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On the benefits of coordinated punishment 
 

 
 
 
 
 
 
 

Abstract 
 

Coordinated punishment occurs when punishment decisions are complements; i.e., this 
punishment device requires a specific number of punishers to be effective; otherwise, 
no damage will be inflicted on the target. While societies often rely on this punishment 
device, its benefits are unclear compared with uncoordinated punishment, where 
punishment decisions are substitutes. We argue that coordinated punishment can 
prevent the free-riding of punishers and show, both theoretically and experimentally, 
that this may be beneficial for cooperation in a team investment game, compared with 
uncoordinated punishment.  
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"If we are together nothing is impossible.  

If we are divided all will fail." 

 Winston Churchill 

 

1. Introduction 

 

      United we stand, divided we fall. The maxim, which seems to stem from one of the Aesop’s fables, 

highlights that members of a group may need to coordinate their actions in order to succeed.1  This is 

indeed a pervasive idea; e.g., when members of a group want to inflict punishment on someone outside 

the group. There are numerous examples of what we call coordinated punishment; take, for example, 

workers who decide to go on strike to negotiate agreements on pay and conditions with their employers 

or the boycott of consumers who want to express their discontent with unethical practices by corporations. 

In all these settings, the need to achieve a certain threshold of punishers to inflict any real damage on the 

target arises naturally. There are also plenty of examples of institutions or organizations that have 

developed norms based on coordinated punishment to punish deviant or inconvenient behaviour of group 

members. Historical evidence includes the institution of ostracism in ancient Athens, the punishment of 

non-compliant-norm members in rural areas in Africa or the expelling of members in medieval guilds. In 

modern societies, there are also many instances of coordinated punishment in institutions such as 

partnerships, professional societies or unions, which require complementarities in the punishment 

decisions of their group members for punishment to have an effect on the target.  In many cases, the need 

to achieve a certain threshold of punishers is indeed extreme in that unanimity is required to inflict any 

damage on the target. 

 

While there are numerous examples of coordinated punishment in a variety of settings, most current 

models and experimental work usually consider that punishment is uncoordinated. In particular, it is often 

assumed that punishment decisions are substitutes and punishment is carried out on an individual basis. 

Arguably, this way of modelling punishment leaves unexplained a plethora of situations in which 

members of a group cannot inflict any damage by their own. Why does coordinated punishment exist? Is 

there any benefit of coordinated punishment with respect to uncoordinated punishment?  

 

This paper aims to provide a theoretical explanation and an experimental validation to show the better 

performance of coordinated punishment compared with the traditional uncoordinated punishment. We 

focus our analysis on a relevant kind of asymmetric social interactions based on specialization and 

division of labour: a team investment game. This game can be thought as a hold-up game under 

incomplete contracts with several investors.  

 

	
1 Read “The Four Oxen and the Lion” (Aesop, 1867).  
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Team investment situations where the proceeds of aggregate investment of the team members (investors) 

is under the control of another agent (the allocator) are quite ubiquitous in real economies. A prominent 

example appears in the labour market. In many employment relations, a group of employees is hired by 

a single employer (the firm). The labour contract in these cases is highly incomplete and usually assigns 

significant authority to the employer. This asymmetric distribution of decision rights puts the employees 

in danger of being exploited, leading to inefficiencies if they refuse to cooperate (Gambetta 2000). In 

team investment situations, investors (employees) face the collective action problem of credibly 

threatening to punish opportunistic behaviour from the allocator (the firm). In this setting, players differ 

in their roles and strategies, and may have different opportunities to punish. Only investors can punish. 

The team investment game is therefore well suited to examine how coordinated and uncoordinated 

punishment work in an asymmetric situation. A relevant question is when, and under which conditions, 

will coordinated punishment perform better than uncoordinated punishment in the sense of yielding 

higher levels of joint investment and boosting the return set by allocators.2  

 

One possible reason for the better performance of coordinated punishment, according to some authors 

(Boyd et al. 2010, Olcina and Calabuig 2015) is that coordinated punishment is associated to increasing 

returns to scale. This feature implies that the individual cost of punishment decreases with the number of 

punishers and/or the effectiveness of the punishment (i.e., the damage inflicted on the target) increases 

exponentially with the number of punishers. This, in turn, calls for modelling coordinated and 

uncoordinated punishment as two different technologies as it is implicitly assumed that individuals using 

coordinated punishment can inflict the same damage at a lower cost, or more damage at the same cost 

when they punish together as a group than when they do it individually (fighting their own battles). As a 

result, the benefits of coordinated punishment compared with uncoordinated punishment could be 

explained by a higher effectiveness of the punishment (or a more beneficial “fine-to-fee” ratio) in the 

former device.3 In this paper, we show the benefits of coordinated punishment even if the successful 

coordination does not result in “increasing returns to scale”, although this feature enlarges the benefits of 

coordinated punishment.   

 

We rely on a team investment game with two investors and one allocator (Cassar and Rigdon 2011, Olcina 

and Calabuig 2015). Investors can be considered to be the workers of a firm or partners in a joint venture 

who choose whether or not to exert effort in a joint project, while the allocator controls the proceeds of 

the investment and decides how to share the returns of investment. We assume that investment decisions 

are complements (e.g., Harrison and Hirshleifer 1989, Van Huyck et al. 1990, Brandts and Cooper 2006, 

Riedl et al. 2015) and the allocator values the investors’ decisions equally. This, in turn, implies that the 

allocator will return the same amount to them if there is joint investment. Investors decide whether or not 

	
2 This strategic situation clearly differs from a public good game in which all players have the same strategies and (usually) the 
same opportunities to punish.  
3	There is evidence that the effectiveness of the punishment influences behavior; e.g., in the public good (Nikiforakis and Normann, 
2008) or the investment game (Rigdon, 2009).	
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to punish the allocator observing the returned amount. Our design is deliberately simple as we would like 

to compare the performance of coordinated and uncoordinated punishment in a “small numbers” scenario 

with few investors, when we avoid any interference from other motivations such as envy or inequality 

aversion among investors. In our paper, we consider three different settings depending on how the 

decision to punish affects the earnings of the allocator.  If punishment is uncoordinated, the allocator’s 

earnings are reduced by 30% (60%) if one (both) of the investors decides (decide) to punish.  If 

punishment is coordinated, investors reduce the allocator’s earnings if and only if they both decide to 

punish; i.e., the allocator’s payoffs are not reduced if only one investor punishes, while the allocator’s 

earnings are reduced by 60% if both investors punish. This, in turn, incorporates the idea that punishment 

requires coordination to be effective. Finally, we consider the case in which investors can reduce the 

allocator’s earnings by 80%, therefore coordinated punishment is more effective than uncoordinated in 

this setting if both investors punish. This later condition allows us to examine a setting in which 

coordinated punishment decisions exhibit returns to scale. 

 

Our theoretical model builds on the assumption that individuals display social preferences (Bolton and 

Ockenfels 2000, Fehr and Schmidt 1999, Charness and Rabin 2002). In particular, we propose a two-

sided incomplete-information model with two possible types of investors (selfish and inequality-averse) 

and two possible types of allocators (fair-minded and profit-maximizer). We assume that selfish investors 

focus on their own material payoffs and consequently never punish, while inequality-averse investors care 

about the return of the investment and will be willing to punish the allocator if they do not receive a fair 

return.4 The fair-minded allocator has a dominant strategy that consists in choosing the fair return, while 

the profit-maximizer allocator has to choose between returning nothing (and then being possibly 

punished) or returning the minimum positive amount that prevents him from being punished.  

 

We prove the existence of an efficient pooling equilibria in which both the selfish and the inequality-

averse investor decide to invest in equilibrium. We also show that joint investment is more likely to occur 

in the efficient pooling equilibria when punishment requires coordination and this effect is amplified for 

increasing returns to scale. The rationale is that requiring coordination prevents the free-riding behavior 

of inequality-averse investors in the punishment stage. In equilibrium, allocators anticipate that (for 

certain values of the proportion of inequality-averse investors) investors will be more willing to punish if 

punishment is coordinated, thus they return a larger amount when punishment is coordinated than when 

it is uncoordinated. We focus on this efficient static equilibrium in order to characterize the behavior of 

the players in the finitely repeated game framework, using Folk theorems (Benoit and Krisna 1985, 

Friedman, 1971, Fudenberg and Maskin, 1986). 

 

	
4 Inequality-averse investors consider that it is fair to receive at least half of the surplus that is generated after their investment 
decision. Our results, however, are robust to other definitions of fair return as discussed in Section 3.  
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We conduct a series of laboratory experiments to test the predictions of our model.5 Since our examples 

on labor conditions and punishment as an institutional feature of some groups can be associated to long-

term relationships, our experiment relies on a fixed-matching protocol in which the same subjects interact 

repeatedly. This feature of the design allows subjects to undertake actions on the benefits of others so as 

to obtain a direct or indirect benefit in their future interaction (Trivers 1971, Axelrod and Hamilton 1981, 

Leimar and Hammerstein, 2001), which seems to be likely to occur in the workplace.6  

 

Overall, our experimental data lend support for the benefits of coordinated punishment in that we observe 

more joint investment and higher returns when punishment is coordinated. We also find that increasing 

returns to scale in coordinated punishment help in fostering the level of joint investment but does not 

seem to have an effect on the return. This, in turn, shows that the benefits of coordinated punishment may 

be observed even if returns to scale are absent. One might expect that these findings translate into 

efficiency gains when punishment is coordinated. Empirically, this does not appear to be the case when 

we look at the sum total payoffs across treatments, which does not seem to differ across treatment. This 

occurs because joint punishment is used more frequently when punishment is coordinated, thus there is a 

significant surplus destruction in this setting. However, we also find that the final payoffs of investors 

and allocators are below their initial endowments (i.e., there are loses from trade) when punishment is 

uncoordinated. This does not occur when punishment is coordinated.  

 

While we are mainly interested in showing the benefits in the team investment game of the coordinated 

punishment compared with the uncoordinated punishment, our paper includes a second study where we 

test how each punishment device performs compared with a setting in which punishment is not possible. 

One relevant finding in the dyadic version of the investment game (Berg et al. 1995) is that allowing for 

the possibility of punishment can have a detrimental effect on behavior. In particular, Fehr and 

Rockenbach (2003), Fehr and List (2004) and Houser et al. (2008) provide evidence that the possibility 

of punishment leads to lower returns from allocators, while Rigdon (2009) or Calabuig et al. (2016) show 

that allowing for punishment might not increase the level of investment, except if the the fee-to-fine ratio 

or the investor’s capacity of punishment is sufficiently high. The results of our second study are intended 

to shed light on whether these results hold in a team investment game. Our main finding is that the 

detrimental effect of punishment mainly occurs if punishment is uncoordinated, while we do not find any 

evidence that coordinated punishment is worse than no allowing for punishment if the former device 

exhibits returns to scale.  

 

	
5	Experimental evidence can also be helpful to understand behavior in the workplace (Falk and Fehr 2003, Charness and Kuhn 
2010, Herbst and Mas 2015),	
6	In addition, our matching protocol allows us to examine the convergence to the theoretical prediction.	
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To our knowledge, we are the first to investigate the effect of coordinated punishment in an asymmetric 

situation like the team investment game.7 The most closely related works are the theoretical models of 

Boyd et al. (2010) and Olcina and Calabuig (2015), who highlight the benefits of coordinated punishment 

in an evolutionary setting. Boyd et al. (2010) consider a prisoners’ dilemma and show that cooperation 

can be sustained as an equilibrium outcome when punishers divide the cost of the punishment if they 

coordinate their actions and decide to punish. In the model of Olcina and Calabuig (2015), there are two 

investors and one allocator who interact in an overlapping-generations dynamic model. As in Boyd et al. 

(2010), it is possible to sustain a cooperative equilibrium in the presence of coordinated punishment when 

the (individual) cost of punishment decreases as the number of punishers increases. In their setting, 

however, there is also the possibility of peer punishment, since investors can punish each other after 

observing the punishment decision of the other team members. Our contribution to this literature is to 

directly compare the use of coordinated and uncoordinated punishment in an asymmetric situation like 

the team investment game, which also resembles a hold up team situation. In this vein, we show that 

coordinated punishment may be beneficial for the joint investment even if subjects do not divide the cost 

of the punishment and peer-punishment is not allowed.  In addition, we complement our theoretical 

predictions with empirical evidence gleaned from a laboratory experiment that attempts to show the 

benefits of coordinated punishment in a controlled environment. The findings in our experiment dovetail 

with other studies that rely on the idea that punishment may require coordination; e.g., in the form of 

voting. Tyran and Felds (2006), Casari and Luini (2009), Ertan et al. (2009), Putterman et al. (2011), 

Noussair and Tan (2011) or Van Miltenburg et al. (2014), among others, allow subjects to vote over 

different punishment schemes in a Public Goods Game. Their results suggest that this usually results in 

efficiency gains because subjects tend to punish below-average contributors and strong cooperators are 

barely punished. Our findings that subjects tend to free-ride on the punishment decisions of others when 

punishment is uncoordinated but are more likely to punish together when punishment is coordinated relate 

also our paper to other studies that discuss the importance of conditional punishment in the public good 

game (Cinyabuguma et al. 2006, Casari and Luini 2009, Kamei 2014). Key to our discussion is the 

fundamental difference between the public good game (where players have symmetric roles and identical 

opportunities to punish) and the team investment game (in which players differ in their roles and 

opportunities to punish). Further, we do not allow for voting but instead consider that coordinated 

punishment occurs when players undertake an individual decision that is costly to them (e.g., they decide 

to go on strike).  

 

The rest of the paper is organized as follows. Section 2 presents our experimental design. We present our 

theoretical predictions in Section 3 and summarize our findings in Section 4. We compare our results with 

coordinated and uncoordinated punishment with a treatment without punishment in Section 5. Section 6 

	
7	As	noted	above,	there is an existing body of works that systematically looks at the effects of punishment on the investment game 
(see, among others, Fehr and Rockenbach 2003, Fehr and List 2004, Houser et al. 2008, Rigdon 2009, Calabuig et al. 2016). Yet 
these papers rely on the dyadic version of the game, thus they are not well-suited to compare the effectiveness of uncoordinated 
and coordinated punishment in a team investment situation.	
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concludes. The proofs are relegated to the online appendix. This contains additional material such as the 

experimental instructions or further analysis of our data. 

 

 

2. The team investment game with punishment 

 

2.1. Experimental Design 
 

Investment game.—  

We consider a team investment game with two investors and one allocator, as this is the minimal 

setting in which coordinated punishment can be studied in an asymmetric situation (Cassar and Rigdon 

2011, Olcina and Calabuig 2015). Each player is initially endowed with 20 Experimental Currency Units 

(ECUs hereafter). They interact as follows: 

• STAGE 1 (Investment). Investors choose simultaneously whether or not to invest in a joint project. 

The investment decision is binary decision that can be interpreted as investors putting effort or not 

in a joint project, or hiring an external agent. The individual cost of the investment equals 5 ECUs. 

We focus on the case in which decisions are complements (e.g., Harrison and Hirshleifer 1989, Van 

Huyck et al. 1990, Brandts and Cooper 2006, Riedl et al. 2015); as a result, the game ends if none 

of the investors (or only one of them) decide to invest.8 When both investors decide to invest, the 

game proceeds to stage 2.  

• STAGE 2 (Return). The joint investment results in a surplus of 30 ECUs. In Stage 2, the allocator 

chooses the amount of ECUs to be returned to the investors. As the investment of each investor is 

equally valuable, we impose that any return	" ∈ [0,30] will be equally divided between the two 

investors, thus each of them receives "/2.9 The allocator adds the amount he keeps (30 -	") to his 

initial endowment of 20 ECUs.  

• STAGE 3 (Punishment). Investors are allowed to punish the allocator upon observing the returned 

amount. The punishment decision has a cost of 5 ECUs for each investor and it can be interpreted as 

investors deciding whether or not to protest or go on strike. This cost is paid regardless of the 

punishment inflicted to the allocator, whose payoffs are reduced in a given share 	,! ∈ [0,1 ], 

depending on the number of investors that punished, . ∈ {0, 1, 2}. If none of the investors decide to 

punish, then no damage is inflicted to the allocator (," = 0). The reduction in the allocator’s payoffs 

if only one or both investors punish (,! for . = {1, 2}) varies across treatments. 

 

	
8 We are interested in analyzing group punishment and the inclusion of some subgames in which we only allow to punish the 
investor who decides to invest would not add to the analysis. 
9 This feature of our design prevents also that investors compare themselves before deciding whether or not to punish the allocator; 
i.e., punishment decisions are independent of the amount received by the other investor.  
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Treatments.— We summarize our treatment conditions in Table 1.  

 

Table 1. Summary of treatment conditions (reduction in allocators’ payoff (,!)) 

Treatment None of the investors 
punish (,") 

Only one investor 
punishes (,#) 

Both investors  
punish (,$) 

UP30,60 0% 30% 60% 

CP0,60 0% 0% 60% 

CP0,80 0% 0% 80% 
Note. Punishment has an individual cost of 5 ECUs and it is only allowed in Stage 3 if both investors decided to invest in Stage 1. In all 
the three treatments, investors have to pay the individual cost of punishment if they want to reduce the allocator’s payoffs, regardless of 
whether or not the earnings of the allocator are reduced. 
 

In our first treatment (UP30,60), punishment is uncoordinated. If only one of the investors decides to 

punish, the allocator’s payoffs are reduced by ,#= 0.30. If both investors decide to punish, the allocator’s 

payoffs are reduced by ,$ = 0.60.  

In our second treatment (CP0,60) punishment is coordinated and the allocator’s payoffs are reduced by 

,#= 0 [,$ = 0.60] if one [both] of the investors decides [decide] to punish. Hence, our second treatment 

incorporates the idea that investors need to coordinate their actions to reduce the allocator’s payoffs.  

Our third treatment (CP0,80) incorporates the two characteristic aspects of coordinated punishment; i.e., 

the fact that coordination is needed and the increasing returns to scale. In this treatment, the allocator’s 

payoffs are reduced by ,#= 0 [,$ = 0.80] if one [both] of the investors decides [decide] to punish. 

One aspect to be noticed is that the value of ,!  can be interpreted as the capacity of punishment of 

investors, as this denotes how their punishment decisions affect the earnings of the allocators. In our 

setting, this capacity of punishment ,! denotes the share that investors can destroy from allocators and it 

is independent on the amount that allocators return. However, there is a direct relationship between the 

capacity of punishment of investors and the fine-to-fee ratio or the effectiveness of punishment, which 

can be defined as the factor by which punishment reduces the allocator’s payoff (Calabuig et al. 2016). 

In our setting, if the investment is successful and the allocator returns nothing, the payoffs would be πI = 

15 ECUs for investors and πA = 50 ECUs for allocators. If any investor punishes in the uncoordinated 

treatment UP30,60, she pays 5 ECUs and the allocator’s payoffs are reduced by 0.3 (50) = 15 ECUs. This 

implies that the fine-to-fee ratio is equal to 15/5 = 3 in the UP30,60 treatment.10 In the CP0,60 treatment, the 

fine-to-fee ratio would be equal to 0 (3) when only one investor punishes (both investors punish), 

respectively. This occurs because any investor is unwilling to reduce the earnings of the allocator by her 

own, but when they both punish, they reduce the earnings of the allocator by 0.6 (50) = 30 ECUs (at the 

cost of 10 ECUs). Finally, the fine-to-fee ratio would be 4 or below in the CP0,80 treatment, which implies 

	
10 This factor is frequently used in other experiments that allow for punishment in the investment game (Charness et al. 2008, 
Rigdon 2009). This factor is endogenous determined in our setting, as the final reduction in the allocators’ earnings depends on 
the returned amount. To see this, note that if the allocator is punished after returning 5 ECUs to each investor in the UP30,60 
treatment the reduction in her payoffs would be 0.3 (50 – 10) = 12 ECUs, thus the fine-to-fee ratio would be 12/5 = 2.4. If the 
allocator returns 10 ECUs to each investor, the fine-to-fee ratio would be 0.3 (50-20)/5 = 1.8. As a result, the fine-to-fee ratio 
decreases as the return of the allocator increases (Calabuig et al. 2016 for further discussion).  
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that investors have a higher capacity of punishment in this treatment because of the existence of increasing 

returns to scale. We decided to keep the capacity of punishment constant instead of fixing the fine-to-fee 

ratio to avoid that the capacity of punishment of investors decreases when allocators return very few since 

this is precisely the case where investors may have more motives to punish. Other studies in which there 

is a variation of the fine-to-fee ratio within the same treatment or across treatments are Fehr & Gächter 

(2000) or Cassari (2005). 

 

Payoffs.—Let the dummy 1i take the value 1 if investor i decides to invest and 0 otherwise, while the 

dummy 1J  stands for the case of joint investment; i.e., this takes the value 1 when both investors decide 

to invest; otherwise 1J  = 0. Similarly, let the dummy 1p denote whether investor i decides to punish or 

not.  

The final payoff of each investor, πi is determined as follows: 

 

(1) πi =  3
20 − 5	1% 															 if	1& = 0

15 + :
'
$; − 5	(1() if	1& = 1

 

 

The final payoff for the allocator, πA, is determined as follows: 

 

(2) πA =  <
20																										 if	1& = 0
(50 − ")(1 − ,!) if	1& = 1   

 

where ,! = {,", ,#, ,$} denotes the reduction in the allocator’s payoff after the punishment decisions (see 

Table 1). 

 

 

2.2. Procedures 
 

      We recruited a total of 225 subjects (75 per treatment) to participate in six different sessions, which 

were conducted at the LINEEX (University of Valencia). Subjects were undergraduate students with no 

experience in similar experiments. The experiment was conducted using the z-Tree software 

(Fischbacher, 2007), and no subject participated in more than one session. Subjects were recruited using 

the electronic recruitment system of the laboratory. 

In our experiment, subjects played the team investment game for 15 periods in a partners matching 

protocol with a subject’s role, investor (Player A) or allocator (Player B), being fixed during the whole 

session.11 In each period, investors had to choose whether or not to invest in a joint project. We employed 

	
11 In the experiment, the repeated game was preceded by a practice round for subjects to get familiar with the software. Subjects 
were re-matched after the practice round to play the repeated game, where we fixed the groups. At the end of the experiment, 
subjects were paid for their practice round and one randomly selected period of the repeated game. We observe no difference 
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the strategy method for allocators by asking them the amount of money that they would like to return if 

the investment turned out to be successful in each period. We decided to employ this method to have 

more observations for the case in which we could not observe joint investment. In addition, there is 

evidence that the strategy method does not affect the behavior of allocators in the investment game 

compared with the direct method (see the meta-analysis in Johnson and Mislin, 2011). Importantly, the 

decision of allocators was binding and disclosed to investors in the case of joint investment. More 

precisely, a screenshot at the end of each period informed subjects about the decisions of each investor in 

the group, the amount returned by the allocator (if there were joint investment) and the punishment 

decisions of investors when punishment was feasible.12  

 

All the amounts referred to ECUs in our experiment, which were transformed into Euros to pay subjects 

(3 ECUS = 1€). On average, each person received about 16€ for a 60 minutes session, including a 5€ 

show-up fee. A questionnaire at the end of the session was used to elicit, among other characteristics, the 

subjects’ gender, age, cognitive abilities (Frederick, 2005), risk aversion (Gneezy and Potters, 1997) or 

trusting behavior (Glaeser et al. 2000). We shall use these variables as controls in our econometric 

analysis. The Appendix B contains the translated version of the experimental instructions, the screenshots 

of the experiment and the complete questionnaire. This includes a summary of the demographic variables 

that we collected in our questionnaire (see Table B1) 

 

 

3. Theoretical predictions with two-sided incomplete information 
 

      There is ample evidence that subjects are not purely self-interested but have social preferences (Fehr 

and Schmidt 1999, Bolton & Ockenfels 2000, Charness and Rabin 2002). In fact, these preferences can 

explain why investors (allocators) decide to invest (return) in the investment game (see, among others, 

Berg et al. 1995, Eckel and Wilson 2011, Johnson and Mislin 2011, Alos-Ferrer and Farolfi, 2019). Next, 

we present a two-sided incomplete information model to derive our theoretical predictions. More 

precisely, we characterize the efficient pooling equilibria in which both the selfish and the inequality-

averse investor decide to invest in equilibrium in Stage 1 of the stage game.13 In this section, we also 

discuss the optimal return of allocators and present our testable hypotheses for the repeated game.  

 

  

	
between the decisions in the practice round and the first period of the repeated game in any of the treatment. The interested reader 
can consult Appendix C for this analysis and further details about the decisions in the practice round. 
12 As the type of information that subjects receive across rounds may be important to determine behavior (e.g., see Nikiforakis 
(2010) for evidence in the public good game) we keep this constant across treatments. We also keep constant the information that 
allocators received in regards to the use of the strategy method; in none of the treatments did the investors know that allocators 
were making a choice for the case in which there would be joint investment.   
13 The predictions are trivial if players are purely self-interested and preferences are given by equations (1) and (2). In this setting, 
investors will never incur the cost of punishment in the last stage of the game. This, in turn, implies that allocators will decide to 
return nothing in the second stage and investors will not invest in the first stage, as a result. These predictions hold in all the three 
treatments.  
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3.1. The model 

 

      We consider two types of investors: selfish and inequality-averse and two types of allocators: profit-

maximizers and fair-minded. Types are private information but it is common knowledge that there is a 

proportion =) ∈ [0,1]  of inequality-averse investors and a proportion >* ∈ [0,1]  of fair-minded 

allocators; the remaining	(1 −	=)) investors have selfish preferences given by equation (1), while the 

remaining 	(1 −	>*) allocators are profit maximizers and have utility function given by equation (2). 

 Inequality-averse investors care about the distribution of the surplus. In particular, they focus on the 

amount generated by their investment decision and compare the payoff they receive, "/2, to half of the 

payoff that the allocator decided to keep (30 – ")/2. Their utility after receiving the return is as follows: 

 

(3)  ?+
, = πi – 2 max	@	-".'$ −

'
$ 	 , 0A = πi – 2 max	{15 − "	, 0}. 

 

where πi is given by equation (1). The utility function of inequality-averse investors is such that any return 

that falls below what inequality-averse investors consider a “fair” return ("	= 15) will generate disutility 

for them, thus inequality-averse investors may be willing to punish to attain more equal outcomes (Houser 

and Xiao 2010, Bone and Raihani 2015).14 When inequality-averse investors observe an “unfair” return 

(x < 15), they may punish the allocator. 15 The payoffs of inequality-averse investors who decide to punish 

will be given by: 

 

(4)  U+
, = :	10 + '

$; – 2	max G(1 − ,!) :	15 −
'
$; −

'
$ 	 , 0H 

 

where the value of ,! ∈ [0,1]	depends on the number of investors in the team who decide to punish. In 

the population, there is also a proportion >* ∈ [0,1] of fair-minded allocators. They are motivated by 

positive reciprocity. We hereafter assume that their dominant strategy is to choose the “fair” return x = 

15. The rest of the allocators are selfish, and their optimal strategy would consist of comparing the 

expected cost of being punished and the cost of avoiding punishment, as we shall discuss below. 

 

 

	
14 Investors can have other motives to punish apart from reducing the inequality; e.g., Casari and Luini (2012) find evidence of 
expressive punishment in the public goods game as some subjects may derive utility from the act of punishing.  
15 Although we derive our predictions under the assumption that inequality-averse investors want to receive at least half of the 
surplus, our results are robust to other specifications. For example, we may consider that it is fair for investors to receive at least 
their investment (! = 10) or for allocators to divide the surplus in three identical parts including allocators’ initial endowment (! 
= 20). These alternative settings have an effect on the threshold values for which allocators will be willing to punish, but they do 
not affect our qualitative predictions regarding the effects of the treatments. Our results are also robust to consider that inequality-
averse investors do not care about the distribution of the surplus but look at the total payoffs, which includes the initial 
endowments. This is mainly because all players receive the same initial endowment in our game, thus a model where players 
receive different endowments should consider this aspect. In our exposition, we decided to use the distribution of the surplus as 
reference point (instead of the distribution of total final payoffs), because this approach fits better to the applications we have in 
mind; e.g., in the labor market. 
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3.2. Theoretical predictions 

 

Next, we discuss the conditions for the existence of an efficient (Perfect Bayesian) pooling equilibrium 

in which both the selfish and the inequality-averse investor decide to invest in equilibrium in Stage 1. We 

also discuss the punishment behavior of investors in the efficient equilibrium in Stage 3 and the 

consequences of this behavior for the optimal return that allocators choose in Stage 2. 16 

 

If there is joint investment, the allocator forms beliefs about the probability of facing an inequality-averse 

investor. We denote these beliefs as μ := Prob (I | 1J = 1). In a pooling equilibrium, the allocator’s beliefs 

coincide with the proportion of investors in the population; i.e., qa = μ. Our Proposition 1 characterizes 

the efficient pooling equilibria, which depends on the proportion of inequality-averse investors (qa) and 

fair-minded allocators (mf) in the population. We let =J	and >K (qa) denote the minimum proportion of 

inequality-averse investors and fair-minded allocators for the existence of the equilibria.  

 

Proposition 1. (Efficient pooling equilibria) 

a) In the UP30,60 treatment, there is an efficient pooling equilibrium in which both types of investors 

choose to invest if (the proportion of inequality-averse investors) qa ≥ =J =0.3464 and (the proportion of 

fair-minded allocators) mf ≥ >K (qa), where >K(qa) is increasing in q and >K(=J) =	 0.88. In this equilibrium, 

fair-minded allocators set the “fair” return, "∗ =	"0 = 15, and selfish allocators set the minimum return 

such that inequality-averse investors do not punish them. This optimal return, "12∗ (qa) is decreasing in 

qa.  

b) In the CP0,60 treatment [CP0,80 treatment], there is an efficient pooling equilibrium in which both 

types of investors choose to invest if (the proportion of inequality-averse investors) qa ≥ =J	= 0.6 [qa ≥ =J 

= 0.5] and (the proportion of fair-minded allocators) mf ≥ >K$(qa), where >K$(qa) is decreasing in qa and 

>K$(=J) = 	0.76.	[>K$(=J) = 0.80] . In these equilibria, fair-minded allocators set the “fair” return "∗ 

=	"0= 15 and selfish allocators set the minimum return such that inequality-averse investors do not 

punish them. This optimal return, "32∗ (qa) is increasing in qa.  

Proof. See Appendix A3. 

 

Proposition 1 states that there will be joint investment under uncoordinated punishment even if the 

proportion of inequality-averse investors (qa) is low, but only if the proportion of fair-minded allocators 

(mf) is very high, and higher than a critical value which is increasing with (qa). On the other hand, under 

coordinated punishment, there will be joint investment only if qa is sufficiently high but the minimal value 

of mf that is needed for the (Perfect Bayesian) pooling equilibrium to exists is substantially smaller with 

coordinated punishment. In addition, this minimal value of mf decreases in qa. 

	
16 In our game, there are also multiplicity of equilibria, including the case in which none of the investors decide to invest, or the 
case of in which inequality-averse investors punish in equilibrium. We fully characterize these (inefficient) equilibria in 
Appendix A.  
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Figure 1 depicts the set of pairs (qa, mf) for which there is joint investment in the (Perfect Bayesian) 

pooling equilibrium for each treatment. To check whether joint investment is more likely when 

punishment is coordinated, we can derive the expression for the area in which the efficient pooling 

equilibrium exists: 

 

A = (1 − =J) − ∫ 	>K(=)	P=	
#
45  

 

We prove in Appendix A3 that this area is larger in CP0,80 than in CP0,60, and it is also larger in CP0,60 than 

in UP30,60. Thus, we expect the joint investment to be more likely when punishment is coordinated; i.e., 

for any (random) distribution of types, it is more likely to obtain the pooling equilibrium in CP0,80 and 

CP0,60 than in UP30,60. Further, if the proportion of inequality-averse investors (qa) is sufficiently high (e.g., 

when qa > 0.6), we can observe in Figure 1 that the set of efficient pooling equilibria in the UP30,60 

treatment is contained in both, the set of the CP0,60 treatment and that of the CP0,80 treatment.17 

These results highlight the benefits of coordinated punishment for joint investment. The intuition is that 

for a given qa, a higher proportion of fair-minded allocators is needed in the uncoordinated punishment 

compared to the coordinated one to get positive expected returns from investment.  

 

UP30,60 CP0,60 CP0,80 

   
 

 
Figure 1. Efficient pooling equilibria in each treatment (grey area) 

 

Coordinated punishment not only facilitates joint investment, it also boosts the amount returned by 

allocators compared with the case in which punishment is uncoordinated. This occurs because of the 

punishment behavior of inequality-averse investors in equilibrium, which depends not only on the 

returned amount (") but also on their beliefs about the proportion of inequality-averse investors in the 

	
17 Note that the equilibria in the CP0,80 treatment is a super-set of CP0,60 because we only vary the effectiveness of the punishment 
(or the fee-to-fine ratio) in these treatments. By affecting this feature of the design (i.e., the value of "! ∈ [0,1]), we would enlarge 
the set of pooling equilibria when punishment is coordinated.  
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population (μ) (see Lemma 1 in Appendix A1).18 When punishment is uncoordinated, inequality-averse 

investors always punish in equilibrium if the return is small, regardless of the proportion of inequality-

averse investors in the population. This is because inequality-averse investors can always reduce the 

inequality by punishing in the uncoordinated treatment. Paradoxically, inequality-averse investors will 

only punish for intermediate or high values of the return if their belief about the proportion of inequality-

averse investors is below a certain threshold. If inequality-averse investors believe that the proportion of 

inequality-averse investors is sufficiently high, then they may find it optimal to free-ride on the 

punishment decision of the other investor, which is likely to be inequality-averse as well. This logic 

cannot be applied to coordinated punishment, where punishment by only one investor yields no losses for 

the allocator, therefore it is always ineffective in reducing the inequality; in fact, the necessity of achieving 

the threshold to reduce the allocator’s earnings acts as a coordination device that eliminates the free-riding 

behavior of investors in the punishment stage. Along these lines, inequality-averse investors always 

punish in the presence of coordinated punishment when they believe that there are enough inequality-

averse investors in the population.19  

 
Figure 2. Optimal return of selfish allocators in the efficient pooling equilibria. In these equilibria,  

fair-minded allocators return the “fair” amount, ! = 15. 

 

As we show in Figure 2, the punishment behavior of investors in Stage 3 has implications for the reward 

policy of selfish allocators in Stage 2 (recall that fair-minded allocators always return the “fair” amount 

" = 15 in equilibrium). Selfish allocators compare the expected cost of being punished and the cost of 

avoiding punishment. Again, their beliefs regarding the proportion of inequality-averse investors in the 

population play a crucial role to explain behavior. In all treatments, allocators return nothing if they 

	
18 It is easy to check that no punishment is the dominant action for selfish investors. Thus, only inequality-averse investors may 
punish in equilibrium in Stage 3. In the main text, we present the intuition for the punishment behavior in each treatment in 
equilibrium. The proof is presented in Appendix A1.  
19 The threshold for beliefs about the proportion of inequality-averse investors in the case of uncoordinated punishment μ*(x) is 
decreasing in the allocator’s return !, while it is increasing in the allocator’s return if punishment is coordinated, and this affects 
the optimal return (as we shall discuss below). In all treatments, inequality-averse investors never punish if the return is sufficiently 
high (! ≥ 12.5), regardless of the proportion of inequality-averse investors. One may expect that inequality-averse investors will 
request at least the “fair” return (! = 15) not to punish, but recall that punishment is costly for the investors, thus inequality-averse 
investors account for this cost when choosing whether to punish. 
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believe that proportion of inequality-averse investors is low (i..e, for low values of μ), because the 

expected cost of being punished is sufficiently low. However, there is a different critical value of μ such 

that it is optimal for the allocator to return the minimum return that guarantees no punishment from 

inequality-averse investors. We denote this minimum return by "Q(µ). If punishment is uncoordinated, 

then "Q(µ) is decreasing with μ, while "Q(μ) is increasing in μ when punishment is coordinated (see Figure 

3).  

The difference in behavior between the uncoordinated and coordinated treatment occurs because of the 

free-riding behavior of inequality-averse investors: if punishment is uncoordinated, the increase in μ 

implies that the free-riding problem is more likely to occur, thus inequality-averse investors will be less 

likely to punish. As a result, selfish allocators decrease the reward that they need to pay to avoid the 

punishment. If punishment is coordinated, however, the increase in μ implies that investors are more 

likely to punish, therefore selfish allocators need to increase the return to avoid being punished. 

 

3.3. Repeated game and hypotheses. 

 

In our experiment, subjects play the team investment game for 15 periods. Once we have characterized 

the efficient pooling equilibria of the stage-game, we follow the approach in Brown et al. (2004) and use 

some well-known results on finitely-repeated games with incomplete information to derive our testable 

hypotheses. 

 

Using Folk theorems (Benoit and Krisna 1985, Friedman, 1971, Fudenberg and Maskin, 1986) we can 

posit that for a given finite horizon T, there is a set of distributions of the populations of investors and 

allocators (qa, mf) for which there will be joint investment along most of the equilibrium path (except 

probably for the last periods). Namely, there exist some minimal critical values of both qa and mf such 

that for higher values, joint investment will be observed in the equilibrium path of the repeated game.  As 

already mentioned, the set of pairs of distributions (qa, mf) for which joint investment occurs in Perfect 

Bayesian Equilibrium in the stage game is larger for coordinated treatments than for uncoordinated 

treatments. Additionally, this set for the CP0,60 treatment is contained in the set of the CP0,80 treatment; 

therefore, we predict that it will be more likely to observe joint investment under coordinated punishment 

than under uncoordinated punishment in the repeated game, if we assume any random distribution of 

types. This prediction also holds if the proportion of inequality-averse investors is sufficiently high.20  The 

hypothesis we want to reject is then as follows:  

 

	
20 Brown et al. (2004) follow a similar approach in the context of relational contracts that may not be enforced by a third party. 
They show that high levels of effort can be sustained in a perfect Bayesian equilibrium if there exists a sufficient number of fair-
minded workers who reciprocate generous contracts. To show the benefits of coordinated punishment, we require that the 
distribution of types is random or the proportion of inequality-averse investors is high enough to facilitate joint investment.  If the 
proportion of inequality-averse investors is low, and the proportion of fair-minded allocators high, then joint investment may be 
more likely if punishment is uncoordinated (see Figure 1).  
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Hypothesis 1. Joint investment does not vary across treatments; i.e., investors are equally likely to invest 

when punishment is uncoordinated and when it is coordinated.  

 

A similar argument can be applied for allocators’ behavior. Using our results in Figure 3, we expect that 

allocators will return a higher amount when punishment is coordinated. The hypothesis we want to reject 

is as follows:  

 

Hypothesis 2. The returned amount does not vary across treatments; i.e., allocators return the same 

amount when punishment is uncoordinated and when it is coordinated.  

 

Our prediction is that coordinated punishment will have an effect in the amount that allocators return 

because investors are more likely to punish in the presence of coordinated punishment when qa is 

sufficiently high. As a result, allocators have incentives to increase their return when punishment is 

coordinated so as to avoid being punished. 

 

It is also well-known that in a repeated game with finite horizon and if there is multiplicity of Perfect 

Bayesian Equilibrium in the stage game, any succession of Nash equilibria of the stage game will 

constitute a subgame perfect equilibrium of the repeated game. Our partner-protocol might facilitate the 

use of different trigger strategies in the repeated game in order to sustain the joint investment. Recall that 

by employing trigger strategies, each investor will play the efficient pooling equilibrium of the stage game 

as long as the other investor does so and the allocator’s return is sufficiently high, but any defection can 

trigger a period of punishment in which investors deviate to a non-cooperative solution; e.g., an inefficient 

equilibrium of the stage game.  

 

We argue that there are two punishment strategies to be used in our game as a trigger strategy. On the one 

hand, investors can punish the allocator in a given period by reducing the allocator’s payoffs. As an 

alternative, investors can choose not to invest in future periods. The hypothesis that we want to reject is 

that investors will follow the same strategy across treatments. 

 

Hypothesis 3. The strategy that investors use to punish unfair returns by allocators does not vary across 

treatments; i.e., investors will be equally likely to punish or refrain from investing when punishment is 

coordinated and when it is uncoordinated.  

 

Since punishment is more powerful when it is coordinated (because it is immune to the free-riding 

problem), we expect that investors will be more likely to use the trigger strategy that punishes in the 

current period when punishment is coordinated, while investors will be more prone to using the strategy 

that consists of non-investing in future periods when punishment is uncoordinated; i.e., we predict that 
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more punishment will be observed when punishment is coordinated (CP0,60 and CP0,80) while more periods 

of non-investing will be observed when punishment is uncoordinated (UP30,60). 

 

4. Results 

 
      Section 4.1 presents some descriptive statistics for the level of the joint investment and the allocator’s 

return, including our non-parametric analysis. In this section, we also perform an econometric analysis to 

control for the dynamics in the repeated game and the demographic characteristics of individuals. We 

discuss the punishment behavior and the differences in total payoffs across treatments in Section 4.2. This 

includes an overview on how the payoffs of investors and allocators vary across treatments. Overall, our 

experimental data lend support for the predictions that coordinated punishment fosters the levels of joint 

investment and increases the returned amount. We also find that investors punish more often when 

punishment is coordinated, while they refrain from investing when punishment is uncoordinated. We 

observe no differences in terms of efficiency across treatments. 

 

4.1. Investment decisions and returned amount 

 

      Descriptive statistics and dynamic.— Figure 3 displays the relative frequency of joint investment in 

Panel (a) and the intended return in Panel (b) across periods, for each of the treatment conditions 

separately. As we use the strategy method for allocators, one may argue that their decision takes place in 

a “cold” state, as they do not know whether or not their choices will be implemented. To address this 

issue, Table 2 includes i) the effective return of allocators (i.e., their reward in periods of joint investment) 

and ii) the return of allocators in a “hot” state, which is assumed to occur when allocators made a choice 

after observing that both investors invested in the previous round (i.e., this choice corresponds to the 

intended return of allocators when they know that their previous choice was implemented). At the bottom 

of Table 2 we show the proportion of investors who benefited from trade and ended up with more than 

20 ECUs after receiving the return from the allocator. This is an important measure of efficiency that 

relates to the idea in Gambetta (2000) that the investment decision should be repaid so that it is worth 

engaging in some form of cooperation in the future (see also Alos-Ferrer and Farolfi, 2019). Table 2 

presents also the results of our non-parametric analysis where we pool the observations by groups across 

the 15 periods to guarantee independence.21  In our analysis, we focus on the effect of coordinated 

punishment on the likelihood of joint investment and the return of allocators by comparing the behavior 

of investors and allocators in UP30,60 and CP0,60 (see the column CP0,60). We examine the effects that the 

capacity of punishment has (if any) by looking at the comparison between CP0,60 and CP0,80 (see the 

column CP0,80).22  

	
21 Unless otherwise noted, we rely on the Wilcoxon rank-sum (Mann-Whitney) test for pairwise comparisons and the p-values 
refer to one-tailed tests.  
22 We do not compare UP30,60 and CP0,80 as two elements change across treatments, namely i) the need to coordinate the actions and 
ii) the increasing returns to scale (or the effectiveness of the punishment). The interested reader can consult Calabuig et al. (2019) 
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(a) Frequency of joint investment    (b) Intended return    

 

 
 

 

 

 
Figure 3. Relative frequency of joint investment and intended return across periods 

 

 

 

 

In the first period, the frequency of joint investment is quite similar in the two coordinated conditions 

(CP0,60 and CP0,80) while in UP30,60 the initial frequency of joint investment (40%) is double than in CP0,60. 

Nevertheless, this 40% of joint investment in the first period of UP30,60 is followed by a dramatic decrease 

in the second period; thereafter the level of joint investment remains steady around 13% (see Table 2). 

There is a positive trend for the joint investment in CP0,60 in the first 4 periods, in which joint investment 

is close to the CP0,80 treatment. In period 5, however, the joint investment drops and close to the level of 

UP30,60 in the last 5 periods of the experiment (see Table 2). Joint investment in the CP0,80 treatment is 

around 40%-50%, with the percentage being quite stable over periods (see Table 2).23 Statistically, the 

Krusall-Wallis test indicates that the levels of joint investment differ across treatments (p = 0.002). When 

we compare the behavior of investors across treatments we find that the average level of joint investment 

in CP0,60 is higher than in UP30,60 (p = 0.031), but it is smaller in CP0,60 than in the CP0,80 (p = 0.017). There 

are also differences in the dynamics across treatments. The proportion of groups that invest in a 

subsequent period after investing in the current one is 43% in UP30,60, 62% in CP0,60, and 80% in CP0,80. 

The differences are significant using a test of proportion when we compare UP30,60 and CP0,60 (p = 0.028) 

and CP0,60 and CP0,80 (p = 0.029), thus the possibility of coordinated punishment facilitates that investing-

groups keep investing, and the increasing returns to scale seems to amplify this effect. 24 

There are three results regarding the intended return in Figure 3 (b) that are worth mentioning. First, we 

observe that the behavior of allocators is quite stable across rounds in all the three treatments (see also 

Table 2). Second, we observe that if punishment is coordinated, the average returned amount is between 

the “fair” return (15 ECUs) and the return that allows investors to retrieve their investment (10 ECUs). 

This behavior is remarkably close to our theoretical prediction in Figure 2. Finally, the observed return is 

	
for details on this analysis, but the main findings follow from our analysis below: the level of joint investment and the return is 
higher in CP0,80 than in UP30,60. 
23 In all the treatments, we observe an end-period effect, which is not surprising given that subjects knew that the game was 
repeated for exactly 15 periods. The results in the trend hold if we remove period 15 from the analysis (p = 0.013, p < 0.001 and 
p = 0.500, for UP30,60, CP0,60 and CP0,80, respectively).  
24  We provide further evidence that coordinated punishment faciltates joint investment in Appendix D (see Table D1), where we 
classify groups depending on the number of periods that there is joint investment. Our results suggest that the frequency of high-
investing groups (that invested 7 or more periods) is higher when punishment is coordinated (UP0,30: 16%, CP0,60: 28%, CP0,80: 
52%).  
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below the horizontal line of 10 ECUs when punishment is uncoordinated, thus investors do not retrieve 

on average what they invest in this treatment (see Figure D2 in the Appendix D for the distribution of 

intended return across treatments).25 These findings have consequences for the behavior of investors in 

future rounds, as we shall discuss below. Statistically, the Krusall-Wallis test indicates that the intended 

return differs across treatments (p = 0.036). When we do pairwise comparisons, we find that the intended 

amount returned is higher in CP0,60 than in UP30,60 (p = 0.014) but indistinguishable in CP0,60 and CP0,80 (p 

= 0.72). These findings are robust when we look at the behavior of allocators across treatments using the 

effective return or the return of allocators in a “hot” state, which is higher in CP0,60 than in UP30,60 (p < 

0.007) but indistinguishable in CP0,60 and CP0,80 (p > 0.87). 

 

As a result, we observe that investors are more likely to retrieve their investment if punishment is 

coordinated; in fact, Table 2 shows that roughly half of the investors (52%) who received a return from 

their allocator benefited from trade, while this proportion goes up to two thirds (66%) when punishment 

is coordinated.26  

 

Overall, these results lend support to reject the hypotheses that coordinated punishment does not affect 

behavior in our team investment game. We find that coordinated punishment fosters the level of joint 

investment and boosts the reward set by allocators. Moreover, our findings suggest that the increasing 

returns to scale might help in encouraging higher levels of joint investment, while it has barely an effect 

on the return decision; i.e., it is sufficient that investors need to coordinate their actions to increase the 

reward set by allocators, and lead investors gain from trade.   

 

 

Table 2. Investment decisions and returned amount across treatment conditions 
 

 UP30,60 CP0,60 CP0,80 

% Joint investment    

       Pooled data  16% 25% 42% 

       Mann-Whitney (p-value)  (0.031) (0.017) 

       Periods 1-5 21% 36% 42% 

       Periods 6-10 13% 25% 48% 

       Periods 11-15 13% 15% 37% 

	
25 We observe that allocators are heterogeneous in their return with spikes in the data taking place in 0 ECUs (no return), 10 ECUs 
(investors retrieve their investment), 15 ECUS (fair-minded allocators, according to our theoretical model), and 20 ECUs 
(allocators divide the joint surplus equally among the three members of the team).  
26 It is also possible to obtain the share of investors that are not harmed from trade by considering those who receive 5 ECUs or 
more, with a very similar picture (24% in UP30,60, 35% in CP0,60 and 42% in CP0,80).   
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Intended return    

       Pooled data 8.3 12.1 11.6 

       Mann-Whitney (p-value)  (0.014) (0.72) 

       Periods 1-5 7.6 11.3 11.8 

       Periods 6-10 8.8 12.8 10.9 

       Periods 11-15 8.6 12.1 12.0 

% Positive return 66% 81% 77% 

       Mann-Whitney (p-value)  (0.024) (0.29) 

% “Fair” return (≥ 15) 27% 44% 41% 

       Mann-Whitney (p-value)  (0.12) (0.97) 

Effective return    

       Pooled data (effective return) 6.2 11.6 11.3 

       Mann-Whitney (p-value)  (0.003) (0.91) 

       Pooled data (“hot” state) 5.9 11.9 11.6 

       Mann-Whitney (p-value)  (0.003) (0.88) 

% Investors benefit from trade    

       Pooled data 52% 67% 66% 

       Mann-Whitney (p-value)  (0.054) (0.91) 

Number of obs. (investors) 50 50 50 

Number of obs. (allocators) 25 25 25 

 

  

Econometric analysis.— While our previous findings highlight the benefits of coordinated punishment, 

there are some variables (e.g., the individual characteristics or the history of decisions) that could affect 

these results. In order to isolate their effect (and to confirm the robustness of our previous findings), we 

present an econometric analysis where we study the determinants of the joint investment and the intended 

return.27  

Our first specification for the likelihood of joint investment rests on the model of Arellano-Bond (1991). 

We believe that this is appropriate to our setting since we have a potential endogeneity problem (due to 

the partners matching) and we do not have exogenous variables to use as instruments; in fact, a test of 

	
27	The reason to focus on the intended return of allocators is twofold. First, this allows us to increase the number of observations. 
Second, this is the most conservative approach given the results in Table 2. 	
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serial auto-correlation confirms that the endogeneity problem is present in our data, hence using a model 

that does not account for the endogeneity problem could lead us to overestimate or underestimate the 

coefficients of the regressors. The main advantage of this procedure is that the lagged endogenous and 

predetermined variables are used as instruments, taking the panel-data structure of the sample into 

consideration. In addition, we estimate a logit random-effects model with lagged dependent variables to 

show that our findings are robust to this specification. 28 

 

Table 3 summarizes the estimates for the joint investment. The set of independent variables includes the 

groups’ investment decisions in the last two periods, Joint Investmentt-1 and Joint Investmentt-2 and the 

amount that investors received in the previous period, conditional of the joint investment being positive, 

Returnt-1*Joint Investmentt-1. 29  In one of our regressions, we consider the dummy variable Joint 

Punishmentt-1 that takes the value of 1 when both investors had the possibility of punishing and decided 

to do it in the previous period (this variable takes the value 0 when punishment was feasible and at most 

one of the investors punished). We interact this dummy with our treatment conditions to see whether joint 

investment in previous periods has a different affect depending on whether the punishment is 

uncoordinated or coordinated. Our specification allows for the possibility that allocators care about unfair 

outcomes. The variable Payoff Difference-1 measures the difference between the allocator and the 

investors’ payoffs in the previous period. In all the regressions, we control for the possibility that each 

treatment exhibits a different dynamics.30  We account for the individual observed heterogeneity by 

including a subset of the variables of the questionnaire. The standard errors in the random-effects logit 

specification are robust and clustered at the group level.  

 

 

 

 

 

 

 

 

 

	
28 The Hansen test suggests that the instruments we use in each case are valid for joint investment (p > 0.191) and the returned 
amount (p > 0.218). See Roodman (2006, 2009) for a discussion on how to select a valid set of instruments in the Arellano-Bond 
model. For other experimental papers that use this methodology see Fischbacher and Gächter (2010), Brañas-Garza et al. (2013) 
or Charness et al. (2017). We also estimate a logit model for the probability of individual investment (see Table D2 in Appendix 
D) and multinominal probit models for the number of investors who decide to invest (see Table D3 in Appendix D). 
29 We include two lags of the dependent variable as explanatory variables since the Arellano-Bond test for AR(2) is significant 
and the analogous one for AR(1) is not significant. Note that the null hypothesis for AR(1) is that the dependent variable follows 
an autocorrelation process exclusively of order 1. When we include a third lag of the dependent variable it is always insignificant. 
30 Statistically, the Jonckheere-Terpstra test suggests that the frequency of joint investment decreases over periods in UP30,60 and 
CP0,60 (p < 0.001 and p < 0.001, respectively), but the results are not significant in CP0,80 (p = 0.357, two-tailed test). We take the 
different dynamics into account in our econometric by allowing the possibility that joint investment follows a quadratic (linear) 
specification in UP30,60 and CP0,60 (CP0,80), respectively.  As the Jonckheere-Terpstra test suggests that the intended return does not 
change over periods in any of the three treatments (p > 0.174), we will only allow for a linear specification in this case by including 
an independent variable for the period. 
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Table 3. Investors’ decisions: Likelihood of joint investment using Arellano-Bond and random-effect logit  
 UP30,60 vs CP0,60 CP0,60 vs CP0,80 

 Arellano-Bond Random-effect logit Arellano-Bond Random-effect logit 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Joint investment t-1 0.201*** 0.061** -0.301 -0.210 0.180*** 0.253*** -0.0325 0.701* 

 (0.036) (0.024) (0.673) (0.414) (0.016) (0.022) (0.567) (0.421) 

Joint investment t-2 0.065*** 0.093*** 0.548* 0.601* 0.041*** 0.042*** 0.779* 0.800* 

 (0.020) (0.014) (0.322) (0.329) (0.011) (0.013) (0.428) (0.445) 

Return t-1 * Joint investment t-1 0.016*** 0.020*** 0.171*** 0.172*** 0.010*** 0.008*** 0.144*** 0.124*** 

 (0.002) (0.001) (0.052) (0.041) (0.001) (0.001) (0.040) (0.028) 

UP30,60 * Joint Punishment t-1  -0.838***  -1.026      

 (0.203)  (1.190)      

CP0,60 * Joint Punishment t-1  0.207***  0.414  0.020  0.279  

 (0.059)  (0.618)  (0.104)  (0.568)  

CP0,80 * Joint Punishment t-1     0.127**  1.147  

     (0.054)  (0.806)  

Payoff Difference t-1  0.004  -0.012  -0.006***  -0.059 

  (0.002)  (0.053)  (0.001)  (0.036) 

         

UP30,60 * Period 0.0003 0.033* 0.171 0.173     

 (0.018) (0.018) (0.340) (0.327)     

UP30,60 * Period 2 -0.0004 -0.002** -0.016 -0.0161     

 (0.001) (0.001) (0.019) (0.0184)     

CP0,60 * Period -0.062*** -0.049*** -0.435** -0.439** 0.089*** 0.084*** -0.461** -0.460** 

 (0.008) (0.011) (0.194) (0.197) (0.017) (0.012) (0.193) (0.190) 

CP0,60 * Period2 0.003*** 0.002*** 0.014 0.0136 -0.006*** -0.006*** 0.015 0.016 

 (0.0004) (0.0004) (0.010) (0.0101) (0.001) (0.001) (0.010) (0.010) 

CP0,80 * Period      -0.005* -0.004* -0.062* -0.064* 

     (0.003) (0.002) (0.035) (0.035) 

         

Coord. Punish (CP0,60) 0.275*** 0.400*** 2.740** 2.880**     

 (0.066) (0.086) (1.389) (1.350)     

         

Coord. Punish (CP0,80)     0.369*** 0.357*** 1.827** 1.700** 

     (0.073) (0.058) (0.859) (0.845) 

         

         

Constant -0.131* -0.298*** -4.638*** -4.493** 0.025 0.121 2.961** 3.455** 

 (0.077) (0.097) (1.759) (1.810) (0.138) (0.134) (1.427) (1.447) 

         

Number of obs.  650 650 650 650 650 650 650 650 

Notes. Significance at the *10%, **5%, ***1% level 

 

 

Our treatment dummies confirm the positive effects of coordinated punishment on the levels of joint 

investment. Hence, the dummy variable for coordinated punishment CP0,60 is always significant when 

comparing it to UP30,60 in the Arellano-Bond (p < 0.005) and the random-effect logit (p < 0.049) 

specifications. The difference between CP0,60 and UP30,60 is also statistically significant at any common 

significance level in both specifications (Arellano-Bond: p < 0.001, random-effect logit: p < 0.044).  

 

Result 1. Coordinated punishment fosters the level of joint investment compared with 

uncoordinated punishment; i.e., joint investment is more likely if investors need to coordinate 

their actions. The increasing returns to scale in coordinated punishment amplify its benefits and 

result key in fostering the levels of joint investment in the long-run (UP30,60 ≤ CP0,60 < CP0,80)  

 

In line with Cassar and Rigdon (2011), we also find evidence of "homegrown trusting preferences" in that 

investors are more likely to invest if they did so in the previous period. As predicted by our theory, 

investors care about the amount returned by the allocator; hence the amount received by investors in the 
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previous period has a positive effect on the likelihood of joint investment. The results of the Arellano-

Bond model suggest that the effect of both investors punishing in the past is negative (positive) when 

punishment is uncoordinated (coordinated), thus the use of punishment seems to facilitate the joint 

investment when punishment is coordinated  

 
Table 4. Allocators’ decisions: Intended return using Arellano-Bond and random-effect Tobit specifications 

 UP30,60 vs CP0,60 CP0,60 vs CP0,80 

 Arellano-Bond Random-effect logit Arellano-Bond Random-effect logit 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Intended Return t-1 0.036** 0.069*** 0.135** 0.144** 0.184*** 0.166*** 0.182*** 0.182*** 

 (0.014) (0.011) (0.064) (0.0638) (0.022) (0.022) (0.063) (0.062) 

Intended Return t-2 0.075*** 0.060*** 0.204*** 0.206*** 0.075*** 0.040* 0.146** 0.138** 

 (0.020) (0.016) (0.064) (0.0641) (0.026) (0.021) (0.062) (0.061) 

UP30,60 * Joint Investment t-1  8.140*** 0.651* 4.951** 1.383     

 (1.839) (0.364) (2.014) (1.671)     

CP0,60 * Joint Investment t-1  1.580*** 0.949*** -0.525 -0.622 0.305* 0.031 -0.862 -0.952 

 (0.293) (0.078) (1.894) (1.896) (0.171) (0.144) (1.925) (1.910) 

CP0,80 * Joint Investment t-1     -0.259 -0.299 -0.187 -0.499 

     (0.308) (0.271) (1.867) (1.866) 

UP30,60 * Profit Reduction t-1 -26.40***  -12.24**      

 (7.398)  (5.714)      

CP0,60 * Profit Reduction t-1 -5.884***  -1.504  -2.244***  -1.515  

 (0.482)  (2.946)  (0.436)  (2.996)  

CP0,80 * Profit Reduction t-1     5.246***  2.422  

     (1.304)  (1.843)  

Payoff Difference t-1  0.045***  0.045***  -0.005  0.041 

  (0.009)  (0.004)  (0.005)  (0.032) 

Period -0.018 0.045*** -0.035 -0.015 -0.031** -0.056*** -0.175** -0.166** 

 (0.012) (0.007) (0.087) (0.087) (0.013) (0.012) (0.085) (0.084) 

         

Coord. Punish (CP0,60) 3.932*** 2.573*** 3.720** 3.568**     

 (0.706) (0.772) (1.804) (1.807)     

         

Coord. Punish (CP0,80)     -1.668 -0.414 -0.203 -0.510 

     (1.024) (0.900) (1.771) (1.793) 

         

         

Constant 4.351*** 4.701*** 3.505** 3.267** 10.04*** 10.16*** 8.611*** 8.542*** 

 (1.217) (0.948) (1.582) (1.582) (3.039) (3.054) (1.781) (1.780) 

         

Number of obs.  650 650 650 650 650 650 650 650 

Notes. Significance at the *10%, **5%, ***1% level 

 

We look at the allocator’s decision in Table 4. In this case, we consider the intended return of the allocator 

as our dependent variable, which we estimate using an Arellano-Bond and a random-effect Tobit 

specification. In line with our previous analysis, we include the allocator’s decision in the last two periods, 

Intended Returnt-1 and Intended Returnt-2 as explanatory variables. Because these variables merely refer 

to the allocator’s intention to return, we include a dummy variable Joint investment t-1 that takes into 

account whether or not there was a joint investment in the previous round; i.e., this variable takes the 

value 1 if the intended return was indeed received by the investors so that allocators can be assumed to 

take place in a “hot” state. In our setting, investors have the opportunity to punish the allocator upon 

observing the returned amount. The explanatory variable Profit Reductiont-1 stands for the reduction in 

the allocator’s payoff (amount of ECUs deducted) in the previous period. We control for the difference 

in payoffs between the allocator and the average of the two investors within a group in the previous period. 

The rest of the covariates include dummy variables for the treatments where punishment is coordinated 
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(CP0,60 and CP0,80), the dynamics of the returned amount in each of the treatments and controls for 

individual heterogeneity.  

 

Our main result is that coordinated punishment boosts the returned amount. This is explained by the fact 

that investors need to coordinate their actions, rather than by the increasing returns to scale of coordinated 

punishment; i.e., the intended return is larger CP0,60 than in UP30,60 (Arellano-Bond: p < 0.001, Random-

effect logit: p < 0.048) but it is indistinguishable in CP0,60 and CP0,80 (Arellano-Bond: p > 0.103, Random-

effect logit: p > 0.77). 

 

Result 2. Coordinated punishment boosts the reward set by allocators. In particular, allocators 

return more to investors when investors need to coordinate their actions. Increasing returns to 

scale in coordinated punishment does not affect the return of allocators (UP30,60 < CP0,60 = CP0,80) 

 

We also observe evidence for "homegrown trustworthiness" in that allocators intend to return more in the 

current period if they had returned more in the previous periods (Cassar and Rigdon, 2011). The fact that 

investors received the return set by allocators in the previous round seems to encourage allocators to 

return more in the current one. Interestingly, we find that the reduction in the allocators’ earnings in the 

previous period can have different effects on the intended return of allocators, depending on the treatment. 

While allocators may return less after being punished in the UP30,60 or the CP0,60 treatments, the effect in 

the CP0,80 may be positive. In this regard, our findings relate to other papers that highlight that receiving 

punishment can have detrimental effects on behavior; e.g., by lowering contributions to the public good 

game (Casari and Luini, 2009) and seem to indicate that the size of the stick might be important to explain 

the return of allocators (Rigdon 2009, Calabuig et al. 2016). Finally, we find some support for the idea 

that allocators might be inequality-averse in that they return more if they were ahead in the previous 

period (see Ciriolo (2007), Smith (2011) or Bejarano et al. (2020) for related evidence that inequality in 

favor of allocators favor their level of reciprocity).  

 

4.2. Punishment behavior and efficiency 
 

      So far, we have shown that coordinated punishment can facilitate investment decisions of investors 

and foster the return of allocators. It is well-documented in the literature that punishment decisions can 

undermine the positive effects of allowing for sanctions; see, e.g., Fehr and Gächter (2000), Cinyabuguma 

et al. (2006), Chaudhuri (2011) for related evidence in public good games and Calabuig et al. (2016) for 

evidence in the investment game. In what follows we examine how investors punish in each treatment 

and the effect of their decisions on the final payoffs. In Section 5, we compare the levels of joint 

investment and the return of allocators in each of our treatment conditions (UP30,60, CP0,60 and CP0,80) with 

their behavior when investors are not allowed to punish.  
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Punishment behavior.— Table 5 summarizes the punishment behavior of investors in each treatment 

when punishment is feasible. The composition of punishment within each group and the (punishment) 

trigger strategy that investors employ in each treatment are presented at the bottom of the table. As we 

discussed in Section 3.3, investors who received the return after their investment decisions may use 

different strategies, depending on whether they decide to punish in the current period and/or decide not 

to invest in the subsequent one.31 In Figure 4 we report the likelihood of observing joint investment in 

period t+1, depending on the investors’ punishment decisions in period t. 

 
Table 5. Punishment behavior of investors 

 

 UP30,60 CP0,60 CP0,80 

% Individual punishment 36% 49% 48% 

      Test of proportion (p-value)  (0.088) (0.92) 

% Individual punish if “low” return (< 15) 46% 59% 73% 

      Test of proportion (p-value)  (0.090) (0.14) 

% Individual punish if “high” return (≥ 15) 15% 33% 27% 

      Test of proportion (p-value)  (0.017) (0.51) 

None of the investors in the group punish 44% 31% 39% 

Only one investor in the group punishes 39% 38% 25% 

Both investors in the group punish 17% 30% 36% 

Number of obs. 50 50 50 
 

 
 

 

Figure 4. Likelihood of joint investment at t+1 depending on the number of punishers at t 

	
31 In Appendix D, we show the punishment behavior across periods and find that the joint punishment is never used in the 
uncoordinated treatment after period 9 (see Figure D3).  
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In Table 5, we observe that investors are more willing to punish when punishment is coordinated, and 

punishment is more likely when the return is below the “fair” amount.32 When we look at the punishment 

behavior of the group, we find a tendency to rely on the joint punishment when punishment is coordinated 

(17%, 30% and 36% in UP30,60, CP0,60 and CP0,80, respectively). Figure 4 shows that the likelihood of joint 

investment is always higher when punishment is coordinated (than when it is not), regardless of the 

number of investors who decided to punish in a previous period. Further, investors seem to follow 

different strategies in each of the treatments. In particular, investors are more likely to keep investing in 

the UP30,60 treatment if neither punished in the previous period, compared with the case in which at least 

one of the investors punished; i.e., the number of investors who punished in the previous period seems to 

affect the likelihood of investing and investors barely invest if they both decided to punish in the previous 

period. In the CP0,60 and the CP0,80 treatments, investors keep investing if they did so in the previous 

period, even if they both decided to punish. We summarize these findings as follows: 

 

Result 3.  Joint punishment (trigger strategy) is used more frequently when punishment is 

coordinated. In these treatments, majority of investors decide to punish but keep investing in 

subsequent periods, while investors end up not investing (trigger strategy)  when punishment is 

uncoordinated. 

 

We attempt to explain the determinants of punishment decisions by means of an econometric analysis in 

which the individual decision to punish is the dependent variable. Recall that investors can only punish if 

joint investment took place. Our first specification in Table 6 is a Tobit model where the dependent 

variable takes the value of -1 when investors did not have the possibility to punish. The values of 1 [0] 

are used when investors decided [not] to punish, respectively.33 We constraint the analysis to the cases in 

which punishment was possible in the logit specifications, i.e., we have missing values of the dependent 

variable if there was no joint investment. Our final specification considers the Heckman’s sample-

selection model (1979). This is a two-step method in which a probit model on the probability of the 

dependent variable being observed is first estimated (in our setting, the probability of joint investment), 

and then, a regression of maximum likelihood with the subsample is considered, including the Heckman’s 

lambda (obtained in the first step) as an additional regression. Table 6 reports the results for the likelihood 

of punishment (the selection model that estimates the probability of joint investment is presented in Table 

D4 in the Appendix D). The set of independent variables include the punishment decision in the last 

period, Punisht-1 and the observed behavior from the other investor in the previous period, which we 

measure interacting the dummies for each treatment with Other Punisht-1, which is a dummy variable that 

	
32 Our theoretical model predicts that investors will use the punishment (depending on the proportion of inequality-averse investors 
in the population) when the return is below 12.5 ECUs. We find that the likelihood of individual punishment for returns below 
12.5 ECUs is 51% in UP30,60, 73% in CP0,60 and 83% in CP0,80. 
33 Note that we obtain exactly the same results (except the coefficient of the constant) if we use a different categorization for the 
dependent variable (e.g., if the independent variable took the value 0 when there was no joint investment and the value 1 (2) when 
only one investor (both investors) punished). 
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takes the value 1 if the other investor punished in the previous period and 0 if she did not when punishment 

was feasible. In our theoretical model, investors are expected to punish if the return of the allocator is 

low, thus we include the explanatory variable Received Returnt to account for the return of allocators. Our 

findings are robust to other specifications; e.g., using the payoff difference between the allocator and the 

investor before punishment (see Calabuig et al. 2019) All of our regressions control for individual 

heterogeneity.  

 

  Table 6. Investors’ punishment decisions: Econometric analysis 
 

 UP30,60 vs CP0,60 CP0,60 vs CP0,80 

 Tobit Tobit Logit Heckman Tobit Tobit Logit Heckman 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Punish t-1 0.432*** -0.043 -0.290 0.0831 0.488*** -0.018 -0.093 0.148*** 

 (0.121) (0.037) (0.268) (0.073) (0.083) (0.027) (0.228) (0.0494) 

UP30,60 * Other Punish t-1 -0.170** -0.049* -0.356* -0.086***     

 (0.074) (0.026) (0.182) (0.028)     

CP0,60 * Other Punish t-1  0.013 0.008 0.057 0.022 -0.019 0.005 0.022 0.021 

 (0.053) (0.015) (0.112) (0.017) (0.040) (0.014) (0.111) (0.014) 

CP0,80 * Other Punish t-1     0.030 0.029*** 0.260*** 0.050*** 

     (0.036) (0.011) (0.097) (0.012) 

Received Return t  -0.072*** -0.490*** -0.069***  -0.057*** -0.448*** -0.060*** 

  (0.008) (0.083) (0.011)  (0.005) (0.055) (0.005) 

         

         

Period  -.122*** -0.007 -0.053 0.001 -0.082*** -0.008* -0.060 -0.005 

 (0.017) (0.007) (0.049) (0.010) (0.011) (0.004) (0.040) (0.005) 

         

Coord. Punish (CP0,60) 0.683** 0.229*** 1.555** 0.265***     

 (0.341) (0.083) (0.606) (0.095)     

Coord. Punish (CP0,80)     0.466* -0.024 -0.201 -0.058 

     (0.262) (0.066) (0.556) (0.060) 

         

Constant -3.782** 1.104*** 5.186** 1.166*** -0.876 1.031*** 4.674 0.833*** 

 (1.484) (0.327) (2.482) (0.347) (1.218) (0.331) (2.916) (0.280) 

         

Heterogeneity Yes Yes Yes Yes Yes Yes Yes Yes 

Number of obs.  1,300 282 282 1,286 1,300 484 484 1,274 

 

Our first specification indicates that investors are more likely to punish if they did so in the past. This 

finding can be related to the possibility that subjects have expressive preferences for punishment, as it is 

suggested in Casani and Luini (2012). However, this evidence of “homegrown punishing preferences” is 

not always robust; e.g., when we control for the return of allocators. This variable is always negative and 

significant suggesting that investors are less likely to punish when the return of allocators increases. 

Importantly, there is also evidence for free-riding behavior when punishment is uncoordinated (UP30,60  

Other Punish t-1) in that investors are less likely to punish if their partner did punish in the previous period. 

The free-riding effect is not observed in the coordinated devices; in fact, our analysis for CP0,80 suggests 

that there is a solidarity effect in that investors are more likely to punish if their partner did it in the past. 

These results provide evidence that investors seem to care about disadvantageous inequality and that the 

punishment decision of others affect the willingness to punish (see Houser and Xiao (2010) for evidence 
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that inequality can affect the willingness to punish and Kamei (2014) for evidence that punishment 

decisions can be conditional on others’ punishment decisions).34  

 

Result 4. Investors are more likely to punish if punishment is coordinated. The likelihood of 

punishment depends also on the partner’s decision in the previous period. In the UP30,60 treatment, 

investors are less likely to punish if they observe that their partner punished in the previous period. 

(free-riding behavior). In the UP0,80 treatment, investors are less likely to punish if they observe that 

their partner punished in the previous period (solidarity effect). 

 

Overall, these differences in punishing behavior help to explain why we fail to identify efficiency gains 

across treatments when we look at the final payoffs of investor and allocators across treatments. However, 

our analysis for efficiency in the next section shows that there are some benefits of coordinated 

punishment when we consider the initial endowments as a reference point in the analysis. 

Efficiency.— Table 7 presents the average total payoffs in each group, disaggregated by roles (investors 

and allocators) and treatments, both before and after the punishment decision of investors.35 This table 

presents also a measure of the difference between the average payoff of investors and the payoff of the 

allocator in each treatment. 

 

Table 7. Average total payoffs before and after the punishment decision of investors 
 

 UP30,60 CP0,60 CP0,80 

Average total payoffs (before punishment) 61.85 63.45 67.39 

Average total payoffs (after punishment) 59.67 60.20 60.05 

Average payoff of investors (before punishment) 19.21 19.47 20.24 

Average payoff of investors (after punishment) 18.92 18.85 19.21 

Average payoff of allocators (before punishment) 23.42 24.51 26.90 

Average payoff of allocators (after punishment) 21.82 22.51 21.62 

Difference in payoffs (before punishment) 4.20 5.03 6.65 

Difference in payoffs (after punishment) 2.89 3.66 2.40 

Number of obs. (investors) 50 50 50 

Number of obs. (allocators) 25 25 25 
 

	
34 We provide additional regressions in Calabuig et al. (2019) where we do not control for the return of allocators but for the 
difference between the investor and the allocator’s payoffs.  
35	We relegate to Appendix D the payoffs of investors and allocators across periods in each of the treatments (before and after 
punishment, see Figure D4). Appendix D presents also the histogram with the payoffs of investors and allocators in each treatment 
(see Figure D5). 	
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We observe that the positive effects of more joint investment when punishment is coordinated materialize 

into higher total payoffs before the punishment decisions; in fact, when we look at the total sum of payoffs 

in each treatment, the Wilcoxon matched-pairs signed-ranks test indicates that this is above the initial 

sum of endowments (60 ECUs) in CP0,60 (p = 0.004) and CP0,80 (p = 0.003), but not in UP30,60 (p = 0.114). 

There are also significant differences in total payoffs across treatments, using the Krusall-Wallis test (p 

= 0.04). As for the payoffs after the punishment decisions we find that there is a significant reduction in 

the total payoffs in all the treatments (p < 0.01), and the Krusall-Wallis test suggest that payoffs do not 

differ across treatments (p = 0.68). However, we observe that the total sum of payoffs is below the initial 

sum of endowments when punishment is uncoordinated (p = 0.043). The difference between the total sum 

of payoffs and the initial sum of endowments is not statistically significant if punishment is coordinated 

(CP0,60: p = 0.64 and CP0,80: p = 0.68). This, in turn, indicates that there are no gains from trade when 

punishment is coordinated in the CP0,60 and CP0,80 treatments, but the uncoordinated punishment (i.e., the 

UP30,60 treatment) is detrimental for the level of efficiency, as the sum of final payoffs falls below the sum 

of the initial endowments. We summarize these findings as follows: 

 

Result 5. The higher levels of joint investment lead to higher total payoffs when punishment is 

coordinated. If we compare the total payoffs before and after the punishment decisions, we find 

that there is surplus destruction in all treatments; in fact, there are efficiency losses (total payoffs 

fall below the initial sum of endowments) if punishment is uncoordinated, while there are no 

efficiency gains or losses (the sum of final payoffs is not significantly different from the sum of 

the initial endowments) if punishment is coordinated.  

 

If we look at the payoffs of investors and allocators across treatments, we observe that allocators are the 

one that benefit from the joint investment the most, as they receive more than investors in any of the 

treatments. In addition, the payoffs of allocators are always above their initial endowment (20 ECUs) both 

before (p < 0.001) and after (p < 0.001) the punishment decisions of investors, except in the CP0,80 

treatment (p = 0.143), where allocators do not receive on average more than their initial endowment once 

investors have punished. In this respect, our results suggest that allocators are the ones that are harmed 

from punishment the most in terms of payoffs differences when we look at their ex-ante and ex-post 

punishment payoffs, especially in the CP0,80 treatment (allocators’ payoffs in this treatment go from 26.9 

ECUs before punishment to 21.6 ECUs after punishment, thus their payoffs are reduced by roughly 20%). 

As for the payoffs of investors, we know that investors are more likely to benefit from trade when 

punishment is coordinated (see Table 2). However, the payoff of investors are (on average) below their 

initial endowment after their punishment decisions (p < 0.013), thus reducing the payoff difference comes 

at a high cost for investors in every treatment. The Krusall-Wallis tests suggests that the differences in 

payoffs (in favor of the allocator) is significant across treatments before the punishment decision of 

investors (p = 0.07) but not after these decisions (p = 0.16).  

 



 29 

5. Should we allow for punishment at all?  

 
      There exists evidence that the possibility of punishment may be detrimental for behavior; e.g., it might 

have a crowding out effect on the intrinsic motivation of individuals (e.g., see Gneezy and Rey-Biel 2010 

for a revision). In the dyadic version of the investment game, Rigdon (2009) finds that allowing for 

punishment might not help to increase the levels of investment, except if the fee-to-fine ratio or the 

investor’s capacity of punishment is sufficiently high. Similarly, Fehr and Rockenback (2003) find that 

the possibility of imposing a fine on the allocators increase the desired-payback of investors but they do 

not invest more if they can impose the fine, compared with the case in which fines are not possible. As 

for the behavior of allocators, Fehr and Rockenbach (2003), Fehr and List (2004) and Houser et al. (2008) 

experimentally show that the possibility of punishment may backfire in that returns from allocators is 

lower if they can be punished. Calabuig et al. (2016) argue that when the investor has a high capacity of 

punishment (specifically when the investor’s endowment is much larger than the one of the allocator), 

this encorages the investor to invest more because there is credible theat of punishment. However, the big 

stick does not facilitate return from allocators; in fact, the thereat of punishment increases the return of 

allocators only when the capacity of punishment of investors is sufficiently low so as not to destroy the 

intrinsic motivation to return.  

 

To address these questions, we decided to conduct a second study at the LINEEX with a total of 45 

subjects (i.e., 15 pairs). This treatment follows the same procedures as the previous ones, but we did not 

allow investors to punish after observing the return of the allocator. Our main findings are that allowing 

for punishment in the team investment game has negative effects on the levels of joint investment and the 

return of allocators if punishment is uncoordinated. On the contrary, these negative effects are not 

observed (and can even be positive when we examine the return of allocators) if punishment is 

coordinated (see further details of this analysis in online Appendix E).  

 

 

6. Concluding remarks 

 

Coordinated punishment is a prevalent phenomenon in the society. When lenders reclaim debt 

from a country that has defaulted on its obligation to repay the debt or when parents want to punish their 

children, they need to coordinate their actions and “punish together” for the punishment to be successful. 

In this paper, we look at the effects of coordinated punishment in an asymmetric situation that resembles 

the labor relationship. While there is mounting evidence on the effects of punishment in various settings, 

we are not aware of any paper that directly examines the benefits of coordinated punishment in an 

asymmetric situation such as the team investment game. Our paper is an attempt to fill this gap.  
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We posit a theoretical model that assumes that investors may need to coordinate their actions and punish 

together to inflict any damage on the allocator. In addition, we allow for coordinated punishment to 

exhibit returns to scale, compared with uncoordinated punishment. Our main theoretical result emphasizes 

that when the proportion of inequality-averse investors is high enough, coordinated punishment is better 

than uncoordinated punishment as the former device faciliates joint investment from investors and results 

in higher rewards from allocators. This is evidenced with a greater range of equilibria with joint 

investment under coordinated punishment, along with higher rewards set from allocators, even if the 

proportion of fair-minded allocators in the population is relatively low. The rationale for this result is that 

investors are more demanding (i.e., they are willing to punish the allocator for a wider range of returns) 

if punishment is coordinated, thus profit-maximiser allocators face a stronger punishment threat when 

punishment is coordinated. Moreover, the existence of increasing returns to scale in coordinated 

punishment can facilitate the joint investment of investors.  

 

Our experimental evidence lends support for the idea that joint investment is more likely when 

punishment is coordinated. We also find that allocators return more to investors when punishment is 

coordinated. Finally, we find significant differences in the levels of efficiency across treatments when we 

look at the payoffs before punishment. These gains dissapear after the punsihment decision of investors. 

This occurs because investors tend to punish together when punishment is coordinated, while investors 

free-ride on other investors’ punishment decisions when punishment is uncoordinated; in fact, we observe 

that uncoordinated and coordinated punishment exhibits different dynamics across periods. When 

punishment is uncoordinated, a substantial proportion of investors refrain from investing after a few 

periods, while investors keep investing and punishing in group when punishment is coordinated. 

 

In our paper, we also compare the results of our study to a setting in which punishment is not possible. In 

this respect, our findings seem to indicate that the negative effects of punishment that have been identified 

in the dyadic version of investment game (Fehr and Rockenbach 2003, Fehr and List 2004, Houser et al. 

2008, Calabuig et al. 2016) are also present in our team investment game when punishment is 

uncoordinated. These negative effects tend to vanish when punishment is coordinated. 

 

Our paper might be viewed as a first attempt to show the benefits of coordinated punishment in an 

asymmetric situation when players have different roles and opportunities to punish. One importat question 

to be addressed concerns how (and why) coordinated punishment emerges in a society or in a group. This 

is a relevant question as some authors have shown that it may be difficult to explain the evolution of 

cooperation from an evolutionary perspective when punishment is uncoordinated (Boyd and Richerson, 

1988; Guala, 2012). We argue that punishment decisions may be considered as a public good. In that 

regard, coordinated punishment, as opposed to uncoordinated punishment, has the great advantage of 

eliminating the free-riding behavior of punishers. This idea paves the way to rationalizing the benefits of 

coordinated punishment in a team hold up relationship.   
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We acknowledge that our design is simple but our aim was to highlight the benefits of coordinated 

punishment in an asymmetric setting with few investors. Although our paper enriches our understading 

on the use of coordinated punishment in the society, we believe that there are other aspects of coordinated 

punishment that may be worth considering in future research. We believe that an interesting extension 

would be considering a continuum of investors. This would require using other analytical tools but the 

results of this model could shed light on the succed of mobilizations and protests that may require for 

punishment to be coordinated; e.g., the social upheavals in Chile or the Arab Spring, among others.36 

There are other aspects of our design that can be extended as well. For example, we deliberately focus on 

the case in which investment is a binary decision and the returns of the allocator are equally split between 

the investors. We have in mind a labor setting in which investors (or workers) choose whether or not to 

exert effort in a common project that requires complementarities and their effort is equally valuable for 

the allocator (i.e., the firm). A natural extension would be to consider a setting in which investors can 

choose different investments and the allocator is allowed to reward them differently (Cassar and Rigdon, 

2011). It may also be possible to consider a setting in which the creation of the surplus does not require 

for the joint investment, but it suffices that one investor decides to invest to generate efficiency gains. 

Finally, we could also consider the possibility of coomunication (Charness and Dufwenberg 2006, Choi 

and Lee 2014) in that punishment is sometimes “coordinated by means of gossips and other 

communications” (Boyd et al. 2010, Fehr and Williams 2013). 

 

Regarding the policy implications of our study, it seems reasonable to wonder whether people would opt 

for an institution with coordinated punishment if they had the opportunity to choose. Workers become 

members of trade unions so as to negotiate agreements on pay and conditions with their employers, but 

are they really aware of the positive effects of being united? We believe that testing this question is another 

avenue for future research. In that regard, it may be worth considering a setting where subjects can 

endogenously decide the punishment institution they want to implement, if any (Kosfeld et al. 2009; Fehr 

and Williams, 2013). This may help us in explaining the (natural) emergence of institutions where 

punishment has to be inflicted by the group, such as trade unions or partnerships. We believe these 

possible extensions reflect important situations that have not been studied so far, so we hope our research 

sparks further interest in these areas. 

 

 

 

 

 

 

 

	
36 Noticeably, extending the results to these settings may also result considering a different game; e.g., revolutions has been 
modeled as coordination or stag-hunt games in De Mesquita (2010), Edmond (2013), Kiss et al. (2017) or Barbera and Jackson 
(2020), among others. 
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Appendix A. Theoretical model. Optimal behavior in each stage. 

 

We solve our model by backward induction and consider the punishment stage first. For simplicity, 

we omit the subscript for the proportion of inequality averse investors (q) and the proportion of fair-

minded allocators (m) 

 
Appendix A1. Optimal behavior of investors in the punishment stage (Stage 3) 

 

We denote μ the probability of facing an inequality averse type of investor after observing joint 

investment, that is, μ := Prob (𝜏𝑖 = 𝑎 | 1J = 1) where 𝜏𝑖 = 𝑎 stands for the inequality averse type and  

the indicator function 1J  for joint investment.   

 

A symmetric Bayesian Nash Equilibrium (BNE) in the punishment stage will be defined as a pair of 

actions (yr, ys), where the first (second) element stands for the action of the inequality averse 

(selfish) type of investor, respectively. Thus, the profile (p, np) indicates that the inequality averse 

investor decides to punish, while the selfish investor decides not to punish.  

 

First, it is easy to check that no punishment (np) is a dominant action for selfish investors, therefore 

(p, p) can never be a BNE in the punishment stage. Notice also that the unique BNE for x ≥ 15 will 

be (np, np) as inequality averse investor will never punish if they receive (at least) the fair return 

from the allocator.  

 

The next lemma shows when (p, np) is the BNE of the punishment stage for x < 15 in the different 

treatments. 

 

Lemma 1: Assume that x < 15,  

a) In the UP30,60 treatment, (p, np) is the BNE of the punishment stage for any x ≤ 9.41 and ∀μ, for 

any x ∈  (9.41,12.35)  when  μ ≤ μ(x)=((0.3x-4)/(12-1.4x)), and  for any x ∈ [12.35,12.5) when  

μ ≤ μ(x) = ((25-2x)/(30-2x)). Otherwise the BNE will be  (np,np). 

b) In the CP0,60 treatment, (p, np) is the BNE of the punishment stage  for any x ≤ 8.57 when μ ≥ μ 

(x) = (5/(18-0.6x)) and  for any x∈(8.57,12.5) when μ ≥ μ(x) =(5/(30-2x)).  Otherwise the BNE 

will be  (np,np). 

c) In the CP0,80 treatment, (p, np) is the BNE of the punishment stage  for any x ≤ 5 when μ ≥ μ(x) 

= (5/(24-0.8x)) and for any x ∈ (5, 12.5) when  μ ≥  μ(x) =  (5/(30-2x)). Otherwise the BNE will 

be  (np,np). 
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Proof. 

 

a) Let us start with the UP30,60 treatment.  Suppose that the allocator offers x < 15. Using the 

utility function of inequality averse investors (equation (4) in the main text), it follows that p is 

a best response for inequality averse investors to (p,np) if: 

μ(10+x/2-2[(0.4)⋅(15-x/2)-x/2] + (1-μ)[10+x/2-2((0.7)⋅(15-x/2)-x/2) ≥  

μ(15+x/2-2[(0.7)⋅(15-x/2)-x/2] +(1-μ)[15+x/2-2(15-x). 

Solving this inequality, we obtain all the results in Lemma 1a.  Notice that if the allocator 

offers x ≥ 12.5, np is the best response to (p, np) for inequality averse investors ∀μ. The reason 

is that p is best response to (p, np) when μ< μ(x)=((25-2x)/(30-2x)), but this is zero when 

x=12.5. Therefore, if the allocator offers x ≥ 12.5 the inequality averse investors will accept the 

return without punishing the allocator.  

 

b) Next, we look at the optimal behavior of investors in the CP0,60 treatment. As the previous 

case, we can check that p is a best response for inequality averse investors to (p,np)  if: 

μ(10+x/2-2[(0.4)⋅(15-x/2)-x/2] +(1-μ)[10+x/2-2((15-x/2)-x/2) ≥     

μ(15+x/2-2[(15-x/2)-x/2] +(1-μ)[15+x/2-2(15-x).     

Again, results in Lemma 1b follow from solving the above inequality. Notice again that if the 

allocator offers x ≥ 12.5, not punishing np is the best response to (p,np) for inequality averse 

investors ∀μ. 

 

c) Finally, p is a best response for inequality averse investors to (p,np) in the CP0,80 treatment 

when x < 15 if:   

μ(10+x/2-2[(0.2)⋅(15-x/2)-x/2] +(1-μ)[10+x/2-2((15-x/2)-x/2) ≥ 

μ(15+x/2-2[(15-x/2)-x/2] +(1-μ)[15+x/2-2(15-x). 

In this treatment, np is the best response to (p,np) for inequality averse investors when the 

allocator offers x ≥ 12.5, ∀μ. ■ 
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Appendix A2. Optimal behavior of allocators regarding the return (Stage 2) 

 

Fair-minded allocators will always choose to return the fair amount (x = 15) in Stage 2. Lemma 2 

presents the optimal reward strategy of selfish allocators, which depends on their beliefs that they 

are facing an inequality averse investor, μ := Prob (𝜏𝑖 = 𝑎 | 1J = 1). 

 

Lemma 2.  

a) In the UP30,60 treatment the selfish allocator will return: 

xs = 0  if  μ < 0.3464 and  

xs =  𝑥� =  ((12μ+4)/(0.3+0.4μ))  if  μ  ≥  0.3464. 

b) In the CP0,60 treatment, the selfish allocator will return: 

xs = 0 if μ < 0.278, 

xs = ((18μ-5)/(0.6μ)) if μ ∈ [0.278,0.306],  

xs = 0, if μ ∈ [0.306,0.60] and  

xs =  ((30μ-5)/(2μ)) if  μ ≥ 0.6 

c) In the CP0,80 treatment, the selfish allocator will return: 

xs = 0 if μ < μt(0)=0.2083,  

xs = ((24μ-5)/(0.8μ)) if μ ∈ [0.2083, 0.223], 

xs = 0 if μ ∈ [0.223,0.5) and 

xs = ((30μ-5)/(2μ)) if μ ≥ 0.5. 

 

Proof. 

a) UP30,60 treatment.  The expected payoff of the selfish allocator in a (p, np) BNE is: 

μ²((0.4)(50-x)+2μ(1-μ)(0.7)(50-x)+(1-μ)²(50-x) = (50-x)(1-0.6μ). 

According to Lemma 1a, the allocator will be punished if she offers x  < 9.41, while she will 

not be punished if the return x > 12.5. Consider first the case of x < 9.41. The allocator will be 

punished regardless of the return, thus her best strategy would be to return nothing to the 

investors (xs  = 0). In this case, her final payoff will be 50-30μ. On the other hand, the 

allocator will not be punished if x > 12.5, thus her optimal reward will be choosing xs = 12.5. 

The allocator's payoff in this case will be 50-12.5 = 37.5. For any return xs ∈ (0, 12.5) the 

allocator has to choose between returning nothing (and then being punished) or returning a 

positive amount xs > 0 so as to avoid being punished. Given her beliefs μ, the allocator needs 

to return an amount 𝑥�(μ) to avoid the punishment. This amount solves μ=μ*(x)=((0.3x-4)/(12-

1.4x)), and it equals to 𝑥�(μ)= ((12μ+4)/(0.3+1.4μ)). The payoff for the selfish allocator would 

be 50 - ((12μ+4)/(0.3+1.4μ)). When the selfish allocator compares the expected payoff of 

offering x = 0 with the expected payoff of offering 𝑥�(μ) = ((12μ+4)/(0.3+1.4μ)), we find that 

𝑥�(μ) is optimal whenever μ ≥ 0.3464. 
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b) CP0,60 treatment. 

According to Lemma 1b, there are three situations in which there is no punishment. 

i) The allocator offers x < 8.57 and μ ≤ μ (x) = 5/(18-0.6x) 

ii) The allocator offers x ∈ [8.57,12.5) and μ  ≤  μ(x) = 5/(30-2x).  

iii) The allocator offers x ≥ 12.5 

For each possible setting above, we investigate whether or not the allocator is willing to avoid 

the punishment.  

i) Consider first that the allocator offers x < 8.57 and μ ≤ μ(x) = 5/(18-0.6x). In this case, even 

when x = 0 if μ ≤ μ (0) = 0.278, the proportion of inequality averse investors is so small that 

nobody is going to punish. If the allocator offers x < 8.57 and μ > μ (x), there would be 

punishment and the expected payoff of the selfish allocator would be μ²((0.4)(50-x)+2μ(1-

μ)(50-x)+(1-μ)²(50-x) = (50-x)(1-0.6μ²). And, in this case, the best option is to offer x = 0 and 

receive a payoff of 50-30μ². 

Another option for the allocator is to offer a reward x > 0 that depends on μ, to avoid the 

punishment of investors. The optimal return in this case would solve μ(x) = (5/(18-0.6x), thus 

x*= ((18μ-5)/(0.6μ)). In this case, the payoff for the allocator would be (50 - x*). 

The selfish allocator has to compare the consequences of offering x = 0, and suffering the 

punishment (with an expected payoff of 50-30μ²) or, alternatively, offering x* = ((18μ-

5)/(0.6μ)) and not being punished. Comparing these expressions we obtain that exists a critical 

value of μ resulting from the cubic equation 18μ³-18μ+5 = 0. As the discriminant is negative, 

there are at most two positive unequal roots, μ* = 0.306 and μ* =0.81. Thus, the best reward 

policy of the selfish allocators is to offer nothing (xs = 0) if μ ∈ [ 0.306, 0.81]. Note that this 

happens when x*= ((18μ-5)/(0.6μ)) < 8.57, that is, when μ < 0.39. 

ii) Assume that the allocator offers xs∈ [8.57,12.5]. We can solve for the optimal return x* > 0 

such that investors do not punish the allocator. This return solves μ(x) = (5/(30-2x)), and it 

equals to  x*= ((30μ-5)/(2μ)).  

If μ  ≤  μ(x) = 5/(30-2x), there will be no punishment (see Lemma 1b), and the payoff for the 

allocator will be (50- x*). If μ > μ (x) = 5/(30-2x), (and the allocator offers x > 12.5) there will 

be punishment with an expected payoff of (50-x)(1-0.6μ²). In this case, the best option is to 

offer x  = 0 with an expected payoff for the allocator of 50-30μ². 

There exists a critical value of μ resulting from another cubic equation 12μ³-6μ+1=0. In this 

case, there are two positive unequal roots, which are μ1(x) = 0.178 and μ2(x) = 0.6. Thus, if μ 

∈ [0.178, 0.6] the best reward policy of the selfish allocator is to set x  = 0. 

iii) Finally, if the allocator offers x = 12.5, there is no punishment and her payoff would be 

50-12.5=37.5.  
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c) In the CP0,80 treatment, there are three situations in which there is no punishment (see Lemma 

1c). We look at each setting separately: 

i) Suppose that the allocator offers x < 5. If μ ≤ μ (x) = 5/(24-0.8x), there will be no 

punishment even when the allocator returns nothing x=0 (if μ ≤ μ (0)=0.2083). This is because 

the proportion of inequality averse investors is so small that nobody is going to punish. 

However, when the allocator offers x < 5 but μ > μ(x) =  5/(24-0.8x), there will be punishment 

and the expected payoff of the selfish allocator will be μ²((0.2)(50-x)+2μ(1-μ)(50-x)+(1-

μ)²(50-x) = (50-x)(1-0.8μ²). In this case, the best option is to offer x = 0 and the payoff for the 

allocator is 50-40μ². 

Another option is to offer a reward x* > 0, that depends on μ, to avoid punishment by 

investors. This offer is such that x* = ((24μ-5)/(0.8μ)). In this case the payoff for the allocator 

would be (50- x*). 

Comparing the above expressions we obtain that exists a critical value of μ resulting from the 

cubic equation 32μ³-24μ+5=0. As the discriminant is negative, there are at most two positive 

unequal roots, which are μ₁ = 0.223 and μ₂ = 0.732. Thus if μ ∈ [ 0.223, 0.732] the best reward 

policy of the selfish allocator is to set x = 0. 

ii) Suppose now that the allocator offers x ∈ (5, 12.5). If μ ≤ μ(x) = 5/(30-2x), there will be no 

punishment (see Lemma 1c). However, if the allocator offers x ∈ (5, 12.5) but μ > μ(x) = 

5/(30-2x), there will be punishment with an expected payoff of (50-x)(1-0.8μ²). And, in this 

case, the best option is to offer x = 0 with an expected payoff for the allocator of 50-40μ². As 

we know, the allocator can offer a reward of x > 0 so as to avoid punishment. This reward is x* 

= ((30μ-5)/(2μ)) and yields a payoff for the allocator equals to (50- x*).  

Comparing these expressions we obtain that exists a critical value of μ resulting from another 

cubic equation 16μ³-6μ+1 = 0. In this case, there are two positive unequal roots, which are μ₁= 

0.183 and μ₂ = 0.5. Thus, if μ ∈ [0.183, 0.5] the best reward policy of the selfish allocator is to 

set x =0. 

iii) Finally, if the allocator offers x = 12.5, there is no punishment and her payoff would be 50-

12.5=37.5.■ 
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Appendix A3. Proof of Proposition 1: Pooling equilibria (Stage 1)  

 

The next proposition corresponds to Proposition 1 in the main text. This characterizes the efficient 

pooling equilibria in which both selfish and inequality averse investors choose to invest in Stage 1. 

We denote 𝑞� and 𝑚� (q) the minimum proportion of inequality averse investors and fair-minded 

allocators for the existence of the equilibria. In the equilibria, q = μ = Prob (𝜏𝑖 = 𝑎 | 1I = 1). 

 

Proposition 1. (Efficient pooling equilibria) 

a) In the UP30,60 treatment, there is an efficient pooling equilibrium in which both types of 

investors choose to invest if q ≥ 𝑞� =0.3464 and m ≥ 𝑚� (q), where 𝑚� (q) is increasing in q. In 

this equilibrium, fair-minded allocators set the fair return 𝑥∗  =  𝑥𝐹  = 15 and selfish 

allocators set the minimum reward such that inequality averse investors do not punish them. 

This optimal return 𝑥∗(𝑞) = ((12q+4)/(0.3+1.4q)) < 12.5 is decreasing in q.  

b) In the CP0,60 treatment [CP0,80 treatment], there is an efficient pooling equilibrium in which 

both types of investors choose to invest if q ≥ 𝑞� = 0.6 [q ≥ 𝑞� = 0.5] and m ≥ 𝑚� (q), where 

𝑚� (q) is decreasing in q. In these equilibria, fair-minded allocators set the fair return 𝑥∗ 

=  𝑥𝐹 = 15 and selfish allocators set the minimum reward such that inequality averse 

investors do not punish them. This optimal return 𝑥∗ (q) = ((30q-5)/(2q)) < 12.5 is 

increasing in q.  

 

    Proof. 

a) UP30,60 treatment. For the inequality averse investors is worth choosing to invest if the 

utility of investing is larger than the utility of non-investing, that is,  

15 + (1-m)x/2 + m(7.5) - 2{(1-m)((15-x/2)-x/2)}  ≥ 20.  

Substituting x by 𝑥�  = ((12q+4)/(0.3+1.4q)) because q ≥ 0.3464, we obtain m ≥ 𝑚� (q) = 

((70/3- ((12q+4)/(0.3+1.4q)))/(25-((12q+4)/(0.3+1.4q)) = (20.67q + 3) / (23q + 3.5). It 

follows that the selfish investor will also invest since (15 + (1-m)((12q+4)/(0.3+1.4q)) + 

7.5m) ≥ 20 for q ≥ 0.3464 and ∀m. 

 

b) CP0,60 treatment. In this case, it is worth investing for an inequality averse investor if: 

15 + (1-m) x /2 + m(7.5) - 2{(1-m)((15- x/2)- x/2)} ≥ 20. 

Given that x = (30q-5)/(2q) (see Lemma 2), the inequality averse type of investors chooses 

to invest when m ≥ 𝑚� (q) =1-0.4q. The selfish investor will also prefer investing since 15 + 

(1-m)((30q-5)/(2q)) + 7.5m ≥ 20 for q ≥ 0.6 and ∀m. 

 

c) CP{0,80} treatment. As above, the inequality averse investor chooses to invest if:  

15+(1-m)x/2+m(7.5)-2{(1-m)((15-x/2)-x/2)} ≥ 20. 
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That is, when x ≥ (30q-5)/2q (see Lemma 2) and m ≥ m2(q) =1-0.4q, the inequality averse 

type of investors chooses to invest. The selfish investor will also prefer investing since 15 + 

(1-m)((30q-5)/(2q)+7.5m ≥ 20 for q ≥ 0.5 and ∀m.■ 

 

Given our results in Proposition 1, we can obtain the area in which the efficient pooling equilibrium 

exists.: 

 

A = (1 − 𝑞�) − ∫  𝑚�(𝑞) 𝑑𝑞 1
𝑞�  

 

Next, we obtain this area for each of the treatments to conclude that joint investment will be more 

likely when punishment is coordinated.  

 

UP30,60   A = (1 − 𝑞�) − ∫  𝑚�(𝑞) 𝑑𝑞 1
𝑞� =   

A = (1 − 0.3464) − ∫ 20.67𝑞+ 3
23q + 3.5

𝑑𝑞 1
0.3464  

A = 0.6536 − 0.582091 ≃ 0.07 

 

CP0,60   A = (1 − 𝑞�) − ∫  𝑚�(𝑞) 𝑑𝑞 1
𝑞� =   

A = (1 − 0.6) − ∫  1 − 0.4𝑞 𝑑𝑞 1
0.6  

A = 0.4 − 0.272 ≃ 0.128 

 

CP0,80   A = (1 − 𝑞�) − ∫  𝑚�(𝑞) 𝑑𝑞 1
𝑞� =   

A = (1 − 0.5) − ∫  1 − 0.4𝑞 𝑑𝑞 1
0.5  

A = 0.5 − 0.35 ≃ 0.15 
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Appendix A4. Other Perfect Bayesian equilibria (Stage 1) 

 

The efficient pooling equilibria in which both types of investors decide to invest in Stage 1 and do 

not punish in Stage 3 is not unique. In each of treatment, there is also an inefficient pooling 

equilibrium in which investors do invest in Stage 1 but then punish in Stage 3 (see Lemma 3-5 

below). There is also a separating equilibrium that is common to the three treatments. In this 

equilibrium, selfish investors do invest, while inequality averse investors do not (see Lemma 6). 

Finally, there is an inefficient equilibrium without investment in each of the treatments (see Lemma 

7).  

 

Inefficient Pooling equilibrium with punishment 

 

Lemma 3. In the UP30,60 treatment there is an inefficient pooling equilibrium in which both types of 

investors choose to invest but then punish if  q <  0.3464 and m ≥ m′ = ((31-9q)/(33.5-9q)). Selfish 

allocators set x = 0 and fair-minded allocators set x = 15. Inequality averse investors punish the 

reward of selfish allocators. 

Proof. 

The inequality averse investors will choose to invest if 

15 - 5(1-m) +(7.5)m - (1-m)2[15⋅(0.4)q+15⋅(0.7)(1-q)] ≥ 20. 

This behavior is optimal due to the low (high) proportion of selfish (fair-minded) allocators. 

The selfish allocator offers a zero reward and the selfish allocator invests because of the presence 

of a high proportion of fair-minded allocators.■ 

 

Lemma 4. In the CP0,60 treatment there is an inefficient pooling equilibrium in which both types of 

investors choose to invest but there is punishment if q ∈ [0.306, 0.60] and m ≥ m′=((40-18q)/(42.5-

18q.)). Selfish allocators set x = 0 and fair-minded allocators set x = 15. Inequality averse punish 

the reward of selfish allocators. 

Proof. 

The inequality averse investors will choose to invest if 

15 - 5(1-m) +(7.5)m-2(1-m)[15⋅(0.4)q+15(1-q)] ≥ 20.  

This inequality holds when m ≥ ((40-18q)/(42.5-18q)).  

On the other hand, the selfish investor decides to invest when (15+7.5m)  ≥ 20, that is, when m ≥ 

1/(1,75), that holds when the previous condition also holds. 

As in the previous treatment, this behavior is optimal due to the low (high) proportion of selfish 

(fair-minded) allocators.■ 

 

Lemma 5. In the CP0,80 treatment there is an inefficient pooling equilibrium in which both types of 

investors choose to invest but there is punishment for  q ∈ (0.223, 0.5) and m ≥ m′ = ((40-
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24q)/(42.5-24q)). Selfish allocators set x = 0 and fair-minded allocators set x = 15. Inequality 

averse investors punish the reward of selfish allocators. 

Proof. 

The inequality averse investors will choose to invest if 

15-5(1-m) +(7.5)m-2(1-m)[15⋅(0.2)q+15(1-q)] ≥ 20.  

And this inequality holds when m ≥ ((40-24q)/(42.5-24q)).  

On the other hand, the selfish investor decides to invest when (15+7.5m) ≥ 20, that is, when m ≥ 

1/1.75. This expression holds when the previous condition also holds. 

As in the previous treatment, this equilibrium behavior is optimal due to the low (high) 

proportion of selfish (fair-minded) allocators.■ 

 

     

Separating Equilibrium without punishment  

 

Lemma 6. For q < 1/3 and ((35-30q)/(37.5(1-q))) ≥ m ≥ (5/(7.5(1-q))), there is a separating 

equilibrium in which the inequality averse investor does not invest and the selfish investor chooses 

to invest. Selfish allocators set x = 0 and fair-minded allocators set x = 15. There is no punishment 

in equilibrium. 

Proof. 

In this equilibrium, the inequality averse investors do not invest while the selfish investors do. 

Therefore μ = 0. The selfish allocators set x = 0 and the fair-minded allocators as always offer x 

= 15. For the existence of this equilibrium we need an intermediate number of fair-minded 

allocators: not too many for the inequality averse investors not to invest and not too few for the 

selfish investors to invest. Furthermore, the critical proportion of fair-minded allocators also 

depends on the proportion of inequality averse investors in the population. In particular, q has to 

be smaller than 1/3 for the existence of this equilibrium.■ 

 

The Non-Cooperative Equilibrium: equilibrium without investment 

 

Lemma 7. For every q and m, there is an Inefficient Pooling Equilibrium in which both types of 

investors choose not to invest. 

Proof.  

The proof is straightforward and is left to the reader. Simply note that any investor will not invest 

if she believes that the other investor will not invest.  
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Appendix B. Experimental Instructions and questionnaire  

 

Appendix B1. Experimental instructions (originally in Spanish) 

 

The purpose of this experiment is to study how individuals make decisions in certain contexts. The 

instructions are simple and if you follow them carefully you will receive a certain amount of cash at 

the end of the experiment. Your earnings will be received confidentially, so no one in this 

experiment will know the payment received by the rest of the participants. At any time, you may ask 

any doubt you may have by raising your hand. Apart from these questions, any type of 

communication between you and the rest of participants is forbidden and may imply the exclusion 

from the experiment. 

 

This experiment has two phases. Next, we will explain to you Phase 1. Once we finish this phase, 

you will receive new set of instructions regarding Phase 2.  

 

Phase 1 (Practice round) 

 

In this phase, you will receive an initial endowment of 20 ECUs (Experimental Currency Units) and 

you will be randomly matched with two other people in this room to form a group of 3 people. In 

each group, there will be two participants in the role of type A and one participant in the role of type 

B. The computer will randomly choose whether you are a type A or a type B participant in your 

group.  

 

If you are a type A participant, you can choose whether or not to send 5 ECUs to the type B 

participant in your group.  

• If none of the type A participants in your group sends 5 ECUs, each participant will keep 

his/her initial endowment of 20 ECUs and Phase 1 will end.  

• If only one type A participant in your group sends 5 ECUs, we will deduct this amount from 

his/her initial endowment and Phase 1 will end. The type A participant that sent the 5 ECUs 

will receive 15 ECUs (20 initial ECUs – 5 ECUs sent). The rest of participants will receive 

their initial endowment of 20 ECUs.  

• If both type A participants in your group send 5 ECUs, we will deduct this amount from 

their initial endowment and will multiply by 3 the total amount send (10 ECUS) before 

giving it to the type B participant. Thus, if both type A participants send 5 ECUs, the type B 

participant will receive 30 ECUs.  

 

If you are a type B participant you have to choose the amount “X” of the 30 ECUs that have been 

generated to return to type A participants and the amount you want to keep. The amount sent back 
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by the type B participant will not be multiplied. The amount sent by the type B participant (if 

positive) will be equally split between the type A participants of the group. The amount that the type 

B participant keeps will be added up to his/her initial endowment of 20 ECUs.  

 

After making these choices (and only if both type A participants decided to send 5 ECUs to the 

type B participant), type A participants have the possibility of reducing the ECUs of the type B 

participant, after observing what has been returned to them. For each A who decides to reduce the 

ECUs of B’s, their own ECUs will be reduced by 5. 

 
[Next, we have a different paragraph for each of the treatments] 
 

UP30,60. If only one type A participant decides to reduce the earnings of the type B participant (by 

reducing theirs in 5 ECUs), the type B participant will receive 70% of his/her earnings. If the two 

type A participants decide to reduce the earning of the type B participant (by reducing theirs in 5 

ECUs), the type B participant will receive 40% of his/her earnings.  
 

CP0,60. If only one type A participant decides to reduce the earnings of the type B participant (by 

reducing theirs in 5 ECUs), type B’s earnings will not be affected (that is, type B will receive 100% 

of their earnings). If the two type A participants decide to reduce the earning of the type B 

participant (by reducing theirs in 5 ECUs), the type B participant will receive 40% of his/her 

earnings. 

 

CP0,80. If only one type A participant decides to reduce the earnings of the type B participant (by 

reducing theirs in 5 ECUs), type B’s earnings will not be affected (that is, type B will receive 100% 

of their earnings). If the two type A participants decide to reduce the earning of the type B 

participant (by reducing theirs in 5 ECUs), the type B participant will receive 20% of his/her 

earnings. 

 

[In what follows, we focus on the CP0,80 treatment. The rest of treatments do simply change the 

figures regarding the effect of the punishment on the earnings of the type B participant]. 

 

In sum, the payments in this phase will be determined as follows:  

 

• If none of the type A participants send the 5 ECUs: 

Payment of A = Payment of B = 20 ECUs (initial endowment) 

 

• If only one type A participant sends 5 ECUs and the other does not: 

Payment of A sending = 20 ECUs (initial) - 5 ECUs (sent) = 15 ECUs 

Payment of A NOT sending = Payment of B = 20 ECU (initial) 
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• If the 2 participants type A send 5 ECUs and the participant type B returns X ECUS of the 

30 generated ones: 

o If no A decides to reduce ECUs to B: 

Payment of A = 20 ECUs (initial) - 5 ECUs (sent) + X/2 (received)  

= 15 + X/2 ECUs 

Payment of B  = 20 ECUs (initial) + 30 ECUs (received) - X (returned)  

= 50 - X ECUs 

 

o If only one type A participant decides to reduce ECUs to B and the other does not: 

Payment of A reducing  = 15 ECUs + X/2 ECUs - 5ECUs (reduced)  

= 10 + X / 2 ECUs 

Payment of A not reducing = 15 ECUs + X / 2 ECUs 

Payment of B   = 50 - X ECUs 

 

o If the 2 type A participants decide to reduce ECUs to B: 

Payment of A = 15 ECUs + X / 2 ECUs - 5ECUs (reduced) = 10 + X / 2 ECUs 

Payment of B = 20% of (50 - X) ECUs 

 

To pay your choices, we will convert your earnings from ECUs to Euros using the rate 3 ECUs = 1 

Euro. You will receive your earnings anonymously at the end of the experiment 

 

Phase 2 (Repeated game) 

 

In this second phase, you will be paired with two other people in this room to form a group of three. 

As in the previous phase, each group will consist of 2 type A participants and 1 type B participant. 

Your type will be the same as in the previous phase. This means that if you were a type A participant 

in the first phase, you will continue to be a type A participant in this phase, and if you were a type B 

participant, you will still be a type B participant. However, your group will be different from the one 

in first phase. In particular, there will not be any participant in your group that already interacted 

with you in the first phase.  

 

This phase has a total of 15 rounds. At the beginning of each round, each participant in your group 

will receive an initial amount of 20 ECUs (experimental monetary units). If you are a type A 

participant you can choose in each round between sending 5 ECUs or sending anything nothing to 

the type B participant in your group. 

• If no A participant chooses to send 5 ECUs, each participant in the group will keep their 

initial amount of 20 ECUs in that round. 
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• If only one A participant decides to send 5 ECUs, we will deduct that amount from their 

initial ECUs. The A participant who has decided to send the 5 ECUs will receive 15 ECUs 

in that round (20 initial ECUs - 5 ECUs sent). The rest of the participants will receive their 

initial amount of 20 ECUs in that round. 

• If the two A participants decide to send 5 ECUs, we will deduct that amount from their 

initial ECUs and triple the total amount sent by both A participants (10 ECUs) before giving 

it to B. Thus, if the two A’s decide to send 5 ECUs, B will receive the amount of 30 ECUs 

in that round. 

If you are a type B participant, you must choose in each round the amount "X" of the 30 ECUs that 

could be generated, you want to return the type A participants in your group and how much you 

want to keep for yourself. The amount returned by type B participants will NOT triple. The amount 

that B’s decide to return to A’s (if positive) will be divided equally between the 2 type A participants 

of their group. The amount that B’s decide to keep, will be added to its initial 20 ECUs. 

 

 After the previous task and only if the 2 type A participants have decided to send their 5 ECUs in 

that round, they have the possibility of reducing the earnings of the type B participant in that round, 

after observing what has been returned to them. For each type A participant who decides to reduce 

the ECUs of the type B participant, their own ECUs will be reduced by 5. 

 

[Once again, we have a different paragraph for each of the treatments. Below, we present the 

translated instructions for the CP0,80 treatment.] 

 

If only one A decides to reduce the earnings of B (by reducing theirs in 5 ECUs), B’s earnings will 

not be affected in that round (that is, B will receive 100% of their earnings). If the two A’s decide to 

reduce the profits of B (by reducing theirs in 5 ECUs), B will receive 20% of their earnings in that 

round. 

 

In sum, the payments of each round would be: 

 

• If no A sends anything:    

Payment of A = Payment of B = 20 ECUs (initial endowment) 

 

• If one A sends 5 and the other does not: 

Payment of A sending = 20 ECUs (initial) - 5 ECUs (sent) = 15 ECUs 

Payment of A NOT sending = Payment of B = 20 ECU (initial) 

 

• If the 2 type A participants send 5 ECUs and the type B participant returns X ECUS: 

o If no A decides to reduce ECUs to B: 
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Payment of A  = 20 ECUs (initial) - 5 ECUs (sent) + X / 2 (received)  

= 15 + X / 2 ECUs 

Payment of B  = 20 ECUs (initial) + 30 ECUs (received) - X (returned) = 

= 50 - X ECUs 

 

o If only one type A decides to reduce ECUs to B and the other does not: 

Payment of A reducing ECUs  = 15 ECUs + X / 2 ECUs - 5ECUs (reduced) = 

     = 10 + X / 2 ECUs 

Payment of A not reducing ECUs  = 15 ECUs + X / 2 ECUs 

Payment of B    = 50 - X ECUs 

 

o If the two type A participants decide to reduce ECUs to B: 

Payment of A = 15 ECUs + X / 2 ECUs - 5ECUs (reduced) = 10 + X / 2 ECUs 

Payment of B = 20% of (50 - X) ECUs 

 

It is important that you bear in mind that during the 15 rounds your group will always be the same. 

This means that you will be paired with the same people during the 15 rounds. However, remember 

that the two people with whom you will be paired in this phase will be different from those who 

were with you in the first phase. 

 

At the end of each round, we will inform you of the decisions of the members of your group. At the 

end of the experiment, we will pay your decisions for one round, chosen randomly. As in the 

previous case, we will convert your earnings in ECUs to Euros, using the rate of 3 ECUs = 1 €. You 

will receive your earnings anonymously at the end of the experiment. 
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Appendix B2. Screenshots for the experiment 

 

In this section, we show the original screenshots of the experiment. The translation appears in 

the text below each of the figures.  

 

DECISION TO INVEST AND RETURN 

 
Decision to invest (investors) 
 

 
 
You have to choose between SENDING 5 ECUS to the type-B participant or SENDING NOTHING.  
 
Remember that if you decide to send 5 ECUS, we will deduct this amount from your initial 20 ECUs. If 
you and the other participant A from your group decide to send 5 ECUs, then the participant B from your 
group will receive 30 ECUs, and he could return the amount that he/she wishes. 
 
What do you want to do? 
 
 
Decision to return (allocators) 
 

 
 
If both type-A participants in your group decide to send 5 ECUS, you will receive 30 ECUs (apart from 
your initial 20 ECUs). If you received 30 ECUs, What is the amount you would like to keep for yourself 
and the amount you would like to return in this round? 
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When you move the bar, the amount of ECUs you would like to KEEP will change. Move the cursor as 
many times as you want until you reach a final decision. To confirm your decision you have to click the 
bottom “OK”. 
 

Slider here 
 

What is the quantity in ECUs you want to keep and to return? 
 
Points for you: 
Points for each type-A participant: 
Your payoff after the return: 
A’s individual payoff after the return: 
Remember that we have computed your payoff including your initial ECUs. 
 

 
FEEDBACK WHEN THERE IS NO JOINT INVESTMENT 
 
Feedback for investors (if only one invests) 
 

 
 
As you are the only one who decided to send 5 ECUs, your group’s payoff in round 1 are: 
The other type-A participant: 20 ECUs  
Type-B participant: 20 ECUs  
Your payoff: 15 ECUs 
 
 
Feedback for the allocator (if only one invests) 
 

 
 
As only one type-A participant decided to send 5 ECUs, your group’s payoff in round 1 are: 
Type-A participant who did not send anything: 20 ECUs ; 
Type-A participant A who sent: 15 ECUs;    
Your payoff: 20 ECUs 
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DECISION TO PUNISH (COORDINATED PUNISHMENT, CP0,80) 
 
Decision to punish (investors) 
 

 
 
After the decisions in this round, the payoffs after the return are: 
Type-B participant:  26.0 ECUs 
Your payoffs:  27 ECUs 
If you want, you can reduce the type-B participant’s earnings (reducing your own earnings by 5 ECUs).  
 
What do you want to do? 
 
 ( ) Reduce ECUs of Participant B 
 ( ) Not to reduce ECUs of Participant B 
 
Recall that: 
If only one type-A participant decides to reduce Participant B’s earnings, then Participant B will earn: 26 
ECUs 
If both type-A participants decide to reduce Participant B’s earnings, then Participant B will earn: 5.2 
ECUs  
 
 
FEEDBACK WHEN THERE IS PUNISHMENT (COORDINATED CP0,80) 
 
Feedback for investors (after punishing) 
 

 
 
Both type-A participants sent 5 ECUs. 
Type-B participant returned to each type-A participant: 7.5 ECUs 
Both type-A participants used 5 ECUs to reduce Participant B’s earnings, so your group’s payoffs in 
round 1 are: 
Type-B participant:  7 ECUs 
Your payoffs and those of the other type-A participant: 17.5 ECUs 
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Feedback for the allocator (after being punished) 
 

 
 
Both type-A participants sent 5 ECUs. 
You returned to each type-A participant: 0.0 ECUs 
Both type-A participants used 5 ECUs to reduce your earnings, so your group’s payoffs in round 4 are: 
Type-A participants:  10.0 ECUs 
Your payoffs: 10.0 ECUs 
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Appendix B3. Debriefing questionnaire and summary of demographics variables 

 

Q1: What is your age?. . . years (Age) 

Q2: What is your gender? (0 = Men, 1 = Female) (Gender) 

Q3: What is the level of your current studies? (Level = 1 Graduate; 2 Master; 3 Doctorate; 4 I’m not 

studying at the moment)  

Q4: Please choose the field that best fit to your studies (Major = 01  Economics,   02 Law,   03 

Business,   04 Engineer, 05 Other, 06 Tourism; 07 Accounting) 

Q5: How many years have you been studying at the university? (Years: “1” to “6 or more”) 

Q6: (Risk aversion) This is the investment decision in Gneezy and Potters (1997). Each subject 

hypothetically received 10 Euros and has to choose how much of it, x, (s)he wanted to invest in a 

risky option and how much (s)he wished to keep. The amount invested yielded a dividend equal to 

2.5x with 1/2 probability, being lost otherwise. The money not invested in the risky option (10 − x) 

was kept by the subject. In this situation, the expected value of investing is positive and increasing in 

the amount invested; therefore a risk-neutral (or risk-loving) participant should invest the 10 Euros, 

whereas a risk-averse participant will invest less. The value of Risk Aversion is measured in our 

experiment by the amount invested x. 

Q7: A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How much does the ball 

cost? _ cents (Answer: 5) (CRT1) 

Q8:  If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to 

make 100 widgets? minute (Answer: 5) (CRT2) 

Q9: In a lake, there is a patch of lilypads. Everyday, the patch doubles in size. If it takes 48 days for 

the patch to cover the entire lake how long would it take for the patch to cover half of the lake? day 

(Answer: 47) (CRT3) 

Q10: How many of the last 3 questions you think you have answered correctly? (Guess) 

Q11. How do you feel in this moment with your life? 1-7-scaled answer from 1 (very satisfied) to 7 

(Not at all satisfied) (Satisfaction) 

Q12: Taking everything into consideration, would you call yourself... 

(01 not very happy, 02 quite happy, 03 very happy)  

Q13: Generally speaking, would you say that most people can be trusted or that you need to be very 

careful in dealing with people? (Trust = 1. Most people can be trusted, 0 Need to be very careful) 

(Trust) 

Q14: Consider the following situation: Two secretaries with the same age do exactly the same work. 

However, one of them earns 20 euros per week more than the other. The one that is paid more is 

more efficient and faster, while working. Do you believe it is fair that one earns more than the other? 

(Inequality = 0 No, 1 Yes) 
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Table B1. Summary of demographics 

 

 Mean Std. dev. Min Max 

Age 28.7 6.53 17 63 

Gender (=1 for female) 0.50 0.50 0 1 

Risk aversion  5.12 2.25 0 10 

CRT1 7.45 10.86 0 110 

CRT2 124.8 666.9 0 10000 

CRT3 30.25 15.4 1 96 

CRT 0.28 0.34 0 1 

Guess (number correct answers) 2.29 0.76 0 3 

Satisfaction 2.44 1.32 1 7 

Trust 0.20 0.40 0 1 

Inequality 0.83 0.37 0 1 

N (individuals) 225    

Note. CRT refers to the proportion of correct answers in the CRT test.  
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Appendix C. Decisions in the practice round 

 

This appendix reports the decisions in the practice round (Phase 1 of our experiment) and compare 

the behavior of investors and allocators in the practice round and the first period of the repeated 

game (Phase 2) that we analyze in the paper.  

 

Table C1. Average decisions in the practice round. 

 

 UP30,60 CP0,60 CP0,80 

% Individual investment 52% 48% 56% 

% Joint investment 28% 16% 28% 

Average amount returned 6.9 11.0 9.2 

% Positive return 64% 84% 80% 

Frequency of individual punishment 50% 25% 28.6% 

Frequency of joint punishment 28.5% 0% 0% 

Investors’ payoffs (after punishment) 17.3 18.6 18.6 

Allocators’ payoffs (after punishment) 23.5 22.5 24.7 

Total payoffs (after punishment) 58.1 59.6 62.0 

N (investors) 50 50 50 

N (allocators) 25 25 25 

“Joint Investment" refers to the frequency of groups in which both investors decided to invest (i.e., total 
investment = 10 ECUs). "Amount returned" includes all observations elicited with the strategic method. 
"Joint punish" refers to the likelihood that both investors in the group decided to reduce the earnings of 
the allocator, considering only the observations in which punishment was feasible. 

 

 

Our results for the practice round indicate that the punishment scheme does not affect the investor’s 

behavior. When doing pairwise comparisons, we find that both individual and group investments are 

indistinguishable across treatments (p > 0.31). We also find that the return is higher in CP0,60 than in 

UP0,30 (p = 0.027), but we cannot reject the null hypothesis that the return is the same in any other 

two treatments (p > 0.21). If we do pairwise comparisons, the null hypothesis that a positive return is 

equally likely across treatments cannot be rejected at any common significance level (p > 0.11). We, 

therefore, conclude that behavior in the three treatments is very similar in the practice round, except 

for the returned amount.  

 

We observe a very similar pattern in the first period of the repeated game (see Table C2). As in the 

practice round, there are no differences in the investing behavior of investors across treatments when 
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we look at the likelihood of individual investment or the joint investment (p > 0.318). The results in 

the first period of the repeated game suggest also that allocator return more when punishment is 

coordinated (p < 0.027 when comparing the UP30,60 with the CP0,60 or CP0,80 treatments; p  = 0.745 

when comparing CP0,60 and CP0,80).  

 

Table C2. Comparing decisions in the practice round and the repeated game 

  Repeated game 

 Practice round  Period 1  Periods 1-15 

 UP30,60 CP0,60 CP0,80 UP30,60 CP0,60 CP0,80 UP30,60 CP0,60 CP0,80 

% Individual investment 52% 48% 56% 58% 48% 56% 30% 41% 53% 

% Joint investment 28% 16% 28% 40% 20% 28% 16% 25% 42% 

Average amount returned 6.9 11.0 9.2 7.6 11.6 12.1 8.3 12.1 11.6 

% Positive return 64% 84% 80% 76% 92% 88% 66% 81% 77% 

% Low return (≤ 10) 80% 56% 60% 76% 52% 44% 47% 50% 50% 

% High return (≥ 20) 4% 8% 20% 4% 16% 28% 33% 45% 45% 

N (investors) 50 50 50 50 50 50 50 50 50 

N (allocators) 25 25 25 25 25 25 25 25 25 

Joint investment refers to the frequency of both investors deciding to invest within a group and the amount returned includes all observations 
elicited with the strategic method. Because allocators always allocate the same amount (30 ECUs) the comparison across treatments is 
neat. 

 

If we compare the behavior of investors and allocators in the practice round and the first round of the 

repeated game we find no differences for any given treatment when we look at the likelihood of 

individual investment (p > 0.512) or the joint investment (p > 0.317).1 Thus, any difference in 

behavior of investors in the repeated game should be attributed to the different dynamics, rather than 

to the experience in the practice round.2 

 

We further analyze the choices of investors in the practice round and the first round of the repeated 

game by means of an econometric analysis. Table C3 presents the results of a logit specification on 

the likelihood of investing. We focus on individual investment as the variable for the joint 

investment is meaningless in the practice round (it all depends on the matching).  

 

 
                                                        
1 We use a Wilcoxon matched-pairs signed-ranks test in this case as choices in the repeated game are not independent 
of choices in the practice round.  
2 Allocators’ behavior in the practice round is not statistically different from their behavior in the first round of the 
repeated game, except in the CP0,80  treatment (UP30,60 p = 0.351; CP0,60 p = 0.976; CP0,80, p = 0.058) 
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Table C3. Likelihood of investing in the practice round and the first round of the repeated game 

 
 Practice round Repeated (first round) 
 (1) (2) (1) (2) 
     
Constant 0.080 -1.046 0.323 0.515 
 (0.284) (1.482) (0.324) (1.501) 
Coord. Punish (CP0,80) 0.161 -0.007 -0.0816 -0.388 
 (0.403) (0.442) (0.420) (0.522) 
Coord. Punish (CP0,60) -0.160 -0.266 -0.403 -0.503 
 (0.402) (0.425) (0.420) (0.500) 
Women  0.240  -0.953 
  (0.369)  (0.379) 
Age  -0.025  -0.005 
  (0.033)  (0.022) 
CRT  0.820  1.556 
  (0.510)  (0.577) 
Risk Aversion  0.175  0.216 
  (0.085)  (0.087) 
Trust  0.271  -0.006 
  (0.432)  (0.446) 
Satisfaction  0.098  0.024 
  (0.159)  (0.182) 
Happiness  -0.030  -0.415 
  (0.400)  (0.410) 
Inequality  0.390  -0.133 
  (0.414)  (0.438) 
     
Observations 150 150 150 150 
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Appendix D. Further results and statistical analysis 

 

Joint investment and group heterogeneity. A data analysis at the group level gives additional insight 

into the dynamics of the joint investment. We define never-investing groups as those groups that 

never invested in any of the 15 periods. For those groups that succeeded (in joint investment) at least 

once, we distinguish between the low-investing groups (that invested less than 7 periods) and the 

high-investing groups (that invested 7 or more periods). Table D1 presents the distribution of groups 

in each treatment.3 This includes the dynamics of groups across treatments (i.e., the frequency of 

groups that decided (not) to invest after (not) investing in the previous period) and the likelihood of 

observing no joint investment.   

 

Table D1. Joint investment: Group heterogeneity and dynamic across treatments  
 

 UP30,60 CP0,60 CP0,80 

Never-investing groups (no joint investment in any period) 32% 32% 28% 

Low-investing groups (joint investment in less than 7 periods) 52% 40% 20% 

High-Investing groups (joint investment in 7 periods or more) 16% 28% 52% 

% Joint investment in t provided the group invested in t-1  43% 62% 80% 

% No joint investment in t provided the group did not invest in t-1 91% 87% 84% 

% No joint investment  56% 42% 36% 

   Note. Figures in the classification of groups are rounded to add up to 100%.  
 

 

Using a test of proportions, we find that the percentage of never-investing groups is alike 

across treatments (p > 0.76) but there are more high-investing groups in CP0,80 than in CP0,60 and 

UP0,60 (p = 0.004 and p = 0.042, respectively). There is also evidence that joint investment in a 

previous round facilitates joint investment in the current one when punishment is coordinated.  

 

The decision of the allocator in the first period may be important in explaining this dynamic. 

If investors retrieve what they invest, this may encourage them to keep investing in subsequent 

periods, while those who receive a low return may prefer not to invest. In the first period, allocators 

return more to investors when punishment is coordinated (see Figure 3b in the main text) (p < 0.014 

when comparing UP30,60 and CP0,80 or CP0,60). This can explain the decrease in the joint investment 

that occurs in the UP30,60 treatment in the second period (see Figure 3a). In fact, the vast majority of 

the low-investing groups (80%) received less than half of the fair amount in the first period.  

                                                        
3 There are three groups that invested in exactly 7 periods. All our results are robust if we consider them as low-
investing groups. 
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Figure D1. Frequency of individual investment across rounds.  

 

 

 

 

 

 

 

 

 

 

 

In line with our previous discussion, we observe that the likelihood of individual investment varies 

significantly across treatments (Krusall Wallis, p = 0.003). When doing pairwise comparisons, the 

Wilcoxon rank-sum (Mann-Whitney) test suggests that investment is significantly higher in the 

CP0,80 treatment, where punishment is coordinated (UP30,60 vs CP0,60: p = 0.07; UP30,60 vs CP0,80: p < 

0.001; CP0,60 vs CP0,80: p = 0.08). There exists also a tendency to decrease the individual investment 

across rounds. This is a significant in any of the treatments when we test for the trend (p < 0.001). 

The correlation coefficient for joint investment and period is -0.12, -0.19 and -0.03 for UP0,30, CP0,60 

and CP0,80 (if we omit period 15, the correlation coefficients are -0.09, -0.17 and 0.00, respectively). 

 

Next, we look at the behavior of investors in the repeated game by means of an econometric 

analysis. Our logit model is presented in Table D2, where we study the likelihood of individual 

investment across periods. Our previous findings hold in that investors are more likely to invest 

when punishment is coordinated in the CP0,80 treatment. As already suggested by the Arellano-Bond 

model in the main text, there is also evidence for homegrown trusting preferences and some sort of 

reciprocity in the investment decision; i.e., investors tend to invest if they did it in the previous 

periods (p < 0.01) or if they observe that the other investor did invest in the previous period (p < 

0.01). Our estimates for the period are negative suggesting that there is a tendency not to invest 

across periods. Finally, the results when controlling for individual characteristics seem to suggest 

that risk aversion plays a role in the investment decision of investors. In particular, risk averse 

investors are less likely to invest in Stage 1, especially if punishment is coordinated.  
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Table D2. Likelihood of individual investment in the repeated game: Logit model  

 
 Pooled data Pooled data UP30,60 CP0,60 CP0,80 
      
Constant -2.322 -2.114 -1.369 -2.548 -1.165 
 (0.219) (0.615) (1.260) (1.021) (1.067) 
Investment t-1 1.628 1.582 1.169 1.716 1.578 
 (0.169) (0.168) (0.285) (0.267) (0.293) 
Investment t-2 1.20* 1.145 0.986 0.964 1.273 
 (0.192) (0.192) (0.316) (0.289) (0.386) 
Other Investment t-1 0.264 0.271 0.231 0.273 0.294 
 (0.032) (0.033) (0.057) (0.0494) (0.0568) 
Period  -0.032 -0.035 -0.027 -0.070 -0.034 
 (0.013) (0.013) (0.032) (0.020) (0.018) 
Coord. Punish (CP0,80) 0.443 0.446    
 (0.186) (0.208)    
Coord. Punish (CP0,60) 0.257 0.239    
 (0.161) (0.166)    
      
Heterogeneity No Yes Yes Yes Yes 
      
Observations 1,950 1,950 650 650 650 

 

 

Table D3. Multinomial probit model for the number of investors who decide to invest 

 
 UP30,60 vs CP0,60 CP0,60 vs CP0,80 
 (1) (2) (1) (2) (1) (2) (1) (2) 
         
Number of investors t-1 1.241*** 1.294*** 1.421*** 1.447*** 1.104*** 1.506*** 0.923*** 1.406*** 
 (0.193) (0.217) (0.195) (0.220) (0.219) (0.238) (0.204) (0.216) 
Number of investors t-2 0.990*** 1.027*** 0.997*** 1.065*** 0.779*** 0.936*** 0.785*** 0.943*** 
 (0.149) (0.170) (0.151) (0.171) (0.154) (0.171) (0.154) (0.177) 
Return t-1 * Joint investment t-1 -0.060** 0.038 -0.009 0.093*** -0.024 0.048** -0.009 0.067*** 
 (0.028) (0.027) (0.035) (0.035) (0.023) (0.021) (0.024) (0.023) 
UP30,60 * Joint Punishment t-1  -0.206 -1.453       
 (0.661) (0.885)       
CP0,60 * Joint Punishment t-1  0.135 0.221   0.082 -0.054   
 (0.691) (0.656)   (0.712) (0.687)   
CP0,80 * Joint Punishment t-1     -1.223** -0.754   
     (0.486) (0.460)   
Payoff Difference t-1   -0.150*** -0.161***   -0.029 -0.067* 
   (0.052) (0.051)   (0.041) (0.040) 
         
UP30,60 * Period -0.128 0.150 -0.108 0.167     
 (0.184) (0.232) (0.186) (0.233)     
UP30,60 * Period 2 0.008 -0.010 0.007 -0.010     
 (0.010) (0.013) (0.010) (0.013)     
CP0,60 * Period -0.101 -0.342* -0.098 -0.351* -0.142 -0.383* -0.135 -0.389* 
 (0.175) (0.200) (0.172) (0.194) (0.174) (0.213) (0.166) (0.201) 
CP0,60 * Period2 0.007 0.014 0.006 0.014 0.008 0.015 0.007 0.015 
 (0.010) (0.011) (0.009) (0.011) (0.009) (0.012) (0.009) (0.011) 
CP0,80 * Period     -0.037 -0.032 -0.044 -0.037 
     (0.039) (0.039) (0.041) (0.042) 
         
Coord. Punish (CP0,60) 0.042 2.139* 0.187 2.448**     
 (1.049) (1.225) (1.038) (1.199)     
Coord. Punish (CP0,80)     -0.545 -1.515* -0.669 -1.677* 
     (0.821) (0.913) (0.786) (0.862) 
         
Constant -2.907*** -4.992*** -1.532 -3.547*** -1.534 0.057 -1.201 0.891 
 (0.933) (1.067) (1.058) (1.191) (1.016) (1.408) (1.072) (1.440) 
         
Observations 650 650 650 650 650 650 650 650 
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Our analysis in Table D3 differs from previous analysis in that we consider the number of 

investors who decide to invest (0, 1, 2) as the dependent variable.4 We then report the results of 

a multinominal probit model which is appropriate to our setting given the nature of this 

variable; note that this cannot be said to be an ordinal variable because there is surplus creation 

only when both investors decide to invest and having one investor who decides to invest will 

lead to inefficient investment because this investor has to pay for the cost of investment (5 

ECUs) but no surplus will be created. As a result, “no investment at all” is “better” than “one 

investor” in terms of efficiency. Our estimates in Table D3 consider the baseline model is the 

case of no investors. The model for only one investor (1) should then be interpreted as the 

likelihood of inefficient investment, while the model for two investors (2) predicts the 

frequency of joint investment. We consider two different regressions depending on whether we 

consider the punishment decisions in the previous period or the difference in payoffs in the 

previous round as explanatory variable. In all the regressions we control for individual 

heterogeneity (age, gender, risk aversion, attitudinal trust, etc…) 

 

Our results indicate that the number of investors who invested in the previous periods influence 

the number of investors who decide invest in the current one, in line with our description of the 

data. When we look at the results of (1) we find that there are no significant differences in the 

level of inefficient investment across treatments.  In line with our results in the paper, the results 

of (2) indicate that joint investment is more likely in CP0,60 than in UP30,60, and it is also more 

likely in CP0,80 than in CP0,60, thereby suggesting the benefits of coordinated punishment on the 

levels of joint investment.  

 

Figure D2. Intended return of allocators in each treatment 

 

                                                        
4 We are thankful to one of the referees for suggesting this analysis.  
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Figure D2 presents the histogram for the intended return of allocators in each treatment. The 

“spikes” in the data suggest that some of the allocators are purely selfishly as they decided to return 

nothing to investors, regardless of the possibility of being punished. In line with our description 

results in the paper, the null return is more likely to occur when punishment is uncoordinated.  

 

If allocators return a positive amount, we observe that they are heterogenous in their fairness views, 

as some allocators return 20 ECUs (i.e., each investor receives 10 ECUs). This, in turn, implies that 

some of the allocators tend to divide the surplus (30 ECUs) equally.  There is also a group of 

allocators who return 10 ECUs, what implies that investors retrieve their invested amount (but do 

not gain from trade). Finally, there are choices that correspond to allocators who are fair-minded 

(according to our definition) as they return 15 ECUs.  

 

Importantly, our theory relies on the assumption that a proportion of allocators will be fair-minded  

returning x = 15, but we do not expect to observe this behavior from all allocators; in fact, our theory 

predicts that there will be (selfish) allocators who return a positive amount (in between 10 and 12.5 

ECUs) so as to avoid being punished (see Figure 2 in the paper). At any event, the fact that we 

observe peaks in the data in 10 ECUs, 15 ECUs, and 20 ECUs make us confident that having x = 15 

as a reference point for the “fair” return is a good proxy for the “average” fair return.  

 

In this regard, one may wonder what is the “observed” average return across treatments for high-

investing groups as defined in Table D1. Our data suggest that 34% of high-investing groups in 

CP0,80 converge to a returned amount between 14 and 15 (as in our main assumption of the model) 

while 66% converge to a return of 20-24 ECUs. This is quite similar in CP0,60 where there was a 

33% of groups converging to 13 and 66% to 20-30. Nevertheless, the convergence to the returned 

amount in the uncoordinated condition was quite different: 67% to 15 and 33% to 16-17.  

 

 

 

Figure D3. Punishment decisions across rounds (conditional on punishment being feasible).  

UP30,60 CP0,60 CP0,80 
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We observe that joint punishment is not used after round 9 in the case of uncoordinated punishment 

(UP30,60). This is in sharp contrast with the observed behavior when punishment is coordinated, 

where joint punishment remains steady around 30%, especially in CP0,80.  

 

Total payoffs before (Panel a) and after (Panel b) the punishment decision of investors across rounds 

are presented in Figure D4. We observe that the payoffs in Panel a) mimic the behavior of investors 

for the case of joint investment (Figure 4 in the main text). When investors punish, there is a 

decrease in the total payoffs and we observe no differences in total payoffs across treatments. 

Interestingly, panel b) seems to suggest that total payoffs increase across periods in any of the 

treatments, what may indicate that punishment may have beneficial results for longer-term 

interactions.  

 

 

Figure D4. Average total payoffs across rounds  
 

(a) Total payoffs before the punishment        (b) Total payoffs after the punishment  

 

 

 

 

 

 

 

 

 

 

We present the histogram with the payoffs of investors and allocators in each of the treatments in 

Figure D5. This includes the difference between the investor and the allocator’s payoffs in each 

treatment.   
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Figure D5. Payoff of investor and allocators in each treatment  
 

Investor’s payoffs (UP30,60) Investor’s payoffs (CP0,60) Investor’s payoffs (CP0,80) 

   
Allocator’s payoffs (UP30,60) Allocator’s payoffs (CP0,60) Allocator’s payoffs (CP0,80) 

   
Payoff difference (UP30,60) Payoff difference (CP0,60) Payoff difference (CP0,80) 

   
 

 

The peaks in 20 ECUs correspond to the initial endowments of the investor and the allocator; i.e., in 

theory, these peaks can account for i) no investment decisions, ii) for the case in which there is joint 

investment and the allocator returns investors their investment, or iii) there is joint investment and 

the allocator returns all the surplus to the investors (what never occurs in our data).  

 

We rely on the Heckman’s sample-selection model to explain the determinants of punishment 

decisions. Recall that this is a two-step method in which we first need to estimate the probability that 

punishment is possible; i.e., the selection model in Table D4 estimates the probability of joint 

investment using the procedures in Heckman (1979).  
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Table D4. Heckman selection model for punishment decisions 

 
 UP30,60 vs CP0,60 CP0,60 vs CP0,80 
 Heckman selection Heckman selection 
   
Coord. Punish (CP0,60) 1.113***  
 (0.316)  
Coord. Punish (CP0,80)  -0.156 
  (0.247) 
Return t-1 * Joint investment t-1 0.340*** 0.291*** 
 (0.019) (0.014) 
UP30,60 * Period 0.023  
 (0.025)  
CP0,60 * Period -0.084*** -0.074*** 
 (0.0234) (0.021) 
CP0,80 * Period  0.004 
  (0.017) 
Constant -3.527*** -0.504 
 (0.649) (0.615) 
   
Heterogeneity  Yes Yes 
   
Observations 1,286 1,274 

 
Notes. Significance at the *10%, **5%, ***1% level 

 

 

Our results are in line with our findings for the probability of joint investment with the exception of 

CP0,80 which is not significant when we compare the probability that investors can punish in CP0,60 

and CP0,80. This may occur because our sample-selection model does not control for some variables 

that are important in explaining the probability of joint investment; i.e., the possibility of punishment 

such as the probability of joint investment in the previous rounds. Our model does not converge 

when we include these independent variables in the analysis. At any event, the results in Table D4 

support our findings that the possibility of joint investment (i.e., of punishment) is more likely in 

CP0,60 compared with UP30,60. The return of allocators in the previous rounds is a key driver to 

explain the possibility of joint investment (and punishment) in the current round. There is also 

evidence that there are different dynamics across treatments.  
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Appendix E. Results of Study II (No punishment treatment).  

 

Figure E1 presents the dynamic of joint investment and the intended return of allocators in NP 

treatment using a dashed line; the rest of the treatments in solid lines are presented for the sake of 

completeness. We observe that the levels of joint investment in the No Punishment treatment (NP 

hereafter) are around 30-50% (on average, the likelihood of joint investment is 39%). The dynamic 

of the joint investment in NP resembles the one we observed for the CP0,80 treatment, including the 

end-period effect. As for the intended return of allocators, this is also quite stable across rounds 

except for the end-period effect, which seems to be more pronounced here than in our previous 

treatments with punishment; i.e., it seems like no having the threat of punishment encourages 

allocators to keep most of the surplus in the last period. 

 

 

(a) Frequency of joint investment (b) Intended return    

  

 

 

 

 

 

 

 
Figure E1. Relative frequency of joint investment and intended return across periods  

 

 

When we compare the joint investment in NP with the one we observed in previous treatments, we 

observe that this is significantly higher in NP than in UP30,60 (39% vs 16%, p = 0.003). There are 

also differences in the likelihood of joint investment in NP and CP0,60 (39% vs 25%, p = 0.063), 

mainly because of the decreasing trend of the levels of joint investment in the CP0,60 in the last part 

of the experiment. However, there are no differences in the joint investment between the likelihood 

of joint investment in NP and CP0,80 (39% vs 42%, p = 0.97). The differences in the levels of 

investment across treatments can also be noticed in the different dynamics across treatments. Recall 

that after investing, the proportion of groups that kept investing in the subsequent period was 43% in 

UP30,60, 62% in CP0,60, and 80% in CP0,80. In the NP treatment this proportion is 69%, thus there are 

significant differences when we compare NP and UP30,60 (p = 0.009) but differences are not 

significant for any of the treatments with coordinated punishment CP0,60 (p = 0.48) and CP0,80 (p = 
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0.23). 5  In order to see the effects of punishment on joint investment, we have conducted an 

econometric analysis analogous to the one conducted in the previous section, having the NP 

treatment as the baseline and including dummies for each of the treatments in separate regressions 

(see Appendix E). Our findings indicate that there are no differences between NP and CP0,80 but 

CP0,60 and UP30,60 are harmful for joint investment compared to NP (see Tables E1-E3).  

As for the behavior of allocators, we observe that their intended return in the NP treatment is on 

average 9.90 ECUs. This lies in between the intended return of allocators in the UP30,60 treatment 

(8.3 ECUs) and the intended return of allocators in CP0,60 (12.1 ECUs) and CP0,80 treatments (11.6 

ECUs). While we focus on the intended return in the analysis, the same pattern is observed when we 

look at the effective return of allocators (6.2 ECUs in UP30,60, 8.98 ECUs in NP, 11.6 ECUs in CP0,60, 

and 11.3 ECUs in CP0,80) or their return in a “hot” state (5.9 ECUs in UP30,60, 11.3 ECUs in NP, 11.9 

ECUs in CP0,60, and 11.6 ECUs in CP0,80). A non-parametric analysis indicates that the differences in 

the return of allocators are always significant when look at the effective or the hot return of 

allocators in NP and UP30,60 (p < 0.07), but there are no differences when we compare the returns in 

NP and any of the coordinated treatments (p > 0.31).6 In addition, our econometric analysis in the 

last section of this appendix suggests that the retuned amount is lower when punishment is 

uncoordinated compared with the NP treatment, while the coordinated punishment has a positive 

(but not always significant) effect  on the return of allocators; in fact, the Arellano-Bond 

specifications provide evidence that coordinated punishment can facilitate returns from allocators in 

CP0,60 and CP0,80, compared with NP treatment (see Tables E4-E6). 

 

Overall, we interpret these findings as evidence that allowing for punishment has negative effects on 

the levels of joint investment and the return of allocators when punishment is uncoordinated. The 

negative effects are mitigated when we allow for the possibility of coordinated punishment; in fact, 

there is suggestive evidence that allowing for coordinated punishment may be beneficial for the 

return of allocators.  

 

In what follows, we present the results of our econometric analysis to compare the investors’ 

decisions in the baseline treatment without punishment (NP) with their behavior in the treatments 

where punishment is possible. The dependent variable in all the specifications refer the likelihood of 

joint investment.  

 

Table E1 reports the results for the UP30,60 treatment. Our findings suggest that investors are less 

                                                        
5 There are also differences in the likelihood of observing non-investing groups  (i.e., groups in which none of the investors 
decide to invest). This occurs less fequenly in the NP treatment (35.7%) than in the UP30,60 treatment (55.7%), but the 
likelihood of non-investing groups in NP is very close to the likelihood in the CP0,60 (42.4%) or the CP0,80 treatment 
(35.7%), thereby suggesting that allowing for punishment may be detrimental for joint investment but only when this is 
uncoordinated. 
6 However, we find that allocators are more likely to return any positive amount or the fair amount if punishment is 
coordinated, compared with the case of no punishment; e.g., the likelihood of observing a positive (fair) return in NP is 71% 
(32%), respectively. This behavior is more frequent than in UP30,60 (Positive: 66%, Fair: 27%) but less frequent than in the 
CP0,60 (Positive: 81%, Fair: 41%)  or UP30,60 (Positive: 77%, Fair: 41%) treatments. 
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likely to invest in UP30,60 compared with NP. The same holds when comparing the CP0,60 treatment 

with NP (see Table E2). Finally, there are significant no differences in the behavior of investors in 

the CP0,80 and NP treatments (see Table E3).  

 

Table E1. Investors’ decisions: Likelihood of joint investment using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Uncoordinated Punishment (UP30,60) 

 NP vs UP30,60 
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Joint investment t-1 0.102 -0.116 -0.481 -0.105 
 (0.084) (0.107) (0.734) (0.718) 
Joint investment t-2 0.065 0.009 0.182 0.217 
 (0.057) (0.057) (0.512) (0.488) 
Return t-1 * Joint investment t-1 0.026*** 0.033*** 0.227*** 0.219*** 
 (0.007) (0.007) (0.055) (0.047) 
UP30,60 * Joint Punishment t-1  -0.239*  -0.846 -0.016 
 (0.133)  (1.077) (0.023) 
Payoff Difference t-1  0.003   
  (0.003)   
     
Period 0.003 -0.022 0.104 0.109 
 (0.021) (0.023) (0.245) (0.238) 
Period2 -0.001 0.001 -0.015 -0.015 
 (0.001) (0.001) (0.014) (0.014) 
Uncoord. Punish (UP30,60) -0.087* -0.098** -0.662* -0.691* 
 (0.044) (0.044) (0.371) (0.362) 
     
Constant -0.012 0.064 -3.475*** -3.401*** 
 (0.123) (0.125) (0.959) (0.876) 
     
Number of obs.  505 505 505 505 

                                                      Notes. Significance at the *10%, **5%, ***1% level 
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Table E2. Investors’ decisions: Likelihood of joint investment using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Coordinated Punishment (CP0,60) 
 NP vs CP0,60  
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Joint investment t-1 0.120 0.127 -0.208 0.607 
 (0.085) (0.098) (0.499) (0.502) 
Joint investment t-2 0.075 0.072 0.733* 0.730* 
 (0.055) (0.054) (0.443) (0.437) 
Return t-1 * Joint investment t-1 0.015** 0.018*** 0.174*** 0.147*** 
 (0.006) (0.006) (0.035) (0.031) 
CP0,60 * Joint Punishment t-1  -0.023  0.514  
 (0.098)  (0.530)  
Payoff Difference t-1  -0.001  -0.021 
  (0.002)  (0.015) 
Period -0.038* -0.071*** -0.237 -0.230 
 (0.023) (0.026) (0.162) (0.161) 
Period2 0.001 0.003** 0.004 0.003 
 (0.001) (0.002) (0.009) (0.009) 
Coord. Punish (CP0,60) -0.070* -0.073* -0.581* -0.551* 
 (0.038) (0.038) (0.331) (0.317) 
     
Constant 0.462** 0.501*** 0.635 0.566 
 (0.180) (0.190) (1.454) (1.447) 
     
Number of obs.  505 505 505 505 

                                                   Notes. Significance at the *10%, **5%, ***1% level 
 

Table E3. Investors’ decisions: Likelihood of joint investment using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Coordinated Punishment (CP0,80) 
 NP vs CP0,80  
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Joint investment t-1 0.097 0.221*** 0.140 1.218* 
 (0.081) (0.075) (0.539) (0.636) 
Joint investment t-2 0.002 -0.032 0.621 0.618 
 (0.055) (0.058) (0.746) (0.685) 
Return t-1 * Joint investment t-1 0.010** 0.009* 0.148*** 0.115*** 
 (0.005) (0.005) (0.034) (0.022) 
CP0,80 * Joint Punishment t-1  0.204**  1.073  
 (0.088)  (0.787)  
Payoff Difference t-1  -0.005***  -0.030** 
  (0.002)  (0.014) 
Period 0.027 0.003 0.154 0.142 
 (0.022) (0.025) (0.203) (0.194) 
Period2 -0.002* -0.001 -0.014 -0.014 
 (0.001) (0.001) (0.011) (0.010) 
Coord. Punish (CP0,80) -0.044 -0.040 -0.286 -0.266 
 (0.037) (0.035) (0.413) (0.379) 
     
Constant 0.444*** 0.475*** 0.158 0.107 
 (0.160) (0.166) (1.648) (1.526) 
     
Number of obs.  505 505 505 505 

                                                   Notes. Significance at the *10%, **5%, ***1% level 
 

We replicate the analysis for the behavior of allocators so as to compare their intended return when 

punishment is possible and when it is not. Table E4 reports the results for the comparison between 

NP and UP30,60. The estimates for the comparison between NP and the coordinated punishment 
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devices CP0,60 and CP0,80 is presented in Tables E5 and E6, respectively.  

 

Our econometric analysis provides evidence that allocators return less in UP30,60 compared with NP 

(see Table E4). As for the behavior of allocators when punishment is coordinated, the Arellano-

Bond specification suggests that allocators return more when punishment is coordinated compared 

with the case in which punishment is not possible, while the random-effect logit specification 

suggests that there are no significant differences in the behavior of allocators in the NP treatment 

and the treatments with coordinated punishment CP0,60 and CP0,80 (see Tables E5 and E6).  
 
Table E4. Allocators’ decisions: Intended return of allocators using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Uncoordinated Punishment (UP30,60) 

 NP vs UP30,60 
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Intended Return t-1 0.163* 0.202*** 0.292*** 0.323*** 
 (0.087) (0.077) (0.079) (0.079) 
Intended Return t-2 0.282*** 0.278***   
 (0.086) (0.083)   
Joint Investment t-1 3.076 12.314 3.143*** 0.336 
 (3.165) (10.029) (1.145) (2.003) 
Profit Reduction t-1 -24.631  -8.176**  
 (15.573)  (3.406)  
Payoff Difference t-1  0.831  0.091 
  (0.516)  (0.071) 
Period -0.371** -0.341* -0.054 -0.038 
 (0.188) (0.177) (0.091) (0.091) 
     
Uncoord. Punish (UP30,60) -8.904*** -7.850*** -2.358*** -2.434** 
 (2.971) (2.773) (0.524) (1.128) 
     
Constant 0.000 0.000 1.667 1.782 
 (0.000) (0.000) (4.675) (4.808) 
     
Number of obs.  325 325 545 545 

                                                      Notes. Significance at the *10%, **5%, ***1% level 
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Table E5. Allocators’ decisions: Intended return of allocators using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Coordinated Punishment (CP0,60) 

 NP vs CP0,60 
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Intended Return t-1 0.016 0.073 0.013 0.014 
 (0.065) (0.064) (0.067) (0.066) 
Joint Investment t-1 4.491* 1.402 2.520** 2.446* 
 (2.596) (3.033) (0.994) (1.331) 
Profit reduction t-1 -12.860*  -0.258  
 (6.960)  (2.998)  
Payoff Difference t-1  0.074  0.002 
  (0.156)  (0.046) 
Period -0.006 -0.013 0.059 0.059 
 (0.115) (0.112) (0.083) (0.083) 
     
Coord. Punish (CP0,60) 2.816*** 1.753*** 2.026 2.004 
 (1.035) (0.618) (2.873) (2.865) 
     
Constant 0.782 1.987 -5.915 -5.893 
 (2.403) (2.131) (8.867) (8.867) 
     
Number of obs.  545 545 545 545 

                                                      Notes. Significance at the *10%, **5%, ***1% level 
 
 
Table E6. Allocators’ decisions: Intended return of allocators using Arellano-Bond and random-effect 

logit specifications: Baseline (NP) vs Coordinated Punishment (CP0,80) 

 NP vs CP0,80 
 Arellano-Bond Random-effect logit 
 (1) (2) (3) (4) 
     
Intended Return t-1 0.633*** 0.224*** 0.283*** 0.307*** 
 (0.154) (0.077) (0.073) (0.072) 
Intended Return t-2 0.085 0.202**   
 (0.117) (0.089)   
Joint Investment t-1 9.831** 2.752 1.827 0.248 
 (5.006) (2.571) (1.439) (1.210) 
Profit Reduction t-1 31.663***  2.585  
 (10.611)  (1.743)  
Payoff Difference t-1  -0.165  0.082*** 
  (0.211)  (0.031) 
Period 0.081 -0.314* -0.255*** -0.240*** 
 (0.232) (0.167) (0.087) (0.086) 
     
Coord. Punish (CP0,80) 18.411*** 1.031 1.692 2.302 
 (6.290) (1.205) (2.243) (2.291) 
     
Constant 0.000 12.481*** 5.941 4.592 
 (0.000) (3.234) (7.255) (7.404) 
     
Number of obs.  325 475 545 545 

                                                      Notes. Significance at the *10%, **5%, ***1% level 
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