
Chapman University Digital Chapman University Digital 

Commons Commons 

Mathematics, Physics, and Computer Science 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

1-30-2009 

Gravitational Redshift and Deflection of Slow Light Gravitational Redshift and Deflection of Slow Light 

Justin Dressel 
Chapman University, dressel@chapman.edu 

S. G. Rajeev 
University of Rochester 

J. C. Howell 
University of Rochester 

Andrew N. Jordan 
University of Rochester 

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles 

 Part of the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Dressel, J., Rajeev, S.G., Howell, J.C., Jordan, A.N., 2009. Gravitational redshift and deflection of slow light. 
Physical Review A 79, 013834. doi:10.1103/PhysRevA.79.013834 

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and 
Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and 
Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital 
Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Gravitational Redshift and Deflection of Slow Light Gravitational Redshift and Deflection of Slow Light 

Comments Comments 
This article was originally published in Physical Review A, volume 79, in 2009. DOI: 10.1103/
PhysRevA.79.013834 

Copyright 
American Physical Society 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/scs_articles/
359 

http://dx.doi.org/10.1103/PhysRevA.79.013834
http://dx.doi.org/10.1103/PhysRevA.79.013834
https://digitalcommons.chapman.edu/scs_articles/359
https://digitalcommons.chapman.edu/scs_articles/359


Gravitational redshift and deflection of slow light

J. Dressel, S. G. Rajeev, J. C. Howell, and A. N. Jordan
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

�Received 27 October 2008; published 30 January 2009�

We explore the nature of the classical propagation of light through media with strong frequency-dependent
dispersion in the presence of a gravitational field. In the weak field limit, gravity causes a redshift of the optical
frequency, which the slow-light medium converts into a spatially varying index of refraction. This results in the
bending of a light ray in the medium. We further propose experimental techniques to amplify and detect the
phenomenon using weak value measurements. Independent heuristic and rigorous derivations of this effect are
given.

DOI: 10.1103/PhysRevA.79.013834 PACS number�s�: 42.50.Gy, 04.20.�q, 06.20.�f

I. INTRODUCTION

We live in an age where we constantly push technological
boundaries to explore the subtleties of the quantum domain
and to challenge our understanding of the microscopic world.
Occasionally these explorations lead us full circle back to the
macroscopic classical regime to prompt new and interesting
questions about previously studied topics. These revisitations
only deepen our understanding of the world.

New materials with strong frequency-dependent disper-
sion are also being explored that allow for remarkably slow
group velocities in the propagation of light �1�. These devel-
opments have raised a different question: Can we actually
measure the effect of gravity on slow light using a tabletop
device? The purpose of this paper is to describe how this
could be done.

One of the first tests of the general theory of relativity �2�
was the confirmation of the bending of light near the sun in
1919, showing that gravity does affect the propagation of
light �3�. However, it has been difficult historically to test
these effects in any compact way in a laboratory. Between
the fact that gravity is a rather weak effect and the fact that
light typically travels at large speeds, any measurement of a
gravitational effect on the propagation has required a large
propagation distance—much larger than any typical
laboratory.

For Earth-confined experiments, however, the dominant
measurable effect of gravity on light is the gravitational red-
shift of the frequency, and not the bending of its trajectory
�see, e.g., �4��. According to this effect, a photon starting at
an initial height 0 and climbing to a final height y will have
its frequency redshifted in a weak gravitational field,

�� = ��1 − gy/c2� . �1�

The shift in frequency can be viewed as a manifestation of
the equivalence principle: The crests of sequential light
waves spread further apart as the beam climbs. Alternatively,
the shift of the frequency can be considered to arise from
conservation of energy as the photon climbs a potential well.
As we shall see later, the height dependence of the frequency
continues to be the dominant effect of gravity during slow-
light propagation that also results in a slight bending of the
trajectory.

The shift in frequency due to gravitation may be small,
but Pound and Rebka managed to measure and verify it to
within 10% of the predicted value in 1959 using a height
difference of only 22.5 m �5�. Their experiment used gamma
rays emitted by the nucleus of Iron-57 to achieve the sharp
spectral lines needed to measure the shift. The Mössbauer
effect, stating that atoms in a lattice may emit radiation from
their nuclei with almost no recoil since the entire lattice col-
lectively recoils, allowed the gamma rays to be emitted with
minimal Doppler broadening, improving the precision. Fur-
ther tests have since been done using greater height differ-
ences and techniques to measure the effect of gravitational
redshift to a precision of about one part in 104 �6�. The effect
has even been necessary to include in the GPS guidance
system �4�. To the best of our knowledge, the Pound-Rebka
experiment holds the record for the shortest height difference
to see a gravitational effect on light.

The aim of this paper is to combine the physics of slow-
light materials with gravitational effects on the light. We
show from fundamental principles that a light ray is pre-
dicted to follow a parabolic trajectory through the medium
�to leading order in the gravitational field strength�. The
bending is predicted to arise from the gravitational redshift,
which is amplified by the strongly dispersive slow-light me-
dium. For typical experimental setups at the time of writing,
we predict the expected deflection to be on the order of an
angstrom. We also propose an experimental setup to detect
this very small beam displacement. Hence, if the experiment
proposed in this paper is realized, then the effects of the
gravitational redshift would beat the previous height record
by many orders of magnitude. We note that this question has
also been recently examined independently by Kumar �7�.
However, both our qualitative explanation, as well as our
quantitative predictions of this effect are very different.

II. ESTIMATE AND INTUITION

Later in this paper we will present a general analysis of
the gravitational effect on light in a strongly dispersive me-
dium from a general relativity perspective. However, the ba-
sic intuition of the physics can be understood quite simply. A
slow-light medium has an index of refraction that sharply
varies linearly with frequency in a particular frequency
range. A beam of light will be slightly gravitationally red- or
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blueshifted as it changes height in the medium. The combi-
nation of these effects gives the index of refraction an effec-
tively linear height dependence, which is amplified by the
steep dispersion relation. The height dependence of the index
of refraction will then be translated into a spatial deflection
of the light beam as the beam propagates. Therefore, by mea-
suring the spatial deflection of the beam, one is indirectly
measuring the effects of the gravitational redshift.

Relying on the above intuition, we can now estimate the
size of the effect in a tabletop experiment. Assuming that the
deflection height y will be small, the index of refraction n���
may be expanded to linear order in y as follows:

n��,y� = n0 +
dn

d�

d�

dy
y . �2�

The gravitational redshift �1� implies that d� /dy=−�g /c2.
The classical theory of optics �8� defines the phase velocity
vp and group velocity vg of a wave packet as

vp =
def�

k
=

c

n
, �3�

vg =
defd�

dk
=

c

n + �
dn

d�

, �4�

and using the dispersion relation k=�n /c, we can rewrite
�

dn
d� =c�1 /vg−1 /vp�. Hence, the effective index of refraction

may be written as

n��,y� = n0 −
gy

c2

c�vp − vg�
vgvp

. �5�

Using the approximation that vp�c, and vg�vp, we can
rewrite this in the simplest form that still preserves the char-
acteristic velocities as follows:

n��,y� � n0 −
gy

c2

vp

vg
. �6�

The above analysis assumes that the material properties of
the dispersive medium �such as level structure� do not vary
with height.

This index of refraction leads to a deflection of the beam,
given by solving the geometric optics equation �8�,

d

ds
�n��,y�

dr�

ds
� = �� n . �7�

This is done by considering a beam initially pointing in the
horizontal �x� direction and taking the x component of the
above equation to find the conservation law,

n��,y�cos � = const, �8�

where � is the downward angle of the beam from the hori-
zontal. The trajectory may be found by considering

tan � = −
dy

dx
=�n��,y�2

n��,0�2 − 1 ��−
2g

c2

vp

vg
y , �9�

where the expansion is to first order in gvpz /c2vg, and we
have approximated n0�1. This simple differential equation
can now be solved for the vertical deflection �y, given a
horizontal displacement L, yielding

�y � −
gL2vp

2c2vg
. �10�

Similarly, the angle � of the final beam relative to the hori-
zontal is given by

� =
gLvp

c2vg
= − 2

�y

L
. �11�

The more careful analysis later in this paper confirms that
these expressions are indeed the first order approximation to
the vertical drop.

Making an estimate, we assume plausible lab values of
L=0.8 m, vg=102 m /s, and vp=3�108 m /s, so the vertical
deflection is estimated to be ��1 Å, and the angular deflec-
tion is estimated to be ��0.2 nrad. By varying L, or vg, the
deflection can be adjusted by several orders of magnitude
around this estimate.

III. EXPERIMENTAL TESTS

The nontrivial nature of this proposed experiment requires
careful attention. The assumption that the index of refraction
varies as a function of height restricts the number of systems
that can be used to deflect the light. For example, electro-
magnetically induced transparency �9�, nonlinear magneto-
optical rotations �10�, coherent population oscillations �11�,
or Raman-Nath interference in liquid crystal light valves �12�
can probably all achieve the experimental conditions needed
for an observable signal. However, all of these systems use a
strong pump beam to prepare a coherence or interference in
the medium. The pump beam is also experiencing the gravi-
tational redshift. For pump beams of nearly the same fre-
quency as the probe, the redshift of the probe is then washed
out, because the index of refraction established by the pump
beam also shifts in the same direction as the probe beam.
Since �y���, only when the pump beam is dramatically
different in frequency will a pump-prepared system have the
ability to detect the redshift. This can be done with a three-
level system where there is a very large frequency difference
between the pump and probe beams. By modulating the two-
photon detuning of the probe and pump wavelengths on a
very narrow Raman resonance, the gravitational deflection
can be turned on and off at the modulation frequency. The
modulated signal can be observed via a lock-in amplifier.

In addition to the problems associated with a shifting dis-
persion, pump beams with a nonuniform intensity profile
�e.g., Gaussian beams� also cause some guiding effects due
to index of refraction changes. Other potential problems us-
ing atomic vapors may include gravitational and thermal
density gradients that can overwhelm the small deflection
�13�. One can envision other classes of systems that have
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promise to measure the deflection. One class of systems is
one in which a pump beam and probe beam propagate in
opposite directions. This is effectively the same as having a
pump beam blueshifted while the probe is redshifted. The
deflection would be twice as large, because the dispersion is
shifting in the opposite direction in frequency space as the
probe as a function of height. Another class of systems is one
which uses fixed frequency, narrow resonance, solid state,
bulk materials. If the inhomogeneous broadening is negli-
gible, the probe frequency can be very close to the resonance
frequency to achieve small group velocities. These experi-
mental parameters are demanding.

In order to measure these small gravitational effects, we
enlist quantum mechanics for help. Interference effects can
measure length differences of much less than a wavelength.
Indeed, Manly and Page have proposed to essentially directly
measure the change in the index of refraction �6� by interfer-
ing a redshift beam with a blueshifted beam in a fiber-based
Sagnac interferometer �14�. Such an approach can also be
taken in a slow-light medium. We describe below another
quantum approach using another kind of quantum interfer-
ence. In order to measure such a small deflection of a light
beam, we propose to extend recent advances in precision
metrology by amplifying the deflection using quantum
“weak value” measurements �15�. Weak values have the
property that the postselected expectation value of an opera-
tor can exceed the eigenvalue bounds of the operator �16,17�.
Recently, Hosten and Kwiat successfully used optical weak
value measurements to detect a 1 Å deflection in an optical
beam �18�. In the Hosten-Kwiat experiment, the weak value
operator was the polarization of the light beam, which was
entangled with the transverse position degree of freedom.
Most slow-light materials do not have a polarization-
dependent index of refraction, so we propose to use instead a
“which-path” operator of an optical Sagnac interferometer
�8� as shown in Fig. 1. A laser source is at the input of a
Sagnac interferometer. If no other optical element is in the
interferometer and with ideal alignment, all of the light will
exit the input port of the interferometer. The optical path
length of both directions are identical in a Sagnac interfer-
ometer because both paths simply traverse the same route but
in different directions. The reason all of the light exits only
the input �or bright� port is due to a relative � /2 phase shift
for each reflection versus transmission through the beam
splitter �BS�, resulting in exactly destructive interference for
the dark port. Using a tunable birefringent element �a Soleil
Babinet compensator �SBC��, we can break the symmetry
and cause a relative tunable phase between the two directions
in the interferometer. For this gedanken experiment, we as-
sume the light entering the interferometer is horizontally po-
larized. The light that is propagating in the counterclockwise
direction is rotated to be vertical via a half wave plate ori-
ented at 45° with respect to the horizontal polarization. We
align the SBC such that the vertically polarized light receives
a relative phase shift 	 compared with the horizontally po-
larized light, which is propagating in the clockwise direction.
The light propagating in the clockwise direction is then made
to be vertically polarized. The two paths then interfere at the
BS but the counterclockwise light has picked up a tunable
relative phase shift of 	.

A slow-light medium �SLM� is placed in the interferom-
eter, causing a transverse gravitational deflection 
y of the
beam in the downward direction. We want to amplify this
deflection using weak value techniques. By placing the SLM
at an asymmetric point inside the interferometer, there will
be a long path of length Ll �corresponding to the clockwise
direction � having a larger deflection 
yl� and a short path of
length Ls �corresponding to the counterclockwise direction �
having a smaller deflection 
ys� between the SLM and the
50 /50 BS �this is simply to break the deflection symmetry
between the two paths�. We now describe how to use weak
values to amplify the small spatial deviation. We define the
system as being the which-path information of the light
beam, and the meter as the transverse profile of the beam.
The system operator is the which-path operator A
=
yl	� 
��	+
ys	� 
��	. Following the propagation of the
state through the Sagnac interferometer, starting from a pre-
selected system state 	�i
 �formed at the BS�, and postselect-
ing on a system state 	� f
 �exiting the dark port� we find that
the weak value

Aw =
�� f	A	�i

�� f	�i


�12�

of A is given by a purely imaginary result,

Aw � i

yl − 
ys

	
. �13�

The SBC phase 	�1 characterizes the deviation from per-
fect darkness, and is responsible for the amplification of the
deflection. See Ref. �19� for detailed calculations. Expressing
the deflection in terms of the gravitational deflection angle �
�Eq. �11��, 
yl−
ys= �Ll−Ls��, we have for the total deflec-
tion,

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

50/50
LASER

Slow Light
Medium

Dark port

SBC

Waveplate

g

FIG. 1. Experimental setup. A laser beam enters a Sagnac inter-
ferometer. If no other optical element is in the system and for per-
fect alignment all of the light exits out the input port of the inter-
ferometer and goes back to the laser. Using a combination of a half
�� /2� wave plate and a Soleil Babinet compensator �SBC�, one can
tune the relative phase acquired for each direction in the interfer-
ometer. This allows us to tune between the dark and bright ports,
which is necessary for weak value measurements. The slow-light
medium of the interferometer allows us to couple the “which-way”
information of the interferometer to the transverse deflection of the
light beam. A quadrant detector, which measures beam deflections,
is in the dark port of the interferometer. The gravitational field g is
perpendicular to the plane of the figure.
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�
y
 =
F�Ll − Ls��

	
, �14�

where F is a factor originating from the dynamical propaga-
tion, which brings additional enhancement �a factor of about
100 in Ref. �18��. This deflection is then directly measured
with a quadrant detector in the dark port.

IV. HAMILTON’S OPTICS

In order to give a rigorous treatment of light propagation
through media with anomalous dispersion in a gravitational
field, we start with the wave equation itself. Many of the
historical treatments of light propagation have implicitly as-
sumed the index of refraction to be weakly dependent �or not
dependent� on frequency since the derivations were done be-
fore slow light was a commonly studied phenomenon, e.g.,
Ref. �20�. Hence, a revisitation of the physical foundations is
illuminating.

The components of a vector electromagnetic �EM� wave
propagating through a material medium obeys the modified
wave equation,

�−
n2

c2

d2

dt2 + �2 = 0. �15�

Here  is any component of a vector EM wave, n is the
index of refraction of the material, and c is the speed of light
in vacuum.

We assume the propagating wave components have the
form =A exp�iS /��, where S�r� , t� is the eikonal of the
wave �8�. Then, to leading order in 1 /�, we get an equation
for the eikonal itself in the geometrical ray approximation,

−
n2

c2� d

dt
S2

+ 	�� S	2 = 0. �16�

The eikonal relation holds for all components of the vector
EM wave so the vector nature of the EM wave itself is un-
changed during the propagation as a ray. By taking the lead-
ing order in 1 /�, we assume � is small compared to the
length scales through which the wave propagates, such that
the wave behaves effectively as a ray. Note that the ray may
still undergo small angular deflections without violating this
approximation, which is a crucial point for the results in this
paper.

In small regions of space and time, the eikonal can be
expanded in a series to first order in space and time,

S � S0 + r� · �� S + t
�S

�t
, �17�

where we have incorporated the wavelength � into the eiko-
nal for notational simplicity. Comparing this approximation
to the eikonal for a plane wave, S=k� ·r�−�t+�, we define the
frequency and wave vector of the wave for a local region
where the eikonal can be approximated as planar,

k� =
def

�� S , �18�

� =
def

−
�S

�t
. �19�

We then rewrite the eikonal equation �16� in terms of the
local wave vector and frequency for each infinitesimal region
of space and time,

k� · k� − ��

c
2

n2��,r�� = 0. �20�

Here the potential dependence of the index of refraction n on
the local frequency and position is written explicitly as a
reminder.

The eikonal equation can be rearranged and square
rooted, giving the usual dispersion relation for the medium in
a localized region,

c	k�	 = �n��,r�� . �21�

The signs are chosen to keep the frequency � positive.
An analogy can be made between the mechanics of ma-

terial particles and the motion of wave packets that exposes a
different set of canonical variables and allows a systematic
derivation of the equations of motion for the wave packet.

From Eqs. �18� and �19�, we see that the eikonal S plays
the role of the action of the system S, with the wave vector k�
corresponding to the momentum of the wave p� , and the fre-
quency �, corresponding to the energy H. In particular, as is
well known from quantum mechanics, the energy and mo-
menta of a wave packet composed of plane waves are di-
rectly proportional to the frequency and wave numbers, re-
spectively. The scaling constant in quantum mechanics is �,
implying that the classical action is just the scaled eikonal
for the wave packet.

The explicit correspondence for the translation to Hamil-
tonian dynamics is

S ↔ S ,

q� ↔ r� ,

p� ↔ k� ,

t ↔ t ,

H ↔ � . �22�

Using this correspondence, either the eikonal equation �20�
or the dispersion relation �21� can be understood to represent
Hamilton-Jacobi equations of the system in an implicit form
�21�. Solving each for � would give the standard form of the
Hamilton-Jacobi equation using these identified canonical
coordinates. Furthermore, � will be a conserved quantity
since the equations are independent of t. For convenience in
referring to these equations, we will denote the eikonal rela-
tion as F and the dispersion relation as G:

F�k�,�� =
def

k� · k� − ��

c
2

n2��,r�� = 0, �23�
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G�k�,�� =
def

	k�	 −
�

c
n��,r�� = 0. �24�

Using the conserved quantity � as the Hamiltonian of the
system, we can write down Hamilton’s equations of motion
directly in the form

dk�

dt
= k�̇ = − �� � , �25�

v�g =
defdr�

dt
= r�̇ =

��

�k�
. �26�

It becomes clear at this point that v�g must be interpreted as
the group velocity of a wave packet that obeys the eikonal
equation, and not the phase velocity of the carrier wave it-
self. Hamilton’s equations of motion along with the eikonal
equation completely determine the motion of a wave packet
treated as a point particle through a material medium along a
geometrical ray. The geometrical ray approximation made to
derive the eikonal relation implicitly assumes wave-packet
behavior.

If the form of the index of refraction n is known, then F
or G may be solved for �, and Hamilton’s equations can be
solved for the trajectory of the packet directly.

V. INFLUENCE OF GRAVITY

In order to include the influence of gravity on the slow-
light beam, we recall that the main gravitational effect for
Earth-based experiments is the gravitational redshift. The
following simple rule can be used to make a weak field trans-
lation of the dispersion relation to include gravitational
effects,

� → �1 − U�� , �27�

where U=−GM /c2r is the scaled Newtonian gravitational
potential. We give a general relativistic justification of this
rule in the Appendix. It is the spatial dependence of U in the
shift of the frequency that will cause a bending of the trajec-
tory of light.

The gravitational redshift is very small, U�1, so we ex-
pand the dispersion relation �24� after the replacement �27�
to first order in U,

G�k,r�� � 	k�	 −
�n

c
+ U

�

c
�n + �

�n���
��

�
� 	k�	 −

�

vp
�1 − U

vp

vg
 = 0, �28�

where we have used the standard definitions of vg and vp
�Eqs. �3� and �4��. We will see in the next section that the
definition of vg is effectively unchanged. This final simplifi-
cation hides the simple frequency redshift that is occurring,
but makes the form of the first-order correction in terms of
the quantity Uvp /vg particularly apparent.

A. Hamilton’s equations

We proceed to solve Hamilton’s equations of motion with
the frequency � playing the role of the Hamiltonian of the

system, and the new dispersion equation �28� acting as the
Hamilton-Jacobi equation.

Hamilton’s equation �26� gives the vector group velocity
of the packet. The frequency � involves only the quantity 	k�	,
so ��

�k�
� k̂. Therefore, we now focus on the magnitude of the

group velocity. Applying a frequency derivative to Eq. �28�
yields

�	k�	
��

=
�1 − U�

c
�n��� + �

�n���
��

� − 2U
�

c

�n���
��

− U
�2

c

�2n���
��2 . �29�

Now we make the slow light approximation that n is lin-
ear in �. Slow light occurs for a frequency band where the
index of refraction n has a steep linear dependence on � with
positive slope. Therefore we neglect the last �second-order
derivative� term in Eq. �29�, so

v�g =
dr�

dt
=

��

�k�
= � �	k�	

��
−1

k̂ �
c

�1 − U�n + ��1 − 3U�
�n

��

k̂ .

�30�

We see that the group velocity is modified very slightly from
its traditional form by the presence of the gravitational field.
However, the packet will always travel in the same direction
as the wave vector.

Hamilton’s other equation, Eq. �25�, will determine how
the wave vector itself changes over time and thus how the
trajectory will curve. Since the only position dependence in
� is radial due to the presence of U, the gradient reduces to
a radial derivative. We can implicitly find �r� by applying a
spatial derivative to G,

�

�r
�c	k	 = �1 − U��n − �2U

�n

��
� ,

0 �
��

�r
��1 − U�n + �1 − 3U��

�n

��
 − �

�U

�r
�n + �

�n

��
 .

�31�

Solving for �r� gives

��

�r
� � n + �

�n

��

�1 − U�n + �1 − 3U��
�n

��
��

�U

�r
. �32�

Then from Eq. �25� we find the change in wave vector to be
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dk�

dt
= k�̇ = − �� � = −

��

�r
r̂ � − � n + �

�n

��

�1 − U�n + �1 − 3U��
�n

��
��

�U

�r
r̂ . �33�

Now we linearize the dimensionless gravitational poten-
tial U to give a more useful form for a lab, and evaluate the
derivative in Eq. �33�,

U = −
MG

c2�R + r�
�

− gR

c2 + r
g

c2 , �34�

so

k�̇ � − � n + �
�n

��

�1 − U�n + �1 − 3U��
�n

��
��

g

c2 r̂ . �35�

Thus we see a net deflection of the wave vector having to do
with the presence of the local gravitational acceleration g.
Here R is the radius of the Earth, M is the mass of the Earth,
G is Newton’s gravitational constant, and r is the height
displacement from the initial starting position of the packet.
Notice that the scaling factor in Eq. �35� is the ratio of the
new group velocity to the normal group velocity.

Noting the fact that g /c2�10−16 m−1, gR /c2�10−11, and
��1010 s−1 for the surface of the Earth and the optical do-
mains we are considering, we can reduce Eqs. �30� and �35�
to simpler final forms,

v�g = r�̇ �
c

n + �
�n

��

k̂ , �36�

k�̇ � −
g

c2�r̂ . �37�

The group velocity appears unchanged to a very good ap-
proximation with such a weak field from what is traditionally
expected in a slow-light medium, but the wave vector picks
up a small, effectively constant, deflection over time that is
dependent on the carrier frequency of the packet and the
local gravitational acceleration. The deflection points toward
the gravitating body, so light will bend toward the body,
matching intuition.

B. Wave-packet trajectory

With the newly derived approximate equations of motion
for the weak field limit at the surface of the Earth, �Eqs. �36�
and �37��, we can solve the trajectory of a pointlike wave
packet in a straightforward manner.

Assume that for a small local bit of trajectory the radial
direction can be well approximated by the vertical Cartesian
direction ŷ, and consider the wave vector pointing entirely in

the horizontal Cartesian direction x̂ at an initial time ti=0, so

k��0� =
�n

c
x̂ =

�

vp
x̂ . �38�

Here vp is the phase velocity of the packet.
Solving for k��t� from Eq. �37� yields

k��t� = −
�g

c2 tŷ + k��0� = �� 1

vp
x̂ −

g

c2 tŷ , �39�

so

k̂�t� =
k�

	k	
= �1 + �vp

g

c2 t2�−1/2�x̂ − vp
g

c2 tŷ � x̂ − vp
g

c2 tŷ .

�40�

Thus the wave vector rotates over time, and its magnitude
increases due to the gravitational redshift. Notice that the
wave rotation is not dependent on the group velocity, but
only on the carrier phase velocity. The group velocity only
appears when we calculate the position of the packet. The
final approximation �40� is made since we are only con-
cerned with the lowest-order drop �22�.

Solving for r��t� from Eq. �36�, starting the packet at an
initial position r��0� at the start of a medium of length L
yields

r��t� = vg� k̂�t�dt � r��0� + vgtx̂ −
1

2

g

c2vpvgt2ŷ , �41�

which is a parabolic trajectory analogous to a kinematic tra-
jectory, but with an effective gravitational acceleration given
by

geff =
def

g
vpvg

c2 . �42�

Thus a wave packet drops much less due to gravity in a
medium with slow group velocity than it would in vacuum in
the same amount of time, explaining why we have not casu-
ally observed them dropping like rocks in previous experi-
ments.

Since we are interested mostly in how the wave-packet
trajectory is altered after traversal through a finite slow-light
region, we set the final horizontal position to the length of
the propagation region: rx�tf�=L. Solving for tf, we see that

tf =
L

vg
. �43�

We can now solve for the vertical drop after a traversal of
horizontal distance L, yielding
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�y = −
g

c2

vp

vg

L2

2
. �44�

Again, this drop is analogous to the drop found in a kine-
matic trajectory, but with the effective gravitational accelera-
tion �42� and horizontal velocity vg. Despite the fact that the
effective gravitational acceleration is reduced, the long
propagation time compensates for this, resulting in an ampli-
fied deflection.

VI. CONCLUSION

We have shown that a slow-light medium is expected to
amplify the effects of gravity on a wave packet such that
they may become visible to a sensitive apparatus using weak
value measurement. The primary weak field gravitational ef-
fect is the induced position dependence of the carrier fre-
quency of the light, �→ �1−U��, where U is the dimension-
less Newtonian gravitational potential. The position
dependence of the frequency shift is amplified by the strong
frequency dependence of the slow-light medium, which
translates to a magnified bending of the trajectory of the light
as it moves through the medium.

Using the modified dispersion relation for the EM wave
components of the light �28� as a Hamilton-Jacobi equation,
we applied Hamilton’s equations of motion to find a para-
bolic trajectory of the slow-light pulse through the medium
�41�. We found that the trajectory is analogous to a simple
kinematic trajectory, but with a much smaller effective gravi-
tational acceleration. The smaller effective acceleration is
more than compensated by the longer travel time, leading to
the amplified vertical drop �44�. For typical current lab val-
ues, we expect a vertical drop on the order of 1 Å for a
traversal distance of roughly 1 m.

Although the predicted displacement is tiny, it borders
what is currently possible to detect with the amplified preci-
sion of a weak value enhanced measurement. We have pro-
posed an optical weak values measurement, based on post-
selected weak measurements of a which-path operator in a
Sagnac interferometer. This proposal has the advantage that
in contract to previous experiments �18�, the optical deflec-
tion does not need to be polarization dependent. We stress
that this fact makes the idea applicable to amplify an optical
deflection originating from any optical element. Aside from
the fundamental aspects of detecting a gravitational redshift
in a laboratory setting, a table-top detector would open a
field in precision gravitational metrology.

APPENDIX

The purpose of this Appendix is to describe how to rela-
tivize slow-light equations of motions. We will convert the
eikonal equation into relativistic form, then pass to curved
space-time, and then specialize to the weak-field case in or-
der to justify the redshift replacement �→ �1−U��. We will
also comment on other methods that we have used to inde-
pendently check the results in the paper.

Flat space-time. The equations developed for Euclidean
flat space parametrized by a universal time can be general-

ized to a Minkowski space-time in a straightforward manner.
The generalization involves moving from the flat product
space R�R3 with Euclidean metric on each piece to the flat
space-time manifold M with a pseudometric having signa-
ture ��, �, �, ��.

To convert the flat space eikonal relation �20� into the
language of space-time, we note that the eikonal is a scalar
field on the manifold. The natural replacement for the fre-
quency and wave number of the wave is the oneform field
�written in boldface� defined as the exterior derivative of the
eikonal,

k =
def

dS =
�S

�x�dx� = k�dx�. �A1�

We use the Einstein summation convention so all doubled
Greek indices have implied sums over all four dimensions of
space-time, and Latin indices have implied sums over only
the three spatial dimensions of space-time.

Written in the component representation with the coordi-
nate basis the wave-number oneform field is

k � � �S

��ct�
,
�S

�x
,
�S

�y
,
�S

�z
 = �−

�

c
,kx,ky,kz . �A2�

Here the notation� indicates an isomorphism to R4 through a
particular component representation for convenience. In or-
der to properly translate the eikonal equation �20� to space-
time, we will treat the appropriate components as the com-
ponents of this oneform field.

Keeping in mind that the dot product in the eikonal equa-
tion �20� should correspond to the application of the metric,
we get the following translation into space-time, in compo-
nent form:

F�k,r�� =
def

�ijkikj + �00k0k0n2�k0,r�� = 0. �A3�

Notice that this equation is not Lorentz invariant unless
n=1. The presence of the medium breaks the symmetry and
forces a preferred frame for interpretation of the components
of the wave vector. This is precisely why the components
have to be interpreted in the correct frame for the lab mea-
surement. Assuming the lab is stationary, the correct frame is
the coordinate frame. Changing to different frames results in
frequency contraction �Doppler� effects from the lack of Lor-
entz invariance.

Curved space-time. The transition to curved spacetime
with metric g follows by considering the space-time version
of the eikonal equation �A3� to remain valid for any ortho-
normal frame and co-frame �23�. It is always possible in a
curved space-time to find an orthonormal frame and co-
frame, though they will not be a coordinate frame pair.

The key assertion is that the space-time eikonal equation

�A3� is valid in this orthonormal co-frame �k�→ k̃��. Finding
the proper form of the equation for the lab frame requires
performing a frame change. It is important to interpret the
components of the oneform field k as a measurable fre-
quency and wave number only in the correct frame—namely,
the lab frame—due to the fact that the components will
change with the frame. Note, in particular, that there is no
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coordinate change happening during this process. Everything
on the manifold will still be parametrized by the original
Cartesian coordinates.

The frame change results in a frame-transformation ma-
trix e that is related to the Minkowski metric �, the metric of
curved space, g, and the oneform field k, as

k̃� = e�
� k�, �A4�

k̃� = �e−1��
�k�, �A5�

��� = e�
�e�

�g��, �A6�

��� = �e−1��
��e−1��

�g��. �A7�

If the form of the metric is known for a particular lab co-
frame �usually the coordinate co-frame�, then the form of the
transformation matrix e is completely specified �4,23�.

Using these the above relations to transform the eikonal
equation to the coordinate co-frame, we find that

F�k,r�� =
def

�ijk̃ik̃ j + �00k̃0k̃0n2�k̃0,r�� = g��k�k����e−1��
i ei

��

���e−1��
j ej

�� + ��e−1��
0e0

����e−1��
0e0

��n2�e0
�k�,r��� = 0.

�A8�

The wave oneform components in the lab frame are now
precisely in the form we can interpret physically as in Eq.
�A2�. Note that the matrices from the co-frame changes do
not completely cancel due to the lack of Lorentz invariance
in the equation. Furthermore, the index of refraction gains a
spatially dependent part. All the components of the wave
oneform become mixed in the equation on frame changes,
leading to various frequency contraction �Doppler� effects in
different frames.

In the special case when n=1, the co-frame change ma-
trices do exactly cancel and the eikonal equation becomes
Lorentz invariant. This special case is the traditional case for
vacuum propagation, Fn=1=k�k�=0.

The new eikonal equation �A8� gives us a Hamilton-
Jacobi equation for the propagation of a wave packet through
curved space-time in the geometrical optics approximation in
the lab frame, assuming the medium through which it propa-
gates has no other effect than to introduce the index of re-
fraction into the wave equation. In particular, any micro-
scopic interaction in the medium, which would prevent the
packet from falling due to gravity, is being ignored.

As before, if n is independent of t, then the entire eikonal
equation is independent of t. Therefore, � becomes a con-
served scalar quantity of the motion. It is known as the
“world frequency” since it is invariant with respect to the
world time. The “proper frequency” is conjugate to the
proper time of an observer, rather than the world time, and
differs by a frame-transformation matrix from the coordinate
frame to the observer frame.

Weak-field limit. In order to compute something measur-

able, we use the weak-field limit of the Schwartzchild metric
for a radially symmetric gravitating body �the Earth�. In Car-
tesian coordinates the nonflat part of the weak-field metric
and the transformation matrix from flat space-time are given
by the relations

rs =
def2GM

c2 , �A9�

U =
def

−
rs

2r
, �A10�

g00 � − �1 − U�2 � − �1 − 2U� , �A11�

g00 � − �1 + U�2 � − �1 + 2U� , �A12�

e−1 � diag�1 + U,1,1,1� , �A13�

e � diag�1 − U,1,1,1� , �A14�

where rs is the Schwartzchild radius of the gravitating body,
and U is the dimensionless Newtonian gravitational poten-
tial. The rest of the metric g is identical to the flat space
metric � in this weak-field limit.

The eikonal equation �A8� then reduces to the form

F�k,r�� =
def

g��k�k����e−1��
i ei

����e−1��
j ej

�� + ��e−1��
0e0

��

���e−1��
0e0

��n2�e0
�k�,r���

= gijkikj + g00k0k0n2�e0
0k0,r��

= k� · k� − �1 − 2U��−
�

c
2

n2�− �1 − U�
�

c
,r�

= k� · k� − � �1 − U��
c

2

n2��1 − U��,r�� = 0. �A15�

The last step simply omits constants in the functional form of
n, showing the relevant dependence, and puts the gravita-
tional dependence in a more consistent form. Notice that the
simple diagonal form neatly keeps the frequency components
unmixed, and only leaves gravitational influence attached to
� as a small correction. Since the dimensionless potential U
is dependent purely on the radius, this equation is invariant
in form with respect to a coordinate change to polar coordi-
nates as well. Taking the square root of this equation gives
the modified dispersion relation, justifying the gravitational
redshift replacement �27�.

We now briefly describe other independent checks done
on our results. Rather than solve Hamilton’s equations in
three dimensions, it is also possible to give a four-
dimensional �4D� derivation. In the 4D approach the fre-
quency is conserved, and that quantity F or the quantity G
are treated as the Hamiltonian and an arbitrary global param-
eter � is introduced. The equations of motion eventually re-
duce to the three-dimensional ones �24�.

DRESSEL et al. PHYSICAL REVIEW A 79, 013834 �2009�

013834-8



�1� P. W. Milonni, Fast Light, Slow Light and Left-Handed Light
�Institute of Physics, Great Britain, CRC Press, 2004�.

�2� A. Einstein, Ann. Phys. 49, 769 �1916�.
�3� F. W. Dyson, A. S. Eddington, and C. Davidson, Philos. Trans.

R. Soc. London, Ser. A 220, 291 �1920�.
�4� J. B. Hartle, Gravity, An Introduction to Einstein’s General

Relativity �Addison-Wesley, Reading, MA, 2003�.
�5� R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Lett. 3, 439

�1959�.
�6� R. F. C. Vessot et al., Phys. Rev. Lett. 45, 2081 �1980�.
�7� N. Kumar, Europhys. Lett. 82, 60002 �2008�; e-print

arXiv:0710.0273.
�8� M. Born and E. Wolf, Principles of Optics �Pergamon Press,

New York, 1959�.
�9� K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett.

66, 2593 �1991�.
�10� L. M. Barkov, M. S. Zolotorev, and D. Melik-Pashayev, JETP

Lett. 48, 144 �1988�; Opt. Commun. 70, 467 �1989�.
�11� M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev.

Lett. 90, 113903 �2003�.
�12� S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett.

100, 203603 �2008�.
�13� R. M. Camacho, M. V. Pack, and J. C. Howell, Phys. Rev. A

73, 063812 �2006�.
�14� S. Manly and E. Page, Phys. Rev. D 63, 062003 �2001�.
�15� Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.

60, 1351 �1988�.
�16� G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M.

Wiseman, Phys. Rev. Lett. 94, 220405 �2005�.
�17� N. S. Williams and A. N. Jordan, Phys. Rev. Lett. 100, 026804

�2008�.
�18� O. Hosten and P. Kwiat, Science 319, 787 �2008�.
�19� J. C. Howell and A. N. Jordan �unpublished�.
�20� W. Gordon, Ann. Phys. 72, 421 �1923�.
�21� L. D. Landau and E. M. Lifshitz, Mechanics, 2nd ed. �Perga-

mon, Oxford, 1976�.
�22� The full solution �keeping track of the normalization of k��

leads to a hyperbolic trajectory, but with a characteristic length
scale of �=c2vg /gvp�109 m for the numbers quoted in the
paper, making the trajectory parabolic for all practical pur-
poses.

�23� M. Göckeler and T. Schucker, Differential Geometry, Gauge
Theories and Gravity �Cambridge University Press, Cam-
bridge, England, 1990�.

�24� J. Dressel �unpublished�.

GRAVITATIONAL REDSHIFT AND DEFLECTION OF SLOW… PHYSICAL REVIEW A 79, 013834 �2009�

013834-9


	Gravitational Redshift and Deflection of Slow Light
	Recommended Citation

	Gravitational Redshift and Deflection of Slow Light
	Comments
	Copyright


	tmp.1484680619.pdf.EifDS

