θF0 and Fm = sin θF0 where F0 = ∇ ∧ a0. The
constraint (8.6) then implies: cos θF0 = sin θF0I = Fmeas/

√
2. Due to the factor of I,

this relation is only satisfiable if F0 = 0 for any θ, making Fmeas = 0. Therefore, to
obtain nontrivial vacuum fields that satisfy the constraint (8.6), the vector potential z
must remain complex under all phase rotations.

However, the irreducible complexity of z forced by the constraint (8.6) presents a
significant problem for coupling to matter. The equation ∇z∗ = ∇(ae − amI) = Fe −
FmI → 0 vanishes with this constraint, which is inconsistent with Maxwell’s source
equation (7.1), written in its conjugated form∇2z∗ = j∗. Specifically, ∇2z∗ = ∇(∇z∗)→
0 with the constraint, so any source j must vanish. Thus, the constraint (8.6) can only
describe vacuum fields that are not coupled to matter, which corroborates our general
discussion about the fundamental difference between the irreducibly complex vacuum
and reducibly complex source parts of the complex vector potential z in Section 7.4

Since fields must couple to matter (charges) to be physically measured, the constraint
(8.6) in its current form is problematic. Either we must modify the constraint (8.6) to
properly accommodate sources (see, e.g., [239] for ideas regarding how this modification
could be accomplished), or the constrained Lagrangian becomes inconsistent with the
presence of sources. At the same time, the independent “electric” and “magnetic” parts of
the unconstrained dual-symmetric Lagrangian (8.5) can be coupled to the corresponding
charges. In this case one can speculate that the presence of “electric matter” explicitly
breaks the dual-symmetry by coupling to only one of the constituent fields Fe = ∇∧ ae.
In the absence of other fields in the model, the remaining constituent field Fm in the dual-
symmetric Lagrangian (8.4) would then be undetectable and only contribute to gravity
as an invisible and noninteracting energy density (e.g., a dark light contribution to dark
matter [196]). We will revisit this issue of the second constituent field more carefully in
Section 8.9.2.
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8.4. Maxwell’s equation of motion

We can obtain the equation of motion for z implied by all three candidate Lagrangians
(Table 17) by treating the constituent vector potentials ae and am independently, and
applying the appropriate Euler–Lagrange equation [9, 127] to each one. For example,∑

µ

∂

∂xµ

(
∂L

∂(∂µae)

)
− ∂L
∂ae

= ∇2ae = 0, (8.9)

is the proper equation of motion for ae, where x =
∑
µ x

µγµ. The equation for am can

be obtained similarly, yielding ∇2am = 0. It follows that the equation of motion for
z = ae + amI is the Maxwell’s vacuum equation (5.1) in a manifestly dual-symmetric
form,

∇2z = ∇F = 0, (8.10)

for any of the three candidate Lagrangians. This means, that the above three Lagrangian
theories are indistinguishable from each other on the level of vacuum equations of motion.
However, they do differ from each other in other field-theory aspects [68].

8.5. Field invariants: Noether currents

According to Noether’s theorem [123], any continuous symmetry of a Lagrangian
leads to a conservation law. We can use this theorem to systematically find the canon-
ical conserved currents for the vacuum electromagnetic field, using each of the three
Lagrangian densities (8.1), (8.4), and (8.8) in Table 17.

Recall the general procedure for obtaining the conserved currents [9, 127]:

1. Suppose one transforms each field a (and possibly the coordinates x) in a La-
grangian density L[a(x),∇a(x)] according to a group transformation Uα,g that
depends on a continuous scalar parameter α, as well as a generating element g

a′(x′) = Uα,g[a(x′)], (8.11a)

x′ = U−1
α,g(x) = Uα,g(x), (8.11b)

∇′ = Uα,g(∇). (8.11c)

If L[a′(x′),∇′a′(x′)] = L[a(x),∇a(x)] then Uα,g is a symmetry of the Lagrangian

density26.

2. The infinitesimal field and coordinate increments are then

δa(g) ≡ ∂αa′(x′)|α=0 = ∂αa
′(x)|α=0 + (δx(g) · ∇)a(x), (8.12a)

δx(g) ≡ ∂αx′|α=0, (8.12b)

and depend on the chosen generator g.

26Note that if both the coordinates x and the fields a are transformed, then one should typically
transform ∇ in the same way as a so that the kinetic terms ∇a transform similarly to a. Since ∇ and x
are inversely related, this implies that x and a should transform oppositely with the group transformation.
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3. The change in the transformed Lagrangian L′ is therefore

∂αL′(x′)|α=0 =

〈
∂L
∂a

δa(g)

〉
0

+
∑
µ

〈
∂L

∂(∂µa)
∂µδa(g)

〉
0

+ (δx(g) · ∇)L, (8.13)

which must vanish from the symmetry. In the presence of multiple independent
fields (such as ae and am), the right hand side contains corresponding terms for
each independent field.

4. After applying the Euler–Lagrange equation (8.9) for each a in the first term (i.e.,
essentially using Maxwell’s equation), (8.13) simplifies to a divergence

∂αL′|α=0 = ∇ · JN (g) = 0, (8.14)

of a conserved Noether current (tensor) that depends on the generator g

JN (g) ≡
∑
µ

γµ

〈
∂L

∂(∂µa)
δa(g)

〉
0

+ L δx(g). (8.15)

5. In any reference frame JN (g) = [ξN (g)+ ~JN (g)]γ0, it follows from this conservation

law that ∂0ξN (g) − ~∇ · ~JN (g) = 0. Hence, we can integrate over the spatial coor-

dinates (assuming ~JN (g) vanishes at infinity) to find a conserved Noether charge

QN (g) =

∫
d3x ξN (g), ∂0 QN (g) = 0. (8.16)

We now use this procedure to find the Noether currents for the various electromag-
netic Lagrangians. Note that it will be sufficient to compute everything using the dual-
symmetric Lagrangian (8.4), and then constrain the final results appropriately. For the
traditional Lagrangian (8.1), we will simply neglect all terms related to the constituent
field Fm associated with magnetic charges. For the constrained Lagrangian, we will en-
force the additional constraint Fe = Fm = F/

√
2, Eq. (8.6), which makes both vector

potentials ae and am correspond to the same electromagnetic field. We will distinguish
the expressions for the constrained Lagrangian using an arrow symbol “→” for clarity in
what follows.

8.6. Canonical energy-momentum stress tensor

We first consider translations of spacetime, which will produce the conservation of
the energy-momentum of the field. Suppose we translate the position vectors x in the
Lagrangian density by a small amount α in an arbitrary direction b, so x′ = x − αb =
exp[−α(b · ∇)]x. This translation leaves the Lagrangian (8.4) invariant since ∇′ = ∇. It
follows from (8.12) that the increment for x is simply b, while the increment for ae is the
corresponding directional derivative

δx[b] = −b, (8.17a)

δae[b] = −(b · ∇)ae, (8.17b)
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and similarly for am. Computing the change from this translation according to (8.13)
thus produces the conserved Noether current

T(b) =
∑
µ

γµ

〈
∂L

∂(∂µae)
(−b · ∇)ae +

∂L
∂(∂µam)

(−b · ∇)am

〉
0

− bL, (8.18)

=
∑
µ

γµ 〈(∂µae)(−b · ∇)ae + (∂µam)(−b · ∇)am〉0 − bL,

= ∇ae · [(−b · ∇)ae] +∇am · [(−b · ∇)am]− bL,

= (b · ∇̇)〈ȧeFe + ȧmFm〉1 −
b

2
(〈F2

e〉0 + 〈F2
m〉0),

→ 1

2
(b · ∇̇)〈ȧeF + ȧmG〉1,

Recall that the overdots indicate that only the potentials are being differentiated. This
conserved tensor T(b) is the canonical energy-momentum stress tensor [68, 127], which
was first derived while preserving dual symmetry by Gaillard and Zumino [112].

The canonical energy-momentum tensor is not symmetric with respect to its adjoint:
T 6= T , which can be obtained as

T (b) = ∂d〈T(d)b〉0 = ∇̇〈(ȧeFe + ȧmFm)b〉0 −
b

2
(〈F2

e〉0 + 〈F2
m〉0), (8.19)

→ 1

2
∇̇〈(ȧeF + ȧmG)b〉0.

This adjoint form involves the scalar (real) parts of total bivector contractions.
Importantly, in contrast to the symmetric energy-momentum tensor in (7.35), the

canonical tensor in (8.18) and (8.19) explicitly involves the vector-potentials ae and am,
making it gauge-dependent. Note also that the first summand (involving Fe and ae) in the
non-constrained tensor is equivalent to the conserved canonical tensor for the traditional
Lagrangian (8.1). Hence, the two summands in the unconstrained tensor are separately
conserved energy-momentum tensors for the two constituent fields Fe and Fm. We detail
the canonical energy-momentum tensor in Table 18 for reference.

For comparison, we also compute the symmetric energy-momentum tensor from (7.35)
explicitly in terms of the constituent fields to find

Tsym(b) = T sym(b) =
1

2
FbF̃ = −1

2
(Fe + FmI)b(Fe + FmI), (8.20)

=
1

2
FebF̃e +

1

2
FmbF̃m.

The cross-term involves a vector minus its reverse, so it vanishes to leave the sum of
the symmetric tensors for each constituent field. This form as a sum is consistent with
the canonical tensors derived from Noether’s theorem. In particular the identity (8.20)

implies that the energy density ε = εe + εm and the Poynting vector ~P = ~Pe + ~Pm
decompose into sums of the corresponding quantities for the constituent fields.

It is instructive to find the difference between the symmetric (Section 7.5.1) and
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canonical energy-momentum tensors:

K ≡ Tsym − T, K ≡ T sym − T . (8.21)

Using the identity (b ·∇)a = b · (∇a) +∇(b · a), as well as the identity 2[b · (∇a)] · (∇a)−
b〈(∇a)2〉0 = −(∇a)b(∇a), we find the explicit forms

K(b) = (Fe · ∇)(ae · b) + (Fm · ∇)(am · b), (8.22)

→ 1

2
[(F · ∇)(ae · b) + (G · ∇)(am · b)],

K(b) = 〈bFe∇̇〉0ȧe + 〈bFm∇̇〉0ȧm, (8.23)

→ 1

2

[
〈bF∇̇〉0ȧe + 〈bG∇̇〉0ȧm

]
.

Since both the symmetric and canonical energy-momentum tensors satisfy the continuity
equations, the difference term K(b) must vanish under a divergence, i.e., it does not
contribute to the energy-momentum transport. Using the vacuum Maxwell’s equation
(5.1), we can make this property apparent by writing (8.22) as a total derivative:

K(b) = −∇[(b · ae)Fe + (b · am)Fm], (8.24)

→ −1

2
∇[(b · ae)F + (b · am)G].

Historically, the canonical energy-momentum tensor T that is produced by Noether’s
theorem was considered problematic due to its non-symmetric and gauge-dependent form
(as well as the enigmatic appearance of the spin in the angular momentum tensor, as we
shall see in the next section). Then, in 1940, Belinfante and Rosenfeld [240–242] suggested
a general symmetrization procedure by adding a “virtual” contribution K (i.e., a total
divergence) to the canonical tensor, which resulted in the familiar symmetric tensor Tsym.
Usually, the symmetric Belinfante–Rosenfeld energy-momentum tensor is considered to
be the physically meaningful tensor, because it is gauge-invariant and is naturally coupled
to gravity [127]. However, recent studies of the local momentum and angular momentum
densities of optical fields have shown that it is actually the canonical momentum density
from T (in the Coulomb gauge) that determines the optical pressure on small dipole
particles or atoms that is observed in experiments [52–54, 59–61, 66, 68–72, 74, 75, 85].
Furthermore, as we will see in the next section, the observable separation of the spin and
orbital angular momenta of light [46, 48–56] is also described by the canonical tensors
rather than the symmetrized Belinfante–Rosenfeld tensors [58, 68]. Notably, this need
for the canonical energy-momentum and corresponding angular momentum tensors has
also been actively discussed in relation to the separation of the spin and orbital angular
momenta of gluon fields in quantum chromodynamics (QCD) [88].

To obtain more familiar expressions for the canonical energy-momentum tensor, we
expand Eqs. (8.18) and (8.19) in terms of a relative frame, using the spacetime splits

Fe,m = ~Ee,m + ~Be,mI (that become constrained to F = ~E + ~BI, with G = FI−1 =
~B − ~EI), as well as the (transverse) Coulomb gauge ae = ~Aγ0 and am = ~Cγ0 for the
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Canonical Energy-Momentum Tensor

T(γ0) = (ε+ ~P )γ0, T (γ0) = (ε+ ~Po )γ0, ~P = ~Po + ~Ps

Traditional: T(b) = (b · ∇̇)〈ȧF〉1 −
b

2
〈F2〉0 T (b) = ∇̇〈ȧFb〉0 −

b

2
〈F2〉0

z = ae ≡ a ~Po = ~̇∇( ~E · ~̇A), ~Ps = −( ~E · ~∇) ~A

F = ∇ae = Fe Tµν =
∑
α

Fαµ∂νaα −
ηµν

4

∑
αβ

FαβF
βα

Dual-symmetric:

T(b) = (b · ∇̇)〈ȧeFe + ȧmFm〉1 −
b

2

[
〈F2

e〉0 + 〈F2
m〉0

]
T (b) = ∇̇〈(ȧeFe + ȧmFm)b〉0 −

b

2

[
〈F2

e〉0 + 〈F2
m〉0

]
z = ae + amI ~Po = ~̇∇

[
~Ee · ~̇A+ ~Bm · ~̇C

]
~Ps = −[( ~Ee · ~∇) ~A+ ( ~Bm · ~∇)~C]

F = ∇z
= Fe + FmI

Tµν =
∑
α

((Fe)
αµ∂ν(ae)α + (Fm)αµ∂ν(am)α)

− ηµν

4

∑
αβ

[
(Fe)αβ(Fe)

βα + (Fm)αβ(Fm)βα
]

Constrained: T(b)→ (b · ∇̇)

2
〈ȧeF + ȧmG〉1 T (b)→ ∇̇

2
〈(ȧeF + ȧmG)b〉0

Fe = FmI →
F√
2

~Po →
1

2
~̇∇
[
~E · ~̇A+ ~B · ~̇C

]
~Ps → −

1

2
[( ~E · ~∇) ~A+ ( ~B · ~∇)~C]

F = GI Tµν → 1

2

∑
α

(Fαµ∂ν(ae)α +Gαµ∂ν(am)α)

Table 18: Canonical energy-momentum stress tensors, conserved by translation symmetry. Unlike the
symmetric tensor in Table 15, the canonical tensor naturally separates the Poynting vector ~P into an
orbital part ~Po and a separate spin part ~Ps that does not contribute to energy-momentum transport (for
all three Lagrangians) [64, 68, 243, 244]. The traditional Lagrangian produces field-asymmetric parts
that are electric-biased [68, 127]. The dual-symmetric Lagrangian in Table 17 adds the complemen-
tary constituent field that is magnetic-biased. Constraining this Lagrangian makes both contributions
describe the same total field [68].
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potentials27:

T(γ0)γ0 = ε+ ~P , (8.25)

T(γi)γ0 = −(~σi · ~̇∇)
[
~Ee · ~̇A+ ~̇A× ~Be + ~Bm · ~̇C − ~̇C × ~Em

]
,

→ −1

2
(~σi · ~̇∇)

[
~E · ~̇A+ ~B · ~̇C + ~̇A× ~B − ~̇C × ~E

]
,

T (γ0)γ0 = ε+ ~̇∇
[
~Ee · ~̇A+ ~Bm · ~̇C

]
, (8.26)

→ ε+
1

2
~̇∇
[
~E · ~̇A+ ~B · ~̇C

]
,

T (γi)γ0 = −~P · ~σi − ~̇∇
[
( ~̇A× ~Be − ~̇C × ~Em) · ~σi

]
,

→ −~P · ~σi −
1

2
~̇∇
[
( ~̇A× ~B − ~̇C × ~E) · ~σi

]
.

Here ε = 1
2 (| ~E|2+| ~B|2) and ~P = ~E× ~B are the energy density and Poynting vector derived

in Section 7.5.1, and we have used the fact that the energy densities and Poynting vectors
for the constituent fields, εe, εm, ~Pe, ~Pm, sum to the total field quantities according to
(8.20): ε = εe + εm, ~P = ~Pe + ~Pm. The vector part of T (γ0)γ0 represents the canonical

(orbital) momentum density ~Po, i.e., T (γ0)γ0 = ε+ ~Po (we describe this quantity below).
The associated Noether charges from (8.16) are the integrals of the energy and mo-

mentum densities over all space, i.e., the total energy and momentum of the field:∫
ε d3x = const,

∫
~P d3x =

∫
~Po d

3x = const. (8.27)

These 4 conserved charges are derived from (8.16) and (8.18) by choosing the generator
b to be the 4 orthogonal vector directions γµ. Note that these equations are valid only
for sufficiently localized square-integrable fields. Importantly, the second equation shows
that the difference between the canonical and Poynting momentum densities (i.e., the
difference between the canoncial and symmetric energy-momentum tensors) does not
affect the integral momentum value.

27Recall from Section 6.2 that this choice of gauge is equivalent to using the gauge-invariant transverse
bivector potential Z = z⊥γ0 in the frame γ0, and then fixing the gauge to make the gauge-dependent
longitudinal spinor potential ψz = z‖γ0 vanish, since it is arbitrary and thus unmeasurable.
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We also expand the correction Belinfante tensor (8.22) and (8.23) in a similar way:

K(γ0)γ0 = 0, (8.28)

K(γi)γ0 = −
[
( ~Ee · ~∇)( ~A · ~σi) + ( ~Bm · ~∇)(~C · ~σi)

]
− 1

2

[
~Ee( ~Ee · ~σi) + ~Be( ~Be · ~σi) + ~Em( ~Em · ~σi) + ~Bm( ~Bm · ~σi)

]
+
[
~Be × ~∇( ~A · ~σi)− ~Em × ~∇(~C · ~σi)

]
,

→ −1

2

[
( ~E · ~∇)( ~A · ~σi) + ( ~B · ~∇)(~C · ~σi)

]
− 1

2

[
~E( ~E · ~σi) + ~B( ~B · ~σi)− ~B × ~∇( ~A · ~σi) + ~E × ~∇(~C · ~σi)

]
,

K(γ0)γ0 = −
[
( ~Ee · ~∇) ~A+ ( ~Bm · ~∇)~C

]
, (8.29)

→ −1

2

[
( ~E · ~∇) ~A+ ( ~B · ~∇)~C

]
,

K(γi)γ0 =
1

2

[
(~σi · ~Ee) ~Ee + (~σi · ~Be) ~Be + (~σi · ~Em) ~Em + (~σi · ~Bm) ~Bm

]
−
[
~σi · ( ~Be × ~∇) ~A− ~σi · ( ~Em × ~∇)~C

]
,

→ 1

2

[
(~σi · ~E) ~E + (~σi · ~B) ~B

]
− 1

2

[
~σi · ( ~B × ~∇) ~A− ~σi · ( ~E × ~∇)~C

]
.

For all the above tensors, the terms involving only the “electric” parts (i.e., Fe, ae, ~Ee,
~Be, and ~A) are equivalent to the corresponding tensors for traditional electromagnetism
[68, 127]. The dual-symmetric Lagrangian adds complementary “magnetic” terms to
these traditional tensors. In turn, the constrained dual-symmetric Lagrangian makes
both these halves correspond to the same field, producing dual-symmetrized canonical
tensors that agree with those obtained very recently in [68].

8.6.1. Orbital and spin momentum densities

In the above expressions for the energy-momentum tensors, it is important to analyze
the energy-momentum densities, which are given by the vector terms in Tsym(γ0)γ0,
Ksym(γ0)γ0, and their adjoints. As we shall see in the next section, these densities will
be responsible for the generation of the angular momentum of the field in a way similar
to (7.43), but with a clear separation of the spin and orbital contributions.

First, observe in (8.28) that the correction to the timelike component vanishes:
K(γ0) = 0, so the canonical tensor T(γ0) yields precisely the same energy-momentum
density as the symmetric tensor Tsym(γ0). That is, both the correct energy density

ε = (| ~E|2 + | ~B|2)/2 and Poynting vector ~P = ~E × ~B are obtained in (8.25). These
quantities satisfy a continuity equation, i.e., the Poynting theorem, or energy-transport
equation [155].

In contrast, the adjoint correction in (8.29) is nonzero. Remarkably, the vector terms
in T (γ0)γ0 and K(γ0)γ0 are the so-called canonical (orbital) and spin momentum densi-
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ties [64, 65, 68, 73, 74]:

~Po = T (γ0)γ0 − ε, (8.30)

= ~̇∇[ ~Ee · ~̇A+ ~Bm · ~̇C],

→ 1

2
~̇∇[ ~E · ~̇A+ ~B · ~̇C],

~Ps = K(γ0)γ0, (8.31)

= −[( ~Ee · ~∇) ~A+ ( ~Bm · ~∇)~C],

→ −1

2
[( ~E · ~∇) ~A+ ( ~B · ~∇)~C].

Together, the orbital and spin momentum densities form the Poynting vector in the
corresponding sector of the symmetric tensor T sym(γ0)γ0: ~Po + ~Ps = ~P . Furthermore,
the wedge products of these momentum densities generate, respectively, the orbital and
spin angular momenta of the field [65, 68, 74, 127, 243, 244], as we shall see in the next
section. It follows from Eq. (8.27) that the spin momentum density does not contribute
to the inetgral momentum of the localized field:∫

~Ps d
3x = 0. (8.32)

Importantly, although it is the total Poynting vector that is gauge-invariant and
coupled to gravity [127], the spin and orbital degrees of freedom manifest themselves
drastically differently in local interactions with matter. Optical and quantum measure-
ments of the momentum density of light reveal the canonical (orbital) momentum (in the
Coulomb gauge) (8.30), while the spin momentum (8.31) remains largely unobservable
and virtual [68, 69, 74, 85]. The appearance of the canonical momentum density in op-
tics can be explained by the fact that it has a clear physical interpretation. Namely, for
monochromatic optical fields, it is given by the local expectation value of the quantum
momentum operator ~̂p ∝ −i~∇, which makes it proportional to the local gradient of the
phase, i.e., the local wavevector of the field [64, 69]. In contrast, the Poynting vector
does not have such intuitively-clear wave interpretation.

8.7. Canonical angular momentum tensor

We are now in a position to consider rotational symmetries of spacetime, which pro-
duces the conservation of the relativistic angular momentum of the field. Suppose that
we perform a general restricted Lorentz transformation (i.e., a spatial rotation, boost, or
combination thereof). As we discussed in Section 3.7, the bivectors themselves are the

generators of this group, so the appropriate transformation is U(a, α) = UαaŨα, where
Uα = exp(αR/2) and R is a unit bivector corresponding to the plane of rotation. A sym-
metry of the Lagrangian follows if we first transform the fields a′ = U(a, α) = UαaŨα
then counter-transform the coordinates x′ = U(x, α) = ŨαxUα, as discussed in (8.11).

From this symmetry transformation, the corresponding increments (8.12) have the
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form

δx(R) = −R · x, (8.33a)

δa(R) = R · a+ [(−R · x) · ∇]a. (8.33b)

The change (8.13) of the Lagrangian thus produces the conserved Noether current

M(R) =
∑
µ

γµ 〈(∂µae)δae(R) + (∂µam)δam(R)〉0 − δx(R)L, (8.34)

= (ae ·R + [(R · x) · ∇]ae) · Fe + (am ·R + [(R · x) · ∇]am) · Fm − (R · x) · ∇L,

→ 1

2
[(ae ·R + [(R · x) · ∇]ae) · F + (am ·R + [(R · x) · ∇]am) ·G] .

This conserved current is the canonical angular momentum tensor, which transforms
bivectors (i.e., Lorentz transformation generators) into vectors (linear momenta), as we
discussed in Section 7.5.2.

After comparing (8.34) to the form of T in (8.18), we can make the simplification

M(R) = L(R) + S(R), L(R) = T(R · x), (8.35)

where

S(R) ≡ (ae ·R) · Fe + (am ·R) · Fm, (8.36)

→ 1

2
[(ae ·R) · F + (am ·R) ·G].

Here, L(R) is the orbital angular momentum of the field (including the boost momen-
tum), which is related to the canonical energy-momentum tensor in the same way as
in Eq. (7.45) for the symmetric (Belinfante–Rosenfeld) tensors. The additional term
S(R) that appears is the spin angular momentum tensor. Importantly, this spin tensor
describes intrinsic (i.e., independent of the radius-vector x) angular momentum, and it
cannot be obtained from the energy-momentum tensor.

The corresponding adjoint angular momentum tensors transform unit vectors b (linear
momentum directions) into bivectors (associated angular momenta), so can be easier to
interpret physically. The symmetric and canonical adjoint angular momentum tensors
have the intuitive forms

M sym(b) = x ∧ T sym(b), M(b) = x ∧ T (b) + S(b) ≡ L(b) + S(b), (8.37)

where the adjoint spin angular momentum tensor is

S(b) = ae ∧ (b · Fe) + am ∧ (b · Fm), (8.38)

→ 1

2
[ae ∧ (b · F) + am ∧ (b ·G))].

We detail these angular momentum tensors in Table 19 for reference.
The appearance of the spin angular momentum in (8.36) and (8.38) indicates the

principal difference between the canonical and symmetrized pictures of the angular mo-
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Canonical Angular Momentum Tensor

M(R) = L(R) + S(R) M(b) = L(b) + S(b)

L(R) = T(R · x) L(b) = x ∧ T (b)

S(γ0) = ~S I−1 L(γ0) = [ε~x− (ct) ~Po ] + ~x× ~Po I
−1

Mαβγ = Lαβγ + Sαβγ Lαβγ = xαT βγ − xβTαγ

Traditional: S(R) = (a ·R) · F S(b) = a ∧ (b · F)

z = ae ≡ a ~S = ~E × ~A

F = ∇ae = Fe Sαβγ = F γαaβ − F γβaα

Dual-symmetric:
S(R) = (ae ·R) · Fe + (am ·R) · Fm

S(b) = ae ∧ (b · Fe) + am ∧ (b · Fm)

z = ae + amI ~S = ~Ee × ~A+ ~Bm × ~C

F = ∇z = Fe + FmI Sαβγ = F γαe aβe − F γβe aαe + F γαm aβm − F γβm aαm

Constrained:

S(R) =
1

2
[(ae ·R) · F + (am ·R) ·G]

S(b) =
1

2
[ae ∧ (b · F) + am ∧ (b ·G)]

Fe = Fm →
F√
2

~S → 1

2
[ ~E × ~A+ ~B × ~C]

F = GI Sαβγ → 1

2

[
F γαaβe − F γβaαe +Gγαaβm −Gγβaαm

]
Table 19: Canonical angular momentum tensors, conserved by Lorentz transformations. Unlike the
symmetric tensor in Table 15, the canonical tensor naturally separates into an extrinsic orbital part L

that contains the wedge product of the orbital part ~Po of the Poynting vector ~P in Table 18, as well as a
separate intrinsic spin part S containing the spin vector ~S. As with the energy-momentum tensor, the
traditional Lagrangian produces electric-biased quantities, while the dual-symmetric Lagrangian adds
complementary magnetic-biased terms. Constraining the Lagrangian symmetrizes the field contributions.
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mentum in field theory. Namely, the Belinfante–Rosenfeld angular momentum tensor
M sym in (8.37) (and Section 7.5.2) is simply the wedge product of the symmetric energy-
momentum tensor T sym with a coordinate radius x, so does not contain any new infor-
mation about local properties of the field. In contrast, the canonical angular momentum
tensor M has both an extrinsic orbital part L and an independent intrinsic spin part S,
which signifies additional degrees of freedom for the field. Critically, the spin and orbital
degrees of freedom are separated only in the canonical picture. As we mentioned before,
these degrees of freedom have been historically considered to have no separate meaning in
both orthodox quantum electrodynamics and classical electromagnetic field theory, but
nonetheless they clearly correspond to separate observable effects in local light-matter
interactions in optical experiments [48–56]. Furthermore, the integral values (Noether
charges) of the spin and orbital angular momenta are separately conserved quantities
[47], and the corresponding Noether currents L and S can also be brought to meaningful
separately conserved forms [58]. Thus, akin to the local momentum densities, the optical
angular momentum properties are described by the canonical Noether currents rather
than the symmetrized Belinfante–Rosenfeld currents [58, 68, 69, 74] (see also [88] for a
discussion of this same issue in QCD).

For simplicity, we only compute the timelike components of these tensors in a relative
frame (in the Coulomb gauge):

M sym(γ0) = [ε~x− (ct)~P ] + ~x× ~PI−1 ≡ ~N + ~JI−1, (8.39)

L(γ0) = [ε~x− (ct)~Po] + ~x× ~PoI
−1 ≡ ~No + ~LI−1, (8.40)

S(γ0) =
[
~Ee × ~A+ ~Bm × ~C

]
I−1 ≡ ~SI−1, (8.41)

→ 1

2
[ ~E × ~A+ ~B × ~C]I−1.

For the orbital angular momentum L, the associated orbital linear momentum ~Po is given
by (8.30), while the energy density ε and full Poynting vector ~P are the usual expres-
sions. Recall from our discussion in Section 7.5.2 that each bivector term in the angular
momentum that involves I generates spatial rotations, while the remaining bivectors
generate boosts. One can then clearly see that the intrinsic spin angular momentum
(8.41) is a purely spatial rotation (around the axis ~S) that appears explicitly only in the
canonical angular momentum tensor [68].

The Noether charges (integral conserved quantities) associated with the symmetric
and canonical angular-momentum tensors are as follows:∫

~J d3x =

∫
(~L+ ~S) d3x = const,

∫
~N d3x =

∫
~No d

3x = const. (8.42)

These 6 conserved charges represent the integral angular momentum and boost momen-
tum of the field, and are derived from (8.16) and (8.35) by choosing the generator R to
be the 6 orthogonal bivector directions γµν . Together with the 4 energy-momentum inte-
grals (8.27) they form 10 Poincaré invariants of the field associated with the 10-parameter

101



Poincaré group of spacetime symmetries [19, 31, 68, 127].
The seeming absence of the intrinsic spin contribution in the Belinfante–Rosenfeld

angular momentum (8.39) causes the so-called “spin-of-a-plane-wave paradox” [74, 127,
243–246]. Namely, the local density of the total angular momentum M sym(γ0) vanishes
in a circularly polarized plane electromagnetic wave, while the spin density S(γ0) is non-
zero, as it should be. The explanation of this paradox lies in the fact that, in contrast
to the extrinsic orbital angular momentum (8.40), the relation between the spin angular
momentum density (8.41) and the spin part of the momentum density (8.31) is essentially
nonlocal : ∫

~S d3x =

∫
~x× ~Ps d

3x, (8.43)

so applies only for sufficiently localized fields, such as wave packets.
We can see that the concepts of the canonical (orbital) momentum and independent

spin density is more physically meaningful and intuitive than the concept of the Poynt-
ing vector and its corresponding Belinfante–Rosenfeld angular momentum. Akin to the
canonical momentum density, the spin angular momentum density has a clear physi-
cal meaning in the case of monochromatic optical fields. Namely, it is proportional to
the ellipticity of the local polarization of the field and is directed along its normal axis.
In other words, the rotation of the electric and magnetic field vectors in optical fields
generates a well-defined spin angular momentum density.

Most importantly for our study, the separation of the spin and orbital degrees of
freedom is closely related to the dual symmetry between the electric and magnetic con-
tributions. The constrained forms of the spin momentum density in (8.41), as well as the
orbital momentum density in (8.30), are dual-symmetric in the fields (as recently em-
phasized in [68]), while the traditional Lagrangian produces dual-asymmetric spin and
orbital characteristics, containing only the electric part (e.g., Fe and ae) [68, 127]. This
asymmetry is closely related to the fact that the spin and orbital degrees of freedom
of electromagnetic waves are coupled to dual-asymmetric matter via the electric-dipole
coupling. Nonetheless, for vacuum fields, the dual-symmetric canonical Noether currents
provide a more natural and self-consistent picture [68].

8.8. Helicity pseudocurrent

In addition to the Poincaré symmetries of spacetime (translations and rotations)
considered above, the Lagrangian Ldual in (8.4) exhibits one more continuous symmetry,
namely, the dual symmetry. Hence, we can determine the proper conserved quantity that
should be associated with the Lagrangian invariance with respect to the dual “electric-
magnetic” rotations ψ = exp(θI/2). Importantly, this symmetry does not exist in the
traditional Lagrangian (8.1) since only the electric vector potential ae is usually consid-
ered, which has no complex phase.

The proper field increment for the transformations a′ = ψaψ∗ is

δa(I) = aI−1. (8.44)

Notably, this field increment is simply the Hodge-dual of a. Noether’s theorem (8.15)
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thus produces a conserved helicity pseudovector current

X(I) =
∑
µ

γµ
〈
(∂µae)aeI

−1 + (∂µam)amI
−1
〉

4
, (8.45)

=
∑
µ

γµ[(∂µae) · ae + (∂µam) · am]I−1,

= ae ∧ (∇ae) + am ∧ (∇am),

= ae ∧ Fe + am ∧ Fm,

= [ae · (FeI−1) + am ∧ (FmI
−1)]I,

→ 1

2
[ae ·G + am · F]I.

Interestingly, after factoring out I from the pseudovector, each constituent potential
becomes coupled to the Hodge-dual of its associated field. If the additional constraint in
the last line is imposed, then the vector potentials effectively cross-couple through the
total field F = GI. We detail this pseudovector current in Table 20 for reference. It is
also worth noting that the Weinberg–Witten theorem [22, 26, 38] that forbids conserved
vector currents for massless spin-1 electromagnetic fields is not violated here, for two
reasons: first, the conserved helicity pseudovector current here is not a grade-1 vector,
but is rather a grade-3 pseudovector; second, as noted by Gaillard and Zumino [112],
this conserved current is not gauge-invariant.

Writing this result in a relative frame using the Coulomb gauge yields

X(I) = (χI + ~SI−1)γ0, χ = ~A · ~Be − ~C · ~Em, (8.46)

→ 1

2
( ~A · ~B − ~C · ~E).

The pseudoscalar term is the helicity density χ of the electromagnetic field. When
integrated over the spatial coordinates, it produces the conserved integral helicity, i.e.,
the corresponding Noether charge (8.16):∫

χ d3x = const. (8.47)

This integral helicity is equal to the difference between the numbers of right-hand and
left-hand circularly polarized photons [78, 98–100, 103–105].

The pseudovector term in the helicity pseudocurrent (8.46) is the helicity flux den-

sity S(γ0) = ~SI−1, which is precisely equal to the spin density (8.41) [68, 105, 106].
Intriguingly, the constrained form of the helicity χ matches the known expression for the
conserved optical helicity in vacuum [68, 78, 99, 103–106]. Indeed, the field-asymmetric
electric part (or magnetic part) is not independently conserved since the corresponding
symmetry in the Lagrangian does not exist unless the dual-symmetric form (8.4) is used.
This fact gives strong indirect support for the requirement of the additional field Fm in
the Lagrangian: without its complementary contribution, the conserved optical helicity
χ is not obtainable as a Noether current from the Lagrangian28.

28We note, however, that by carefully considering the symmetries of the integrated action it is still
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Helicity Pseudocurrent

X(I) = [χI + ~SI−1]γ0

Traditional: z = ae ≡ a, F = ∇ae = Fe

No dual symmetry of the Lagrangian.

Dual-symmetric: z = ae + amI, F = ∇z = Fe + FmI

X(I) = [ae · (FeI−1) + am · (FmI−1)]I

χ = ~A · ~Be − ~C · ~Em

Constrained: Fe → Fm → F/
√

2 = GI/
√

2

X(I)→ 1

2
[ae ·G + am · F]I

χ→ 1

2
( ~A · ~B − ~C · ~E)

Table 20: Canonical helicity pseudocurrent, conserved by the continuous dual symmetry of the vacuum
Lagrangian. This symmetry does not exist for the traditional Lagrangian, for which the conserved integral
helicity can only be obtained from the symmetry of the action [99, 102, 204]. The pseudoscalar part of
the helicity pseudocurrent is the helicity density χ, while the relative pseudovector part is precisely the
spin density ~S from Table 19. Curiously, only the constrained Lagrangian produces the field-symmetrized
expression for the helicity density that is known in the literature [68, 99, 102–106, 214]; this Lagrangian

also produces the corresponding dual-symmetric spin density ~S, which differs from the dual-asymmetric
spin produced by the traditional Lagrangian [68] (see Table 19).
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8.9. Sources and symmetry-breaking

Thus far we have focused on what can be said by constructing the general dual-
symmetric Lagrangian in (8.4) for a pure vacuum field that corresponds to an intrinsically
complex vector potential z with the appropriate gauge freedom. We found that we could
reproduce (and generalize) all the traditional results that stem from the Lagrangian (8.1)
using this ansatz. In particular, we derived dual-symmetrized formulas for the various
canonical Noether currents (i.e., the energy-momentum, angular-momentum, spin, and
helicity currents). However, an isolated vacuum field is an incomplete picture, since such
a field can only be measured through coupling to charged probes.

We now detail how the dual symmetry of the vacuum field is broken by the gauge
mechanism that couples it to charge. We will find that a charge essentially introduces a
preferred angle of rotation for the dual symmetry, and thus will couple only to a (con-
ventional) electric part of the field that is governed by a pure electric vector potential
ae. The magnetic potential am can remain after breaking the symmetry, but it is uncou-
pled to the electric charge and is thus unmeasurable (except by its effect on gravity, in
principle [196]). However, one can speculate that this extra potential is still required for
the complete description of the vacuum field, and may be measurable by its coupling to
other fields not considered in isolated electromagnetism (e.g., gravity).

8.9.1. Gauge mechanism

Physically, a pure vector potential ae acts as a connection field for the proper parallel
transport of a coupled charged field across spacetime, which provides spacetime with
an effective curvature that corresponds to the electromagnetic field F = ∇ ∧ ae [159–
163, 165, 167–170]. This curvature alters the geodesics for the charged field from its
typically straight lines, which can be understood as the effect of the electromagnetic force
on the charged field. The gauge freedom of ae does not affect this induced curvature, so
is not directly observable in terms of this physical force. However, the influence of ae as a
dynamical field can be indirectly observed in other topologically-induced field dynamics,
such as the Aharonov–Bohm effect [164, 166, 247].

From this point of view, a gauge field like ae can be understood as a dynamical
mechanism for effectively warping the spacetime metric by using a simpler flat spacetime
metric as an static embedding space. The curvature of the effective metric then depends
on the charge configuration, in an entirely analogous manner to how the curvature of the
actual spacetime metric depends on the configuration of the energy-momentum density in
the gravitational theory of General Relativity [127, 189]. Indeed, it has been shown that
all currently measured predictions of General Relativity may be reproduced by a simpler
dynamical gauge field reformulation over a flat and static spacetime metric [8, 9, 175]; this
gauge theory of gravity only appreciably differs in its (as-yet-unmeasured) predictions
for spin-fields and torsion, and in its inability to handle global changes to the topology
of spacetime (which may be unmeasurable or unphysical anyway).

possible to derive the conserved integral helicity (8.47) using the traditional Lagrangian [99, 102, 204].
Curiously, this alternative method reproduces the constrained form of the dual-symmetric helicity density
that we derive here, even though the form of the spin vector ~S for the traditional Lagrangian is not the
same as for the constrained dual-symmetric Lagrangian [68].
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To make the gauge origins of electromagnetism evident, we consider a complex scalar
field φ(x) as the simplest prototype for a charged matter spinor field [168]. The com-
plexity of the field is the origin of its charge; indeed, the two possible signs of the charge
correspond to the two possible orientations of the pseudoscalar I of the spacetime 4-
volume.

The field Lagrangian density for this complex field φ must be a proper scalar field so
it must involve only quadratic terms like

L(x) = ∇φ∗ · ∇φ−m2φ∗φ. (8.48)

According to the Euler-Lagrange equations ∇ · (δL/δ∇φ∗) = δL/δφ∗, this bare La-
grangian produces the relativistic Klein-Gordon equation for the scalar field: (∇2 +
m2)φ = 0, as well as its complex conjugate. This Lagrangian is invariant under the
global phase transformation φ(x) 7→ φ(x) exp(θI) (which is in fact identical to the dual-
symmetry phase transformation for the electromagnetic field from Section 5.2).

The idea for a gauge field then arises from the observation that the mass term in-
volving φ∗φ = |φ|2 is also invariant under a local phase rotation of the complex field
φ 7→ exp[qeθ(x)I]φ, but the kinetic term that involves derivatives ∇φ is not. Here
qe = ±|qe| is an appropriate coupling strength (i.e., charge) that also indicates the ori-
entation for the pseudoscalar I. Performing the phase rotation with the derivative yields
∇φ 7→ exp(qeθI)(∇φ + qe[∇θ]φI). The extra term involving the gradient of the local
phase spoils the invariance of the Lagrangian.

To fix this problem, the phase gradient can be absorbed into the definition of an
auxiliary vector field ae that must be the same type of blade as the phase gradient ∇θ
(i.e., a pure vector field). Specifically, we can modify the derivative in the Lagrangian to
a covariant derivative that includes this field

D ≡ ∇− qeaeI. (8.49)

The extra term from the phase rotation of φ can then be canceled by a corresponding
modification of the vector field

ae 7→ ae +∇θ. (8.50)

Since this shift of the vector field must not change anything fundamental, the field ae
must be defined only up to the addition of an arbitrary gradient term, which is the origin
of the gauge freedom of ae. After the introduction of this gauge field, the phase rotation
commutes with the covariant derivative

Dφ 7→ (D − qe[∇θ]I)(exp[qeθI]φ) = exp(qeθI)Dφ. (8.51)

We then rewrite the Lagrangian (8.48) in a properly invariant form by replacing all
bare derivatives with covariant derivatives

L(x) = Dφ∗ ·Dφ−m2φ∗φ (8.52)

= ∇φ∗ · ∇φ+ qew · aeI + (|qeae|2 −m2)|φ|2,
w ≡ (∇φ∗)φ− (∇φ)φ∗ = 2[φ1(∇φ2)− φ2(∇φ1)]. (8.53)
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Note that the addition of the gauge field results in a linear coupling between ae and the
proper 4-current qe w, which is the charge qe times the proper 4-velocity w of the complex
field φ = φ1 + φ2I. The gauge field also renormalizes the mass term; however, this term
is an artifact of the quadratic kinetic term for the scalar field. Spinor fields with linear
kinetic terms (such as the Dirac electron field) do not acquire such a term.

The linear coupling in (8.52) implies that ae must itself be a dynamical field with its
own kinetic term. However, the form of this kinetic term is initially unspecified. Adding
the simplest quadratic contraction of ∇ae as a kinetic term produces the gauge-invariant
scalar electrodynamics Lagrangian

L(x) = Dφ∗ ·Dφ+
1

2
〈(∇ae)2〉0 −m2φ∗φ (8.54)

= ∇φ∗ · ∇φ+
1

2
〈(∇ae)2〉0 + qew · aeI + (|qeae|2 −m2)|φ|2.

If we define the bivector field Fe = ∇ae = ∇ ∧ ae as before, then we find that the
postulated kinetic term for ae in (8.54) is precisely the traditional Lagrangian (8.1).

Applying the Euler-Lagrange equation∇·(δL/δ∇ae) = δL/δae to the gauge-invariant
Lagrangian (8.54) produces Maxwell’s equation (7.1) as the equation of motion for the
dynamical gauge field ae

∇2ae = ∇Fe = je, (8.55)

where the pure vector current (for scalar electrodynamics) has the explicit form

je = qew + ja, ja = [qe |φ|2][qe ae]. (8.56)

The charge-current of the field qew is modified in this case by an extra nonlinear term
ja that couples the charge density qe|φ|2 back to the gauge field itself. Again, this term
does not appear for fields with linear kinetic terms (like the Dirac electron).

Importantly, the extra term that is being canceled by the gauge approach is the
(vector) phase gradient ∇θ arising from the transformation exp(qeθI). As such, only
a pure vector potential ae can be modified as in (8.50) to cancel this extra term, in
accordance with the standard treatment of electromagnetism. An additional trivector
potential amI is thus not motivated by the usual gauge transformation exp(qeθI).

8.9.2. Breaking dual symmetry

Notably, there is no overt restriction from the gauge mechanism itself that forbids
adding a second kinetic term to the Lagrangian that corresponds to the second potential
am (as in (8.4)) and then treating z = ae + amI as an intrinsically complex vector field.
The gauge mechanism only motivates the necessary introduction of ae, but it does not
specify whether ae is the complete gauge field. The gauge mechanism only implies that
if additional symmetry for ae exists in vacuum prior to coupling, then it must be broken
by the coupling to the charged field.

In fact, we already know that the electromagnetic theory does in fact arise from pre-
cisely such a symmetry-breaking process. In the Glashow-Weinberg-Salam electroweak
theory [248–250] the vector potential ae is itself a hybridization of two massless vector
boson fields w0 and b0 that each obey Lagrangians 〈(∇w0)2〉0/2 and 〈(∇b0)2〉0/2 that are
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Figure 7: Breaking dual symmetry. The neutral complex vector potential z = b0 + w0I that includes
the neutral b0 and w0 bosons in the electroweak theory is dual-symmetric in vacuum, meaning that it
is invariant under any global phase rotation z 7→ z exp(θI). The Brout-Englert-Higgs-Guralnik-Hagan-
Kibble (BEHGHK, or Higgs) mechanism fixes a particular (Weinberg) angle θW that couples the field
to a purely electric source, breaking this dual symmetry. The vector part ae = 〈z exp(θW I)〉1 of the
doublet becomes the electric vector potential for the photon (γ) that couples to vector electric source je.
The pseudovector part amI = 〈z exp(θW I)〉3 acquires mass from the Higgs mechanism to become the
neutral (Z0) boson of the weak force, which is the analogy to the magnetic vector potential that appears
in the dual-symmetric formalism.

identical in form to the traditional electromagnetic Lagrangian (8.1). After construct-
ing a complex boson field for this electroweak doublet z = b0 + w0I, it then behaves
identically to the (unconstrained) dual-symmetric formalism explored in this report. In
particular, the sum of Lagrangians for b0 and w0 can be rewritten as the single complex
field Lagrangian 〈(∇z)(∇z∗)〉0/2, which is precisely our dual-symmetric form (8.4) mo-
tivated by the intrinsic complex structure of spacetime. Furthermore, there is evidence
that performing a gauge-procedure (as in the previous section) to convert the global
dual symmetry of this doublet to a local symmetry in its own right recovers additional
structure of the electroweak theory [196].

For the electroweak theory, the Brout-Englert-Higgs-Guralnik-Hagan-Kibble (BE-
HGHK, or Higgs) mechanism [251–253] is responsible for breaking the dual symmetry
of this doublet, as schematically shown in Fig. 7. In effect, the gauge coupling to the
scalar BEHGHK boson (Higgs) field fixes a specific dual symmetry (Weinberg) rotation
angle θW that fixes ae = 〈z exp(θW I)〉1 and am = 〈z exp(θW I)〉3I−1 as the appropriate
matter-coupled vector fields. The field ae becomes the massless electromagnetic field
vector potential for the photon (γ), while the field am acquires mass and corresponds to
the neutral (Z0) boson of the weak force. The details of this emergent coupling are much
more involved than the simple electromagnetic model considered here, but the essential
character of the broken dual symmetry is identical.

We can therefore understand the dual-symmetric formulation of electromagnetism
as a simpler model of the neutral vacuum vector boson fields before the symmetry is
broken by coupling to matter. In this dual-symmetric model, the gauge field am is not
coupled to matter at all, but is still left over as a massless part of the total vacuum
field. It is needed to preserve the symmetry of the vacuum, which a priori has no
preferred reference axis for the dual-symmetric rotation exp(θI). The introduction of
charged matter breaks this symmetry to force a particular reference axis for the dual
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symmetry, exactly as discussed in Section 7.4. It follows that the only quantities that
can be measured (according to this model) from all the calculated conserved quantities
will be the electric quantities (involving the potential ae, its field Fe, and the source
je) just as with the standard formulation of electromagnetism. This does not, however,
prevent the magnetic parts (am,Fm,jm) from being measurable in principle using other
interactions that are not considered in this simple model, such as the additional isospin
interaction that is acquired by the neutral (Z0) boson that mediates the weak force.

The more remarkable note for the purposes of this report is that this dual-symmetric
structure appears almost entirely from the assumption of spacetime. It is the geometry
of spacetime itself that produced the intrinsically dual-symmetric bivector field F and
associated complex vector potential z, as well as the especially simple forms of Maxwell’s
equation ∇F = ∇2z = j and the Lorentz force law dp/dτ = 〈Fj〉1. The use of spacetime
algebra makes the geometric origin of all these quantities especially apparent.
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9. Conclusion

It requires a much higher degree of imagination to understand the electromagnetic

field than to understand invisible angels. . . . I speak of the ~E and ~B fields and
wave my arms and you may imagine that I can see them . . . [but] I cannot really
make a picture that is even nearly like the true waves.

Richard P. Feynman [254]

In this report we have presented a detailed introduction to the natural (Clifford) al-
gebra of the Minkowski spacetime geometry, and have demonstrated its practicality and
power as a tool for studying electromagnetism. Spacetime algebra not only preserves
the existing electromagnetic formalisms, but also generalizes and unifies them into one
comprehensive whole. This unification produces tremendous insight about the electro-
magnetic theory in a comparatively simple way. Below, we briefly review a few of the
most important features that have emerged from the spacetime algebra approach, noting
that we have also summarized a more complete list in the introductory Section 1.2, which
we encourage the reader to review.

In particular, we emphasize that spacetime has an intrinsic complex structure, where
the ad hoc scalar imaginary i is replaced with the physically meaningful unit 4-volume
(pseudoscalar) I. Within this algebra, the electromagnetic field is an intrinsically com-

plex bivector field F = ~E + ~BI on spacetime, which is a reference-frame-independent
generalization of the Riemann-Silberstein complex field vector. Similarly, the vector
potential for this field becomes complex, with associated complex bivector and scalar
(Hertz) potentials. In all these representations, Maxwell’s equations reduce to a single,
and inexorable, equation. Similarly, the proper Lorentz force reduces to the simplest
contraction of a current with the field, while the symmetric energy-momentum tensor is
the simplest quadratic function of the field (identical in form to the energy-momentum
current of the relativistic Dirac electron) and produces the associated angular momentum
tensor as a wedge product.

The global phase of each complex field representation is arbitrary in vacuum (just
like the global phase of a quantum wavefunction), and is responsible for the continuous
dual (electric-magnetic field-exchange) symmetry of the vacuum electromagnetic field.
Adding a source breaks this dual symmetry of the vacuum; however, making the charge
of the source similarly complex (with separate electric and magnetic parts) preserves a
similar global phase symmetry of the total system. Choosing the source to be purely
electric fixes this arbitrary global phase by convention, but the same physics will be
described for any choice of global phase, which will produce equivalent descriptions that
use both electric and magnetic charges. The dual symmetry of the complex field can be
broken, however, by coupling to matter or other fields (as is the case in the electroweak
theory).

In the Lagrangian treatment, the dual symmetry of the vacuum motivates the complex
vector potential to be the primary dynamical field. Its constituent “electric” and “mag-
netic” parts effectively satisfy two separate traditional electromagnetic Lagrangians. As
such, the traditionally conserved Noether currents (i.e., the canonical energy-momentum
and angular-momentum tensors) are reproduced, but in an appropriately field-symmetrized
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form. The additional dual symmetry also immediately produces a conserved helicity cur-
rent that cannot be easily derived in the traditional electromagnetic theory. Notably,
the canonical Noether currents explictly separate the orbital and spin parts of the local
linear and angular momentum densities of the field, which are currently under active
discussion in relation to both theoretical and experimental aspects of optics, QED, and
QCD.

We also emphasize that the representation-free nature of spacetime algebra exposes
deep structural relationships between mathematical topics that are seemingly discon-
nected in standard approaches. A detailed list of the remarkable and beneficial features
of the spacetime algebra approach is provided in Section 1.2. Some of the most poignant
examples of this unification include:

• The Hodge-star duality operation from differential forms is equivalent to multipli-
cation by I−1.

• The 4 Dirac matrices γµ from the relativistic electron theory are representations of
unit 4-vectors in spacetime algebra (which require no such matrix representation).

• The 3 Pauli matrices ~σi = γiγ0 are representations of relative spatial directions,
which are unit plane segments (bivectors) that drag the spatial coordinates γi along
the proper-time direction γ0.

• Their duals ~σiI
−1 are spacelike planes that are equivalent to the quaternions.

(There is thus nothing intrinsically quantum mechanical about any of these ob-
jects.)

• The commutator brackets of these 6 bivectors are precisely the Lie algebra of the
Lorentz group, and reduce to the Pauli spin commutation relations in a relative
frame.

• The spin commutation relations are simply the Hodge-duals of the usual 3-vector
cross product relations.

• Exponentiating the bivector for a spatial plane produces a rotation spinor, while
exponentiating a timelike plane produces a Lorentz boost spinor.

• These spinors can Lorentz-transform any geometric object with a double-sided
product, in precisely the same way as the unitary transformations familiar from
quantum mechanics, or the quaternionic formulation of spatial rotations.

It is our hope that this review will prompt continued research into the applications
of spacetime algebra for both electromagnetic theory and other relativistic field theo-
ries. We feel that the language of spacetime algebra is practical, mature, and provides
tremendous physical insight that can be more difficult to obtain when using other math-
ematical formulations of spacetime. Moreover, we feel that it is a natural extension of
the existing electromagnetic formalisms in use, which gives it the distinct advantage of
preserving (and augmenting) prior intuition and experience gained from working with
those formalisms.
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[145] H. Poincaré, Sur la dynamique de l’électron, Rend. Circ. Mat. Pal. 21 (1906) 129–176.
[146] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phy. 322 (1905) 891–921.
[147] H. Minkowski, Das Relativitätsprinzip, Ann. Phys. 352 (1907) 927–938.
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