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Contextual Values of Observables in Quantum Measurements

J. Dressel, S. Agarwal, and A.N. Jordan

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
(Received 23 November 2009; published 15 June 2010)

We introduce contextual values as a generalization of the eigenvalues of an observable that takes into

account both the system observable and a general measurement procedure. This technique leads to a

natural definition of a general conditioned average that converges uniquely to the quantum weak value in

the minimal disturbance limit. As such, we address the controversy in the literature regarding the

theoretical consistency of the quantum weak value by providing a more general theoretical framework

and giving several examples of how that framework relates to existing experimental and theoretical

results.

DOI: 10.1103/PhysRevLett.104.240401 PACS numbers: 03.65.Ta, 03.67.Lx, 73.23.�b

The weak value (WV) of a quantum operator Â was
introduced in 1988 by Aharonov, Albert, and Vaidman
(AAV) [1]. They claimed that if a system is preselected
in an initial quantum state jc ii, and postselected on a final
state jc fi, then the result of weakly measuring the operator

Â was not its expectation value, but rather its weak value:

Aw ¼ hc fjÂjc ii=hc fjc ii: (1)

In the WV literature, it is customary to point out that for a
bounded operator the WV can wildly exceed the eigen-
value range, and, unlike the expectation value, can be
complex.

The WV has been both a theoretically and experimen-
tally fruitful concept because of these surprising features.
Theoretically, WVs have helped to understand counter-
intuitive results that involve postselection, even resolving
difficulties that arise in quantum mechanics such as
Hardy’s paradox and apparent superluminal travel [2].
They can be further seen as a single-system test of quantum
mechanics: whenever the WV exceeds the eigenvalue
range, it rules out certain classes of hidden variable theo-
ries and is equivalent to violating a generalized Leggett-
Garg inequality [3]. On the experimental side, WVs that
exceed the eigenvalue range have been observed in optical
systems [4,5]. Indeed, WVs have recently found a practical
application, because an anomalously large WV may be
used to amplify a small shift in a system parameter. This
idea has been exploited in polarization [6] and interferom-
etry [7] experiments to achieve subpicometer position
resolution.

In spite of this list of increasingly impressive accom-
plishments and insights, there is a long history of contro-
versy regarding WVs [8]. Our primary concern here is not
the ample philosophical discussion, but rather the physics
controversy which we now detail. (i) As defined, the WV
(1) is generally complex, so how can it be measured? This
was artfully put by Landauer when he asked, ‘‘Has anyone
seen a stopwatch with complex numbers on its dial?’’ [9].
(Both the real and imaginary parts of the WV expression

are physically relevant, but are measured with different
experiments, see, e.g., [10].) (ii) Another objection is that
the AAV formula (1) is not unique, and that other results
for the WV can arise with a slightly different measurement
setup [11]. (iii) The AAV formula (1) only applies to pure
states and arbitrarily weak measurements, so is there a
generalization to the cases of mixed states and finite
strength measurements? (iv) Perhaps most worrisome, if
we view the WVas a weighted average of the eigenvalues
of the operator, and the WVexceeds the eigenvalue range,
then we can immediately conclude that there must be
negative probabilities weighting the eigenvalues. This is
dramatically illustrated in the three-box problem [8].
Taken together, these objections are a formidable challenge
to the theoretical consistency of the concept of the WV.
The purpose of this Letter is to take the thesis of the

second paragraph together with the antithesis of the third
and to develop a synthesis. This will be accomplished by
going beyond thinking about an observable in terms of its
eigenvalues and advancing the concept that the measure-
ment results must be interpreted within their own context.
This idea will give rise to the notion of the contextual
values (CV) of an observable. The synthesis occurs by
showing how the WV can be subsumed as a special case
in the CV formalism. This formalism contains additional
information that is able to clarify the objections listed
above in an organic fashion. In addition, we will derive a
generalized WV formula that can be practically applied to
a much larger class of problems that involve postselected
averages. We also provide illustrative examples and dem-
onstrate that we can recover a number of predictions for
postselected averages in the literature that had been calcu-
lated for specific situations using other, more involved
techniques.
Contextual values.—The idea behind CV stems from the

observation that the intrinsically measurable quantities in
the quantum theory are the outcome probabilities for a
particular measurement setup. In order to calculate aver-
ages of an observable from the measured probabilities, it is
empirically necessary to assign values to each outcome as a
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separate step. This secondary step becomes implicit in the
operator formalism, so is rarely mentioned explicitly.

Under projective measurements such a value assignment
seems trivial: the outcomes are perfectly distinguishable
and easily assigned meaningful values, which become the
eigenvalues for the observable operator. However, when
generalizing the measurement to nonprojective outcomes,
one must be careful to correctly match the measured
probabilities to a consistent value set. We will now show
that the observable operator can be expanded in multiple
ways corresponding to the possible measurement strategies
and value assignments (4).

To illustrate how the observable values change, we con-
sider a general measurement that is fully characterized by a

set of N measurement operators, M ¼ fM̂jg, which repre-

sent the operation of an N-outcome measurement appara-
tus on the system. This measurement context generates a
corresponding positive operator-valued measure (POVM),

E ¼ fÊj ¼ M̂y
j M̂jg, which, in conjunction with an arbi-

trary density operator �̂, determines a probability measure,

Pj ¼ Tr½Êj�̂�, on the space of outcomes. Empirically,

these probabilities can be measured as the relative frequen-
cies of obtaining each outcome.

Suppose that we wish to reconstruct the average value of
an observable A using this setup. In order to obtain the
correct average as a weighted sum,

hAi ¼ X
j

�jPi ¼
X
j

�j Tr½Êj�̂�; (2)

we must explicitly assign a set of values f�jg to the N

outcomes of the apparatus.
We require that such an average be independent of M,

and thus a property of the state �̂ itself, which constrains
the possible value assignments. Specifically, (2) should be

equivalent to the average under a projective context, P ¼
f�̂kg,

hAi ¼ X
k

ak Tr½�̂k�̂� ¼ Tr½Â �̂�; (3)

where we have identified the projection-valued measure
(PVM) and the corresponding eigenvalues fakg as the

spectral decomposition of a Hermitian operator Â.
We now assert that the values f�jg should be determined

solely by M so the equality between (2) and (3) should

hold for any state �̂. It follows that the operator Â can be
expanded in multiple ways corresponding to possible con-
texts,

Â ¼ X
j

�jÊj ¼
X
k

ak�̂k: (4)

This operator identity defines the contextual values f�jg of
an operator Â under a compatible measurement contextM
as a generalization of its eigenvalues that allows the full
empirical reconstruction of the associated physical observ-
able A.

Indeed we can use this operator equality to obtain the
nth moment of A using the same experimental setup,

hAni ¼ X
j1;...;jn

�j1 . . .�jn Tr½Êj1 . . . Êjn�̂�; (5)

provided that the N measurement operators inM and Â all
commute. In that case the correlation probabilities,

Pj1;...;jn ¼ Tr½M̂jn � � � M̂j1�̂M̂
y
j1
� � � M̂y

jn
�, appearing in (5)

can be measured as the relative frequencies of the Nn

outcome sequences of n repeated measurements.
In addition to permitting the reconstruction of the mo-

ments of the observable, its CVare of great interest in their
own right. Note that the moments of the CV themselves,P

j�
n
jPi, only coincide with the moments of A for n ¼ 1.

Such moments nevertheless contain important physics
about both the context M and the observable A, as we
consider shortly.

The construction (4), in general, will fail if N < dimÂ,

will be unique if N ¼ dimÂ, and will be underspecified if

N > dimÂ. The latter case results in an infinite number of
possible solutions, f�jg. As such, we propose that the

physically sensible choice of CV is the least redundant
set uniquely related to the eigenvalues through the
Moore-Penrose pseudoinverse.
To illustrate the construction of the least redundant set of

CV, we consider the case when fM̂jg and Â all commute. It

follows that they can all be diagonalized in the same PVM,
and (4) is isomorphic to a matrix equation ~a ¼ F ~� ¼
ðPjFkj�jÞ, with the components of F given by Fkj ¼
Tr½�̂kÊj�. To find the pseudoinverse of the matrix F, we

find its singular value decomposition, F ¼ U�VT , where
the orthogonal matrices, U and V, are composed of the
eigenvectors of FFT and FTF, respectively, and � is a
diagonal matrix composed of the singular values of F [12].
The pseudoinverse of F can be constructed as Fþ ¼
V�þUT , where �þ is the diagonal matrix constructed
from �T by inverting all nonzero singular values. It then
follows that a uniquely specified set of CV can be defined
as ~�0 ¼ Fþ ~a. Other solutions of (4) can be written ~� ¼
~�0 þ ~x, where ~x is in the null space of F.
Conditioned averages.—Suppose we now wish to gen-

eralize the notion of an observable average by conditioning
the average on the result of a second measurement. To do

so we weight the CV, f�ð1Þ
j g, already determined by the first

measurement context,Mð1Þ, with a set of conditional prob-
abilities generated from a second measurement.
A second measurement is performed on the system with

a context, Mð2Þ ¼ fM̂ð2Þ
f g, yielding the full context for the

(ordered) sequential measurements, Mð1;2Þ ¼ fM̂ð2Þ
f M̂ð1Þ

j g.
The corresponding POVM, Eð1;2Þ ¼ fÊð1;2Þ

jf ¼
M̂ð1Þy

j M̂ð2Þy
f M̂ð2Þ

f M̂ð1Þ
j g, gives the measurable probabilities,

Pjf ¼ Tr½Êð1;2Þ
jf �̂� and Pf ¼ P

jPjf. From these probabili-

ties we can define a conditional probability in the usual
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way, Pjjf ¼ Pjf=Pf, and thus define our main result, the

conditioned average of an observable,

fhAi ¼ X
j

�ð1Þ
j Pjjf ¼

P
j �

ð1Þ
j Tr½Êð1;2Þ

jf �̂�P
j Tr½Êð1;2Þ

jf �̂� : (6)

Unlike hAi, fhAi is explicitly dependent onMð1Þ and the
CV. Hence, it must generally be interpreted as encoding
information not just about the observable A, but also
about the measurement context itself.

Conditioned averages must be bounded by the minimum
and maximum CV. However, since the CV range is not the
same as the eigenvalue range for the observable, values of

fhAi outside the eigenvalue range may be obtained.

Weak values.—To find the weak limit of (6) we note that
any measurement context continuously connected to the

identity operation can be decomposed into the form M ¼
fÛjðgÞÊ1=2

j ðgÞg, where g is a measurement strength pa-

rameter, and ÛjðgÞ ¼ exp½igĜj� are unitary operators gen-
erated by Hermitian operators Ĝj by Stone’s theorem.

Since the POVM elements are bounded and partition unity,

they can also be expanded as ÊjðgÞ ¼ pj1̂þ gÊ0
j þ

Oðg2Þ, where Pjpj ¼ 1.

Writing the initial context in (6) to first order in g, we
find that as g ! 0, the weak limit generally depends ex-

plicitly on fĜjg and f�jg, and thus will change depending

on how it is measured and how the CVare chosen (see also

[11]). However, if 8 j, ½Ĝj; �̂� ¼ 0, so the state is mini-

mally disturbed, then the context dependence vanishes and
a generalized WV [13] is uniquely defined as the quantity

Aw ¼ Tr½Êð2Þ
f fÂ; �̂g�=2Tr½Êð2Þ

f �̂�; (7)

where f�; �g denotes the anticommutator. For a pure initial

state, �̂ ¼ jc iihc ij, a ‘‘pure POVM,’’ 8j, Ûj ¼ 1̂, and a

strong final measurement, Êð2Þ
f ¼ jc fihc fj (as considered

by AAV and most subsequent applications), (7) can be
written as the real part of (1) [14].
Photon polarization.—As a first example, a photon po-

larization measurement of tunable strength is detailed in
[5] and can be readily interpreted using CV. The Stokes
observable Sz is measured in the horizontal-vertical polar-

ization basis with the context M̂þ ¼ ��̂H þ ���̂V and

M̂� ¼ ���̂H þ ��̂V , leading to the POVM, Ê� ¼
ð1=2Þð1̂� g�̂zÞ, where g ¼ �2 � ��2. The CV for this
scenario are uniquely �1=g, which exceed the eigenvalue
range for jgj< 1.
Computing the conditioned average (6) of Sz with an

initial state of jc i ¼ �jHi þ �jVi and a final state jfi ¼
ðjHi � jViÞ= ffiffiffi

2
p

yields

fhSzi ¼ ðj�j2 � j�j2Þ=ð1� 4� ��Re½����Þ; (8)

which is the result obtained in [5] through direct compu-
tation using an ancilla system.
AAV setup.—For the original AAV–von Neumann setup

[1], implemented using photons in [4], an interaction

Hamiltonian Ĥint ¼ g�ðt� t0Þ�̂z � p̂D of a qubit with a
detector having momentum operator p̂D leads to a con-
tinuous set of measurement operators on the system

M̂ðqÞ ¼ hq� g�̂zj�Di, where j�Di is the initial detector
state, q is the position of the detector pointer, and g is the
coupling strength. Hence the POVM is simply the initial
detector probability density shifted in position by an op-

erator, ÊðqÞ ¼ PDðq� g�̂zÞ ¼ jhq� g�̂zj�Dij2.
Performing the pseudoinversion [12] leads to the least

redundant set of CV, �zðqÞ, for the z component of the
pseudospin,

�zðqÞ ¼ ½PDðq� gÞ � PDðqþ gÞ�=ða� bðgÞÞ;
a ¼

Z
PDðqÞ2dq;

bðgÞ ¼
Z

PDðq� gÞPDðqþ gÞdq: (9)

From these expressions it is immediately clear that if the
shift g is small compared to the width of the initial distri-
bution PDðqÞ, then the POVM will be nearly proportional
to the identity and the measure of overlap, bðgÞ, will be
nearly equal to the distribution constant a. Hence, the
measurement will be weak and the CV will diverge inde-
pendently of any specific system states.

For a Gaussian distribution, PDðqÞ ¼
exp½�q2=2�2�=� ffiffiffiffiffiffiffi

2�
p

, a ¼ 1=2�
ffiffiffiffi
�

p
and bðgÞ ¼

a exp½�ðg=�Þ2�. Hence, the CV are �zðqÞ ¼ffiffiffi
2

p
exp½�q2=2�2�½sinhðqg=�2Þ= sinhðg2=2�2Þ� [15].

With an initial state c ð�Þ ¼ ð cosð�=2Þ; sinð�=2ÞÞ in the

z basis conditioned on a final state fð�=2Þ ¼ ð2Þ�1=2ð1; 1Þ,
(6) yields

q

6

6

z q

g 0.1

g 1.0

q

6

6

z q P q f

g 0.1

f z 1.7

q

6

6

z q

g 0.1

g 1.0

q

6

6

z q P q f

g 0.1

f z 0.29

FIG. 1 (color online). CV (left) and conditioned CV (right)
computed using the setup described above Eq. (10) with a
coupling strength g ¼ 0:1 and a pointer distribution width � ¼
0:3. The preparation state is c ð47�=32Þ, and postselection state
is fð�=2Þ. Two detector distributions are compared: Gaussian
(top) with conditioned average (right, dotted line) violating the
eigenvalue range (dashed lines), and box (bottom) showing the
effect of the shape on the WV convergence rate. Strong mea-
surement regime CV for each distribution with g ¼ 1:0 are also
shown for comparison (left, dotted line).
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fhSzi ¼ cos�=ð1þ sin� exp½�g2=2�2�Þ: (10)

The strong limit as ðg=�Þ ! 1 is cos�, and the weak limit
as ðg=�Þ ! 0 is the WV cotð�=2þ �=4Þ. The sameWV is
also obtained for any PDðqÞ according to (7), though the
speed of convergence depends on the distribution shape.
Figure 1 illustrates the effect of the shape by comparing
Gaussian and box distributions.

Quantum point contact (QPC) detector.—A generaliza-
tion of the AAV result to continuous measurements in solid
state detectors is given in [3]. The measurement operators
are constructed in terms of an average current through a
QPC, �I ¼ ð1=tÞRt

0 Iðt0Þdt0, and two characteristic currents,

I1 and I2, that indicate the position of an electron in a
nearby double quantum dot. The current detection proba-
bilities are assumed Gaussian with a variance of �2 ¼
SI=2t, where SI is the detector shot noise power and t is
the averaging time for the current.

The system can be mapped to the AAV case by making
the identifications I0 ¼ ðI1 þ I2Þ=2, q ¼ �I� I0, g ¼ ðI1 �
I2Þ=2, and�2 ¼ SI=2t. Since the characteristic currents for
the electron position are fixed, the coupling strength g is
also fixed. Hence it is useful to consider instead the dimen-
sionless variables, u ¼ q=g, and � ¼ ðg=�Þ2 ¼ t=Tm,
where Tm is the characteristic measurement time.
Figure 2 shows a range of CV for varying �.

The system is started with an initially arbitrary density
matrix �̂ ¼ ½�ij� written in the z basis. After being mea-

sured for the averaging time t, it is then rotated around the
�̂x axis by an angle 	 and measured strongly to be in a final
state jfi ¼ j þ 1i along the new z axis. Computing the
conditioned average using (6) yields

fhSzi ¼
cos2ð	2Þ�11 � sin2ð	2Þ�22

cos2ð	2Þ�11 þ sin2ð	2Þ�22 � sin	 Im½�12�e��=2
;

(11)

which matches the result in [3] computed using the quan-
tum Bayesian approach [15].

Conclusions.—We have shown how to completely re-
construct an observable using an arbitrary measurement
setup by defining contextual values (4), or generalized
eigenvalues, that account for the measurement context.
The approach allows a conditioned average (6) to be
defined that correctly reproduces existing results in the
literature and converges uniquely to a generalized weak
value (7) in the minimum disturbance limit.
This conditioned average addresses much of the contro-

versy surrounding weak values in the literature, since it
(i) is a purely real empirical average, (ii) converges to the
real part of the standard weak value (1) uniquely in the
minimum disturbance limit with pure initial and final
states, (iii) applies to any measurement strength, arbitrary
quantum density operators, and POVM postselections, and
(iv) is constructed from well-behaved, measurable
probabilities.
This work was supported by the NSF Grant No. DMR-

0844899, ARO Grant No. W911NF-09-1-0417, and a
DARPA DSO Slow Light grant.
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